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Abstract

Background: Vertebrate eye formation requires coordinated inductive interactions between 

different embryonic tissue layers, first described in amphibians. A network of transcription factors 

and signaling molecules controls these steps, with mutations causing severe ocular, neuronal, and 

craniofacial defects. In eyeless mutant axolotls, eye morphogenesis arrests at the optic vesicle 

stage, before lens induction, and development of ventral forebrain structures is disrupted.

Results: We identified a 5-bp deletion in the rax (retina and anterior neural fold homeobox) 

gene, which was tightly linked to the recessive eyeless (e) axolotl locus in an F2 cross. This 

frameshift mutation, in exon 2, truncates RAX protein within the homeodomain (P154fs35X). 

Quantitative RNA analysis shows that mutant and wild-type rax transcripts are equally abundant in 

E/e embryos. Translation appears to initiate from dual start codons, via leaky ribosome scanning, 

a conserved feature among gnathostome RAX proteins. Previous data show rax is expressed in 

the optic vesicle and diencephalon, deeply conserved among metazoans, and required for eye 

formation in other species.

Conclusion: The eyeless axolotl mutation is a null allele in the rax homeobox gene, with 

primary defects in neural ectoderm, including the retinal and hypothalamic primordia.
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1 | INTRODUCTION

Eye formation in vertebrates occurs via a stepwise process, involving regionalization, 

induction, and differentiation. Following gastrulation, the anterior neural plate is patterned 

into discrete regions, which are specified by eye field transcription factors (EFTFs).1 These 

homeodomain (HD) proteins are expressed in overlapping sectors of the prospective eye 

field, and orchestrate its morphogenetic transformation into bilaterally symmetric optic 

vesicles, which emerge from the ventral diencephalon during neurulation.2 In a series of 

classical experiments, first performed in urodele amphibians 120 years ago, Spemann, 

Lewis, and others showed that the optic vesicles induce formation of a lens placode 

(thickening) on each side of the head, as they contact the overlying surface ectoderm and 

involute to form bilayered optic cups.3–5 These ectodermal tissues subsequently differentiate 

to form the lens and mature retina, with inner neural and outer pigmented layers.6 Apart 

from critical EFTFs, such as Rax (retina and anterior neural fold homeobox) and Pax6 

(paired box family), eye development is mediated by transmembrane and secreted protein 

factors, such as BMP4, which transmit inductive signals bidirectionally between the optic 

vesicle and surface ectoderm.7,8 These morphogenetic steps were defined during the 

past century through studies involving amphibian embryos, which are easy to maintain, 

monitor and manipulate; conventional genetic models, such as laboratory mice, which allow 

comparative molecular analysis of mutants, phenotypes, and transgenes; and more recently, 

3D retinal organoid cultures.9,10

Eyeless phenotypes, including clinical anophthalmia in humans,11 may result from 

mutations that disrupt early patterning or partitioning of the eye fields, lens induction, 

migration of ocular neural crest cells, or periocular mesenchyme signaling—or disrupt the 

growth, separation and/or differentiation of the retina, pigmented epithelium (RPE), optic 

stalk or lens.6 Eye regression can also occur via positive evolutionary selection, in species 

adapted to life in troglobitic (caves) or subterranean environments, with a complex genetic 

basis.12,13

The axolotl (Nahuatl āxōlōtl), Ambystoma mexicanum, is the oldest continuously studied 

model organism.14 An endangered neotenic salamander, the axolotl is indigenous to 

Xochimilco and interconnected lakes that once surrounded Tenochtitlan (Mexico City).15 

This species has an aquatic life cycle, with most individuals retaining gills after 

metamorphosis and sexual maturation.16,17 Axolotls have been an important model in 

the history of experimental embryology, and are capable of regenerating limbs and other 

tissues.18–20 Existing laboratory colonies and inbred lines trace their ancestry to a cohort of 

live specimens imported to Paris in 1863.21 Several Mendelian traits have been described, 

affecting organogenesis or physiology.22 However, molecular studies have been limited by 

the large size (C-value) of urodele genomes, which are the largest among tetrapods. The 

axolotl genome has 14 chromosomes and is 32 Gb, more than 12 times the size of the mouse 

genome.23 Recently, a chromosome-scale axolotl genome assembly was reported, and is the 

largest to date, providing a framework for gene discovery.23,24

Eyeless axolotls were first identified by Rufus Humphrey at Indiana University, in an inbred 

strain (Wistar) with a white (d/d) genetic background.25 Homozygous eyeless mutants (e/e) 
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lacked eyes and were darkly pigmented. They had hypothalamic defects and immature 

gonads and were consequently sterile. The eye phenotype was initially attributed to the 

absence of optic vesicles,26,27 but in later studies, small or delayed optic vesicles were 

described, which failed to progress.28

The dark pigmentation across the dorsal head region is caused by dispersion of melanin 

granules within large dendritic chromatophores, and is a secondary pleiotropic effect. This 

phenotype can be reproduced in wild-type (WT) animals by removing both eyes, which 

increases the level of melanocyte stimulating hormone, MSH.29 Normal pigmentation was 

restored to e/e animals by grafting a single functioning eye, but these axolotls remained 

infertile.30 Sterility has been attributed to hypothalamic brain defects, and the absence of 

gonadotropin releasing hormone (GnRH). Chimeric animals with WT heads and eyeless 
trunks are fertile, with mature gonads, but reciprocal chimeras are sterile.26,31

Epp and van Deusen proved that the eyeless gene acts within the forebrain ectoderm 

and not in the surface ectoderm that forms the lens, or inner mesoderm that transiently 

induces the eye fields during gastrulation.26,27,32 They showed this by reciprocally grafting 

neural ectoderm between eyeless and WT embryos. WT grafts led to eye formation in 

e/e recipients, but reciprocal grafts failed. Thus, in eyeless mutants, the primary inductive 

interaction between surface and neural ectoderm layers, first described over a century ago,4 

fails to occur. The molecular basis for this defect has been unknown. In this report, we 

demonstrate linkage between eyeless and the rax homeobox gene, and identify the causative 

molecular lesion.

2 | RESULTS

2.1 | eyeless mutants

The embryonic development, adult phenotypes, and transmission genetics of the eyeless 
(e) axolotl have been reported, with major primary defects noted in eye, hypothalamic 

and pituitary development.27,33 In e/e embryos, the optic vesicles fail to emerge from the 

ventral diencephalon or are significantly delayed; they do not progress to form bilayered 

optic cups or induce lens formation, and subsequently degenerate.34 Likewise, the anterior 

hypothalamus develops abnormally. There is no preoptic recess or extension of PAF+ 

neurosecretory fiber tracts; the neurohypophysis appears atrophied and the anterior pituitary 

gland (adenohypophysis) is dysmorphic.35 Consequently, e/e animals are sterile, lacking 

GnRH, and gonadotropins, and hyperpigmented, with expanded chromatophores in the 

absence of light perception and environmental feedback.33

To further demonstrate these phenotypes, we collected stage 42 larvae from an F2 cross. 

In e/e samples, anatomical defects were apparent in exterior photographs (Figure 1A), 

coronal immunofluorescence micrographs, stained with β3-neurotubulin (Tubb3) and Pax6 

antibodies (Figure 1B), and histological sections stained with hematoxylin and eosin (H&E; 

Figure 1C–F). These findings are consistent with a primary patterning, identity or signaling 

defect in the anterior neural ectoderm. In some e/e larvae, small dysmorphic optic rudiments 

were observed below the surface ectoderm, with variable features suggestive of retina, lens 

and/or RPE (Figure 1E,F), as previously noted in eyeless axolotls at hatching34 and targeted 
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rax mutant Xenopus.36 These rudiments do not progress and subsequently degenerate during 

larval life.

2.2 | F2 segregation test

We initially considered two candidate genes—pax6 and rax, critical EFTFs whose 

spatiotemporal expression, biological functions, and mutant features in other vertebrates 

are consistent with e/e phenotypes.

Pax6 is required for eye and brain development in diverse metazoans, and has deeply 

conserved structure, expression, and developmental functions.37,38 It contains paired 

and homeobox DNA-binding domains, acts near the top of a hierarchy for eye 

development, and is notably sufficient to induce ectopic eyes in Drosophila and some 

vertebrates.39,40 Loss-of-function mutations have been reported in humans, mice, zebrafish 

and fruit flies with anophthalmia and major brain malformations, including defects in 

the cortex, hypothalamus and pituitary41–44 or cognate structures.45,46 Null mutations are 

typically lethal in vertebrates, owing to defects in the brain and pancreatic islets, but 

hypomorphic and regulatory alleles are known.47–50 Heterozygotes have milder phenotypes 

(haploinsufficiency). Pax6 mRNA is expressed throughout the optic primordia. In mutant 

mice, eye development arrests at the optic cup stage, before lens induction.51 Previous in 

situ hybridization analyses show reduced cephalic pax6 mRNA in axolotl e/e embryos—a 

potential cause or effect of the eyeless phenotype.52

The Rax (also Rx) homeobox gene is likewise required for eye and ventral brain 

development in chordates.53–56 It acts earlier than Pax6, but has a more limited pattern 

and phenotype.57,58 Rax is strongly and broadly expressed in the diencephalon, within the 

anlagen giving rise to the hypothalamus, pineal, optic vesicles and stalk. Spontaneous or 

engineered Rax mutations cause eyeless phenotypes in medaka and zebrafish, frogs, mice, 

and humans,36,55,59–63 with limited progression past the optic vesicle stage. Homozygous 

Rax-null mice die at birth with brain and craniofacial malformations64; however, inbred 

eyeless mice carrying a hypomorphic allele (ey1, RaxM10L) are viable and fertile.65 There 

are two vertebrate Rax families, which arose through ancestral whole genome duplications, 

WGD.66,67 In partially tetraploid species (Xenopus laevis, teleost fish), these paralogs 

are further duplicated. In zebrafish, for example, rx3 is expressed in the anterior neural 

plate, optic vesicles, and forebrain, and corresponds to mouse Rax, whereas rx1 and 

rx2 are mainly localized to the neuroretina.68 The orthologous gene (raxL, RxL, RAX2) 

promotes photoreceptor differentiation in chick, Xenopus and humans,69–73 but was lost 

in at least five mammalian lineages, including rodents.67 RAX2 coding mutations cause 

retinal degeneration in humans74,75 and an rx1 regulatory deletion underlies the large natural 

variation in cone opsin expression among Lake Malawi cichlid species with diverse visual 

sensitivities.76

To test these candidates, we intercrossed carriers and prepared genomic DNA from F2 

larvae, of which approximately 25% were eyeless. We then genotyped a subset of eyeless 

(e/e) and WT (E/−) offspring by PCR sequencing. We amplified pax6 and rax 3′UTRs 

and scored single-nucleotide polymorphisms (SNPs). For pax6, we scored a G/A variant, 

heterozygous in each parent, and observed 1:2:1 genotype ratios in both phenotypic classes 
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(Table 1). pax6 thus segregates independently of the eyeless trait and is excluded (P = 0.33, 

χ2 = 2.22, df = 2, n = 23). Consistent with these data, pax6 cDNAs from e/e and E/E 
embryos have identical sequence (TG and RL Maas, unpublished).

For rax, we scored a 1-bp insertion (insG) that was heterozygous in the male parent only. 

In this case, we observed a 2:1 genotype ratio among 86 WT larvae, and no heterozygotes 

among 55 eyeless larvae (Table 1), with 1:1 ratios expected in each class for independent 

assortment. rax is thus tightly linked to eyeless (P = 3.30 × 10−13, χ2 = 53.02, df = 1, n = 55) 

and maps within 1.5 cM (95% CI).

2.3 | rax frameshift mutation in eyeless axolotls

To identify the causative mutation, we amplified the three rax exons and four conserved 

noncoding elements (CNEs 0–3) from archived E/− and e/e samples, with flanking 

PCR primers designed using the 32 Gb genome assembly from wild axolotl stocks23,24 

as a guide. Exons 1 to 3 and internal CNE2 (intron 2) span 16.1 kb of contig 

AMEXG_74394 (50.7 kb) on chromosome 6p (Figure 2A), and were identified through 

BLAST homology searches with known vertebrate rax sequences as query. This contig maps 

inside AMEXG_0030000955 (6.5 Mb), within a 51 kb assembly gap, flanked by CNE1 and 

CNE3 on opposite sides. This scaffold encompasses seven genes (pmaip1, ccbe1, lman1, 

cplx4, rax, grp, sec11c), with conserved synteny and order among tetrapods (Figure 2A). 

The rax CNEs are well characterized as cis regulatory enhancers in mice and frogs.77–79 

These seven features, which comprise the rax gene and regulatory unit, span about 500 kb 

in axolotls, compared to 15 kb in mice, consistent with the enormous evolutionary expansion 

of salamander (urodele) gene models.80 In this case, the expansion is greater than average 

(33-fold vs 12-fold genome-wide).

The rax coding sequence extends from exons 1 to 3, and includes conserved octapeptide 

(OP), paired-class homeobox, RX (PPXY), and OAR (orthopedia, aristaless, rax) domains. 

In the exon 2 sequence chromatograms, we observed a 5-bp deletion (ΔCGGAC) in e/e 
samples, and mixed profiles in E/e samples, compared to the WT reference (Figure 2B). The 

eyeless deletion causes a translational frameshift at codon Pro154, in the HD. It is predicted 

to truncate the protein prematurely in exon 3, after 35 nonsense codons (P154fs35X).

2.4 | Genetic linkage between eyeless and rax

To further establish linkage between rax and eyeless, we genotyped 100 F2 larvae from 

cross 13673 for the HD deletion in exon 2 and UTR variant in exon 3. To our surprise, 51 

offspring appeared homozygous for the Δ5bp mutation in exon 2; these include 29 eyeless 

larvae, lacking the insG UTR allele (as noted above), and 22 WT larvae, heterozygous for 

the insG allele, with well-developed eyes (Table 2). Reduced penetrance is theoretically 

possible, as an explanation for this discordance, and occurs in mice with the hypomorphic 

RaxM10L mutation65; however, we expected these 22 axolotl larvae to exhibit some 

disruption of eye morphogenesis, if they were truly homozygous for a rax deletion allele.

Alternatively, the male parent may carry a different WT allele (E′) that failed to amplify 

with ex2 primers and is coupled in cis to the ex3 insG variant (E′ haplotype). To test this 

hypothesis, we amplified ex2 segments from discordant F2 offspring using multiple PCR 
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primer pairs (Figure 2C). By moving the 5′ primer closer to exon 2, we were able to amplify 

both alleles (WT and Δ5). In this way, we mapped a 1 kb transposon insertion 102 bp 

upstream from ex2 in the E′ haplotype. This L1 retroelement81 inhibits amplification of E′ 
products in a competitive genotyping PCR. Using a WT-specific primer spanning codon 155, 

we amplified long E′ products from E′/e carriers spanning the insertion site (Figure 2C). 

After regenotyping all available F2 samples with informative PCRs (Table 2), we found that 

the rax Δ5bp mutation and eyeless trait are fully concordant, with 29 eyeless (Δ5/Δ5, e/e) 

offspring and 71 WT offspring, of which 16 were +/+ (E′/E) and 55 were Δ5/+ (33 E/e, 22 

E′/e). This final linkage result is highly significant (P = 1.69 × 10−20, χ2 = 95.18, df = 3, n = 

100, with LOD = 19.8). The eyeless trait is thus caused by a rax frameshift mutation.

2.5 | Effects on rax mRNA and protein

Premature translation termination typically causes mRNA degradation through the nonsense-

mediated decay pathway, unless the premature stop codon is encountered by the pioneer 

ribosome in the last 1–2 exons.82 The eyeless P154fs35X mutation in exon 2 and premature 

stop in exon 3 are thus not expected to alter rax mRNA stability. To test this prediction, we 

performed quantitative fluorescence RT-PCR on pooled heterozygous (E/e) stage 22 to 25 

embryos with primers in exons 1 and 3, and directly compared the abundance of Δ5bp and 

WT transcripts (Figure 3). At this stage, rax is highly expressed in eye and brain rudiments, 

which develop normally in E/e heterozygotes. The molar ratio of RT-PCR products was 1.14 

(eyeless to WT). We conclude that mutant rax mRNA is normally expressed, spliced and 

stable.

Since axolotl eyeless mRNA is abundant, it should be translated, producing a truncated RAX 

protein with an abnormal C-terminal peptide (Figure 4A). This predicted protein should not 

bind DNA, since the HD is disrupted (Figure 4B), and may have a relatively short half-life. 

However, the altered polypeptide does not elicit significant toxicity, since E/e heterozygotes 

are phenotypically similar to WT. Therefore, the eyeless mutation is most likely a rax null 

allele.

In the HD amino acid alignment, we also show axolotl Rax2 protein (Figure 4B). This 

paralog, on chromosome 1p, was identified in our original BLAST search. It maps on 

scaffold AMEXG_0030005363 (2.7 Mb), between matk and apba3, and is likely to activate 

transcription in the developing retina and ciliary marginal zone during photoreceptor 

differentiation.72,73 Like other tetrapod Rax2 proteins, it has a truncated N-terminus and 

no OP motif to mediate groucho repression.66,72,73

Interestingly, axolotl Rax shares a unique N-terminal feature with all other gnathostome 

orthologs—dual AUG start codons separated by 8 to 10 triplets (Figure 5), with translation 

initiating via a conserved leaky scanning mechanism.65,83 This pattern was also found 

among Rax2 proteins in jawed fish. In each case, the first AUG occurs in a poor context, 

with mismatched nucleotides at core positions −3 (purine) and +4 (guanine), whereas the 

second AUG conforms well to the consensus sequence for optimal translation initiation in 

eukaryotes.84
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3 | DISCUSSION

The linkage and molecular data in this report establish rax (P154fs35X) as the causative 

mutation for eyeless axolotls. This study was sped by the assembly of the Ambystoma 
mexicanum genome.23,24 Likewise, a small number of classical Mendelian loci, involving 

axolotl pigmentation, limb and cardiac development, were recently mapped or identified 

using the emerging genome database as a framework.23,85 Our finding of two rax haplotypes 

may reflect admixture, at the AGSC, of Wistar (E,e) and divergent (E′) laboratory 

populations.14,86 Individuals in the AGSC cohort also harbor a significant fraction of North 

American tiger salamander (Ambystoma tigrinum) DNA in their genomes (5.8 ± 1%), which 

were cointroduced with the albino trait,87 but these introgressed segments do not overlap the 

rax 1p region.85

3.1 | Molecular hindsight

Our results are consistent with studies involving Rax mutants in other species, and allow 

us to reinterpret older work on eyeless with molecular hindsight. First, the ocular, brain, 

pigmentation and fertility defects in e/e axolotls closely resemble the malformations 

reported in spontaneous rx3 mutant (chokh) medaka63 and zebrafish,59,60,62 and Xenopus 
tropicalis with CRISPR engineered rax mutations.36 In these mutants, notably, anterior 

forebrain territories do not segregate, and the eye fields are transfated into an expanded 

telencephalon and diencephalon.88 However, unlike eyeless axolotls, rax mutant Xenopus 
tropicalis die at metamorphosis.36 Among mammals, Rax knockout mice have no eyes or 

pituitary, and die at birth with craniofacial, oropharyngeal and brain defects that interfere 

with breathing and feeding.64,89 In contrast, mice homozygous for a hypomorphic allele 

(RaxM10L) are viable and fertile, but lack eyes65; they have disturbed circadian rhythms 

and abnormal hypothalamic morphology,90,91 with expression of these traits dependent on 

modifier loci. Humans with biallelic RAX mutations are generally anophthalmic but viable, 

as their alleles allow partial activity.61,92–95 In each case, the inheritance is recessive, but 

heterozygous phenotypes have been suggested.96,97 Likewise, severe eye malformations 

have been reported in heterozygous (E/e) axolotls carrying the renal insufficiency (r/r) 
mutation, which modifies the penetrance of eyeless.27,34

Second, the constellation of defects in e/e axolotl embryos matches the rax mRNA 

expression patterns in mice, frogs and fish, beginning in the anterior neural plate, and 

continuing in the diencephalon and optic vesicles, which give rise to the neural retina, RPE, 

optic stalk, hypothalamus, and some cortical regions.53,57,68,98,99 Likewise, mesenchymal 

cell disruptions in e/e axolotls100 are reminiscent of neural crest migratory defects in 

zebrafish rx3 mutants.101 In the mouse hypothalamus, Rax is most strongly expressed in 

the rostral mediobasal region (preoptic, ventromedial, arcuate, and suprachiasmatic nuclei), 

associated with GnRH secretion, metabolic regulation and circadian rhythmicity,102–104 

consistent with the hypogonadal phenotype in e/e animals.

Third, the stage of eye developmental arrest in e/e mutants fits the timing of rax action in 

neural ectoderm. In e/e embryos, optic vesicles form, but fail to progress, similar to mouse 

and Xenopus Rax mutants.36,55 However, rax endocrine phenotypes differ significantly 

between species. e/e axolotls lack gonadotropins (LH, FSH), but retain other pituitary 
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functions and anatomy.27,35 They grow normally, develop limbs and are hyperpigmented—

reflecting the action of hormones secreted by somatotropes (GH), thyrotropes (TSH), and 

corticotropes, respectively, although as facultative paedomorphs, WT and e/e axolotls are 

relatively hypothyroid.17,105,106 In contrast, Rax-null mice lack all pituitary lobes—through 

a combination of cell-autonomous and indirect effects.89 In Rax −/− mouse embryos, 

neurogenesis and dorsoventral patterning of the hypothalamus is profoundly disrupted107; 

consequently, the diencephalon does not extend an infundibulum (neurohypophysis), so 

Rathke’s pouch is not induced to form the anterior pituitary gland (adenohypophysis). These 

disparate phenotypes may reflect fundamental differences in pituitary ontogeny between 

taxa,108 or a smaller role for Rax in patterning the hypothalamus of urodeles compared to 

mammals.

Fourth, older studies of e/e embryos, involving blastomere chimeras,26 

transplantation,27,109,110 ex vivo tissue culture34 (Cuny and Malacinski) and 

parabiosis,26,111 showed that the eyeless defect is cell-autonomous and intrinsic to the 

anterior neural ectoderm—consistent with a nuclear transcription factor, such as Rax, which 

acts to define the retinal fields and repress alternative forebrain identities.36 In reciprocal 

embryo grafts, neural plate tissue from WT donors could induce lens formation in the 

head ectoderm of e/e recipients, but not vice versa.27 Other grafting studies, however, 

suggested that an inhibitory signal from head epidermis is responsible for the eyeless 
phenotype.112 Importantly, WT eyes transplanted into e/e heads developed optic nerves with 

topographic axon projections to the tectum, and restored functional vision with behavioral 

and pigmentary responses to light.30,109 In retrospect, this developmental plasticity is 

not surprising, considering the remarkable ability of axolotls to regenerate limb and eye 

tissues.20 Knowledge of the eyeless gene may help future studies investigating the molecular 

basis for ocular regeneration in urodeles.

3.2 | Dual start codons

While their ultimate effects on expression (kinetics and levels) and evolutionary fitness are 

unknown, the dual Rax start codons are separated by the footprint width113,114 of one 40S 

subunit (24–30 nucleotides) and may interact alternately with ribosomes, in two different 

modes via leaky scanning. As ribosomes bypass the first AUG codon and engage the 

second (favorable) AUG, forming an initiation complex, they would impede progress of 

later ribosomes scanning from the 5′ mRNA cap.115 These queued ribosomes would then 

be forced to pause over the first (unfavorable) AUG and initiate. This tiered mechanism 

may allow higher levels of translation when rax mRNA is limiting and precise tuning 

of protein output.116 It would also create long and short Rax isoforms, with a variable 

N-terminal protein extension, and may thus modulate docking of the nearby OP (eh1, 

engrailed homology) domain to groucho/TLE1 corepressors.117,118 Apart from tetrapod 

Rax2 paralogs, which lack an OP motif,73 every gnathostome Rax protein we examined 

has dual AUG start codons in a “leaky” configuration—reflecting strong evolutionary 

conservation (with emergence before the 2R WGD) or convergence. The surrounding amino 

acid residues are notably dissimilar.
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3.3 | Recurrent mutations

Rax is commonly mutated in eyeless laboratory models, which share a singular striking 

phenotype. In a similar way, convergent mutations in one gene, encoding tyrosinase, 

are responsible for sporadic cases of true albinism in most vertebrate species, including 

axolotls.85 Accordingly, RAX mutations underlie a portion of clinical anophthalmia cases,11 

and rx3 cosegregates with an ocular regression QTL (quantitative trait locus) under 

positive evolutionary selection in Astyanax cavefish,12 suggesting the workings of a shared 

developmental pathway.

4 | EXPERIMENTAL PROCEDURES

4.1 | Animals

Axolotl embryos were provided by the AGSC (Ambystoma Genetic Stock Center) at Indiana 

University (in 1992) and the University of Kentucky (in 2013 and 2020). Eyeless and WT 

embryos (spawn nos. 8146, 8209, 13673, 15428) were generated from F2 crosses between 

heterozygous carriers of the eyeless gene (e/+) that descended from Rufus Humphrey’s 

original colony.25 The eyeless mutation was considered lost in 2009, but reappeared in 2013 

in another AGSC stock. Embryos were maintained in modified ×0.2 Holfretter’s solution 

at 4°C to 19°C and staged using developmental landmarks.119 For F2 linkage analysis, eye 

phenotypes were scored at hatching (stage 42).

4.2 | Genomic DNA analysis

DNA was extracted from embryos (degelled in 3% cysteine), adult tail clips, hatchling 

larvae, or deparaffinized tissue sections by digestion in TNE (100 mM NaCl 10 mM Tris 1 

mM EDTA pH 7.4) with 0.5% Na dodecyl sulfate and 250 μg/mL proteinase K at 55°C for 

16 hours with agitation, isopropanol precipitation, and resuspension in TE.120 We initially 

amplified 3′ UTR segments of pax6 (accession AF169414.1) and rax from F2 samples with 

PCR primers designed from cDNA data (Table 3), and scored polymorphisms by sequencing 

the products.

We identified three rax exons and four associated CNEs on contigs AMEXG_74394 and 

AMEXG_0030000955 of the assembled axolotl genome23,24 using vertebrate rax orthologs 

as query in BLAST homology searches. Segments were amplified from archived e/e and 

E/− samples using flanking primers (Table 3), GoTaq polymerase (Promega, Madison, 

Wisconsin) and a touchdown PCR protocol: 5 minutes initial denaturation at 94° C; followed 

15 cycles of 20 seconds denaturation at 94° C, 30 seconds annealing at 62° C (decreasing 

0.5° per cycle to 55° C), and 60 seconds extension at 70° C; followed by 28 further cycles 

with 55° C annealing; followed by final 7 minute extension at 70° C. Products were assessed 

by agarose gel electrophoresis and Sanger sequencing. To score the eyeless deletion in F2 

offspring and map the E′ insertion, exon 2 segments were amplified using a combination of 

primers, including some specific to WT or mutant alleles (Table 3).
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4.3 | Statistics

Linkage between eyeless and rax was assessed using the chi-squared test, with independent 

assortment as the null hypothesis. Confidence limits for linkage distance were calculated as 

described for the special case of complete concordance.121

4.4 | mRNA analysis

Total RNA was isolated from whole stage 22 to 24 embryos by affinity chromatography 

(RNA miniprep spin columns, Zymo Research, Irvine, California). To compare the 

abundance of rax transcripts, we performed reverse transcriptase (RT) PCR on pooled E/e 
embryos, which were genotyped using 2 mm of tail tissue. For each sample, we synthesized 

cDNA from 500 ng RNA template using iScript reagents (Bio-Rad, Hercules, California) 

with blended oligo-dT/random dN6 priming, and amplified PCR products using primers 

in exons 1 and 3 (Table 3), with a 6-FAM (carboxyfluorescein) end-label on the reverse 

primer. The ratio of WT and eyeless (Δ5bp) rax products in the E/e pool was determined 

from fluorometric peak areas using Peak Scanner software (Thermo Fisher) after capillary 

electrophoresis.

4.5 | Histology and immunostaining

Degelled embryos or larvae were rinsed in phosphate-buffered saline (PBS) and fixed 

overnight in 4% paraforaldehyde 0.1M NaPO4 pH7.4 at 4° C. Fixed embryos were 

cryopreserved stepwise in 10% to 30% sucrose PBS at 4° C and frozen in optimal cutting 

temperature compound (Thermo Fisher) or were dehydrated through a graded ethanol 

series, equilibrated with xylenes, and embedded in paraffin (Paraplast Plus, Thermo Fisher). 

Paraffin sections (10 μm) were stained for histology with H&E, stabilized in Permount and 

imaged at ×20 magnification as stitched composites using a Zeiss ApoTome (White Plains, 

New York).

Cryosections (10 μm) were blocked in Tris-buffered saline 0.1% Tween-20 (TBST) 

with 3% bovine serum albumin, 1% normal goat serum, and 1% normal donkey 

serum, processed for indirect immunofluorescence, and counterstained with 1μg/μL 4′,6-

diamidino-2-phenylindole as described.122 Primary antibodies were mouse anti-Tubb3 

(clone 2G10, Sigma, 1:500) and rabbit anti-PAX6 (PRB278P, Covance, 1:50, and secondary 

antibodies were anti-mouse IgG2a and anti-rabbit IgG (AlexaFluor 488 and 647 conjugates, 

Jackson Immuno-Research, 1:500). After mounting in Prolong Gold (Thermo Fisher), 

sections were imaged with fluorescence optics using a Leica SPE confocal microscope 

(Wetzler, Germany) and displayed using RGB indexed color.

4.6 | Bioinformatics

For HD and AUG translation start site alignments, sequences were deduced from nucleotides 

of Rx/Rax cDNAs with accession numbers as follows—Aedes aegypti (mosquito): 

AaeRx, XM_021841460; Anolis carolinensis (anolis lizard); AcaRax, XM_008118598; 

Apis mellifera (honey bee): HbeRx, XM_001119966; Aplysia californica (sea hare): 

ApcRx, XM_013086395; Astyanax mexicanus (cavefish): AmeRx1, AF264703; AmeRx2, 

XM_022678823; AmeRx3, XM_007246033; Branchiostoma floridae (amphioxus): BflRx, 

JX101655; Callorhinchus milii (elephant shark): CmiRx3, XM_007903126; CmiRx1, 
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XM_007908006; Crassostrea gigas (oyster): CgiRx, XM_011429408; Danio rerio 
(zebrafish): DreRx1, AF001907; DreRx2, AF001908; DreRx3, NM_131227; Drosophila 
melanogaster (fruit fly): DmeRx, NM_166413; Dugesia japonica (planaria): DjaRx, 

AM942442; Eptatretus burgeri (hagfish): EbuRax, ENSEBUT00000011203.1; Gallus 
gallus (chicken): GgaRax, NM_001243724; GgaRax2, NM_204104; Homo sapiens 
(human): HsaRax, NM_013435; HsaRax2, NM_032753; Latimeria chalumnae (coelacanth): 

LchRx2, XM_014490274; LchRx3, XM_006005788; Macaca mulatta (rhesus macaque): 

RmaRax, XM_015122061; Monodelphis domestica (opossum): MdoRax, XM_007487510; 

MdeRax2, XM_001373844; Mus musculus (mouse): MmuRax, NM_013833; Nannospalax 
galili (mole rat): NgaRax, XM_008840033; Nanorana parkeri (Tibetan frog): NpaRax, 

XM_018570456; Nematostella vectensis (sea anemone): NveRx, XM_001634160; 

Oikopleura dioica (tunicate): OdiRx, AY705677; Ornithorhynchus anatinus (platypus): 

OanRax, XM_007659835; OanRax2, XM_001516307; Oryzias latipes (medaka fish): 

OlaRx1, XM_004068380; OlaRx2, NM_001104903; OlaRx3, NM_001104904; Pan 
troglodytes (chimpanzee): PtrRax, XM_001142510; Petromyzan marinus (lamprey): 

PmaRax, PIZI01000102v1; Rattus norvegicus (rat): RnoRax, NM_053678; Rhinatrema 
bivittatum (caecilian): RbiRax, XM_029586501; Saccoglossus kowalevskii (acorn worm): 

SkoRx, NM_001164903; Strongylocentrotus purpuratus (sea urchin): SpuRx, XM_777214; 

Tribolium castaneum (flour beetle): TcaRx, XM_968375; Trichinella spiralis (nematode): 

TspRx, XM_003371992; Xenopus laevis (African frog): XlaRx1a, NM_001088218; 

XlaRx1b, DQ360108;XlaRax2; NM_001088220.
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FIGURE 1. 
eyeless phenotype at hatching (stage 42). A, E/− (wild-type) and e/e (mutant) axolotls in 

vitelline membranes. B, Immunofluorescence micrographs of coronal (transverse) sections 

through the head showing neural tracts (Tubb3, green), retinal layers and brain nuclei 

(Pax6, red), and absent eyes in e/e animals (right panel), with 4′,6-diamidino-2-phenylindole 

(DAPI) nuclear counterstain (blue). The rabbit antibody (red) cross reacts with tissue edges, 

highlighting morphology. C-F, Hematoxylin and eosin (H&E) stained coronal sections 

showing the absence of eyes in most e/e mutants (red asterisk, right panel in C), with 

abortive optic rudiments in some cases (red arrowhead in F, magnified example in E). These 

rudiments contain variably dysmorphic retinal and lens tissues, and pigmented cells. dor, 

dorsal; ven, ventral; dh, dorsal hypothalamus; le, lens; on, optic nerve; ph, pharynx; ret, 

retina; rpe, retinal pigment epithelium; tc, tectum; vh, ventral hypothalamus; disorg ret, 

disorganized retina; scale bars, 200 μm
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FIGURE 2. 
rax gene structure and eyeless mutation. A, Layered maps of rax exons and CNEs, 

with relevant chr 6p scaffolds in assembly Amex_PQ.v4, showing flanking genes, coding 

sequence, Δ5bp mutation (*) and E′ transposon insertion site (arrowhead). B, Sanger 

chromatograms of genomic PCR products, showing exon 2 profiles from e/e, E/e, and E/E 
genotypes. The reading frame and Δ5 mutation are indicated. C, Magnified view of exon 2, 

showing diagnostic PCRs, and results from E′/e genomic DNA (right column). The agarose 

gel shows ex2 PCR products amplified with a wild-type (WT)-specific primer overlying 

codon 155 (amplicon DWT). The large product in E′/e lanes contains a transposon insertion
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FIGURE 3. 
rax mRNA analysis. A, RT-PCR design. B, Capillary electrophoresis profile showing 

equimolar wild-type (+) and eyeless mutant (Δ5) products coamplified from E/e cDNA 

in relation to ROX-500 size standards (n = 3 pooled embryos)

Davis et al. Page 20

Dev Dyn. Author manuscript; available in PMC 2022 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
Protein effects of the eyeless mutation. A, RAX polypeptide maps showing octapeptide 

(OP), homeodomain (HD), RX, and OAR domains, dual start codons, exon junctions 

(arrowheads), the predicted eyeless protein with Δ5 frameshift mutation and C-terminal 

nonsense peptide (red). B, Vertebrate RAX homeobox amino acid alignment, showing 

sequence identities, three critical α-helices for DNA binding, and eyeless HD
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FIGURE 5. 
Conserved dual start codons with leaky scanning. Left: N-terminal alignment of Rax 

proteins, numbered in relation to axolotl (mouse), with methionines (red) and gaps (−) 

indicated. The presence of a methionine at positions 8 to 12 is a conserved feature 

among gnathostome Rax proteins containing an OP motif, including axolotl Rax. Right: 

Comparison of M1 and M4–12 start sites in Rax mRNAs. The optimal sequence for 

translation initiation84 is shown below each alignment, with nucleotide matches indicated 

in red. For scanning ribosomes to initiate, AUG sites must have a −3 purine (R) or +4 

guanine (G). In every case, the M1 site is weaker than the downstream AUG. Predicted leaky 

scanning (LS) and initiation codons (start) are indicated
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TABLE 1

eyeless F2 screen (male E/e × female E/e cross)

(A) pax6 3′ UTR SNP (G/A × G/A)

F2 offspring

Genotype e/e WT

GG 3 6

GA 12 7

AA 8 8

sum 23 21

(B) rax 3′UTR SNP (insG/+ × +/+)

F2 offspring

Genotype e/e WT

insG/+ 0 51

+/+ 55 35

sum 55 86

Abbreviation: SNP, single-nucleotide polymorphism.
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