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ABSTRACT OF THE DISSERTATION
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by
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Professor Dennis W. Hong, Chair

The goal of this work is to formulate algorithms that can address three key ingredients I

believe are necessary towards making robots autonomous and smart: (1) The robot needs

to be able to react in an energy-efficient manner to outside disturbances; (2) The robot

needs to understand its location of its surroundings and evaluate the uncertainty of its

location to optimally and safely achieve some goal state; (3) The robot should continuously

learn from experience during operation. Throughout this work, we show algorithms that

can achieve in obtaining these ingredients. First, we will demonstrate a simple algorithm

that plans for the most energy-efficient trajectories for a quadruped robot by optimizing

for parameters such as cost of transport, manipulability measures, and avoid non-slipping

configurations. With this algorithm, we show that the robot only moves when necessary, and

demonstrates behaviors of reacting to outside disturbances to ensure it does not fall while

also not wasting unnecessary energy. The idea of understanding is demonstrated through

an algorithm that combines an MPC, SLAM, RNN, and object detection using CNNs to

generate paths for unknown and uncertain environments. This algorithm is evaluated not
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only for a complex quadruped robot, but also for multi-agent robot teams consisting of a

UGV and UAV. The feasibility of such complex algorithm is also evaluated. Lastly, the idea

of continuous learning is addressed not only through use of learning-based algorithms such as

RNNs, but also through auto-tuning algorithms that employ an UKF. Using a UKF, we show

that we can automatically tune controller gains and even parameters of an online planner.

Because the UKF can adapt parameters quickly and without heavy computational load,

the robot can continuously adapt its control/planner parameters during online operation to

continually learn from the environment. To summarize, we will first present a simple planner

for energy-efficient locomotion, provide two examples of end-to-end frameworks for motion

planning and state estimation that uses a hybrid approach consisting of model and learning-

based methods, and then provide a method of calibrating such end-to-end frameworks (which

often contain many various modules) through an auto-tuning technique. Lastly, I end with

a discussion on Large Language Models, and how they may potentially affect the robotic

field, and further contribute to the idea of understanding in significant ways.
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4.1 Architecture Overview. This figure demonstrates the training and testing pro-

cedures of our method. In training, we first select different maps, where obstacles

in each map are randomly distributed. A simulation where the robot moves from

an initial to a goal position is executed on this map. At each timestep an obser-

vation is taken (e.g., camera or on-board sensor data). These measurements are

used as the input to our SLAM/Object Detection/Sensors system, which estimate

the current position and uncertainty in position of the robot, and also location

and size of obstacles. MPC accounts for this information and produces outputs

entered into our motion tracking controller. For every map at every timestep,

the current observations, state position, and positional uncertainty (among other

variables outlined in Section 5.2.3) are entered into a large database to produce

our RNN model. Lastly, in the testing phase, RNNs can predict the positional un-

certainty (which provide our collision boundaries) of the robot at future timesteps

of the MPC prediction horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Example Module Outputs. Left : An example output image of our trained

object detector using a custom-trained convolutional neural network model. We

used the YOLOv3 [110] architecture with default initialized weights for fast train-

ing and inference. Right : Inlier (green +) and outlier tracks (red *) produced by

XIVO on data collected from the Intel Realsense D435i. . . . . . . . . . . . . . . 62

4.3 Recurrent Neural Network Architecture. Our RNN architecture predicts

the covariances at robot poses [xt+n, yt+n] at timesteps t+n for n = 1, ..., N (where

N is the length of the MPC’s prediction horizon). During training, we used inputs

collected from the output of XIVO to parameterize the network towards the four

output units, as indicated by the first 18 input units and last four units in the

figure above. Seven hidden layers were used with ReLU activation functions, with

five recurrent layers (green) and two fully connected layers (purple), to learn the

temporal structure for covariance propagation. . . . . . . . . . . . . . . . . . . . 63
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4.4 Gazebo Simulation. Our high-fidelity simulation accurately models the dy-

namics of the ALPHRED quadruped robot. . . . . . . . . . . . . . . . . . . . . 64

4.5 Training Loss. Top: Our CNN model’s training loss, used in our object de-

tection pipeline. We trained for 5,200 epochs but only display 300 in the figure

above. Note that we verified avoidance of overfitting via a validaton set but did

not plot the curve here. Bottom: Our RNN model’s training loss, used to in-

fer future localization uncertainty for the MPC. As with the CNN, we verified

avoidance of overfitting using a validation set. . . . . . . . . . . . . . . . . . . . 65

4.6 Trajectory Comparison. A comparison of the trajectories computed by three

different approaches. The baseline method (red) is an MPC framework without

our extensions to consider propagated future state uncertainty from an RNN, and

we define the naive approach (blue) as artificially inflating a robot’s boundary

through all time. In comparison, our approach (green) can plan for a quick yet

safe trajectory by predicting potential future collisions. . . . . . . . . . . . . . . 66

4.7 ALPHRED Hardware. The ALPHRED quadrupedal robot developed by

Hooks et al. [60] of the RoMeLa robotics laboratory at the University of Califor-

nia, Los Angeles. This complex platform is an ideal model to apply our methods,

as showing success on this platform also demonstrates the potential of applying

our methods to a wide selection of robotic systems. Table 4.2 describes some

physical properties of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 SABER framework. SABER combines controls (stochastic model predictive

control), vision (simultaneous localization and mapping), and machine learning

(RNN and DQN), to provide local and globally optimized solutions in unknown

and uncertain environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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5.2 SABER Algorithm. This figure demonstrates the overall SABER planning

algorithm in the testing phase, which can plan paths for one or more robots si-

multaneously. At timestep k, the environment provides information to robots

that either carry a LiDAR or RGB camera and IMU; for the LiDAR configu-

ration, a particle-filter SLAM is implemented, while for the RGB configuration,

Visual-Inertial Odometry SLAM (VIO SLAM) is implemented. The sensors pro-

vide either scans or distance to feature information to a recurrent neural network

model (which serve as inputs), and outputs the propagation of state uncertainty

for future timesteps. If two or more robots are within communication range, a

distributed Kalman filter updates the current and future states and their uncer-

tainties to a more accurate estimate. These updated states and uncertainties are

used to update the chance constraints for obstacle avoidance. These constraints

are then considered by a stochastic MPC controller, which follows a given tar-

get position, provided by a deep Q-learning (DQN) agent that aims to move the

robot towards a global goal. DQN uses the relative distances between the robots

and the respective obstacles as its states, provides a target position for all robots

as its actions, and is trained on several different maps with obstacles randomly

distributed in each. Note, that the SMPC, SLAM, and RNNs components run

on each robot individually, however, the DQN is run on a centralized base (which

may be on the robot itself). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Network structures. We show the RNN structure used to model an EKF

from a VIO SLAM algorithm in (A), or a particle-filter SLAM algorithm in (B)

(5.2.3). The inputs are shown in orange, and correspond to either features/robot

position (using VIO SLAM) or LiDAR scans/robot position (using particle-filter

SLAM). The outputs are shown in red, and correspond to the x-y covariance

matrix (which represents uncertainty in x-y position). The layer type is color

coded below, where green represents a simple RNN layer, and purple a dense layer. 84
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5.4 Training loss. Here we show the training loss for the RNNs, which were trained

on uncertainty covariance outputs (in position) of a Visual-Inertial SLAM in (A)

and a particle-filter SLAM in (B). The training was done using 500 epochs and

on 4 different maps. Note, that the noise observed in (B) may be due to the

particle-filter estimations/simplifications done in [53]. . . . . . . . . . . . . . . . 85

5.5 DQN Training and Testing Procedure. In (A), we show the neural network

structure used in our DQN algorithm (5.2.4). The network maps the inputs (i.e.,

states or relative distances between robots and obstacles/goals) to the outputs

(i.e., actions or next target positions for the robots). The states and actions are

connected by a linear neural network model (blue). In (B) we visually show the

training process of the DQN for a 2 to 5 robot team, where all robots were trained

to go to the goal location while avoiding obstacles (obstacles are randomized for

each episode). The average rewards (calculated from 25 episodes at a time and

divided by number of robots) are shown across the 35,000 episodes of training

(training time was 5 hours). In (C ) we show an example of how the environment

can be transcribed into a 2D plot and apply the DQN to traverse multiple robots

toward their goals. We also allow the UAV to fly over the obstacles (and assume

we know the height of the obstacle a priori) while the UGV must avoid it. In

(D) we show another example of our DQN, but this time the 2-robot UAV and

UGV team have separate goal locations, and we add a reward incentive when

both robots are near each other at each timestep. . . . . . . . . . . . . . . . . . 86
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5.6 SABER Algorithm Results. This figure demonstrates the overall SABER

planning algorithm. In (A) and (B) we first show the capability of the SMPC-

RNN to navigate the UGV and UAV in a densely populated space. In (C ), we

show that the SMPC-RNN of the UGV cannot get to the goal state, because

of the occurrence of a local minima. However, with a DQN (which provides a

global path illustrated by triangles), the UGV (orange) can correctly maneuver

around the obstacle. The UAV (purple) can simply use it’s z-axis to fly above

the obstacle. A more complex example is shown in (D), where both robots are

directed towards different goal locations simultaneously. . . . . . . . . . . . . . . 87

5.7 RNN Results. In this figure, we show the true covariance value (where ‘xx’

represents the covariance of the center of mass in the x position as an example)

in blue and the predicted covariance in orange for about 430 seconds of data.

This is done when modeling the uncertainty using VIO SLAM (A) and particle-

filter SLAM (B) on a test map. Note, that the predicted and true values almost

perfectly align, demonstrating the RNN’s ability to make valid uncertainty pre-

dictions. Lastly, we show more explicitly in the graphs, that when more features

are tracked (green arrow) the lower the estimated uncertainty, while fewer features

corresponded to higher uncertainty (red arrow). . . . . . . . . . . . . . . . . . . 88

5.8 System performance. We compare the results of SABER (SMPC-RNN-DQN)

using the same map as (D) in Fig. 5.6) against baselines for the UAV (A) and

UGV (B) with distance to goal vs time as our metric. See 5.3.2.2 for details. . . 89

6.1 Auto-Tuning reference trajectories in Gazebo. The robot follows a refer-

ence trajectory that is being tuned by the auto-tuning formulation. The figure

shows the robot following a desired velocity (forward progress), a desired foot

height (step clearance), minimizing foot slippage (ground reaction forces), and

minimizing energy consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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6.2 Auto-Tuning results. The auto-tuning method successfully calibrated control

parameters that generate reference trajectories (A-D), and controller gains (E-

F). To make this evaluation, we used the cost as calculated using (6.2). The cost

decreases (A and D) as the control parameters (e.g., forward progress and step

clearance) get to their desired reference values. In E-F, we show the difference

between the cost when not auto-tuning with the cost when auto-tuning. . . . . . 104

6.3 Results for robust locomotion on uneven terrain. After auto-tuning the

stance and swing controllers, we employ the robot on several test cases to demon-

strate robust locomotion. We show the robot traversing over and on large beams

and planks in the left and top right with a trot gait, respectively, and demon-
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CHAPTER 1

Introduction

1.1 Motivation

My goal is to facilitate the dream of one day seeing diverse sets of wheeled, aerial, legged, and

underwater robots being used ubiquitously towards reducing the burdens of society. Robotics

and AI technology have the enormous potential to support humanity by performing tasks too

dangerous for human workers, or through human-robot interactions. Unfortunately, while

the potential use of robotics is an exciting prospect, they are still not commonly used due

to a justified concern for both their safety and cost. For example, to make robots safer

typically demands high-fidelity sensor and computer components. Thus, these robots are

very expensive and still seen as a luxury item rather than a product for everyday use. More

troubling is that those from economically challenged and/or underprivileged groups may not

have access and potentially cannot reap the benefit from this technology. Ideally, creating

new robots using off-the-shelve or inexpensive components would greatly expand the robotic

field and rapidly benefit society for all.

Still, in the past decades, we have seen enormous progress in realizing robotic systems

beyond being merely conceptualized as drawings inside a notebook, but witnessing their

actual form in reality— driving, swimming, flying, and even walking. As a society, we are

gradually becoming accustomed to their presence, from vacuuming our floors, autonomous

driving, recording ourselves using drones, or using wheeled robots for food delivery to our

homes. Perhaps most frequently, robots are used beyond the sights of our eyes, from stacking
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boxes in enormous warehouses, transporting medical goods in hospitals, and from teleop-

eration in Space. One of the primary reasons why robots are seen more today than ever

before, is due to the development and research in three key components for realizing robotic

motion – planning, control, and estimation (abbreviated as PCE throughout this prospec-

tive). However, while we are seeing more robots today than in the past, we are still far

away from achieving their full potential. Specifically, only very few hospitals employ robots

for transportation, most people still prefer manual vacuums, and autonomous driving is far

from being implemented ubiquitously. There are two main issues why this is the case. First,

fidelity in planning, control, and estimation still requires further research development

before they are robust and useful enough to exceed human ability— beyond just being op-

timized for single purpose tasks. Second, while PCE algorithms can be enhanced through

the best available sensor technology, this would make robotic systems too expensive for the

average consumer and too much of an investment and risk for industry.

Still, perhaps one of the most exciting prospects in robotics is the research and devel-

opment of legged robots, which is why I joined the Robotics and Mechanisms Laboratory.

While many robots employed in the real world today can only operate in controlled environ-

ments, legged systems, which are created with the main purpose of emulating animals and

humans, are expected to traverse diverse and unstructured environments. Further, as with

some animals and all humans, they are capable and expected to manipulate the environment

around them. This presents both a locomotion and manipulation challenge, in addition to

the fact that legged systems are complex dynamical hybrid systems that constantly make

and break contact with the ground. As these legged systems are developed further to fully

realize their capabilities, we can be one day closer to creating machines that can be useful

for humans in their everyday lives: as assistance in nursing homes, navigation of environ-

ments most easily accessible for humans, and even as companions to alleviate the sense of

loneliness. Most importantly however, research and development in legged robots can be

advantageous, as they can be used as platforms to test the robustness, safety, and efficiency
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of algorithms within the PCE domains – this may provide a strong argument for their use

in other less dynamically complex systems such as drones or wheeled robots.

I believe that advances in machine learning (ML) technology can alleviate the computa-

tional burden from PCE algorithms and make using less expensive equipment feasible. My

goal is to formulate methods that apply both machine learning (ML) and traditional model-

based planning and control toward making robots safer and easier to use. For instance, this

safety can be considered through modeling residual errors using ML from exteroceptive and

proprioceptive sensors, which, once modeled, can help alleviate the computational burden

from planning and/or control algorithms and make using less expensive equipment more fea-

sible. Additionally, the automation of PCE algorithms is greatly needed, as the amount of

tuning and adjustment necessary to make these algorithms work can drastically slow down

development time.

Ultimately, the main motivation throughout my PhD work is to demonstrate my best

attempt at getting a little bit closer to making robots ‘smarter’ (Fig. 1). For instance, avoid-

ing open loop systems that cannot adapt to unknown situations. Although these systems

may be suitable enough for repetitive and simple tasks, they cannot lead to more general

multi-task robots that can traverse our human-made environments. I define the following

three components as necessary abilities for a smart robot:

(1) Reacting: When a robot is pushed, pulled, or disturbed with some amount of force,

the robot should react autonomously to reduce this disturbance by performing the

most energy-efficient action that aims to always stabilize its center of mass to avoid

falling.

(2) Understanding: The robot must observe its environment and understand not only

its own location relative to other beings and obstacles, but how its current and future

actions can affect other beings and obstacles.

(3) Learning: During operation, the robot must utilize its experience interacting with
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the environment to learn and continually improve itself autonomously over time

These components of a ‘smart’ robot can be achieved through implementation of new

PCE algorithms. As I strive to produce methods in an attempt towards smarter robots, I

believe can facilitate the progress and dream toward completely ubiquitous robots.

1.2 Objective

The objective of this work is to demonstrate various methods towards making robots ‘smarter’,

where the definition of ‘smart’ is defined in the motivation Sec. 1.1. This is achieved through

improving and automating parts of PCE. The first work as seen in Sec. 3 discusses how we

can achieve the reacting component of a smart robot without requiring ML or complex al-

gorithmic techniques. This is achieved through a simple planner for a quadruped robot that

demonstrates how the robot can autonomously react to stabilize its center of mass when

imposed by an external force while optimizing energy efficiency in its movement. Although

the robot may stabilize itself and react to external forces using the method in Sec. 1.1,

for the robot to traverse its environment, which for general real-world application must be

assumed unknown, the robot must also have an understanding of its environment so it can

either interact or avoid obstacles. This requires knowledge of how we can not only interpret

uncertainty, e.g., where the state of the robot and/or obstacle is at the current and future

time steps, but how we can harness it towards improved path planning capability. The prob-

lem described above is typically considered as solving the Active Simultaneous Localization

and Mapping (Active SLAM) problem. Active SLAM is a research topic that deals with

how the motion of the robot is affected while dealing with localization uncertainty (based

on mapping the features of the robot’s environment).

In Sec. 4 we demonstrate how we combine ML and traditional control techniques, along

with mapping, to help provide robots with Active SLAM capability while being computa-

tionally efficient. This method was successfully deployed on a complex quadruped robot.
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Because one of my main motivations is to demonstrate algorithms that can work on any

robot and even robot teams, the next objective of this work is to expand the previous Active

SLAM work for heterogeneous robot teams, see Sec. 5.

This end-to-end motion planning algorithm, named SABER (i.e., Stochastic model pre-

dictive control for Autonomous Bots in uncertainty Environments using Reinforcement learn-

ing), is demonstrated for a UAV-UGV system that fuses traditional controls, vision, and ML

for collision avoidance and navigation. While this robot system moves to their individual

goal points, which are generated using reinforcement learning, uncertainty is considered us-

ing SLAM algorithms, where the uncertainty from cross communications (when the robots

are in range of each other) is also accounted for.

Because Active SLAM typically requires various components such as Kalman filtering

and planners or controllers, these components need to be finely tuned for optimal perfor-

mance. Tuning all of these components can be very challenging. Thus, I discuss a method to

automate the tuning and calibration required for controlling and even planning for robotic

systems, see Sec 6, Sec 7, and Sec 8. These methods help facilitate robots to continuously

learn during operation, enabling constant adaptation and improvement as it interacts with

its environment. The end goal of using this method, is to combine it with machine learning

for guided and faster training through model-based approaches.

Because planning, control, or machine learning algorithms applied to hardware eventually

demand a high-fidelity state estimation system. In Sec. 9, I describe a state estimation

algorithm that combines model and learning-based methods to formulate a state estimation

system, and apply it to a legged robot system for evaluation.

Finally, with the rise of Large Language Models, it would be irresponsible to ignore them

in the context of the future development of robotic systems. I provide some explanation of

them in Sec. 10, and also showcase a simple example of using them for high level planning.
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Figure 1.1: Smart Robots.

1.3 Contributions

(1) We will demonstrate how physical intelligence (reacting) can be imbued in robotic

systems by simply optimizing energy efficiency for legged locomotion. The simplicity

is demonstrated by not requiring any solver or machine learning methods.

(2) We demonstrate how understanding the robot’s surroundings through a representation

of state uncertainty leads to more intelligent decision-making for obstacle avoidance.

This is shown through the following:

(a) We evaluate the feasibility of an online end-to-end path planner that unifies MPC,

SLAM, RNN, and an object detector using CNNs to generate paths for unknown

and uncertain environments using a non-linear programming solver.
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(b) We verify that our quadrupedal robot, ALPHRED, avoids collisions and computes

a shorter trajectory while maintaining safety using our method as compared to a

more conservative and näıve planner.

(c) We propose a novel use of RNNs to estimate positional uncertainties at all future

timesteps of the MPC’s prediction horizon.

(d) We integrate all components into a high-fidelity simulation using the quadruped

dynamics of ALPHRED. Additionally, we test all components individually either

online or offline using hardware.

(3) We expand the contribution in (2) for a heterogeneous team of robots using a UGV and

UAV. Using the semantic learning that reinforcement learning can provide, we show

how a team of robots can continually learn to collaborate towards some shared objec-

tive. This is shown through the formulation and implementation of a new planning

algorithm called SABER: Stochastic model predictive control for Autonomous Bots in

uncertainty Environments using Reinforcement learning:

(a) SABER is an end-to-end motion planning framework for a team of heterogeneous

robots that unifies controls, vision, and machine learning approaches to plan paths

that account for safety, optimality, and global solutions (our complete framework

is shown on a UGV-UAV team).

(b) Cooperative localization algorithms are used for cross-communicating robots, which

may include both non-Gaussian and Gaussian measurement noise, where uncer-

tainty is modeled with recurrent neural networks (RNNs) for each agent’s sensor

configuration using outputs from simultaneous localization and mapping algo-

rithms (SLAM).

(c) Instead of simple heuristics when sampling the map for target positions, we employ

Deep Q-learning (DQN) for high-level path planning, which is easily modifiable for

learning desired multi-agent behavior and finds global solutions (DQN scalability
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for more than two robots is also evaluated).

(4) We employ and expand the method of auto-calibration of parameters towards planners,

controllers, and for real to sim applications.

(a) Specifically we provide an approach for auto-tuning feedback controllers and on-

line trajectory planners to achieve robust locomotion of a legged robot. The

auto-tuning approach uses an Unscented Kalman Filter (UKF) formulation, which

adapts/calibrates control parameters online using a recursive implementation. In

particular, this letter shows how to use the auto-tuning approach to calibrate

cost function weights of a Model Predictive Control (MPC) stance controller and

feedback gains of a swing controller for a quadruped robot. Furthermore, this

letter extends the auto-tuning approach to calibrating parameters of an online

trajectory planner, where the height of a swing leg and the robot’s walking speed

are optimized, while minimizing its energy consumption and foot slippage. This

allows us to generate stable reference trajectories online and in real time.

(b) We use this method to also calibrate the gains of an admittance controller for

manipulation and climbing tasks, to help track reference wrench values.

(c) Finally, the method was used to learn the residual errors between the real and

simulator robot model. We use a neural network to do this, where we use the

weights and bias values as our control parameters. This allows us to quickly

calibrate these parameters during online operation directly on the real robot as

the method is data efficient.

(5) We unify model and leaning-based modalities for state estimation of legged robots. We

present the following contributions within the state estimation domain:

(a) We combine a model-based Kalman filter with the ability of learning nonlinearities

through a GRU and ViT. Our estimator provides both the robot’s trunk state and

the associated predictive uncertainty.
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(b) For our Kalman filter, we consider joint encoder and IMU measurements, and

reuse the control outputs from a convex MPC for the filter’s system model.

(c) We demonstrate our state estimator on hardware using a quadrupedal robot on

various terrains and demonstrate a 65% improvement against a state-of-the-art

VIO Simultaneous Localization and Mapping (SLAM) baseline [56] using the Root

Mean Squared Error (RMSE) as our validation metric.

1.4 Necessary Background Knowledge

Throughout this dissertation, I will include topics that span from Model Predictive Control

to terminology typically used in Legged robot systems. For ease of reading, I briefly describe

these topics here.

1.4.1 Model Predictive Control

Model Predictive Control (MPC) involves using current measurements to predict future

values or outputs [62, 61]. Similar to feedforward control, MPC outputs solutions based on

a future reference point. The key difference is that MPC can adapt to a changing reference

trajectory and optimize the solution at every time interval through online calculations. This

allows the robot to respond to both unexpected disturbances and a time-varying reference.

The objective of MPC is to compute a series of control values (e.g., jerk) that adjust the input

or state variable (e.g., position, velocity, and/or acceleration) to follow a reference trajectory.

Figure 1.2 demonstrates the concept of MPC, where x is the predicted output and u is the

control variable. At the current sampling instant, iteration k, MPC calculates a set of N

control values [u(k + i − 1), i = 0, 1, 2, 3, 4, . . . , N − 1] over a time interval T , also known

as the prediction horizon (equal to N · dt). These predicted outputs, derived from control

variables u, form a set of x values optimized to follow the reference trajectory [x(k + i), k =

0, 1, 2, 3, 4, . . . , N)]. The optimization of x values based on control u is determined by the cost
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Figure 1.2: General concept of Model Predictive Control

[89]

function or objective function [62]. The objective function minimizes the weighted sum of

squared predicted errors (the difference between predicted output and reference trajectory)

and the squared control values, all subject to hard constraints.

Although N control values are computed at each time interval T , only the first control

output u is applied, or u(k) in Figure 1.2, because the system might not accurately track the

reference. Predicted motion often differs from actual motion due to modeling errors, sensor

noise, or unexpected disturbances. By using only the first control output u at each interval,

the controller aims to provide the optimal output u that minimizes the cost function. By

holding the first output solution u(k) constant over dt, a spline can be created from x(k) to

x(k + 1). The MPC time horizon then shifts by one step and the process repeats.

To optimize their solutions, users can adjust the Q and R matrices (positive semi-definite

gains), modify the prediction horizon N (higher N improves reference trajectory tracking at

the cost of increased computation time), and set appropriate constraints. While MPC offers
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many advantages over PD control, poor choices for N or constraints, especially if the plant

model is not fully understood, can result in erroneous outcomes.

1.4.2 SLAM

Simultaneous Localization and Mapping or SLAM can be described mathematically as the

following:

Given a series of control inputs ut and sensor observations ot over discrete time steps t,

the SLAM problem aims to estimate the agent’s state xt and the map of the environment

mt. These quantities are typically probabilistic, thus the objective is to determine:

P (mt+1, xt+1 | o1:t+1, u1:t)

By applying Bayes’ rule, we can sequentially update the location posteriors, given a map

and a transition function P (xt | xt−1),

P (xt | o1:t, u1:t,mt) =
∑
mt−1

P (ot | xt,mt, u1:t)
∑
xt−1

P (xt | xt−1)P (xt−1 | mt−1, o1:t−1, u1:t)/Z

In a similar manner, the map can be updated sequentially by

P (mt | xt, o1:t, u1:t) =
∑
xt

∑
mt−1

P (mt | xt,mt−1, ot, u1:t)P (mt−1, xt | o1:t,mt−1, u1:t)

As with many inference problems, the solutions to estimating both variables together can

be achieved, reaching a local optimum, by alternately updating the two beliefs in a form

of an expectation-maximization algorithm. Further, in this prospectus, I will also describe

Active SLAM, which can be thought of as Simultaneous Planning Localization and Mapping.

In other words, we still use the traditional SLAM setup, however, we add a planner to this

methodology. In other words, the localization of the robot as well as the environment directly

affects the behavior of a motion planner.
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1.4.3 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning where an agent learns to make

decisions by interacting with an environment to maximize cumulative reward. The agent

takes actions in discrete time steps. At each time step t, the agent receives a state st, selects

an action at based on a policy π, and receives a reward rt from the environment. The goal

is to learn a policy that maximizes the expected cumulative reward, represented as:

Gt =
∞∑
k=0

γkrt+k

where γ is the discount factor.

1.4.3.1 Deep Q-Learning

Deep Q-Learning is an extension of Q-Learning that uses deep neural networks to approx-

imate the Q-value function, Q(s, a), which represents the expected cumulative reward of

taking action a in state s. The Q-Learning update rule is given by:

Q(st, at)← Q(st, at) + α
[
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
]

In Deep Q-Learning, a neural network with parameters θ is used to approximateQ(s, a; θ).

The loss function for training the neural network is:

L(θ) = E(st,at,rt,st+1)

[(
rt + γmax

a′
Q(st+1, a

′; θ−)−Q(st, at; θ)
)2]

where θ− are the parameters of a target network that are periodically updated to stabilize

training.
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1.4.3.2 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a policy gradient method for RL that improves

training stability and performance. PPO aims to optimize a surrogate objective function

while ensuring the new policy does not deviate too much from the old policy. The PPO

objective function is:

LCLIP (θ) = Et

[
min

(
πθ(at|st)
πθold(at|st)

Ât, clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
where πθ is the new policy, πθold is the old policy, Ât is the advantage estimate, and ϵ is a

hyperparameter that controls the clipping range.

PPO strikes a balance between exploration and exploitation by ensuring the updates are

within a small trust region, thereby maintaining the stability and efficiency of the learning

process.

1.4.3.3 Conclusion

Reinforcement Learning encompasses various algorithms, each suitable for different types of

problems. Deep Q-Learning and PPO are two powerful algorithms that leverage neural net-

works and advanced optimization techniques to solve complex RL tasks. These methods have

been successfully applied to various domains, including robotics, games, and autonomous

systems.

1.4.4 Neural Networks and its Variants

Neural networks are a class of machine learning models inspired by the human brain’s ar-

chitecture. They are particularly effective in handling complex data and tasks. Below, we

summarize different types of neural networks, including Recurrent Neural Networks (RNNs)

and their variant Gated Recurrent Units (GRUs), Convolutional Neural Networks (CNNs),
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and Vision Transformer (ViT).

1.4.4.1 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are designed to handle sequential data. They maintain

a hidden state that captures information about previous inputs in the sequence. The hidden

state ht at time step t is updated based on the current input xt and the previous hidden

state ht−1:

ht = σ(Whht−1 +Wxxt + b)

whereWh andWx are weight matrices, b is the bias, and σ is an activation function, typically

the hyperbolic tangent (tanh).

1.4.4.2 Gated Recurrent Units (GRUs)

Gated Recurrent Units (GRUs) are a variant of RNNs that aim to mitigate the vanishing

gradient problem. GRUs use gating mechanisms to control the flow of information. The

update and reset gates determine how much of the previous state should be passed to the

current state. The GRU equations are:

zt = σ(Wzxt + Uzht−1)

rt = σ(Wrxt + Urht−1)

h̃t = tanh(Whxt + rt ⊙ Uhht−1)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

where zt is the update gate, rt is the reset gate, h̃t is the candidate hidden state, and ⊙

denotes element-wise multiplication.
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1.4.4.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are specialized for processing grid-like data, such as

images. They use convolutional layers to extract features from the input data. A convolu-

tional layer applies a set of filters to the input, producing feature maps. The operation is

defined as:

(f ∗ x)(i, j) =
∑
m

∑
n

x(i+m, j + n) · f(m,n)

where f is the filter, x is the input, and (i, j) are the coordinates of the output feature map.

CNNs typically consist of multiple convolutional layers, followed by pooling layers and

fully connected layers. The pooling layers reduce the spatial dimensions, retaining important

features while reducing computational complexity.

1.4.4.4 Vision Transformer (ViT)

Vision Transformer (ViT) is an advanced neural network architecture that applies the trans-

former model to image data. Unlike CNNs, ViTs do not use convolutions to extract features.

Instead, they divide the image into patches and process these patches using self-attention

mechanisms. The steps involved in a ViT are:

1. Divide the image into fixed-size patches. 2. Flatten each patch and map it to a lower-

dimensional embedding space. 3. Add positional embeddings to retain spatial information.

4. Process the sequence of patch embeddings using transformer encoder layers.

The self-attention mechanism in each transformer encoder layer is defined as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the

dimensionality of the key vectors. They are employed in different ways throughout this
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prospectus.

1.4.5 Kalman Filtering and its Varients

Kalman filtering is an algorithm that provides estimates of unknown variables over time by

using a series of measurements observed over time, containing statistical noise and other

inaccuracies. Kalman filters are widely used in various applications, such as navigation,

tracking, and control systems. The standard Kalman Filter (KF), Extended Kalman Filter

(EKF), and Unscented Kalman Filter (UKF) are its common variants.

1.4.5.1 Kalman Filter (KF)

The Kalman Filter is optimal for linear systems with Gaussian noise. It consists of two main

steps: prediction and update.

Prediction Step:

x̂k|k−1 = Ax̂k−1|k−1 +Buk

Pk|k−1 = APk−1|k−1A
T +Q

Update Step:

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1

x̂k|k = x̂k|k−1 +Kk(zk −Hx̂k|k−1)

Pk|k = (I −KkH)Pk|k−1

where x̂ is the state estimate, P is the error covariance matrix, A is the state transition model,

B is the control-input model, uk is the control vector, Q is the process noise covariance, H

is the observation model, R is the measurement noise covariance, Kk is the Kalman gain,

and zk is the measurement at step k.
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1.4.5.2 Extended Kalman Filter (EKF)

The Extended Kalman Filter is used for non-linear systems by linearizing the system around

the current estimate. The process and measurement models are given by:

xk = f(xk−1, uk) + wk

zk = h(xk) + vk

where f and h are non-linear functions, and wk and vk represent process and measurement

noise.

Prediction Step:

x̂k|k−1 = f(x̂k−1|k−1, uk)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Update Step:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1))

Pk|k = (I −KkHk)Pk|k−1

where Fk =
∂f
∂x

∣∣∣∣
x̂k−1|k−1,uk

and Hk =
∂h
∂x

∣∣∣∣
x̂k|k−1

are the Jacobian matrices of f and h.

1.4.5.3 Unscented Kalman Filter (UKF)

The Unscented Kalman Filter addresses the limitations of the EKF by using a determin-

istic sampling technique called the Unscented Transform to better capture the mean and

covariance estimates.
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Prediction Step:

Generate sigma points χk−1 from x̂k−1|k−1 and Pk−1|k−1:

χk−1 = x̂k−1|k−1 ±
√
(L+ λ)Pk−1|k−1

Propagate sigma points through the process model:

χk|k−1 = f(χk−1, uk)

Calculate predicted mean and covariance:

x̂k|k−1 =
∑
i

W
(m)
i χ

(i)
k|k−1

Pk|k−1 =
∑
i

W
(c)
i (χ

(i)
k|k−1 − x̂k|k−1)(χ

(i)
k|k−1 − x̂k|k−1)

T +Q

Update Step:

Generate sigma points from the predicted state:

χk|k−1 = x̂k|k−1 ±
√
(L+ λ)Pk|k−1

Propagate sigma points through the measurement model:

ζk = h(χk|k−1)

Calculate predicted measurement mean and covariance:

ẑk =
∑
i

W
(m)
i ζ

(i)
k

Sk =
∑
i

W
(c)
i (ζ

(i)
k − ẑk)(ζ

(i)
k − ẑk)

T +R
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Calculate cross-covariance and Kalman gain:

Pxz =
∑
i

W
(c)
i (χ

(i)
k|k−1 − x̂k|k−1)(ζ

(i)
k − ẑk)

T

Kk = PxzS
−1
k

Update the state and covariance estimates:

x̂k|k = x̂k|k−1 +Kk(zk − ẑk)

Pk|k = Pk|k−1 −KkSkK
T
k

Kalman filtering and its variants, including the Kalman Filter (KF), Extended Kalman

Filter (EKF), and Unscented Kalman Filter (UKF), provide robust methods for estimating

the state of a system over time. While KF is suitable for linear systems, EKF and UKF

extend its application to non-linear systems, with UKF offering improved performance by

better capturing the mean and covariance through the Unscented Transform.

1.4.6 Legged Robot Terminology

In this propsectus, there are certain terminology used that are specific to legged robot sys-

tems. For example, I will sometimes use phrases such as stance and swing to describe the

various motions of a legged robot. Specifically, stance describe the feet of the robot currently

in contact with the ground. As soon as this foot loses contact with the ground (i.e., leg is in

the air), we describe this foot as being in swing mode. Essentially, stance and swing describe

the discrete hybrid nature of a legged robot. Although we provide more details in terms

of control of these legged systems, the act of balancing such a system is done through the

stance leg – essentially, the robot uses its stance leg to push on the ground and ensure it

can balance and avoid falling. To move in a desired direction, the robot will also push on

the ground (to produce some force in that direction), while lifting one or more of its legs

19



simultaneously so that the base position can translate successfully to a new position. The

amount of time a leg is either in stance or swing phase is called the gait timings. Finally,

depending on the sequence of both timings and how many legs are on the ground/air at the

same time, describe the specific gait. For example, for a quadruped (or 4 legged robot), if

1 leg is in the air while 3 legs are on the ground, the most typical gait is called a walking

gait. If 2 legs are in the air while 2 legs are on the ground, the most common gait is called

trot gait. Although there are various combinations of timings to produce other gaits, in this

work we only use trot and walk gait.
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CHAPTER 2

Related Works

2.1 Motion Planning Problem

The primary objective of this thesis work is to demonstrate various ways to make robots

more intelligent or ‘smart’ by demonstrating implementation of reacting, understanding, and

learning through formulation of new PCE algorithms. We first start with the importance

of reacting. In real-world scenarios, the robot will be disturbed either by the environment

or by others during operation. It is important that the robot can adequately react to these

changes to keep its center of mass stable at all times. Looking towards the example of human

motion, reaction and energy-efficiency are typically intertwined in the sense that the ability to

react quickly and accurately to environmental stimuli depends on the efficiency of our motor

control system. Specifically, energy-efficient motion is achieved through a combination of

factors, including the optimization of movement patterns and the minimization of wasted

energy. When the body moves in an energy-efficient manner, it requires less metabolic

energy, allowing for sustained activity over longer periods.

In the context of reaction time, an efficient motor control system allows faster, precise

reactions by minimizing wasted energy. For instance, quick directional changes to avoid

obstacles become easier and less energy-consuming. An inefficient system leads to delayed

reactions, more energy use, fatigue, and reduced performance. Training can improve motor

control efficiency, resulting in quicker reactions and sustained activity.

This principle applies to legged robots, where stable motion is crucial. One simple,
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effective method is the Raibert controller [107], though it’s less suited for rough terrain. Op-

timization techniques like the Linear Inverted Pendulum use the Center of Mass to maintain

balance [69], but require pre-specified footsteps, limiting workspace. Trajectory Optimiza-

tion (TO) can predict future steps [143], but is computationally heavy for real-time use.

Reinforcement Learning (RL) offers another approach [66, 85, 74], but demands extensive

data and tuning, making it complex.

Our work aims for an easy-to-implement, low-cost, energy-efficient path planner. Similar

work [126] minimizes motor energy while adhering to ZMP constraints, but requires pre-

defined step heights and distances. Our approach dynamically adjusts step height and timing

based on current velocity.

Another study [28] uses a neural network for terrain-based footstep planning, ensuring

optimal energy efficiency and stability. Although we don’t use vision-based data, our method

also aims to avoid slipping using force ellipsoids.

Other research [145, 129, 75] focuses on optimizing locomotion parameters for energy

efficiency but doesn’t address gait transitions. Our objective is to determine the optimal

velocity for transitioning gaits to save energy. Gait transitions are complex due to hybrid

dynamics and contact dynamics, often requiring high computational costs. Recent RL stud-

ies like [49] tackle this by learning energy-efficient gaits. Unlike model-based controllers

that rely on contact-implicit optimization [25, 90], our approach provides an analytical solu-

tion, offering clear physical relationships between dynamics, gaits, and energy consumption

without needing predefined contact gaits.

Our method stands out for its simplicity, lack of learning or solver requirements, and

general applicability across different gaits.

Although reacting to external disturbances can be done considering only the dynamical

physics of a robot, understanding the surrounding demands perception and new techniques

for considering uncertainty and guarantee some metric of safety during motion planning.
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However, planning in environments that are not well-known is a daunting challenge because

of issues related robustness [3].

For example, simultaneous planning, localization, and mapping (SPLAM, or more com-

monly referred to as Active SLAM) is an area of research that attempts to satisfy some of

these requirements. The main challenges to Active SLAM consist of planning under uncer-

tainty in an acceptable amount of time, bridging the gap between sensor data (semantic

mapping), and ensuring that it is robust enough for a complex platform. Because of these

challenges, there are many works addressing a subset of Active SLAM, namely simultaneous

localization and planning [2] or works addressing SLAM, such as [98, 68, 41]. Other Active

SLAM works also use very simple research platforms [70] or were only tested in simulation

[81].

There are two common frameworks to address the problem of planning under uncertainty,

which are explicitly modeling the posterior distributions in a Bayesian setting [47]. Unfor-

tunately, modeling the posterior distributions in a Bayesian setting may be unrealistic, as

the Bayesian setting is only computationally tractable for the simplest cases (e.g., Gaussian

prior and Gaussian observations). One critical attribute of a POMDP is the assumption

that states are not observable (unlike MDPs). Practically, this means that the agent cannot

decide an action based on the current states alone – instead, it must consider the complete

history of past actions and observations to choose its current action. Consequently, using

POMDP to solve the Active SLAM problem becomes computationally intractable due to the

curse of history and dimensionality (necessity of having to track a longer and longer history

of past state and action pairs), and does not sufficiently model an agent’s future intent [42].

Moreover, there is a need for new path planning architectures for unknown and uncertain

environments that addresses the concerns of belief space planning or provides alternative

methods that can be ubiquitously applied on most robotic systems.

Besides reacting and understanding, learning is the other component that I believe is

necessary to making robots smarter and feasible to be useful in real-world applications. One
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of the more obvious ways to integrate a sense of learning for robotic systems, is in the field of

reinforcement learning. The primary reason why learning is important is in situations when

the solution to some problem may not be so obvious that it can be adequately addressed

through traditional planning methods while being computationally feasible. For example,

how do we plan paths for a heterogeneous team of robots (i.e., robots with varying dynam-

ics or locomotion abilities) that is both safe (e.g., considers uncertainty in agent/obstacle

avoidance) and fast (e.g., finding the shortest path to the goal)? In addition to solving a

path that is both safe and fast, how can this path be generated by also considering the com-

munication abilities of multiple robots – for example, before reaching a desired goal state

for each individual robot, for some amount of time, it may be desirable for them to be in

proximity so they can combine their sensor measurement and decrease their overall state

uncertainty. This level of complexity can be incredibly challenging without learning-based

methods, which have the advantage (particularly when simulations are available) to fully

explore the state-space of the system.

I now provide some examples of past works that address heterogeneous path planning

and explain how our work (described in more detail in Sec. 5), using a combination of tradi-

tional planning/control methods with machine learning can provide additional functionality

not so easily addressed with only traditional planning methods. For instance, works that

examine planning for heterogeneous robots (typically composed of a two robot UGV-UAV

team) have focused mainly on fusing different sensor data to build a unified global map [73],

integrating several components such as path planning, sensor fusion, mapping, and motion

control towards a single framework [103], or strictly analyzing multi-agent localization (i.e.,

multi-SLAM) [138]. While we also consider a UGV-UAV team as done in the above works,

here, we are more concerned with the feasibility (i.e., computation time) of such a complex

system, and also in how uncertainty is not only estimated for robots with different sensor

configurations, but how it’s tightly coupled with a local stochastic model predictive controller

(SMPC) towards coordinating multi-agent behavior.
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We also seek to address the major challenge for multi-agent (or even single-agent) plan-

ners, which is to estimate a path that is both safe (e.g., considers uncertainty in agent/obstacle

avoidance) and fast (e.g., finding the shortest path to the goal). This is significant because

conservative approaches to safety would lead to over avoidance or non-optimal solutions,

and high-risk behavior may cause undesired collisions. Currently, few motion planners fully

investigate this problem. For example, in [28], the cost of reaching a target position for each

robot in a heterogeneous team depends on its individual characteristics (e.g., varying sensors,

travelling speed, and payloads). However, by not considering uncertainty in their planner,

their cost-to-go function can be significantly affected by disturbances. Conversely, a multi-

agent planner that does consider probabilistically-safe motion planning can be found in [8].

Still, their planner may lead to conservative solutions as they assume a worst-case behavior

approach to safety. SABER addresses the problem of avoiding obstacles without over avoid-

ance by using an RNN, which predicts and propagates future state uncertainty dynamically

and does not make the assumption that uncertainty increases when no future measurements

are received [120]. The downside with an RNN (which is typical with learning-based ap-

proaches) is that the accuracy of the uncertainty estimates is directly correlated with the

quality of the data collection.

The geometric representation of obstacles is also critical for planning. For example,

FASTER [31] is a decentralized and asynchronous planner where obstacles are represented

as outer polyhedrals (estimated from convex decomposition) and applied as constraints into

the optimization. In SABER, we also represent obstacles as polyhedral constraints for each

timestep, however, we decompose them into a disjunction of linear chance constraints (thus,

obstacle ‘size and location’ are a function of exteroceptive and proprioceptive uncertainty).

Using chance constraints in motion planning is not new, and has been shown with success

in single-agent planners such as [124] and [83]. In this work, our chance constraints are also

influenced by the cross-communication uncertainty of a heterogeneous robot team. Addition-

ally, while obstacle constraints can be explicitly used in the optimization, other works show a
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learning-based approach to avoid collisions by modeling the distribution of promising regions

for travel [29] or predicting the separation distance between the robot and its surroundings

[26]. Our work is a hybrid approach, where we use the RNN to predict uncertainty of state

estimates (which affect the ‘size’ of polyhedral obstacles), but still use these obstacles as

constraints in our SMPC optimization. This choice sacrifices computation time but may be

more generalizable to environments not observed in training and prevent collisions.

Finding a suitable path to the goal also has a wide array of different solutions. Most

commonly, sampling-based methods which do not consider workspace topology (such as grid-

sampling [77] or rapidly-exploring random tree or RRT and its variants [50]) can lead to very

dense roadmaps and may not scale well when the shortest path to the goal is desired. This

issue has been investigated in [6], which uses a self-supervised learning approach to build

sparse probabilistic roadmaps (PRM) for bias sampling (sampling only regions the robot is

likely to safely travel). Moreover, using a learning-based approach for path planning also

has the potential for integrating semantic behavior that can be gained from multi-agent

coordination, as evidenced in [142] and [9]. Motivated by these works, we use a DQN for

high-level planning, where simple modifications of a reward function can yield desired multi-

agent behavior (e.g., rewarding agents based on proximity or reaching the goal concurrently).

Nevertheless, the tradeoff of using a DQN compared to sampling-based methods is that it

cannot guarantee asymptotic optimality (e.g., RRT-star) or probabilistic completeness (e.g.,

PRM). However, for our DQN, we are primarily concerned with the feasibility relative to

our application (i.e., finding a near-optimal path in a computationally efficient manner while

satisfying multi-agent behavior).

2.2 Auto-Calibration

Due to the inverse relationship between the complexity of the dynamic model used for loco-

motion and the computation time required for an optimization solver, a popular approach is
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to employ Reinforcement Learning (RL) [136, 80, 66, 85, 74, 122]. E.g., in [136], a stochastic

policy is realized with neural networks to simulate a foothold and base motion controller

using Trust-Region Policy Optimization. This is done by considering a reward function that

consists of several physical parameters such as the error between actual and reference foot-

step position, penalizing foot slippage or large swing-leg velocities, or sudden changes in base

orientation. An RL approach has also been successfully demonstrated in [80], which learns a

neural network that acts only on a stream of proprioceptive signals for locomotion on uneven

terrain. As part of the learning part as described in the introduction, which naturally lends

into the machine learning field, there are also alternative approaches to robustify and adapt

from controller/planning errors. Although tremendous progress has been made in the RL

literature to achieve legged robot locomotion, this approach is highly complex and requires

significant amounts of data. For example, in [80], a two-stage training process is required that

involves a teacher/student policy in addition to particle-filtering, which maintains certain

terrain parameters used to classify what is and is not traversable during training. In [136],

the reward function and corresponding weighing parameters required intricate fine-tuning

and assumes the user has extensive computational resources available during training. An-

other work can be found in [51], which uses RL to create adaptive trajectories based on

following a reference trajectory calculated offline first through TO. Similar to our work, they

also use step clearance and slippage as objectives to their calibration. However, different

from ours, while we also use TO methods, we only rely on the reference trajectory from

TO for the first few footsteps, while future footsteps are planned online. Overall, the com-

plexity of formulating the correct reward function in RL and the effort required for tuning

hyper-parameters may cause significant delay in development time. This also may make RL

difficult to reproduce or generalize to a wide-variety of robotic platforms without significant

amounts of tuning.

Force control strategies are worthwhile pursuits as they have already been shown, com-

pared to ignoring force feedback, to deliver adequate control for diverse tasks, from insertion
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with tight tolerances to the polishing of non-flat surfaces [141]. So far, one area that is

relatively less explored is the control of wrenches for dexterous manipulation, which typi-

cally involve one or more fingertips that must physically interact with the environment and

objects (i.e., multi-finger robots) [79]. Instead, the research focus in dexterous manipulation

has been on object recognition or localization with fully-actuated grippers, where grasping

motion is applied through an on/off mechanism, where the gripper is either in a fully open

or fully closed configuration [84]. More complex controls for grasping have been consid-

ered using tactile feedback and even learning-based approaches through teleoperation [82,

87]. While these works incorporate wrench information, their goal is to control the relative

motion between the gripper and its target object than explicitly track a desired wrench.

However, tracking wrenches can be necessary if we have an underactuated gripper or make

contact in very compliant environments, as they are difficult to control, and are endowed

with the ability to envelop objects of different geometric shapes. Still, control of underac-

tuated grippers has been shown in past work by estimating force but not controlling for

them directly in [10] or controlling force directly but without hardware results in [54]. In

our work, we will primarily focus on tracking wrench profiles directly using force-feedback

with an auto-calibrating admittance controller that can be used not only for single-point

contacts, such as legged robots with point feet [125], but also for multi-finger robots, such

as manipulators with grippers [10], on both stiff and compliant environments. Note, that

we opt for an admittance force controller because we assume access to F/T sensors, and will

use a change in task-space position for control after obtaining these sensor measurements.

The reason we employ a self-calibrating admittance controller instead of using traditional

admittance control [59] is that the controller can quickly become unstable if no modifications

are made. For instance, admittance control requires inverse kinematics, where the position

of the end-effector as a control parameter can cause kinematic singularities. Also, task

and joint space control require a complete dynamic model of the robot, contributing to

the accuracy/robustness dilemma [59]. Recently, model error compensation techniques for
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impedance/admittance control have been shown through adaptive control schemes, although

knowledge of the dynamic model is still required. One approach to resolve model-based

errors is demonstrated in [149], which modifies the admittance controller by using only the

orientation components of the end-effector through relating orientation with joint angles,

avoiding the need for inverse kinematics. However, this approach can only be used if the

limb’s joint space is R6, ours is R7. Additionally, deriving orientation with joint angles

may be difficult if the gripper is too complex or underactuated. Other methods that are

model-free, such as neural networks, may still result in imprecise control and demands a

large number of training sets to achieve robustness under unseen conditions [71].

Alternatively, to modify our admittance controller, we use the method of [94] (which

employs a UKF) over other adaptive or machine-learning methods as it does not require a

trial-and-error implementation and can be directly applied to hardware without the need

for complex simulation models–which may otherwise be difficult to achieve with a physically

complex manipulator/gripper and in uncertain environments. The method also allows the

freedom to choose any number of desired training objectives toward stabilizing the controller,

such as closely tracking wrench profiles, predicting the spring constant of the environment to

update the dynamic model, ensuring control outputs are within limits to minimize slipping,

and avoiding kinematic singularity.

Although other works exist in tracking dynamic forces in uncertain environments, such as

[36, 24], their experimental setup is relatively simple and they only show results for tracking

force and not torque. By using a UKF, we can also more easily consider nonlinearities

imposed by the system. However, the main limitation of our approach relative to those works,

is that it is more challenging to provide mathematical guarantees on controller stability. For

instance, the admittance controller gains must be positive semi-definite to be stable. To

circumvent this issue, we add a small modification to [94], by adding a large cost term on

the training objective when the sigma points or controller gains sampled by the UKF violate

the semi-definite property. We perform a similar operation to avoid kinematic singularities

29



as well. Doing so, the algorithm will not select gains that violate these properties.

The UKF auto-tuning concept was also applied to real to sim applications. To provide

context to this problem, the reality gap between policies trained in simulations and then

applied to real-world tasks are typically addressed through domain randomization, domain

adaptation, or system identification methods. In domain randomization, a model is trained

across simulated environments that vary in its dynamics or visual information. The real-

world environment is then assumed to be generalizable as a sub-variant of these randomized

environments [35]. However, as sample complexity exponentially increases with the number

of randomizations, the work in [92] has shown that domain randomization (in general) leads

to suboptimal and high variance policies. To resolve the increase of sample complexity

over time, [100] addresses this through automatic domain randomization, which expands the

range of parameters autonomously during the agent’s learning procedure. However, by not

using real-world data, their final distribution of parameters may not sufficiently reflect the

actual distribution of the real world – a common issue in this domain [35]. Another approach

is to use real-world data directly to influence simulation parameters. For example, [27] uses

continuous object tracking with real-world data to compare trajectories between the real and

simulated model. Other works have also employed model-based RL and use real-world data

to learn a policy that fits some probabilistic model [33, 38]. Still, using machine learning

only on real-world data to address the reality gap can be time consuming and impractical

depending on the task or environment complexity, as current methods rely on sufficient data

collection and may lead to safety issues for real robots during the lengthy training execution.

A hybrid approach (between using real-world and simulated data) exists through domain

adaptation methods. [67] achieves desired manipulation tasks by learning a policy on the

real robot through a collection of unlabeled real-world images, which are then employed

along with simulated images to adapt the policy (effectively decreasing the number of real-

world data required). However, while [67] does not improve the simulator itself during the

learning process, [35] does improve the simulator by matching reality and reduces (over time)
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the need for real-world data. Although this hybrid approach has been used with success,

it requires a careful and at times complex procedure for generating new simulation data,

and the agent’s policy may struggle to learn if the distribution of the simulation parameters

grow too large [67, 101]. Thus, while RL has made significant progress in handling the error

associated with the real and simulated robot model, resolving real-world data sparsity along

with generalizing the training process across environments/robots remains a consistent issue.

Another approach is to apply methods of system identification and Bayesian optimiza-

tion, such as in [63] which use prior knowledge of the system. These works typically only

account for geometric parameters and do not consider non-linearities that arise from kine-

matic chains and noise in system propagation (although these methods benefit from being

applicable on the real world directly without learning requirements). Further, to achieve

the accuracy required in the task-relevant state-space domain, non-geometric errors need

to be accounted for including friction, temperature, and compliance which is difficult and

potentially infeasible to model without learning-based methods [5, 139].

In this work, our goal is to make it feasible to train on real-world data directly to contin-

uously improve the simulated model, i.e., Real-to-Sim (or sometimes referred to as modelling

a ‘digital twin’ [139]) using a learning-based UKF approach. Other works similar to our goal

but different in approach can be found in [32], where the forward kinematics are modeled by

optimizing Denavit–Hartenberg parameters through standard gradient descent (SGD) meth-

ods. Our work differs as we are not restricted to robots with only revolute or prismatic joins

but is generalizable to any robot type (e.g., wheeled robots). Another work in this space is

found in [101] which learns the non-parametric model error in addition to the existing (uncal-

ibrated) forward model. Similar to our work, [101] applies a trade-off between modelling the

non-geometric effects by hand and removing the available kinematic model completely. They

achieve this through obtaining accurate forward models in the presence of non-linearities by

learning residual errors using Gaussian Process Regression (GPR). However, because these

residual errors (or in our case, model mismatch from proprioceptive and exteroceptive noise)
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is not only non-linear but non-Gaussian, we can make use of neural networks instead [123,

121].

Ultimately, our approach is to directly learn the model or residual error between a desired

or reference model and the current model. The reference or current model may be composed

of a simple dynamic model, the state feedback of the simulator, or the state feedback of the

real robot (in our case either a mobile or 6 degrees of freedom manipulator robot). To learn

this model error we employ the method described in [93], which uses a UKF to predict control

parameters with user-defined training objectives to evaluate the performance of a closed-

loop system online through a recursive implementation. This method has previously shown

success for multiple applications, from tuning the cost function weights of an LQR controller

for autonomous vehicles [93] to tuning a model predictive controller and trajectory planner

of a quadruped robot [117]. Here, we apply this method for tuning the weights of a neural

network toward learning the model error. We use a neural network because we assume this

model error is non-linear and non-Gaussian and may potentially learn semantic information

that is difficult to account for manually. The motivation of using the method described in

[93] (against RL or other adaptive methods for example), is because this approach has been

shown to update control parameters with small amounts of data [117], and can handle non-

linearity in the data due to the UKF formulation. Additionally, as this approach is applied

online and recursively, the method can quickly adapt to model changes or sudden change in

the localization result that affects the model error.

2.3 State Estimation

The spirit of unifying model-based and learning-base methods was also applied towards the

domain of state estimation. We now describe using related works why such unification is

useful to avoid the simplifications and assumptions of previous methods.

In [43], an Extended Kalman Filter (EKF) approach was used on the Atlas bipedal robot,
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where the measurements include the velocity derived from the integration of leg odometry.

An EKF was also employed in [1] to fuse leg kinematics and IMU information, and an

a Unscented Kalman Filter (UKF) in [15] to better handle the nonlinearities of slippery

terrain. However, these methods suffer from linearization errors [46]. Additionally, these

works do not consider vision or other exteroceptive information which may impose drift over

long term operation, which may be avoided in areas cameras can be applied.

One solution is to employ both proprioception and exteroceptive information through

SLAM [37, 7], visual odometry [116, 48], or more currently, VIO SLAM [31, 23, 148]. How-

ever, while these works benefit from the simplicity and computational efficiency of Kalman

filter methods, they are still limited by their requirement to approximate highly nonlinear

systems and rely on sufficient initial conditions. In our case, employing a simple Kalman

filter to estimate the robot’s state, when utilized as input for the GRU, enhances the GRU’s

performance, especially concerning velocity components in unseen datasets (see Sec. 9.2.1).

Due to these issues associated with methods that rely purely on Kalman filtering, some

works, such as in [147], employ state estimation through Quadradic Programming (QP),

which considers both the modeling and measurement error within its cost function. However,

while their QP works well in simulation, where their measurement noise appears relatively

low, they do not compare their algorithm against ground truth on the real robot (e.g., using

a motion capture system). Instead, they only compare their QP against a Kalman filter

on the real robot without ground truth. Although our use of QP differs from the work in

[147], using QP for state estimation is a realistic option due to the recent advancement of

computers. In our case, we use a convex MPC QP program [34] which computes ground

reaction forces that actuate a robot to help follow a user’s reference trajectory. Thus, from

their model formulation, these forces embed information of the user’s reference trajectory

(e.g., velocity command), and also the previous state estimator output. These forces are

then reused as part of our Kalman filter’s system model to propagate the state to the next

time step.
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In this work, we further correct any errors due to nonlinearities that occur from the model

and measurements through a GRU. Using learning to correct for model errors is validated by

several works. For example, using IMU-only state estimation on pedestrian motion [19] using

a neural network, learning model/measurement errors through a Recurrent Neural Network

(RNN) by removing bias errors and learning IMU noise parameters [151], and combing a

UKF with a neural network to learn the residual errors between a dynamic model and the

real robot [119]. However, many of these works, such as [151, 119, 115, 123], focus more

on smoothing, imputation, or error prediction, rather than providing an end-to-end state

estimation system.

To incorporate a history of states and measurements for estimating the current state

can be done through factor graphs. For example, [20] uses factor graphs to combine mo-

tion priors with kinematics based on historical state and measurement data. While contact

state estimation can be useful, it’s not always required as shown in [144], which uses factor

graphs with inertial, leg, and visual odometry on soft and slippery surfaces without requiring

force/torque sensors. However, factor graphs come with certain limitations. They necessitate

an accurate dynamic model and encounter scalability challenges when dealing with signifi-

cantly expanded input state spaces, which can result in substantial computational overhead.

We address these issues using a GRU, which allows us to employ a greater number of state

variables while also considering time-series inputs without significant computational effort.

Additionally, instead of using the entire depth image as input, we use a ViT to down-scale

the image into a smaller latent space, making the overall GRU faster to train.

Perhaps the work most similar to ours can be found in [111], which learns the Kalman

gain parameters through a GRU for state estimation. However, there are several distinct

differences besides the methodology itself. For one, we explicitly learn not only the state

estimate but also the potential error associated with the networks’ prediction at each time

step. This serves as an indicator for situations involving high prediction errors where we

can still utilize the Kalman filter’s output, as it operates independently of any learning
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components. Lastly, we incorporate vision as part of the error prediction, and apply our

methods on complex hardware online. To our knowledge, we are the first to develop an

end-to-end nonlinear state estimation system for legged robots, which directly employs the

output of a machine learning (ML) model while enhanced by the integration of the Kalman

filter and depth encoder into its input space. We outperform a state-of-the-art VIO SLAM

solution with our approach.
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CHAPTER 3

Energy-Efficient Locomotion

3.1 Introduction

Legged robots excel in uneven terrains but often face energy inefficiency compared to wheeled

robots due to energy loss in foot-ground collisions. Solutions include hardware improvements,

such as Ranger [11] using passive dynamics for low Cost of Transport (CoT) and ANYmal [64]

using mechanical springs to save power. Alternatively, software-based motion planning, like

our proposed geometry-based planner, can enhance efficiency. Our approach uses ellipses

under each hip joint to determine foot placement, optimizing shape, swing time, and step

height offline for different speeds to minimize CoT and maintain stability.

3.2 Footstep Planner

Our planner uses the robot’s center of mass and foot positions, with ellipses under each hip

joint as placement sets. Defined by major/minor axes and hip positions, we calculate the

difference between current foot positions and hip positions:

pdxell = pxcur − pxhip (3.1a)

pdyell = pycur − p
y
hip (3.1b)

Using these, we check if feet are outside the ellipse:

(pdxell)
2

(rxell)
2
+

(pdyell)
2

(ryell)
2
> 1 (3.2)
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Figure 3.1: Hardware validation with the Unitree A1. The left shows the concept of our

ellipse-based planner (see Sec. 3.2).

If true, we plan the next footstep and trunk trajectory using commanded velocity and Euler

discretization. Algorithm 1 outlines this process.

When all feet are within their ellipses, the trajectory remains unchanged. If the user’s

commanded velocity exceeds the ellipse boundary, the planner triggers a swing trajectory,

calculated to minimize energy use and maintain stability using a sinusoidal implementation:

āz = pstep
1

2

(
2π

∆T

)2

(3.3a)

az,t = āz cos

(
2π

∆T
t

)
(3.3b)

vz,t = āz
∆T

2π
sin

(
2π

∆T
t

)
(3.3c)

pz,t = āz

(
∆T

2π

)2(
1− cos

(
2π

∆T
t

))
(3.3d)

This implementation avoids unnecessary stepping, conserving energy.
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Algorithm 1: Footstep Planner

1 while Robot in Operation do

2 Xcur,pcur ← StateEstimation(fcur,qcur, q̇cur, IMU)

3 Vdes ← Joystick

4 pdx
ell = px

cur − px
hip

5 pdy
ell = py

cur − py
hip

6 if checkEllipse(pdxell, p
dy
ell, r

x
ell, r

y
ell) then

7 pdx
prog = V B

x,des∆Tsw +
√
Xz/g(V B

x,cur − V B
x,des)

8 pdy
prog = V B

y,des∆Tsw +
√
Xz/g(V B

y,cur − V B
y,des)

9 pref , ṗref , p̈ref ,Cref ← Sinusoidal(dt,∆Tsw, gait,p
dx,dy
prog ,p

dx,dy
ell , hstep)

10 Xref ← interp(Xcur,Vdes)

11 end

12 else if Swing Phase Complete then

13 Xnext,pnext, ṗnext, p̈next,Cnext ← Xcur,pcur,0
12,012,14

14 end

15 else

16 Xnext,pnext, ṗnext, p̈next,Cnext ← Xref [it],pref [it], ṗref [it], p̈ref [it],Cref [it]

17 end

18 end

3.3 Parameter Design Framework

To optimize energy efficiency, we use the Cost of Transport (CoT) metric, calculated with

joint velocity, torque, swing time, and distance:

CoT =

∑k
t=k−N max{q̇⊤

t τ t, 0}dt
∆D

(3.4)

We aim to minimize CoT while maximizing force manipulability using ellipsoids. Parame-

ters studied include swing time, body velocity, swing height, robot height, and ellipse size.
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Table 3.1: Parameters for Parameter Study

Name Description min max units

V x
des Desired Body Velocity 0.05 1.50 m

s

∆T Swing Time 0.10 0.25 s

hstep Swing Height 0.05 0.15 m

Xz Robot Height 0.28 0.311 m

rxell Ellipse axis in x direction 0.01 0.15 m

Table 3.1 lists the parameters tested.

3.4 Parameter Study Results

We tested various parameters over 20 seconds of locomotion to minimize CoT and maximize

manipulability. Results showed significant CoT savings using optimal parameters compared

to a baseline, especially for trot gait (34.5% improvement) and walk gait (13.3 percent

improvement), as seen in Fig. 3.2.

3.5 Simulation and Experimental Results

3.5.1 Controller Architecture/Implementation

The control architecture (Fig. 3.3) runs four parallel processes for efficient computation.

Velocity commands are provided via joystick, and state estimation uses a Kalman filter.

3.5.2 Gazebo Simulation Results

Gazebo simulations demonstrated smooth transitions from walk to trot gait (Fig. 3.4), op-

timizing for CoT and maintaining stability. Walk gait required fewer steps and less energy
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compared to trot gait.

3.5.3 Hardware Validation

Hardware experiments (Fig. 3.5) validated the planner’s effectiveness in real-world condi-

tions, showing energy savings and robustness against disturbances. The walk gait used 81%

of the energy of the trot gait.

3.6 Conclusions

We developed an energy-efficient motion planner for legged robots, showing significant CoT

improvements and robust performance in both simulations and hardware experiments. Our

planner is simple, computationally efficient, and effective in saving energy by only stepping

when necessary.
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CHAPTER 4

Risk-Averse MPC

4.1 Introduction

For robots to truly become a viable option for unmanned tasks such as search and res-

cue operations and unknown environmental exploration, autonomous and safe trajectory

planning must be considered as a fundamental design goal during algorithmic design and

systems integration. Necessary requirements for robots to autonomously perform such com-

plex tasks include, but are not limited to, online low-level feedback controls, localization,

vision, motion planning, high-level reasoning, and reasoning under uncertainty. Currently,

all individual components are well-developed, but integrating multiple pieces together into

a single system, especially for environments that are not well-known, has proven to be a

daunting challenge because of issues related to robustness [3]. For example, simultaneous

planning, localization, and mapping (SPLAM, or ‘Active SLAM’) is an active area of re-

search that attempts to satisfy some of these requirements. The main challenges to Active

SLAM consist of planning under uncertainty in an acceptable amount of time, bridging the

gap between sensor data (‘semantic mapping’), and ensuring that it is robust enough for a

complex platform. Because of these challenges, there are many works addressing a subset of

Active SLAM, namely simultaneous localization and planning or works addressing SLAM,

such as [98, 68, 41]. Other Active SLAM works also use very simple research platforms [70]

or were only tested in simulation [81].

To resolve the above issues, we propose a multifaceted approach that uses model pre-
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dictive control (MPC), SLAM1, and recurrent neural network (RNN) algorithms to address

the problem of Active SLAM and account for uncertainties in both current and future robot

positions. Our architecture is based on MPC because MPC operates online, continually

satisfies the dynamic state of the robot over a prediction horizon N , and naturally offsets es-

timation errors [146]. The MPC is augmented to be ‘risk-averse’ by considering uncertainty

in position from timestep k to k+N . This uncertainty is inferred by an RNN, which has been

demonstrated to handle time series data, account for temporal factors that directly affect

predictions, have shown promise in modeling complex interactions between agents and their

environment [42, 150] and previously applied to MPC but for industrial processes [78]. Our

RNN model is trained on the positional covariance estimations of a visual-inertial odometry

(VIO) system taking readings from an inertial measurement unit (IMU) and camera data as

input. By considering the current and future positional uncertainties in the MPC optimiza-

tion problem, our method can solve for more optimal control actions at each timestep. To

facilitate object avoidance, we additionally incorporate an object detection pipeline that uses

a deep convolutional neural network (CNN) to recognize obstacles and a feature detector

with RGB and depth images to estimate the distance and size of nearby obstacles. We show

that by using a trained RNN model to infer positional uncertainties at future timesteps, a

robot can demonstrate more evasive behavior to better guarantee collision avoidance without

becoming too conservative. Our linearized path planning framework is applied and tested on

a complex quadruped robot, which demonstrates our algorithm’s robustness and efficiency

in computation, showing the feasibility of extending our work to a wide range of robotic

platforms.

1In this paper, SLAM includes visual-inertial odometry with sparse mapping in addition to algorithms
that produce denser maps.
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Summary of Our Contributions

(1) We evaluate the feasibility of an online end-to-end path planner that unifies MPC,

SLAM, RNN, and an object detector using CNNs to generate paths for unknown and

uncertain environments using a non-linear programming solver.

(2) We verify that our quadrupedal robot, ALPHRED [60], avoids collisions and computes

a shorter trajectory while maintaining safety using our method as compared to a more

conservative and naive planner.

(3) We propose a novel use of RNNs to estimate positional uncertainties at all future

timesteps of the MPC’s prediction horizon.

(4) We integrate all components into a high-fidelity simulation using the quadruped dy-

namics of ALPHRED (Figure 4.4). Additionally, we test all components individually

either online or offline using hardware (Figure 4.7).

In the following sections, we will explicitly refer to the simulation or hardware data. The

main difference between the model of ALPHRED in simulation versus hardware is that in

simulation the model is equipped with an idealistic RGB + dense depth Microsoft Kinect

camera, while the actual hardware is equipped with Intel’s Realsense D435i. The idealistic

camera publishes both RGB and dense depth images at arbitrarily fast speeds while the

RealSense publishes RGB images at 30Hz and dense depth images at only 2Hz.

4.2 Methods

In this section, we provide an overview of our architecture and how our risk-averse MPC

propagates uncertainty through its finite time horizon trajectory. In Section 4.2.1, we pro-

vide a high-level overview of our path planning algorithm. In Section 4.2.2, we describe our

MPC’s mathematical framework for planning and tracking. In Section 4.2.3, we describe

47



the constraints used in our cost functions. In Section 4.2.4, we describe our object detec-

tion system using CNNs and keypoint detection on RGB and depth images, and finally in

Section 5.2.3, we detail our RNN training and inference procedures (utilizing our SLAM

algorithm) for predicting future positional uncertainties used to create collision boundaries.

4.2.1 Architecture Overview

Our path planner is formulated as an MPC optimization problem using a non-linear pro-

gramming solver [4]. We divide our MPC framework into a planning phase and a tracking

phase, with different cost functions for each. In the planning phase, the goal of our MPC is

to create waypoints that move a robot closer to a desired position while detecting and avoid-

ing obstacles through measurement updates. Specifically, the object detection algorithm

feeds the MPC with the position and size of surrounding obstacles, while the positional

uncertainty of the robot at all future timesteps in the MPC prediction horizon is inferred

by RNNs. In the tracking phase, we discretize the generated path into segments of fixed

temporal length using a cubic polynomial to create a smooth reference trajectory. MPC is

used to track this reference trajectory and outputs our desired planar velocity values (vd

and ψ̇d). These velocity values are used by our motion tracking controller to generate stable

footstep trajectories. Note that dividing our MPC formulation into two phases facilitates

lower computation time, and allows for separate control on waypoint generation and creation

of custom reference trajectories if desired (see Algorithm 2, Fig. 5.2, or our accompanied

video2 for a general overview of our path planning architecture).

2https://www.youtube.com/watch?v=faurQ1LpNVI
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Algorithm 2: Risk-Averse MPC

1 Initialize state X, control U , dtplan, dttrack, horizon N , robot collision boundary

rΣk:k+N
, and timestep k

// Planning Phase (waypoints to goal)

2 while ∥Xcurr −Xgoal∥2 > 0 do

3 X,Usols ← MPC(Xcurr, Xgoal, rΣk:k+N
)

4 Xref , Uref ← CubicSpline(X,Usols)

5 [pixelx, pixely]1:f ← FeatureExtractor(RGB)

6 bboxes← CNN(RGB)

7 [x, y, z]1:l ← ObjectDetector(RGB-D, [pixelx, pixely]1:f , bboxes)

8 Xcurr ← RobotEstimator(U, IMU, joint encoders)

9 rΣk:k+N
← RNN(Xsols, [x, y, z]1:l)

// Tracking Phase (follow Xref and Uref)

10 while dt ≤ dtplan do

11 U ← MPC(Xcurr, Xref(dt), Uref(dt))

12 Xcurr ← MotionTrackingController(U)

13 dt += dttrack

14 end

15 dt = 0

16 end

4.2.2 General MPC Formulation

4.2.2.1 Planning Phase

MPC in the planning phase has the following time-invariant linear discretized model:

f (Xk, Uk) = Xk+1 = AXk +BUk + wk (4.1)
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where X =
[
x, y

]⊤
represents our state variables (planar waypoint position), and U =[

vx, vy

]⊤
represents our control variables (planar velocity). We also initialized our state

and control variables to zero before run-time.

Because we have a motion tracking controller to incorporate robot dynamics (see Section

4.3.1), our A and B matrices can assume a simple point mass:

A =

 1 0

0 1

, B =

 dtplan 0

0 dtplan


where dtplan is the time between taking proprioceptive and exteroceptive sensor measure-

ments (e.g., RGB-D images and odometer readings), and wk represents a non-unit variance

random Gaussian noise (wk ∼ N (0, σ2), where σ represents the standard deviation of planar

velocity).

The goal of our cost function in the planning phase (equation (4.2)) is to find the optimal

control value that minimizes the distance from the current and predicted states (Xk=0→N) to

the goal state (Xgoal) – where Xk=0 is given by the results of localization. Note, that we use

Ûk instead of Uk in our cost function to represent the inclusion of a slack decision variable,

ϵ (the slack variable has no role in our discretized model equation, but does affect the cost

function through R - see 4.2.3), so that Û =
[
vx, vy, ϵ

]⊤
.

min
Uk:k+N

N∑
k=0

(
Xk+1 −Xgoal

)⊤
Q
(
Xk+1 −Xgoal

)
+ Ûk

⊤
RÛk (4.2)

s.t. 1, 2, 3, 5 (see Table 4.1)

4.2.2.2 Tracking Phase

MPC in the tracking phase has the following time-invariant linear discretized model:

f (Xk, Uk) = Xk+1 = AXk +BUk (4.3)
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where X =
[
x, y, ψ

]⊤
represents our state variables (desired planar position and yaw

or heading angle), and U =
[
vx, vy, ψ̇

]⊤
represents our control variables (desired planar

velocity and yaw rate). Matrices A and B are the same as shown in (4.1), except for an

additional row/column for yaw and yaw rate.

The goal of our cost function in the tracking phase (equation (4.4)) is to output desired

planar velocity and yaw rate (vd and ψ̇d) values that follow a reference trajectory.

min
Uk:k+N

N∑
k=0

(
Xk −Xref

k

)⊤
Q
(
Xk −Xref

k

)
+
(
Uk − U ref

k

)⊤
R
(
Uk − U ref

k

) (4.4)

s.t. 1, 2, 3, 4 (see Table 4.1)

Xref and U ref are obtained by cubic interpolation (equation (4.5)) with end points specified

by the MPC planning phase from Xk...Xk+2 and Uk...Uk+2 (the reason we discretize to k + 2

instead of k + 1 is to ensure there are enough reference points for MPC to ‘look-ahead’).

Xref (t), U ref (t) = a0 + a1t+ a2t
2 + a3t

3,

ai = f (dttrack, Xk, Uk, Xk+2, Uk+2)
(4.5)

4.2.3 MPC Constraints

4.2.3.1 Constraints 1 - 4

Constraint 1 represents multiple shooting constraints which facilitate solving non-linear pro-

grams [58]. The limits on state variables (i.e., map constraints), and control variables (limits

on velocity) are represented by Constraint 2 (note that the slack decision variable should

be set as 0 ≤ ϵ). If there is apparent jerk during path planning, it may be necessary to
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include Constraint 3, where αlimit represents the limit on acceleration (ax, ay, and ψ̈) and

U represents velocity (vx, vy and ψ̇). Orienting the robot along the planned trajectory can

be achieved using Constraint 4, and setting the limit on vy to be much smaller than the

limit on vx (which points directly along the path) in the body frame. Because MPC outputs

velocities in the inertial reference frame (irf), a rotation matrix is required to transform

these velocities into the correct frame of reference.

4.2.3.2 Constraint V - Collision Boundary with Slack Variable

Our obstacle avoidance constraints are given by Constraint 5, which ensure that the collision

boundary of the robot does not collide with detected obstacles (note, that because these

constraints are updated at every timestep dtplan, moving obstacles can also be considered).

xoi and yoi represent the x and y center positions of all obstacles detected by the robot

(i → M : where M is the number of obstacles currently in range). xk and yk represent the

x and y positions of the robot from timestep k to timestep k + N (future positions can

be received from the MPC solution). rΣk
represents the radius of the collision boundary

of the robot, and roi represents the radius of the collision boundary of the obstacle. The

collision boundary radius of the robot is calculated by using the major axis of the covariance

uncertainty ellipse (Σ) estimated from RNN and is added to the radius or size of the robot

itself (thus, we assume a more conservative collision boundary, which, combined with the

slack variable—see below—provides some tolerance to ensure the planner does not fail while

at the same time lowering the probability of collision). Note, from timestep k to timestep

k +N , Σk→N is predicted by our RNN (see Section 5.2.3).

Without a slack variable and because of sensor measurement noise, the measured state of

the robot may suddenly find itself very near or slightly inside the collision boundary of the

obstacle and cause the solver to fail. To accommodate for this issue, Constraint 5 includes a

slack variable to allow for some degree of constraint violation in our optimization problem.

In other words, we effectively separate the covariance into a constraint and slack variable,
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Table 4.1: Model Predictive Control Constraints

No. Constraint

I Xk+1 − f (Xk, Uk) = 0

II X limit ≥ |Xk|, U limit ≥ |Uk|

III αlimit ≥ | [Uk+1 − Uk] |/dt

IV


vlimit
x

vlimit
y


body

≥

∣∣∣∣∣∣∣∣∣∣∣∣∣


cos θk sin θk

− sin θk cos θk




vx

vy


irf

∣∣∣∣∣∣∣∣∣∣∣∣∣
V −

√
(xk − xoi)

2 + (yk − yoi)
2 + rΣ

k
+ roi − ϵ ≤ 0

where we tune the confidence attributed to the posterior estimate and break it into a nominal

estimate, and a controllable slack parameter. Specifically, slack can be tuned through the

R matrix, where a high cost for ϵ will ensure that the majority of solutions will not violate

Constraint 5, while lower values allow for greater violation (the cost on the slack variable is

largely dependent on user-experience during implementation).

4.2.4 Obstacle Detection

4.2.4.1 Convolutional Neural Networks

To support the avoidance of incoming obstacles as our robot traverses the environment,

we use a custom-trained CNN model for real-time object detection. More specifically, using
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Redmon et al.’s YOLOv3 [110] fast CNN architecture because of its maturity (although other

methods could be used, such as [44]), we trained two custom models. One localized brown

boxes within an RGB camera frame using 1,500 hand-labeled images and the other localized

black 1m x 1m boxes in a mostly empty Gazebo environment using 300 images. Weights

were initialized using YOLOv3’s default weights and trained for 5,200 epochs using stochastic

gradient descent with a batch size of 64, momentum of 0.9, and learning rate of 0.001 for

both models. We validated our model on labeled data withheld from the training data and

we verified empirically that our object detector could successfully draw tight bounding boxes

around our brown boxes (Fig. 4.2).

4.2.4.2 From Bounding Boxes to 3D Obstacles

For our end-to-end Gazebo simulation, we implemented simple classical feature detection

over the simulated RGB and dense depth images to transform the bounding boxes from

the object detector into useful 3D obstacles for the motion planner. The scheme described

below assumes that features are cubes and that ALPHRED is directly facing all existing

boxes. It is executed only once, at the beginning of the simulation. Note that instead of

fully addressing the semantic mapping problem, we use simple placeholder computer vision

components designed for our specific test scenarios; for now, we only utilize SLAM as training

data for the RNN.

First, ORB features [114] are extracted. Let xp and yp be the pixel coordinates of a single

feature, and Zc be its depth. Then, let gsb = (Rsb, Tsb) be the body-to-spatial transformation,

gbc = (Rbc, Tbc) be the camera-to-body transformation, andK be the intrinsics matrix. Then,

the position of the feature in the spatial frame, Xs (a 3×1 vector) can be calculated as:
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
xc

yc

1

 = K−1


xp

yp

1



Xc = Zc


xc

yc

1


Xb = RbcXc + Tbc

Xs = RsbXb + Tsb

(4.6)

Next, for each bounding box captured by the CNN object detection process, we determine

which features are in each bounding box. The size of the box is the maximum distance (in

meters) between any two points. Half of that size then becomes the ‘radius’ of the obstacle’s

collision boundary (the MPC assumes that the collision boundary are circles).

We note that our classical feature detection approach is computationally efficient but also

simple (i.e., not as robust). For example, most features exist near corners, where rounding

errors could lead to a very different depth value. For the purpose of our end-to-end Gazebo

simulation, we discarded any obstacle detections that were more than 5 meters away.

4.2.5 Recurrent Neural Networks for Learning Uncertainties

The RNN, shown in Figure 4.3, uses a combination of feedforward layers and simple RNN

layers. The hidden layers all use ReLU activations. The network’s 18 inputs are the robot’s

x, y, and z positions. The next 15 inputs consist of the x, y, and z positions of the five

closest tracked features at any given state. The four output layer neurons correspond to the

four values of the robot’s 2× 2 x-y covariance matrix, which is then used in Constraint V of

the motion planning MPC. Unlike the hidden layers, the output layer uses a linear activation

function because the outputs themselves are not restricted. Note that even though our MPC
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plans in only two dimensions, the inputs to the neural network are three-dimensional because

the state estimation in our experiment is three-dimensional.

We used the Mean Squared Error (MSE) as the loss function:

MSE =
1

N

N∑
i=1

(Σi − Σ̂i)
2

Here N is the total number of timesteps, Σi is the covariance matrix of the planer position

computed by a SLAM system at timestep i and Σ̂i is the covariance matrix predicted by the

RNN. Conceptually, the covariance matrix is a 2× 2 matrix, but the implementation of the

RNN treats it as a 4 × 1 flattened matrix when it makes predictions and propagates error.

Lastly, we note that covariance matrices are positive semidefinite by definition. However, the

above training procedure does not constrain the output of the RNN to positive semidefinite;

the outputs were indeed arbitrary 2 × 2 matrices. To account for this, we zeroed out off-

diagonal elements and negated any negative diagonal elements.

Training data (robot position, position of tracked features, and covariance matrices) for

the RNN was collected from running XIVO,3 a simplified and modernized implementation of

the SLAM system described in [68], on time-synchronized RGB and IMU data collected from

an Intel RealSense D435i mounted onto ALPHRED’s head. We collected four ∼40-second

training sequences in total (using 100 epochs for training on the four sequences). The right

side of Figure 4.2 displays tracked features and localization estimates from the collected data.

One key assumption that XIVO makes is that disturbances to the angular velocity and

acceleration measurements (bias + noise) are a random walk (i.e. white, zero-mean, and

Gaussian). This is not true for a walking robot, where each step produces a large periodic

disturbance. Thus, XIVO’s generic motion model is best suited to a flying robot. However, to

adapt XIVO for our quadruped, we limited the acceleration and angular rate measurements

to ‘realistic’ values and then ‘de-tuned’ the filter by setting large bounds on expected IMU

measurement noise. This hampered accuracy, but ultimately enabled convergence.

3Code available: https://github.com/ucla-vision/xivo
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4.3 Experimental Results

In this section, we provide an overview of our robot model and its motion tracking controller,

describe the training and testing results of the CNN and RNN neural networks, and then

summarize our end-to-end results using our Gazebo simulation environment.

4.3.1 Robot Model and Motion Tracking Controller

The robot used in this study is ALPHRED from Hooks et al. [60], a full-sized quadrupedal

robot that has unique kinematic configurations which enable several dynamic modes of op-

eration as shown in Fig. 4.7 and Table 4.2. Our path planner is tested on a highly accurate

simulation of ALPHRED using Gazebo software [76] (Fig. 4.4). The robot is modeled as sev-

eral interconnected rigid-bodies in PyBullet so that the state includes not only joint angular

velocities, but sensor and actuator noise due to motor temperature. The camera model used

is a standard perspective projection with the same intrinsics as the Intel RealSense camera

used to collect RNN training data, but without distortions. ALPHRED uses an Extended

Kalman Filter (EKF) that fuses kinematic encoder data with on-board IMU measurements

to provide full state estimation [14]. A Raibert-style controller [106] is used to track desired

trajectories, where the input to the controller is desired planar velocities (vd) and a desired

yaw rate (ψ̇d) in the body frame. The controller operates by planning footsteps using pow-

erful heuristics based on velocity feedback and corrects velocity and orientation errors by

adjusting the length of the limbs in support. Further details of the ALPHRED platform and

its low-level motion tracking controller can be seen in [60].

4.3.2 Analysis of Learning Components

Training loss for both the CNN and RNN are shown in Figure (Fig. 4.5). CNN and RNN

networks were trained for 5,300 and 100 epochs, respectively, but only a limited range was

plotted for visualization. To avoid overfitting, we used cross-validation and ensured that the
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validation loss was close to the training loss during the training process for both networks.

Additionally, we observed that as ALPHRED tracked more features (i.e., the corners of an

obstacle), the RNN’s covariance estimates decreased. Conversely, as tracked features went

out of view, estimates would increase. This is expected from the behavior of a visual-inertial

odometry algorithm.

4.3.3 Gazebo Simulation

To test our proposed method, we used a custom Gazebo environment loaded with a high-

fidelity model of our quadrupedal robot equipped with a Microsoft Kinect sensor. For lo-

calization, we used the motion tracking controller as described in Section 4.3.1. Our 3D

environment consisted of a 1m3 box obstacle with the objective to command ALPHRED to

move from its initial position at [0,0] to the goal position at [8,0]. We compared our method

against a baseline approach, in which only an MPC was used for trajectory planning (with

the obstacle explicitly hardcoded), and a naive approach for safer traversal, in which the

robot’s radius was artificially inflated to twice the original size (from 0.7m to 1.4m).

In the illustrative example shown in Fig. 4.6, we observed that when using a classic

MPC controller, which assumes that the robot’s state estimation is perfect, the resulting

trajectory is too close to the obstacle and ALPHRED crashes (red). On the other hand,

when using a conservative MPC controller, in which the assumed value of ALPHRED’s

radius is twice its actual size, the resulting trajectory over-avoids collisions and ALPHRED

moves slowly towards the goal point (blue). However, when using our full risk-aware MPC in

this scenario, we observed that ALPHRED not only avoids collision, but executes a tighter

trajectory than the conservative approach and requires less time to move to the goal. Note

that the simulation was run on a laptop with an Intel Core i7 6700 HQ CPU and a NVIDIA

GeForce GTX 970M GPU in real time with dtplan = 0.1s and dttrack = 0.005s.
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4.4 Discussion and Future Work

Collision-free path planning within unknown and unexplored environments requires the

daunting integration of several components, such as sensor processing, control algorithms,

and uncertainty resolution, into a fast and online end-to-end framework. To this end, we pro-

pose an architecture that unifies these modalities which attempts to address the fundamental

problem of uncertainty in Active SLAM. By inferring the future positional uncertainty for

an MPC using an RNN, we can substitute typical belief space planners with a more com-

putationally efficient approach. Our work can also pave the way towards using RNNs to

address problems with temporal structure which are difficult for classic robotic algorithms.

Overall, our architecture addresses Active SLAM by combining MPC, SLAM, RNN, and

CNN algorithms. We demonstrate that by inferring future positional uncertainties of the

robot using our RNN prediction model, the robot can reach a goal state faster than when

assuming a fixed uncertainty while still safely avoiding obstacles. This is significant be-

cause modeling uncertainties within a neural network framework, rather than belief space

planning (i.e., POMDP), sufficiently shortens the computation time for hardware implemen-

tation. Future work will entail improvement of individual components in our architecture

and modifying parts for complete hardware compatibility if necessary. For example, we

would combine the classical feature detection and ALPHRED’s state estimation (described

in Section 4.2.4.2) into a VIO algorithm.4 This would require us to modify generic VIO equa-

tions, such as the ones present in XIVO, by explicitly modeling a walking gait, expanding

the size of the gait space, and recomputing the Jacobians to incorporate robot dynamics into

visual modeling instead of assuming a simple random walk. Then the performance-limiting

detuning and signal clipping described in Section 4.2.5 will become unnecessary. Finally, we

also aim to replace the CNN + classical feature detection and unprojection with a modern

4We prefer a VIO algorithm over other SLAM algorithms because they can directly observe scale and
because range sensors (e.g. LiDAR) are more expensive in both cost and computation and typically only
produce sparse images. The motions of a walking robot should be sufficiently exciting, such that the VIO
problem is observable.
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Table 4.2: ALPHRED Configuration

Parameter Value

Degrees of Freedom 12 (3 per leg)

Weight 17.9 kg

Max Velocity 1.5 m/s

IMU VectorNav 200

Camera RealSense D435i

semantic mapping algorithm, such as [44].

Future directions also include: (1) formulating our RNN to infer semantics and feed

object-dependent margins to the planner (e.g., the robot can get close to safe objects but

not to dangerous ones); (2) exploring additional inputs to the RNN, such as the estimated

covariances of features or other states; (3) incorporating a z state/control in the MPC rather

than assume planar motion for more complex path planning; (4) comparing our formulations

to belief space planners (e.g., stochastic MPC) as well as other state-of-the-art path planners;

and (5) constraining the RNN training process such that outputs are guaranteed positive

semidefinite. We believe that implementing the above modifications could lead to closing

the gap in achieving the futuristic vision for complete autonomous robotic systems.
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Figure 4.1: Architecture Overview. This figure demonstrates the training and testing

procedures of our method. In training, we first select different maps, where obstacles in each map

are randomly distributed. A simulation where the robot moves from an initial to a goal position is

executed on this map. At each timestep an observation is taken (e.g., camera or on-board sensor

data). These measurements are used as the input to our SLAM/Object Detection/Sensors

system, which estimate the current position and uncertainty in position of the robot, and also

location and size of obstacles. MPC accounts for this information and produces outputs entered

into our motion tracking controller. For every map at every timestep, the current observations,

state position, and positional uncertainty (among other variables outlined in Section 5.2.3) are

entered into a large database to produce our RNN model. Lastly, in the testing phase, RNNs can

predict the positional uncertainty (which provide our collision boundaries) of the robot at future

timesteps of the MPC prediction horizon.
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CNN XIVO

Figure 4.2: Example Module Outputs. Left : An example output image of our trained

object detector using a custom-trained convolutional neural network model. We used the

YOLOv3 [110] architecture with default initialized weights for fast training and inference.

Right : Inlier (green +) and outlier tracks (red *) produced by XIVO on data collected from

the Intel Realsense D435i.
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5 Closest Feature 
Locations (x, y, z)

Robot Location 
(x, y, z)

Robot Covariance 
∑(x, y)

4 Units

256 Units 256 Units

128 Units 32 Units
32 Units

4 Units

16 Units

Simple RNN

Dense

18 Units

Figure 4.3: Recurrent Neural Network Architecture. Our RNN architecture predicts

the covariances at robot poses [xt+n, yt+n] at timesteps t+n for n = 1, ..., N (where N is the

length of the MPC’s prediction horizon). During training, we used inputs collected from the

output of XIVO to parameterize the network towards the four output units, as indicated by

the first 18 input units and last four units in the figure above. Seven hidden layers were used

with ReLU activation functions, with five recurrent layers (green) and two fully connected

layers (purple), to learn the temporal structure for covariance propagation.
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Figure 4.4: Gazebo Simulation. Our high-fidelity simulation accurately models the dy-

namics of the ALPHRED quadruped robot.
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Figure 4.5: Training Loss. Top: Our CNN model’s training loss, used in our object

detection pipeline. We trained for 5,200 epochs but only display 300 in the figure above.

Note that we verified avoidance of overfitting via a validaton set but did not plot the curve

here. Bottom: Our RNN model’s training loss, used to infer future localization uncertainty

for the MPC. As with the CNN, we verified avoidance of overfitting using a validation set.
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Figure 4.6: Trajectory Comparison. A comparison of the trajectories computed by three

different approaches. The baseline method (red) is an MPC framework without our exten-

sions to consider propagated future state uncertainty from an RNN, and we define the naive

approach (blue) as artificially inflating a robot’s boundary through all time. In comparison,

our approach (green) can plan for a quick yet safe trajectory by predicting potential future

collisions.
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Figure 4.7: ALPHRED Hardware. The ALPHRED quadrupedal robot developed by

Hooks et al. [60] of the RoMeLa robotics laboratory at the University of California, Los

Angeles. This complex platform is an ideal model to apply our methods, as showing success

on this platform also demonstrates the potential of applying our methods to a wide selection

of robotic systems. Table 4.2 describes some physical properties of the system.
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CHAPTER 5

Motion Planning for Heterogeneous Multi-Agents

5.1 Introduction

The field of robotics has made remarkable progress in providing diverse sets of robotic plat-

forms with different physical properties, sensor configurations, and locomotion capabilities

(e.g., climbing, running, or flying). Thus, developing new planning algorithms that can be

ubiquitously applied to a team of heterogeneous robots is a worthwhile endeavor, and ap-

plicable to a wide range of tasks from search and rescue to space exploration. However, for

multi-agent planners to be used in unknown and uncertain environments, they should con-

sider complex robot dynamics, uncertainty from imperfect exteroceptive and proprioceptive

sensor measurements, update uncertainty when robots are in communication range, avoid

obstacle collisions, and address desired multi-agent behavior.

One common approach is to fully address some but not all of the described requirements

while assuming the rest can either be satisfied in future work, or can be combined with

other existing methods. However, combining multiple approaches towards a unified motion

planning framework satisfying all requirements can be nontrivial, requiring close examination

of the overall feasibility and performance of such a complex system. Thus, in this work, we

will examine the feasibility and performance of an end-to-end motion planning framework

that addresses the above requirements termed as ‘Stochastic model predictive control for

Autonomous Bots in uncertain Environments using Reinforcement learning’ or SABER.
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SLAMMachine Learning Controls

Figure 5.1: SABER framework. SABER combines controls (stochastic model predictive

control), vision (simultaneous localization and mapping), and machine learning (RNN and

DQN), to provide local and globally optimized solutions in unknown and uncertain environ-

ments.

Summary of Our Contributions

(1) SABER is an end-to-end motion planning framework for a team of heterogeneous

robots that unifies controls, vision, and machine learning approaches to plan paths

that account for safety, optimality, and global solutions (our complete framework is

shown on a UGV-UAV team).

(2) Cooperative localization algorithms are used for cross-communicating robots, which

may include both non-Gaussian and Gaussian measurement noise, where uncertainty

is modeled with recurrent neural networks (RNNs) for each agent’s sensor configuration

using outputs from simultaneous localization and mapping algorithms (SLAM).

(3) Instead of simple heuristics when sampling the map for target positions, we employ

Deep Q-learning (DQN) for high-level path planning, which is easily modifiable for

learning desired multi-agent behavior and finds global solutions (DQN scalability for

more than two robots is also evaluated).
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Algorithm 3: SABER

1 Initialize state X i:nr
k , goal X i:nr

goal, dt, horizon N , robot size ri:nr , timestep k, empty

Mapi:nr , uncertainty Σi:nr
k:k+N+1, error to goal ϵ, number of robots nr

2 while ∥X i:nr
k −X i:nr

goal∥2 > ϵ do

3 if LiDAR configuration:

4 X i:nr
k ,Σi:nr

k ,Mapi:nr ← Particle-filter SLAM(odom, scans, Mapi:nr)

5 Σi:nr
k+1:k+N+1 ← RNNi:nr(X i:nr

k , scans)

6 if RGB camera configuration:

X i:nr
k ,Σi:nr

k ,Mapi:nr ← VIO SLAM(IMU, RGB, Mapi:nr)

7 Σi:nr
k+1:k+N+1 ← RNNi:nr(X i:nr

k , features)

8 continue:

9 X i:nr
ref ← Deep Q-Learning(X i:nr

k , X i:nr
goal,Mapi:nr)

10 Oj:nobs
← checkObstacles(X i:nr

k , ri:nr ,Mapi:nr)

11 X i:nr
k+1:k+N+1, U

i:nr
k+1 ← SMPC(X i:nr

ref , X
i:nr
k ,Oj:nobs

,Σi:nr
k:k+N+1)

12 if ∀robot i, j : nr within communication range:

13 Σi:nr
k:k+N+1, Xk:k+N+1 ← CoopLocalization(Σi:nr

k:k+N+1, Xk:k+N+1)

14 end

5.2 Methods

The SABER framework contains both learning (requiring data collection) and non-learning

components (traditional control schemes). The non-learning components consist of an SMPC

and a distributed Kalman filter, while the learning components consist of an RNN and

DQN agent. The RNN and DQN components are trained separately and offline before

being implemented into the overall system for online deployment (note, that the RNN is

supervised by the SMPC controller on each robot, while the DQN is not integrated with

any other component during training). Overall, the algorithm is structured as an SMPC
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problem, which moves a robot toward a target location as formulated in 5.2.1. By using state

uncertainties and obstacle locations, obstacles are represented as chance constraints within

the SMPC cost function (5.2.1.1, 5.2.1.2). If two or more robots are in communication range,

their state and uncertainty values are updated using a distributed Kalman filtering approach

as described in 5.2.2. To quickly propagate state uncertainties for future timesteps, we use

different RNN models based on the robot’s sensor configuration, as explained in 5.2.3. In

5.2.4, we formulate a DQN approach, providing the SMPC with target locations which help

generate trajectories that move the robots toward a global goal and prevent local minima

solutions. See Algorithm (3), Fig. 5.2, or the attached video1 for an overview of the methods,

and 8.3 for implementation details.

5.2.1 Stochastic Model Predictive Control Formulation

The goal of the cost function (equation (5.1)) is to find the optimal control value Uk that

minimizes the distance between the current and predicted states (Xk→N+1) with a reference

state or trajectory (X(ref)) while under equality and inequality constraints – where X i
k is

given by the results of localization for each robot i, and k is the current timestep (Q and R

are control matrices, and P is described further below):

min
U i
k:k+N-1

k+N−1∑
k

∥X i
k+1 −X

(ref)i
k+1 ∥

2
Qi + U i⊤

k RiU i
k

+∥X i
k+N+1 −X

(ref)i
k+N+1∥

2
P i

(5.1)

s.t. X i
k+1 = f i(Xk, Uk) = AiX i

k +BiU i
k +W i

k (5.2)

X i
k ∼ N (X̄ i

k,Σ
i
k),W

i
k ∼ N (0, σ2i) (5.3)

X i
limit ≥ |X i

k|, U i
limit ≥ |U i

k| (5.4)

1https://youtu.be/EKCCQtN5Z6A
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Obstacle Constraints:

Pr

(
NO∧
j=1

Oj

)
≥ 1−∆ (5.5)

Constraint (2) represents multiple shooting constraints, which ensure that the next state

is equivalent to a time-invariant linear discretized model, where A and B represent the

robot’s dynamic matrices. Uncertainty in state as well as the addition of a non-unit variance

random Gaussian noise (W ) is shown in (3). Note, that the propagation in state uncer-

tainty (Σi
k+1→N+1) is received from an RNN model (Section 5.2.3), and can be affected by

cooperative localization algorithms (Section 5.2.2) at timestep k, if multiple robots are in

communication range at timestep k.

Limits on state and controls variables are imposed by constraint (4). For robustness [109],

a terminal cost is included with a weighting matrix P which can be obtained by solving the

discrete-time Riccati equation (5.6):

Ai⊤P iAi − P i − Ai⊤P iBi(Bi⊤P iBi +Ri)−1Bi⊤P iAi+

Qi = 0
(5.6)

5.2.1.1 Chance Constraints for Obstacle Avoidance

Constraint (5) represents chance constraints that enable obstacle avoidance subject to un-

certainty in convex regions as done in [12]. This constraint can be rewritten as a disjunction

of linear constraints for obstacle Oj:

Oj ⇐⇒
∨

k∈T (Oj)

∧
i∈G(Oj)

a⊤i X̄k − bi ≥ ci (5.7)

where G (Oj) is the set of linear constraints (indexed by i) for each obstacle (indexed by

j), T (Oj) is the set of timesteps in the MPC prediction horizon (indexed by k), ai is the

vector normal to each line constraint and directed toward state X̄k, r is the radius/size of

the robot, and ci is given by:
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ci =
√

2a⊤i Σkai · erf−1(1− 2δj), δj ≤ 0.5 (5.8)

Important to consider is that the degree of ‘risk’ can be controlled by changing the values

of δj (related to ∆) for each obstacle Oj. Lower values lead to more evasive behavior (robot

moves further away from obstacles) while higher values lead to more risky behavior (robot

moves closer to obstacles).

If obstacles are assumed circular (centered at xoj , yoj), we can use the following equation,

where ai is equal to an identity vector, xk and yk is the center position of the robot, and

only a single cj value needs to be calculated per obstacle:

−
√(

xk − xoj
)2

+
(
yk − yoj

)2
+ (r + cj) ≤ 0 (5.9)

5.2.1.2 Mixed-Integer Nonlinear Programming

To more effectively consider the disjunctive convex program for polygon-shaped obstacles, as

introduced by (7), we can change these constraints into a mixed integer format (we assume

the line constraints are in the x-y plane, however, the same equations can be used for the

x-z, and y-z planes respectively):

Oj ⇐⇒
∨

k∈T (Oj)

∧
i∈G(Oj)

Ii,jdist(X̄k, ai,mi, bi) ≥ Ii,j(r + ci) (5.10)

xl = a∗ixk − yk + bi/(a
∗
i −mi) (5.11)

yl = mixk + bi (5.12)

dist(*) = |−mxk + yk − bi| /
√
m2

i + 1 (5.13)
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dist(*)


IF sign(yl − yk) = sign(ay)

∨
sign(xl − xk) = sign(ax), −dist(*)

ELSE dist(*)

(5.14)

Ii,j = {0, 1}∀i, j (5.15)

size(Ij)∑
i=1

Ii,j ≥ 1 ∀j (5.16)

where mi and bi are the slope and y-intercept of each line constraint i belonging to obstacle

Oj, a
∗
i is ay/ax, xk and yk are the x and y position retrieved from robot state X̄k, and the

coordinates of the point on the line constraint closest to X̄k is represented by xl and yl

(equations (11) and (12)). The dist(*) function approximates the distance between X̄k and

one of the linear constraints of an obstacle as shown in equation (13). Equation (14) returns a

positive distance if the robot is ‘outside’ the obstacle boundary, and a negative distance if the

robot is ‘inside’ the obstacle boundary (a negative distance would cause the line constraint

to fail). By definition of constraint (10), only one or more of the line constraints need to be

satisfied per obstacle Oj, which is ensured by using binary integer variables under constraints

(15) and (16) (e.g., for line constraint i belonging to Oj, if Ii,j = 1, the robot is outside this

obstacle). For simplicity, we assume we have a ‘perfect’ object detection system. If the robot

is close enough to an obstacle, the obstacle is automatically ‘seen’ and embedded into the

SMPC cost function.

5.2.2 Cooperative Multi-Agent Localization

While the propagation of uncertainty for each robot is calculated using an RNN (see 5.2.3),

updating the uncertainty after information is exchanged with another robot is done using a

distributed Kalman filtering approach [113]. Thus, when two or more robots are in commu-

nication range (as pre-specified by the user), their individual uncertainty estimates should
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be updated to correctly reflect the gain from additional sensor information.

Equations (17) - (25) describe how the pose for robot i is updated while in communication

range of another robot j. The same equations can be further extrapolated to consider

additional robots as explained in [113].

For ∀i, j and k → k +N + 1:

Propagation:

Σi
k+1,Σ

j
k+1 = RNN i(∗), RNN j(∗) (5.17)

X i
k+1, X

j
k+1 = f i(X i

k, U
i
k), f

j(Xj
k, U

j
k) (5.18)

Update:

X̄+i
k+1 = X̄ i

k+1 +Ki
k+1(Z

ij
k+1 − (X̄ i

k+1 − X̄
j
k+1)) (5.19)

Sij
k+1 = Σi

k+1 + Σj
k+1 +Rij

k+1 (5.20)

Zij
k+1 = X i

k+1 −X
j
k+1 (5.21)

Update A (first time robots meet):

Σ+ij
k+1 = Σi

k+1(S
ij
k+1)

−1Σj
k+1 (5.22)

Ki
k+1 = Σi

k+1(S
ij
k+1)

−1 (5.23)

Update B (all other times robots meet):

Σ+ij
k+1 = Σij

k+1 − [Σi
k+1 − Σij

k+1](S
ij
k+1)

−1Σj
k+1[Σ

ij
k+1 − Σj

k+1] (5.24)

Ki
k+1 = (Σi

k+1 − Σij
k+1)(S

ij
k+1)

−1 (5.25)

where Zij
k+1 is the relative pose measurement between robot i and robot j (Xk is received by

current localization, and Xk+1→k+N+1 can be retrieved by the SMPC solution), and Rij is

the relative measurement noise between robot i and robot j.
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5.2.3 Recurrent Neural Network for Uncertainty Propagation

Because our SMPC calculates the optimal control (Uk) based on a prediction horizon (Xk+1→k+N+1,

Uk→k+N), we must also provide as input the propagation of uncertainty (Σk+1→k+N+1) at each

timestep. As described in more detail in [120], an RNN can provide a computationally fast

prediction of future state uncertainties (as it only requires a small network) and can operate

in continuous space, making it ideal for online replanning in complex environments. This is

achieved as the RNN can model the behavior of a filter (e.g., particle filter or EKF) from

SLAM algorithms. However, in this study, we have multiple robots with different sensor

configurations, which requires training separate RNN models for each.

In this work, we estimate state uncertainty using two different SLAM algorithms, a

Rao-Blackwellized particle-filter SLAM (LiDAR camera configuration) and a Visual-Inertial

Odometry (VIO) SLAM (RGB camera configuration). In the particle-filter case, the follow-

ing equation is used for factorization:

p (x1:k,m | z1:k, u1:k−1) =

p (m | x1:k, z1:k) · p (x1:k | z1:k, u1:k−1)
(5.26)

where x1:k = x1, ..., xk is the robot’s trajectory, z1:k = z1, ..., zt are the given observations,

d1:k−1 = d1, ..., dk−1 are the odometry measurements, and p(x1:k,m | z1:k, d1:k−1) is the joint

posterior estimate about map m (see [134]). For training the RNN for the particle-filter

SLAM case, we have 362 input units for each timestep k. The first 2 units is the center

position of the robot (x and y), and the 360 other units represent the range distances from

LiDAR scans (e.g., for timestep k, we have d1:360k relative scan distances). The output layers,

which use a linear activation function, correspond to the robot’s 2×2 x-y covariance matrix

which is flattened into a 4×1 array or 4 output units. For the VIO SLAM configuration,

we used the same methods for training the RNN as described in [120]. See networks for an

overview of the network structure, and 8.3 for further implementation details.
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5.2.4 Deep Q-Learning (DQN) for Global Planning

5.2.4.1 DQN formulation

To provide local target positions (X i:nr
ref ) that direct the robots toward a global goal (X i:nr

goal),

we implement a DQN agent and use the Bellman equation:

Q(sk, ak) = r + γmax
ak+1

Q (sk+1, ak+1) (5.27)

where the state is represented by sk ∈ R(Nj×nr)+nr , action by ak ∈ R9nr
, learning rate by γ,

nr is the number of robots, and reward function by r (where Nj is the number grid spaces

required to represent each obstacle; described further below). The idea of DQN is to use the

Bellman equation (5.27) and a function approximator (with neural networks) to reduce the

loss function (we use the Adam optimizer) [97].

Ultimately, the goal of the DQN-agent is to generate target positions at each timestep

k for multiple robots and to move them towards a global goal position. To accomplish

this and generalize our methods to any map (or changing the location of obstacles after

each episode), we use the relative distances between the robot and surrounding obstacles

and the relative distance between the robot’s position and the global goal as our states:

sk = (di:nr
j , di:nr

j+1, d
i:nr
j+2, ...d

i:nr
NO
, di:nr

goal), where d
i:nr
j is the relative distance between the robot

and obstacles and can be described by ∥X i:nr
k − Oi:nr

j ∥, and d
i:nr
goal by ∥X

i:nr
k −X i:nr

goal∥ (Xk is

assumed to be the x and y position of the robot). Our DQN agent is trained on a 2D-grid

map, where the robots and obstacles are represented as squares (1m2) within the grid. Thus,

the actions permitted by the robot is an 8-directional x-y movement (or no movement) at

each timestep. The reward function is simply formulated by providing a positive reward

(+1) if the robot gets to the goal and a negative reward (−1) if the robot hits an obstacle,

which results in termination of the episode (we allow the UAV to ‘fly’ over some obstacles

by modifying its reward function to not receive a penalty for hitting that obstacle). To test

different behaviors, we also added a reward (+0.1) at each timestep when both robots are

within a 2 meter distance (see (D) in Fig. 5.5).
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We also assume the dimensions of each obstacle are known a priori (to estimate this

without this assumption may require an object detection pipeline). Thus, by knowing the

height of each obstacle, a UAV can use this value in its chance constraint to fly over obstacles.

Finally, mapping our states to our actions is done through a linear neural network. For an

overview of the network structure, and the training/testing process, see Fig. 5.5.

5.3 Experimental Validation

5.3.1 Implementation details

SABER is demonstrated on a UGV (Turtlebot3) equipped with a 360 degree LiDAR camera,

and a UAV (Quadrotor) equipped with a RGB camera in a Gazebo simulation running in

real-time with additive noise. The dynamic equation of motion for the UGV assumes states

composed of center of mass position and heading angle (X = [x, y, θ]), actions composed

of linear and angular velocity (U = [v, ω]) and the following matrices for the discretized

equation:

A = I ∈ R3×3, B =


cos(θ)δt 0

sin(θ)δt 0

0 δt


 v

w


The UAV assumes similar dynamics as in [18], where the states are center of mass position,

linear velocity (x, y, and z components), angle, and angular velocity (we consider pitch and

roll but keep yaw fixed) or X = [x, vx, θ1, ω1, y, vy, θ2, ω2, z, vz], and actions composed of

thrust U ∈ R3×1. The A and B matrices and their parameters are fully described in [18],

where A ∈ R10×10 and B ∈ R10×3.

To solve the cost function (5.1), we use the mixed-integer nonlinear programming (MINLP)

solver ‘bonmin’ [16], as we need to consider both integer and continuous variables. Con-

straints and problem formulation were setup using CasADi [4] running on a laptop with an
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Intel Core i7-8850H CPU, and NVIDIA Quadro P3200 GPU.

To collect data for training our RNN model for the UGV, we used the GMapping package

[53] to create a map of the environment, and then implemented the AMCL package [134] to

track the robot’s pose and receive the uncertainty covariances using this map with particle-

filter SLAM (uncertainty outputs from the filter are considered as the ‘ground truth’). In

the UAV case, we used the XIVO SLAM package [44] to make localization and covariance

estimations (XIVO uses an Extended-Kalman Filter). The Adamax optimizer was used for

training and the Mean Squared Error (MSE) was implemented as the loss function for both

RNN models (covariance matrices need to be converted to be positive semi-definite during

usage, see [120]). For training (for both models), we created 4 different maps with obstacles

randomly distributed, where robots traverse about these maps via the SMPC. Note, that by

definition of a particle-filter and EKF, the former assumes non-Gaussian noise while latter

assumes Gaussian noise.

5.3.2 Results

5.3.2.1 Analysis of learning components and their significance

The training loss for the RNN networks are shown in Fig. 5.4. The RNN networks for both

SLAM algorithms were trained for 500 epochs (validation loss was observed to be close to the

training loss), and shows a strong correlation between truth (output of SLAM in training)

and predicted covariance. We also demonstrate that our RNN can model the behavior of

covariance outputs generated by different sensor configurations (i.e., SLAM algorithms),

as seen in (A) and (B) of Fig. 5.7 (e.g., we observed an increase in uncertainty for VIO

SLAM when too close to obstacles, while seeing the opposite behavior for a particle-filter

SLAM). Important to note, is that this result indicates that the RNN can model both

non-Gaussian (particle-filter) and Gaussian (EKF) noise. By modeling the propagation of

uncertainty of different measuring systems and integrating them into the SMPC prediction
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horizon through chance constraints, we ensure control values that avoid obstacle collision

(without over avoidance) for each individual robot.

In (B) of Fig. 5.5, we show that during training of our DQN, the rewards would increase

over a majority of the 35,000 episodes, reaching a steady-state at approximately 27,000

(except for the 5-robot team). In Table 5.3.2.1, we also compared our DQN to other 2D

baseline algorithms (we chose resolution settings for RRT, RRT-star, and A-star so that their

path lengths were similar to the DQN, then evaluated their computation time). The results

indicate that on average, the DQN had the lowest computation time and was comparable to

A-star in terms of its path length to the goal (considered optimal for our map resolution).

Unlike the baseline algorithms, our DQN also has the additional functionality of learning

multi-agent semantic behavior–it was successful at moving the robots simultaneously to their

goal points as shown in (C), and, as expected, stayed closer to each other when rewarding

them based on close proximity as shown in (D) of Fig. 5.5. Although it would be possible to

modify the baseline planners to consider multi-agent planning, the learning-based approach

considers potential semantics between agents that would be difficult to quantify and define

beforehand within a cost function.

High-level planner analysis (100 trials on map (D) of Fig. 5.6)

Planner
Path length

(m)
std dev (m)

Solve time

(s)
std dev (s)

RRT 10.83 ±1.28 0.120 ±0.091

RRT-star 10.40 ±1.20 0.084 ±0.073

A-star 9.66 ±0.00 0.154 ±0.002

DQN 9.68 ±0.00 0.051 ±0.001
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Average Computation time of SABER components (10 minutes of data)

Component SMPC RNN VIO SLAM PF SLAM SABER

Solve time

(s)
0.0559 0.0212 0.030 0.073 0.193

std dev (s) ±0.0187 ±0.0077 ±0.003 ±0.005 ±0.110
The limitation of our DQN is that it’s currently most capable in planning in 2D rather

than 3D space, which helps lower training time and increase convergence (more complex

DQN formulations may be necessary if the problem is either scaled to 3D, assumes a map

bigger than 10×10m, or uses more than 3 robots, see (B) of Fig. 5.5). However, since we use

an SMPC to avoid obstacles in 3D space using chance constraints, a 2D planner is sufficient

for our application.

5.3.2.2 Validation of the SABER algorithm

The complete planner is exemplified in Fig. 5.6 on a UGV-UAV team. We show that the

SMPC of the UGV and UAV uses the state uncertainties estimated by an RNN to avoid

colliding in obstacles in dense maps (see (A), and (B)). A special case is also shown in (C),

where the SMPC of the UGV (without the DQN) reaches a local minima solution and is

stuck behind the obstacle. However, when using the DQN’s proposed path, the UGV can

successfully reach its global goal. Note, that the SMPC and not the DQN considers both the

dynamics of the robots and the uncertainty provided by their RNN models, thus, the actual

path (shown in orange/purple) will differ slightly from the proposed DQN path (marked

by triangles). We also evaluate the average computation time of the SABER algorithm

(and its individual components) in Table 5.3.2.1, showing a computation time of ≃ 0.19

seconds/timestep. Lastly, in Fig. 5.8, we verify that SABER performs best compared to

several baselines (using distance to goal vs time as our metric on map (D) of Fig. 5.6).

The figure shows that MPC alone (no uncertainty is considered) causes an obstacle collision

for the UGV and UAV (this likely occurred as the simulation contains noise, and the MPC
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is unaware of this noise during optimization). Both robots are able to get to their goals

using a näıve stochastic MPC (uncertainty is considered by artificially inflating all obstacle

boundaries), but due to over avoidance take longer to reach their goals. By adding our

RNN to the SMPC allows both robots to reach their goals more quickly (uncertainty is now

more accurately propagated within the SMPC prediction horizon). However, we observed

that without a global planner, both robots run into local minima issues (i.e., robots would

sometimes get stuck behind an obstacle for some time before reaching their goals). With

a global planner (e.g., DQN, A-star), the robots reach their goals in the quickest manner

(avoiding local minima issues). Although A-star and DQN provide near-optimal paths, the

reason the DQN shows slightly better improvements (including better computation time)

over A-star is because the DQN also accounts for multi-agent behavior, where robots were

trained to stay close to each other when possible before reaching their respective goals

(staying in close proximity decreases uncertainty via the Kalman filter).

5.4 Conclusion

In this work, we demonstrated that the SABER algorithm (which combines several fields of

robotics including controls, vision, and machine learning into a single framework) is com-

putationally feasible (≃ 0.19 seconds/timestep) and plans paths for heterogeneous robots

to reach a global goal while satisfying diverse dynamics, constraints, and consideration of

uncertainty. In future work, we plan to relax the assumption of a perfect object detection

system and will focus on expanding our DQN to consider more complex behavior and tasks.
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Figure 5.2: SABER Algorithm. This figure demonstrates the overall SABER planning algorithm

in the testing phase, which can plan paths for one or more robots simultaneously. At timestep k, the

environment provides information to robots that either carry a LiDAR or RGB camera and IMU; for

the LiDAR configuration, a particle-filter SLAM is implemented, while for the RGB configuration,

Visual-Inertial Odometry SLAM (VIO SLAM) is implemented. The sensors provide either scans

or distance to feature information to a recurrent neural network model (which serve as inputs),

and outputs the propagation of state uncertainty for future timesteps. If two or more robots are

within communication range, a distributed Kalman filter updates the current and future states and

their uncertainties to a more accurate estimate. These updated states and uncertainties are used

to update the chance constraints for obstacle avoidance. These constraints are then considered by

a stochastic MPC controller, which follows a given target position, provided by a deep Q-learning

(DQN) agent that aims to move the robot towards a global goal. DQN uses the relative distances

between the robots and the respective obstacles as its states, provides a target position for all robots

as its actions, and is trained on several different maps with obstacles randomly distributed in each.

Note, that the SMPC, SLAM, and RNNs components run on each robot individually, however, the

DQN is run on a centralized base (which may be on the robot itself).
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Figure 5.3: Network structures. We show the RNN structure used to model an EKF

from a VIO SLAM algorithm in (A), or a particle-filter SLAM algorithm in (B) (5.2.3). The

inputs are shown in orange, and correspond to either features/robot position (using VIO

SLAM) or LiDAR scans/robot position (using particle-filter SLAM). The outputs are shown

in red, and correspond to the x-y covariance matrix (which represents uncertainty in x-y

position). The layer type is color coded below, where green represents a simple RNN layer,

and purple a dense layer.
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Figure 5.4: Training loss. Here we show the training loss for the RNNs, which were

trained on uncertainty covariance outputs (in position) of a Visual-Inertial SLAM in (A)

and a particle-filter SLAM in (B). The training was done using 500 epochs and on 4 dif-

ferent maps. Note, that the noise observed in (B) may be due to the particle-filter estima-

tions/simplifications done in [53].
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Figure 5.5: DQN Training and Testing Procedure. In (A), we show the neural network

structure used in our DQN algorithm (5.2.4). The network maps the inputs (i.e., states or

relative distances between robots and obstacles/goals) to the outputs (i.e., actions or next

target positions for the robots). The states and actions are connected by a linear neural

network model (blue). In (B) we visually show the training process of the DQN for a 2

to 5 robot team, where all robots were trained to go to the goal location while avoiding

obstacles (obstacles are randomized for each episode). The average rewards (calculated from

25 episodes at a time and divided by number of robots) are shown across the 35,000 episodes

of training (training time was 5 hours). In (C ) we show an example of how the environment

can be transcribed into a 2D plot and apply the DQN to traverse multiple robots toward

their goals. We also allow the UAV to fly over the obstacles (and assume we know the height

of the obstacle a priori) while the UGV must avoid it. In (D) we show another example of

our DQN, but this time the 2-robot UAV and UGV team have separate goal locations, and

we add a reward incentive when both robots are near each other at each timestep.
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Figure 5.6: SABER Algorithm Results. This figure demonstrates the overall SABER

planning algorithm. In (A) and (B) we first show the capability of the SMPC-RNN to

navigate the UGV and UAV in a densely populated space. In (C ), we show that the SMPC-

RNN of the UGV cannot get to the goal state, because of the occurrence of a local minima.

However, with a DQN (which provides a global path illustrated by triangles), the UGV

(orange) can correctly maneuver around the obstacle. The UAV (purple) can simply use

it’s z-axis to fly above the obstacle. A more complex example is shown in (D), where both

robots are directed towards different goal locations simultaneously.
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CHAPTER 6

Auto-Calibrating Planning and Control Parameters

This letter proposes to use an alternative method, see Fig. 7.1, to the above approaches for

achieving robust locomotion. In [93, 94], a Kalman filter technique was used to estimate

control parameters with a training objective that evaluates the performance of a closed-loop

system online using a recursive implementation. This approach was successfully used to

automatically tune a variety of control architectures such as the weights of a neural network,

cost function weights of an LQR, or gains of a PID controller to achieve stable motion of

an autonomous vehicle. Although auto-tuning methods have been applied before to tune

various controller gains, typically using some form of Bayesian optimization (BO) [91, 99],

the applied method differs as we do not require a trial-and-error implementation, do not need

a surrogate function, and can handle disturbances due to the recursive nature of the applied

method [93, 94]. One of the issues with BO is that their performance decreases in higher

dimensions [22]. In [105], this problem was overcome by including domain knowledge into

BO for tuning walking controllers of humanoid robots. In [52], the parameters of running and

jumping motions are tuned through a policy search of generic sets of motion primitives and

their cost functions. Both [105, 52] require a trial-and-error implementation which requires

extensive training using simulators before application to hardware. Our method however, is

able to calibrate control parameters on a single run without relying on trial-and-error.

Additionally, while other algorithms have been proposed to tune controller gains [104, 30],

these algorithms have never been applied (or evaluated) to directly tune reference trajectories

without having to include a predefined set of reference trajectories [55].
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Here, we employ the method of auto-tuning initially proposed in [93, 94] on a legged

system using an Unscented Kalman Filter (UKF) implementation and apply it not only to

controller gains, but directly on physically-meaningful parameters such as ‘step clearance’,

‘forward progress’, ‘energy efficiency’, and ‘dynamic and kinematic gait stability’, see Fig. 6.1.

This is achieved by online tuning the robot’s future reference trajectories which uses a

training objective to satisfy user-defined specifications or requirements. We demonstrate the

method on a quadruped robot, the Unitree A1, in a high-fidelity physics simulation provided

by the robot manufacturer. We demonstrate walking on both even and uneven terrain,

and present several test-cases such as tuning reference trajectories that satisfy the physical

parameters mentioned previously, and controller weights of a swing and stance controller.

The presented method for automating the controller calibration and the trajectory planner

can save development/deployment time as manually tuning control parameters can be tedious

and time consuming, facilitates in abstracting the tuning problem into physically meaningful

parameters, and enables greater autonomy of robotic systems.

6.1 Preliminaries

6.1.1 Notation

Given two integer indices n,m with m<n and xi∈Rnx , we define xm|n∈Rnx(n−m+1) as the

vectorized sequence that comprises xi from i=m through i=n,

xm|n :=


xm

...

xn

 .
We define ∥x∥Σ :=xTΣx and N (µ,Σ) as the Gaussian distribution with mean vector µ and

covariance matrix Σ. The notation x ∼ N (µ,Σ) means x sampled from N (µ,Σ). Further,

diag(λ)∈Rnλ×nλ is a matrix, whose diagonal entries are the entries of a vector λ∈Rnλ .
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Figure 6.1: Auto-Tuning reference trajectories in Gazebo. The robot follows a ref-

erence trajectory that is being tuned by the auto-tuning formulation. The figure shows the

robot following a desired velocity (forward progress), a desired foot height (step clearance),

minimizing foot slippage (ground reaction forces), and minimizing energy consumption.

6.1.2 Unscented Kalman Filter for Control Parameter Tuning

This letter applies the auto-tuning method proposed in [93, 94] to calibrate control param-

eters of the Model Predictive Control (MPC) stance controller, the PD swing controller, as

well as the reference trajectory. The auto-tuning method is based on an UKF, which “esti-

mates” the optimal control parameters measured with respect to a training objective. The

UKF uses deterministic samples (called sigma points) around the mean, which are propa-

gated and used to update the mean and covariance estimates [133]. Further, it uses a model

of the system dynamics in order to obtain evaluations of the sigma points, which are then

used to update the control parameters.

The method is model-based, i.e., it uses a model of a dynamical system (denoted by

92



dyn(xk,uk)),

xk+1 = dyn(xk,uk) +wk (6.1)

with the state xk ∈ Rn, the control input uk ∈ Rm, and process noise or model mismatch

wk at time k. The method calibrates control parameters, θ ∈ RL, of a generic controller,

uk = κθ(xk) to minimize the training objective

∥yk − h(θk)∥C−1
y

(6.2)

with a positive definite Cy, desired nominal values yk, and specification function h(θ), where

h(θ) := r(xk−N ,xk−N+1, ...,xk,uk−N , ...,uk−1),

i.e., yk = h(θk) when the dynamical system satisfies all the specifications in the training

objective, exactly.

For the legged robot, the control parameters are tuned during operation (episodically,

from time step k−N to k) according to

θk = θk−N +∆θk, (6.3)

where the update ∆θk is computed based on sensor measurements, xk, uk, and the training

objective in (6.2).

The idea of the auto-tuning method is to treat the control parameter adaptation problem

as an optimal estimation problem with prior distributions ∆θprior
k ∼ N (0,Cθ) and yk ∼

N (h(θk),Cy). Thus, the parameter tuning law in (6.3) results from the corresponding

posterior distribution,

∆θk = Kk

(
yk − ĥk

)
(6.4a)
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with the Kalman gain, Kk, computed as

θ̂k =
∑2L

j=0 v
a
jθ

sp,j
k (6.4b)

ĥk =
∑2L

j=0 v
a
i h

sp,j
k (6.4c)

hsp,j
k = h(θsp,j

k ) (6.4d)

Sk = Cv +
∑2L

j=0 v
c
j(h

sp,j
k − ĥk)(h

sp,j
k − ĥk)

⊤ (6.4e)

Zk =
∑2L

j=0 v
c
j(θ

sp,j
k − θ̂k)(h

sp,j
k − ĥk)

⊤ (6.4f)

Kk = ZkS
−1
k (6.4g)

and the posterior covariance, which is used to generate the sigma points, computed as

Pk|k−N = Cθ +
∑2L

j=0 v
c
i (θ

sp,j
k − θ̂k)(θ

sp,j
k − θ̂k)

⊤ (6.4h)

Pk|k = Pk|k−N −KkSkK
⊤
k , (6.4i)

where θsp,j
k is the jth sigma point, vcj and v

a
j denote weights associated with the sigma points,

Zk is the cross-covariance matrix, Sk is the innovation covariance, and Pk|k is the estimate

covariance. Hence, the UKF implementation uses 2L+1sigma points. The reader is referred

to [93, 94] for more details.

For each sigma point evaluation (6.4d), the system dynamics (6.1) is simulated, where

the model mismatch, wk, is calculated using measured data, xk−N through xk.

We choose the weights va0 =v
c
0=0, vai =v

c
i =(1−va0)/(2L) and the sigma points as θsp,0

k =θk,

θsp,j
k =θk+

√
L/(1− va0)Γj for j=1, ..., L, and θsp,j

k =θk−
√
L/(1− va0)Γj for j=L+1, ..., 2L

with Γj being the jth column of Γ and Pk−N |k−N = ΓΓ⊤, i.e., Γ is calculated using the

Cholesky decomposition.
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6.2 Robot Control Architecture

6.2.1 Swing Controller

The swing controller in this letter is similar to [34], which is used to compute the torque for

each foot i for all three joints of the robot as (time step k omitted for simplicity)

τ i = J⊤
i

[
Kp

(
pb
i, ref − pb

i

)
+Kd

(
vb
i, ref − vb

i

)]
+JiΛi

(
ab
i, ref − J̇⊤

i q̇i

)
+Viq̇i +Gi

(6.5)

where τ i ∈ R3 is the joint torque, qi ∈ R3 and q̇i ∈ R3 are the current joint position

and velocity of foot i, Ji ∈ R3×3 is the foot Jacobian, Kp and Kd are the proportional

and derivative (PD) gain matrices (3×3 diagonal positive semi-definite), pb
i, ref ∈ R3 and

pb
i ∈ R3 are the reference and current footstep positions in the body frame, vb

i, ref ∈ R3 and

vb
i ∈ R3 are the reference and current footstep velocities in the body frame, ab

i, ref ∈ R3

is the reference footstep acceleration in the body frame, Vi ∈ R3 is the torque due to the

coriolis and centrifugal forces, Gi ∈ R3 is the torque due to gravity, and Λi ∈ R3×3 is the

operational mass matrix.

6.2.2 Stance Controller

The stance MPC calculates ground reaction forces fi for all feet i and is formulated as in [34],

min
x,f

NMPC−1∑
k=0

∥xk+1 − xk+1,ref∥Q + ∥fk∥R (6.6a)

subject to

fk,min ≤ fk,z ≤ fk,max

−µfk,z ≤ ±fk,x ≤ µfk,z

−µfk,z ≤ ±fk,y ≤ µfk,z

xk+1 = Axk +Bfk

Dkfk = 0

(6.6b)
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with the state

xk =


Θk

rk

ωk

vk

 , (6.6c)

where Θ is the robot’s orientation, r is the CoM base position, ω is the angular velocity,

v is the linear velocity, µ is the friction coefficient, A and B are the dynamic matrices for

state propagation, Dk is a force selection matrix (selecting forces that are not in contact

to be equal to zero), and Q ∈ R12×12 and R ∈ R12×12 are diagonal positive semi-definite

cost matrices, see [34] for further details. The joint torques, which are the input to the

torque-controlled motors, are obtained using the forces fk resulting from (6.6) as

τ i,k = J⊤
i,kR

w,⊤
b,i,k (−fi,k) , (6.7)

where fi,k ∈ R3 is the force vector associated with leg i as subset of fk, and Rw
b,i,k is the

rotation matrix from world to body frame of leg i at time step k.

6.2.3 Problem Definition and Contributions

In this letter, we implement model-based controllers and auto-tune their control parameters.

Model-based control offers the advantages that the physics of a dynamical system are utilized

to make informed decisions, less data are needed to improve the robot’s performance, safety

guarantees may be provided, and that the computational structure remains fixed. This

control philosophy stands in contrast to black-box controllers and reduces the amount of

required tuning to a few selected control parameters.

Problem A

Auto-tune the gains of the swing controller in (6.5), i.e., Kp, Kd. Section 6.3.1 addresses this

problem by adjusting the controller calibration method in [93, 94] to a swing controller of a
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legged robot. This is achieved by defining a training objective suited for a swing controller

as well as deriving a motion model suited to model the swing motion of a legged robot.

Problem B

Auto-tune the cost function weights of the stance controller in (6.6), i.e., Q, R. Section 6.3.2

addresses this problem by adjusting the controller calibration method in [93, 94] to a stance

controller of a legged robot. This is achieved by defining a training objective suited for a

stance controller as well as deriving a motion model suited to model the stance phase of a

legged robot.

Problem C

Develop concept for online computation of reference trajectories. Section 6.3.3 addresses

this problem by continuously generating reference trajectories for continuous operation of a

legged robot.

Problem D

Develop concept for adaptively refining reference trajectory to the current task and the

current environment. Section 6.3.4 addresses this problem by adjusting the method in [93,

94] to calibrate parameters of reference trajectories. This is achieved by parameterizing the

reference trajectories, defining a suitable training objective for the operation of the legged

robot, and deriving a motion model for the robot’s movements.

Finally, Section 9.4 presents the application of the proposed algorithms to a third-party

high-fidelity simulator of the Unitree A1 in Gazebo. The high-fidelity simulator is provided

by Unitree [137] and it includes contact dynamics, multi-body dynamics, sensor noise, etc.
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6.3 Auto-Tuning Controller and Reference Trajectories of Legged

Robot

The overall implementation of the auto-tuning method is as follows: (1) we generate a

feasible motion plan for the first few footsteps using TO; (2) we use this initialization as

part of the reference-generator function to estimate new trajectories without optimization;

(3) the auto-tuning formulation is employed for both improved trajectory tracking (i.e.,

auto-tuning the swing or stance controller) and modifying the trajectories directly in order

to minimize energy consumption, produce forces that minimize slippage, or satisfy a desired

step clearance (i.e., step height) or forward progress (i.e., base velocity), see Fig. 6.1

6.3.1 Training Objectives for Auto-Tuning Swing Controller

For auto-tuning the swing controller in (6.5), we parametrize the gains, i.e., Kp = Kp(θ),

Kd = Kd(θ), and we use the dynamical model using the notation in (6.1) for leg i,

xi,k =

qi,k

q̇i,k

 (6.8a)

dyn(xi,k, τ i,k) =

qi,k + dtq̇i,k + dt2q̈i,k

q̇i,k + dtq̈i,k

 (6.8b)

q̈i = Mi(qi)
−1(τ i −Vi(qi, q̇i)−Gi(qi)), (6.8c)

where Mi ∈ R3×3 is the mass matrix in the joint space, and q̈i ∈ R3×3 is the current joint

acceleration of foot i. The training objective (6.2) is defined to improve reference trajectory

tracking as

yk =

pref
i,k−N |k

vref
i,k−N |k

 , h(θ) =

pi,k−N |k

vi,k−N |k

 , (6.8d)

where pref
i,k−N |k and vref

i,k−N |k are positions and velocities of foot i from time step k−N through

k as in (6.10) and (6.11).
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The model mismatchwk−N |k ∈ R6 for the swing controller is computed using (6.8) and the

measured states for the past swing execution. The UKF-based control parameter adaptation

method uses (6.5) and (6.8) to “simulate” an execution of a swing using the gains defined by

the sigma points, Kp(θ
sp,j) and Kd(θ

sp,j), considering the model mismatch, wk−N |k. Note

that pb
i,k and vb

i,k in (6.5) can be calculated using the robot forward kinematics, which uses

qi,k as input, and the footstep Jacobian by vb
i,k = Ji(qi,k)q̇i,k.

6.3.2 Training Objectives for Auto-Tuning Stance Controller

For auto-tuning the stance controller cost function weights in (6.6), i.e., Q = Q(θ), R =

R(θ), we use the dynamical model (6.1) as

dyn(xk, fk) =


Θk +Rw

b ωk

rk + dtvk

ωk + dt(
∑4

i=1 Î
−1
[
pb
i,k

]
× f ik)

vk + dt(
∑4

i=1

f ik
m
+ g)

 (6.9a)

with the state xk defined as in (6.6), where Î represents the inertia tensor in the world

frame (× indicates a skew matrix) [34], Rw
b is the rotation matrix from world to body frame,

and g is the gravity vector. The training objective in (6.2) is defined to improve reference

trajectory tracking as

yk =
[
xref
k−N |k

]
, h(θ) =

[
xk−N |k

]
(6.9b)

Here, too, the UKF-based control parameter adaptation method uses (6.6) and (6.9) to

“simulate” the MPC using the cost function weights defined by the sigma points Q(θsp,j),

considering the model mismatch wk−N |k.

6.3.3 Generating Reference Trajectories

To ensure kinematic and dynamically feasible motion for the first few footsteps, we apply

the methods proposed in [143], which uses trajectory optimization.
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6.3.3.1 Reference Trajectory for Feet

In order to continuously generate new reference trajectories, we use

pref
i,k = pref

i,k−N + vref
i,k−N∆T (6.10a)

pref
i,k =


px,refi,k

py,refi,k

pz,refi,k

 , vref
i,k =


vx,refi,k

vy,refi,k

vz,refi,k

 (6.10b)

where pref
i,k−N denotes the position of foot i on the ground at time step k−N , pref

i,k is the

next position of foot i on the ground at time step k, which are determined by a desired CoM

body velocity, vref
i,k , and the phase time ∆T , i.e., the time that the foot is in stance or swing

phase. Throughout, we assume vz,refi,k =0.

Then, we use s(t) = 2πN−k+t
N

with t=k−N , k−N+1, ..., k to create cycloidal footstep

reference trajectories in between the ground positions in (6.10) with

px,refi,t = px,refi,k−N +
(
px,refi,k − px,refi,k−N

) s(t)− sin(s(t))

2π
(6.11a)

py,refi,t = py,refi,k−N +
(
py,refi,k − py,refi,k−N

) s(t)− sin(s(t))

2π
(6.11b)

and

pz,refi,t =



pz,refi,k−N + pzmax
1−cos(s(t))

2

if s(t) ≤ π

pz,refi,k +
(
pzmax + pz,refi,k−N − p

z,ref
i,k

)
1−cos(s(t))

2

if s(t) > π

(6.11c)

where pzmax is the step clearance/apex height of the swing trajectory, i.e., the maximum pz

component of the footstep in swing. If the foot is in stance, pzmax=0.
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6.3.3.2 Reference Trajectory for Center of Mass

The reference trajectory of the body’s CoM is specified by rrefk

Θref
k

 =

 rrefk−N

Θref
k−N

+

vref
k−N

ωref
k−N

∆T (6.12)

with the current body position, rrefk−N ∈ R3, and orientation, Θref
k−N ∈ R3, and rrefk ,Θref

k are

composed of the next desired body position, and vref
k−N ,ω

ref
k−N is the desired velocity (linear

and angular) over the phase duration ∆T . Here, we use s̄(t) = N−k+t
N

with t=k−N ,k−N+1,

..., k to linearly interpolate between current and desired states with rreft

Θref
t

 = s̄(t)

 rrefk

Θref
k

+ (1− s̄(t))

 rrefk−N

Θref
k−N

 .
6.3.4 Training Objectives for Auto-Tuning Reference Trajectory

For auto-tuning the reference trajectory, we use the same states and dynamic model as for

the swing controller in (6.8). The main difference is in the implementation of the training

objective and control parameters, i.e., we do not auto-tune the Kp and Kd gain matrices.

Instead, we tune two parameters often desirable for legged robots, which are to achieve a

desired step clearance in order to step over an obstacle and reach a desired velocity. Hence

for leg i, we parametrize the step clearance and the desired forward velocity,

pzmax = θz, vx,refi,k = θv, θ =

θz
θv


and the training objective for adapting such parameters is

yk =


pzdes

vxdes

0

0

 , h(θ) =


hz(θ)

hv(θ)

hf (θ)

he(θ)

 , (6.13)
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where hz(θ) is the achieved step clearance, hv(θ) is the achieved velocity, hf (θ) computes

lateral forces of the robot and is used to reduce slippage, and he(θ) is the energy consumption.

Note that pzdes measures the achieved step clearance in closed loop, whereas pzmax is the control

parameter that defines the reference trajectory. Thus, pzdes and p
z
max may be different, e.g.,

due to a model mismatch of the physical robot and the dynamical system model.

6.3.4.1 Step clearance optimization hz(θ)

To propagate the states for optimizing the step clearance, we use the same method as in

Section 6.3.1. However, here we “simulate” the various reference trajectories defined using

the sigma points for the swing leg, where we do not change the controller gains of Kp,

Kd. Hence, we modify the reference trajectory of the footstep using the reference generator

function described in Section 6.3.3. Thus, hz(θ) = max (pzk−N |k), i.e., the maximum value of

the z component of the footstep trajectory (after propagation with wk−N |k).

6.3.4.2 Forward progress optimization hv(θ)

For forward progress, we propagate the CoM position using the desired velocity, vxdes, with (6.12),

where the initial state is the actual state.

6.3.4.3 Slippage optimization hf (θ)

Representing slippage of the foot first requires the propagation of ground reaction forces

along the trajectory, which can be achieved by rearranging the MPC state-space equations

in (6.6),

fk = B+(xk+1 −Axk), (6.14)

where B+ is the Moore-Penrose inverse and xk is propagated using the sigma points. We

chose (6.14) due to its similarity to (6.6), but other slippage formulations are possible, too,
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e.g., as in [13]. If the foot is not in contact, fk = 0. Then, the foot slippage is computed

using similar ideas to friction cone constraints (see, e.g., [143]) as

hf (θ) =
4∑

i=1

√
fx
i,avg + f y

i,avg

f z
i,avg

,
fx
i,avg

f y
i,avg

f z
i,avg

 =
1

N

k∑
t=k−N


|fx

i,t|

|f y
i,t|

|f z
i,t|

 .

6.3.4.4 Energy consumption optimization he(θ)

The energy consumption is included as it may be desirable to find the best balance between

maximizing step clearance and forward progress, while simultaneously minimizing the energy

consumption required. The energy consumption can be computed using the joint velocity q̇,

torque τ t, and phase time ∆T , as

he(θ) =
k∑

t=k−N

|q̇t|⊤|τ t|∆T.

To ensure we do not violate kinematic or dynamic constraints as we simulate new trajec-

tories using θ, we can use
∣∣Rb

w [pi,k−rk]−pb
i

∣∣<b, where Rb
w is the rotation matrix from base

to world frame, and pb
i is the nominal footstep position centered in the kinematic bounding

box specified by b ∈ R3. If the bounding box constraint does not hold, we can impose a cost

for that particular simulation guiding the auto-tuner away from such control parameters.

6.4 Results using Physics-Based Simulator

We implemented the auto-tuning algorithms for the Unitree A1 robot [137] within a realistic

simulation using Gazebo with the bullet physics engine. The Unitree A1 simulator is made

available by the robot manufacturer. The simulation considers not only localization noise but

also friction within each torque-controlled motor, where torque commands are sent using the
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Figure 6.2: Auto-Tuning results. The auto-tuning method successfully calibrated control

parameters that generate reference trajectories (A-D), and controller gains (E-F). To make

this evaluation, we used the cost as calculated using (6.2). The cost decreases (A and D)

as the control parameters (e.g., forward progress and step clearance) get to their desired

reference values. In E-F, we show the difference between the cost when not auto-tuning

with the cost when auto-tuning.

robotic operating system (ROS). Further, the Gazebo simulation environment is executed in

a parallel thread, and hence the controller and the auto-tuning algorithm need to be executed

during run-time of the simulation. Hence, being able to execute the applied algorithms using

this high-fidelity simulator indicates their applicability to the physical robot. The A1 Unitree

is a 12.7 kg quadruped robot with 3 degrees of freedom per leg. For obtaining an initial

trajectory as in [143], we use the nonlinear programming solver IPOPT [140]. Optimization of

the MPC stance controller was done using the quadratic programming solver qpOASES [45].

Constraints and overall problem formulation were setup using the CasADi [4] software. The

phase time was chosen as 0.2 s, which is also the update frequency of the parameters. The

swing and stance controller are executed at sampling frequency at dt = 0.01 s, and NMPC = 5

in (6.6).
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6.4.1 Auto-Tuning for Optimizing Step Clearance and Forward Progress

The first test case is to auto-tune reference trajectories aiming at providing a desired forward

progress and step clearance. Here, we consider only the first and second element in (6.13),

where we use pzdes = 0.15 m and vxdes = 0.45 m/s. The results are shown in Fig. 6.2-A), B),

C). In A), we show the cost defined as ||yk − h(θ)||C−1
y

= ∥
[
pzdes−hz(θ) vxdes−hv(θ)

]
∥C−1

y

as in (6.2). Thus, as the cost decreases, the closer the actual step clearance and forward

progress get to the desired value. We decompose the results in A) and show how the actual

velocity reaches the desired velocity in B), and how the actual step clearance reaches the

desired step clearance in C).

6.4.2 Auto-Tuning for Optimizing Step Clearance, Forward Progress, Slippage,

and Energy Consumption

In D), we show the cost when setting a desired step clearance and forward progress with

pzdes=0.1 m and vxdes=0.4 m/s, while minimizing energy consumption and foot slippage as

in (6.13). The cost decreases quickly within a few time steps, which indicates that the auto-

tuning method was able to find a good balance between reaching its desired step clearance

and forward progress, while ensuring a minimization of both energy consumption and foot

slippage.

6.4.3 Auto-Tuning Stance Controller

Next, we demonstrate the auto-tuning method to calibrate the gains of the stance controller.

For simplicity, here we auto-tune only the diagonal elements of Q = Q(θ) in (6.6), but

R can similarly be tuned. We initialize Q = diag([1, 1, Q3, Q4, Q5, Q6, 1000, 1, 1, 1, 1, 1]),

where Q3, Q4, Q5, Q6 are initialized to 300, and will be further calibrated, i.e., Q(θ) with

θ ∈ R4. The cost function is tuned online for 20 s of locomotion using trot gait. In Fig. 6.2-

E), we present the cost difference between the auto-tuning case and the no auto-tuning
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case. The difference decreases over time, which shows that the auto-tuning improves the

cost using auto-tuning decreased significantly compared to the cost without using auto-

tuning. Additionally, without auto-tuning, the robot eventually falls after about 8 seconds

of locomotion, because the initial gains of the MPC controller have not been properly hand-

tuned. Note that some hand-tuning was necessary to ensure initial gains that at least allow

the robot to start moving a few steps without falling. After auto-tuning the stance controller

for 20 s, Q3 = 5245.53, Q4 = 1172.34, Q5 = 662.45, and Q6 = 1172.25. Further, we applied

the tuned controller along with the tuned swing controller in Section 6.4.4 and demonstrated

robust locomotion on uneven terrain, see Fig. 6.3.

6.4.4 Auto-Tuning Swing Controller

Lastly, we apply the auto-tuning method to calibrate the gains of the swing controller, Kp

and Kd. We choose θ∈R6 consisting of the three diagonal elements of the proportional gain

matrix, Kp, and the three diagonal elements of the derivative gain matrix, Kd. We initialized

Kd=diag([0.1, 10, 10]) and Kp=diag([150.11, 16.11, 10.11]) to be equal to the leg’s natural

frequency using the inverted pendulum model multiplied by the operational mass matrix,

see [34] for more detail. Fig. 6.2-F), shows the difference of the cost when not auto-tuning

with the cost when auto-tuning for over 20 seconds of locomotion. The cost curve follows

a downward trend, demonstrating that the cost when auto-tuning is smaller than without

auto-tuning. The gains using auto-tuning outperformed the gain selection without auto-

tuning, which was based on the current natural frequency calculation and was shown to

perform well in [34]. The final gains after tuning was Kd = diag([13.82, 12.42, 17.80]) and

Kp=diag([166.26, 22.75, 14.03]).

Fig. 6.3 shows the robot walking on uneven ground using auto-tuning of the swing con-

troller gains and the stance controller cost function.

While this letter presents one simulation run, we have obtained similar results for repeated

test cases, which is expected as the auto-tuning formulation is robust to noise/disturbances
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Figure 6.3: Results for robust locomotion on uneven terrain. After auto-tuning the

stance and swing controllers, we employ the robot on several test cases to demonstrate robust

locomotion. We show the robot traversing over and on large beams and planks in the left

and top right with a trot gait, respectively, and demonstrate a successful jumping gait in

the bottom right. The robot is not aware of the obstacles and must overcome them by using

the auto-tuned controllers.

due to its filter-based design.

6.4.5 Computation Times

The computation times of auto-tuning the swing and stance controllers, as well as the refer-

ence trajectory are shown in Table 6.1. Table 6.1 lists the maximum, minimum, and median

computation times of the auto-tuning algorithm for tuning the gains of the swing controller,

the MPC weights of the stance controllers and the parameters of the reference trajectory

(Reference Traj. A−D in Table 6.1 refers to the training objectives specified by A−D in

Fig. 6.2). The computation times were obtained while running on a laptop using 4 CPU cores

(Intel core i7-8850H CPU at 2.60 Ghz) with a Quadro P3200 GPU. Further, the controller
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Table 6.1: Auto-Tuning Computation Times

Auto-Tune Min. Time Median Time Max. Time

Reference Traj. A) 0.0108s 0.0143s 0.0370s

Reference Traj. B) 0.0072s 0.0089s 0.0121s

Reference Traj. C) 0.0086s 0.0093s 0.0235s

Reference Traj. D) 0.0632s 0.0662s 0.0667s

Stance Controller E) 0.0409s 0.0465s 0.0807s

Swing Controller F) 0.0078s 0.0569s 0.1006s

ran in parallel with a Gazebo simulation, which requires more computational resources than

an implementation on hardware would. As the computation times are below the update

rate of the auto-tuner updating at the end of the phase time with 0.2 s, we can conclude

that the algorithms in this letter can be executed in real time on comparable computational

resources.

The computation times scale linearly with the amount of parameters to be tuned. Al-

though the applied algorithms can be executed online, depending on user specifications,

there is the option to execute the algorithms offline or in parallel. E.g., the auto-tuner for

the swing and stance controllers can update the gains on a different thread, which runs in

parallel to the low-level/high-level controllers of the robot. Additionally, the methods could

also be implemented offline if computational resources are limited.

6.5 Conclusions

In this work we successfully demonstrated robust locomotion. An auto-tuning method was

implemented, which is based on an unscented Kalman filter formulation, to calibrate the

gains of the swing controller and the cost function weights of a stance controller. We also
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demonstrated that the method can be applied for directly auto-tuning the reference trajec-

tory, i.e., reference trajectories are calibrated to make the robot achieve a desired forward

progress and step clearance, while also minimizing energy consumption and foot slippage.

We showed that the method can be easily generalized to consider diverse control parameter

by demonstrating the auto-tuning on both controller gains and on physically meaningful

parameters of a reference trajectory. Future work may include experimental validation on

the robot platform and extending the method to consider tuning for optimal footstep tim-

ings of various gait sequences, consider dynamic environments that require the auto-tuner

to calibrate changing step heights and base velocities, and also adapt the aggressiveness of

the tuning through the unscented Kalman filter’s covariance matrices based the robot’s en-

vironment or desired task. Future work may also include more sudden changes in the robot’s

motion, e.g., by leveraging the “prediction model” of the Kalman filter in addition to the

“measurement model” used in this letter.
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CHAPTER 7

Adaptive Force Controller

Forces and torques are exchanged in nearly every type of interaction between robots and

their environments. From robotic manipulators that perform peg-hole-insertion tasks [132],

pushing/pulling objects [40, 102], to the ground reaction wrenches generated by foot contacts

for robotic climbing [127]. Thus, state-of-the-art algorithms for locomotion and manipula-

tion estimate desired wrench profiles which can achieve stable balancing of an object [125]

or satisfy kinematic and dynamic constraints [143]. Additionally, current controllers typi-

cally use forces as control variables, optimizing them to either stabilize the Center of Mass

trajectory of the robot’s base [108] or achieve compliance control during manipulation [79].

In all the above cases, the success of the robot’s motion depends on how well a controller

can comply with external perturbation and ideally, track the desired output wrench profiles.

In this paper, our objective is to formulate an auto-calibrating admittance controller for

tracking the wrench profile using F/T sensors in a closed-loop fashion. The main contri-

bution of this paper is to demonstrate this using an Unscented Kalman Filter (UKF) to

track wrench profiles that includes the additional torque due to rotational friction, while

considering training objectives that facilitate controller robustness and adaptability during

online operation for multi-point contact grippers.

Additionally, we validate our controller on hardware (Figure. 7.1) that consists of under-

actuated grippers, and demonstrate tracking of reference wrench profiles for various tasks,

including wall climbing, grasping of objects, and locomotion.
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MANIPULATION

LOCOMOTION

CLIMBING

Strain Gauges

F/T Sensor

Figure 7.1: Hardware validation tests. Auto-calibrating admittance control for tracking

wrenches for climbing, manipulation, and locomotion tasks. The blue arrows indicate forces,

while the orange arrows indicate torques. We also indicate the Force/Torque (F/T) sensor

at the wrist, and strain gauges located on the finger, measuring the finger compression force

7.1 Admittance control formulation

The fundamental nature of an admittance controller is that it converts a force input into

a motion defined by a change in position. Admittance control may be necessary for robots

that have positioned-controlled motors but still need to simulate the properties of compliance

when interacting with its environment. For clarity in wording, we will call the end-effector as

being the fingertip, and the wrist as being the base of the robot’s gripper where the fingertips

are attached. Our admittance control formulation can be described by:

ẍ = M−1
d (−Ddẋ−Kd(x− xref ) +Kf (Wmeas −Wref )) (7.1)

where Wmeas ∈ R6k is the current wrench and Wref ∈ R6k is the desired reference wrench

for fingertip or contact point k, 6 represents the x, y, and z components of force, f ∈ R3k,
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Figure 7.2: Auto-calibrating admittance control framework. This figure shows the

overall control architecture. The admittance controller takes as input the wrench and po-

sition profile (represented by Wref and xref ) or the forces fref (if our MPC is used). The

current wrenches are received using the relationship provided by equation (11) which requires

force/torque sensor information, and also the current control inputs (x and ẋ). The output

of the admittance controller is the acceleration (ẍ), where its integration yields the control

inputs for the next timestep (considered the inner loop). Since we use position-controlled

motors, we use x as input to our inverse kinematics, which provides the joint motor angles

(θ1:nactuators). A PD joint controller is used to track these angles (considered the outer loop).

Lastly, the auto-tuning framework takes as input the reference and current wrenches and

outputs new gains for the admittance controller (Md, Dd, and Kf ). As the auto-tuning

method makes use of the robot model (dependent on spring constants Kp, and Kθ), we

make use of the current wrenches to continually update these spring constants to a more

accurate estimate as part of the auto-tuning process.

and torque, τ ∈ R3k, with W = [f⊤, τ⊤]⊤. Md ∈ R6k×6k, Dd ∈ R6k×6k, Kd ∈ R6k×6k,

are the diagonal gain matrices that can be described as the desired mass, which must be
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invertible, damping, and spring coefficients respectively. Kf ∈ R6k×6k does not have any

physical meaning, but may be tuned depending on the desired sensitivity to changes in

wrench. ẋ, and x are the control outputs, where x = [p⊤,Θ⊤]⊤ represents the fingertip

position, p ∈ R3k, in x, y and z, and orientation, Θ ∈ R3k, in x, y, and z, which are solved

by integrating ẍ using Euler discretization. xref is a desired position and orientation from a

reference trajectory. Note, that subtracting Euler angles, as required by the x− xref term,

we can employ the techniques found in [21].

To estimate the current wrench, Wmeas (as used in (7.1)), we must first derive the re-

lationship between wrenches of the robot’s wrist and the wrenches of each fingertip of the

gripper (frames defined in Figure 7.3):

WG
k =

 fGk

pG
k × fGk

+

 03

τG
k

 (7.2)

where WG
k is the fingertip wrench of fingertip k relative to the gripper frame {G}, pG

k is

the position of the fingertip, fGk is the reaction force, and τG
k is the additional torque due to

patch contact at the fingertip relative to the gripper frame. We assume gripper and fingertip

frames are the same, or {G} = {F} in Figure. 7.3.

When the fingertips are in contact with the environment, we will assume mathematically

that the force/torque at the wrist of the gripper and the sum of forces/torques received from

the fingertips are equal. Thus, we have:

fG =

nf∑
k=1

fGk (7.3)

τG =

nf∑
k=1

(pG
k × fGk ) +

nf∑
k=1

τG
k (7.4)

where fG and τG are the forces and torques at the wrist, and nf is the number of fingertips.

In our case, we have a two-finger gripper (nf = 2), which would yield a total of 6 equations

and potentially 18 variables.

113



{G}

{F}k+1

Obstacle
Fingertip k Fingertip k+1

Robot wrist / 
F/T sensor

𝒑𝑘
𝐺 𝒑𝑘+1

𝐺

𝑾𝑘
𝐺 𝑾𝑘+1

𝐺

𝑾𝑮

{F}k

zx

y

zz

y

x x

y

Figure 7.3: Frame definitions. Here we show the general frame definitions for the variables

used in the admittance controller. Our controller will operate in the local gripper frame

{G}, which is considered the robot’s wrist (or the location of the Force/Torque or F/T

measurements). The gripper may have k number of end-effectors or fingertips, denoted by

frame {F}. Fingertip positions, pG
k , are all with respect to the gripper frame {G}. Similar

notations are given to the fingertip wrenches WG
k and wrenches at the wrist WG. Note that

to more easily solve for equations, we choose frame {F} to be the same orientation as frame

{G}.

In this paper, we assume that when the end-effector comes into contact with its environ-

ment, some non-negligible amount of deformation occurs between the end-effector material
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and its environment, resulting in a contact ‘patch’, which we assume is circular. Thus, the

effect of deformation when adapted to a typical rigid body point contact model is an ad-

ditional torque (τ n ∈ R3) that acts about the contact normal [72], with Coulomb friction

acting on each point of the patch. Using the derivation as done in [72], the norm of this

torque is bounded by |τ n| ≤ λfn, where fn ∈ R3 is the normal force and λ > 0 is the friction

coefficient due to rotation. Throughout this paper, we will assume that the normal force is

in the same direction as the z component of fingertip k in the gripper frame {G} (see Figure.

7.3) or τn=τGk,z and fn = fG
k,z [72].

We also assume access to force/torque sensors at the wrist and 1-axis strain gauges on

each fingertip measuring the z component of the force, which we approximate is along the

same direction as the surface normal. Thus, we can directly measure fG
x ,f

G
y ,f

G
1,z,

fG
2,z,τ

G
x ,τ

G
y , and τ

G
z . A limitation of this work is that we don’t directly measure all components

of the wrench for each fingertip, and thus, need to estimate these wrenches and also impose

additional constraints for which components we can independently control. For one, we

have an underactuated gripper, thus, in our case, we cannot independently control both

fingertip positions in the x, and y directions but can for z using the robot’s arm and by

closing/opening the gripper. Second, we impose constraints in our controller, where we

assume control of each rotational axis for torque for both fingertips simultaneously. In other

words, taking the above gripper configuration and constraints into account, we have that

fG
1,x = fG

2,x, f
G
1,y = fG

2,y, τ
G
1,x = τG2,x, τ

G
1,y = τG2,y, and τ

G
1,z = τG2,z, where only fG

1,z and fG
2,z can be

independently controlled per fingertip–see Sec. 7.1.1 for details.

Taking the above simplification and sensor readings into account, we reduce equations
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(7.3) and (7.4) into the following Au = b form used to solve for u:

A = [A1,A2,A3,A4,A5,A6,A7]

A1 = [2, 0, 0, 0, 0, pG1,z + pG2,z,−pG1,y − pG2,y]⊤

A2 = [0, 2, 0, 0,−pG1,z − pG2,z, 0, pG1,x + pG2,x]
⊤

A3 = [0, 0, 1, 0, pG1,y,−pG1,x, 0]⊤

A4 = [0, 0, 0, 1, pG2,y,−pG2,x, 0]⊤

A5 = [0, 0, 0, 0, 2, 0, 0]⊤

A6 = [0, 0, 0, 0, 0, 2, 0]⊤

A7 = [0, 0, 0, 0, 0, 0, 2]⊤

u = [fG
1,2,x, f

G
1,2,y, f

G
1,z, f

G
2,z, τ

G
1,2,x, τ

G
1,2,y, τ

G
1,2,z]

⊤

b = [fG
x , f

G
y , f

G
1,z, f

G
2,z, τ

G
x , τ

G
y , τ

G
z ]

⊤

(7.5)

where fG
1,2,x, f

G
1,2,y, τ

G
1,2,x, τ

G
1,2,y, τ

G
1,2,z implies that the force and torque of fingertips 1 and 2

are assumed the same during control. Because the determinant(A) = 32 and the matrix

rank is 7, A can be inverted for all cases. Note that u is used for Wmeas in (7.1), and b

consists of the direct measurements from our sensors.

7.1.1 Controlling for grasping force and normal force offsets

Although we can control fG
1,2,x, f

G
1,2,y, τ

G
1,2,x, τ

G
1,2,y, τ

G
1,2,z by using (9.7) directly, where the

control output from (7.1) assumes force/torques are equal and in the same direction for both

fingertips, controlling fG
1,z and fG

2,z requires extra care as we have the freedom to control

these force components independently. To control for these independent normal forces while

considering that both fingertips still move either ‘inwards’ and the gripper is closing, or

‘outwards’ and the gripper is opening, one solution is to first control for a ‘grasping’ force,

or the amount of normal force exerted on an object, and then separately control for an offset

between this grasping force and desired fingertip force. For example, let fG
1,z,ref , f

G
2,z,ref be
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the reference force for fingertips 1 and 2, and fG
1,z, f

G
2,z be the measured force for fingertips 1

and 2 from our strain gauges. We then define the reference grasping force as the magnitude

fG
grasp,ref =

|fG
1,z,ref |+|fG

2,z,ref |
2

. Note, that the measured grasping force is achieved with this same

definition but using fG
1,z and f

G
2,z instead. We then use (7.1) but with the previous definition

of grasping force, where the output x constitutes the fingertip 1 and 2 positions for z, or pG1,z

and pG2,z, where both fingertip positions change with the same magnitude but in opposite

directions according to frame {G}. However, note that some offset force may exist if fG
1,z ̸=

fG
2,z or we desire different reference fingertip forces. To account for this offset force, we let

the reference offset force be fG
z,ref = fG

1,z,ref − fG
grasp,ref , where the measured force is received

from the force/torque sensors at the wrist (or fG
z ). For this case, the control output x will

move both fingertip positions (pG1,z and pG2,z) with the same magnitude and same direction.

In other words, the robot moves its arm to compensate for offsets between fingertip normal

forces as defined by {G}. While we can essentially think of having 3 admittance controllers,

one for controlling all fingertip components except for f1,z, and f2,z one for grasping force,

and another for the offset in fingertip normal force, for simplicity, we assume the same set

of gains across each. In other words, Kf for controlling the offset normal force will be the

same as Kf for controlling the grasping force.

7.2 Auto-tuning formulation

In this paper, we use a UKF (as done in 6) [94] to tune the control parameters of an

admittance controller to track reference fingertip wrenches (Sec. 7.2.1.1) while following

desired properties such as updating the spring constant of fingertip force and orientation

to increase model accuracy (Sec. 7.2.1.2), ensuring output wrenches that do not cause

slipping motion (Sec. 7.2.1.3), and are within kinematic boundaries to prevent singularity

configurations (Sec. 7.2.1.4). While the method was used to calibrate controller gains for

moving a vehicle, we apply it for the first time here for dexterous manipulation tasks, with
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modification on the training objective through use of large costs to avoid instability.

The goal of the auto-tuning method in this work is to calibrate control parameters of

a generic controller xG
k,t = κθ(WG

k,t), based on the state, WG
k,t or wrench of fingertip k at

timestep t, the control input, xG
k,t, where xG

k,t = [pG⊤
k,t ,Θ

G⊤
k,t ]

⊤, which is the position and ori-

entation of fingertip k at timestep t, sensor measurements,WG
k,t,meas or current actual wrench

of fingertip k at timestep t using (9.7), and training objectives. The control parameters are

represented by θk,t, which consists of the diagonal gains of the admittance controller, Md,

Dd, and Kf and spring constants, Kp and Kθ from (7.8) and (7.9).

For our admittance controller, we use the following to represent our dynamic mode:

WG
k,t = Dyn(WG

k,t−1,x
G
k,t−1,WG

k,t−1,meas)− ŴG
k,t (7.6)

where Dyn(WG
k,t−1,x

G
k,t−1,WG

k,t−1,meas) is the dynamic model with its input state being the

estimated wrench, WG
k,t−1, of fingertip k at timestep t− 1, the control input as the fingertip

position/orientation, xG
k,t−1, of fingertip k at timestep t− 1, and actual wrench, WG

k,t−1,meas,

of fingertip k at timestep t − 1. Because the auto-tuning method is performed recursively

online after measurements are received, we can calculate the process noise to be:

ŴG
k,t = Dyn(WG

k,t−1,x
G
k,t−1,WG

k,t−1,meas)−WG
k,t,meas (7.7)

However, to calculate ŴG
k,t we still need to formulate a model of our system, i.e., estimate

or predict the value of Dyn(WG
k,t−1,x

G
k,t−1,WG

k,t−1,meas) using measurements at timestep t−1.

To do so, we first use the control output ẍ from (7.1) at timestep t− 1 and integrate to get

fingertip position/orientation at t or xG
k,t. We then model the fingertip forces at timestep t

as a virtual spring/mass system:

fGk,t = Kp(∆pG
k,t) (7.8)

where Kp ∈ R3 is a spring constant for each of the x, y, and z displacements of fingertip

positions. Note, that ∆pG
k,t = pG

k,t − pG
k,t−1, where pG

k,t is the control output at timestep t
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Figure 7.4: Results: Tracking Grasping Force for Manipulation. (A)-(C) shows the

results for tracking the grasping force. Note, we do not show the results of auto-tuning versus

no auto-tuning for (A)-(C) because without auto-tuning, the values can quickly diverge, see

(D). (D) is the H2 Norm between auto-tuning (blue) and not auto-tuning (orange) the gains

during operation (using the object shown in (A). (E)-(F) exemplify the tuning of the Md,

Kd gains of the admittance controller and Kp gain of the spring term of the model described

in equation (7.8) (note for this test we only tune the z-component of the fingertip force).

and pG
k,t−1 is the control output at timestep t− 1 for fingertip position. Applying the same

principle for modeling fingertip forces but now for torques (with a spring constant KΘ ∈ R3):

τG
k,t = KΘ(∆ΘG

k,t) (7.9)

We can use (7.2), (7.8), and (7.9) to solve for the dynamic model through the following

relationship:

Dyn(WG
k,t−1,x

G
k,t−1,WG

k,t−1,meas) = Kp(∆pG
k,t)

pG
k,t ×Kp(∆pG

k,t)

+

 03×1

KΘ(∆ΘG
k,t)


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Figure 7.5: Results: Tracking Wrench during Climbing. A Climbing wrench trajectory

is tracked in (A) - (F) or f1,2,x, f1,z, and τ1,2,z. The experiment is depicted on the left of

Figure (7.1).

7.2.1 Training objectives

As described in Sec. 7.2, based on a combination of different θi
k,t sigma points, which

represent different sets of admittance controller gains and spring constants, and simulating

them using our proposed model propagation as estimated by (7.6), we then evaluate the

performance of these sigma points using the evaluation function h(θi
k,t). The objective is to

drive our control parameters towards minimizing the difference between the outputs of our

evaluation function with a user-defined desired output, specified by ydes
k,t from (8.9). In this

section, we will now explicitly state our control parameters, θi
k,t, for each fingertip k, and
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Figure 7.6: Results: Tracking Fast Reference Forces from an MPC. An MPC is

used to generate reference forces during a trot gait (blue). The actual force (tracked by our

adaptive admittance controller), is measured by FT sensors attached to the feet of the robot.

The experiment is depicted on the bottom right of Figure (7.1).

describe our evaluation function hk,t(θ
i), which can be summarized as:

θi
k,t =



Md(θ
i
Md

)

Dd(θ
i
Dd
)

Kf (θ
i
Kf

)

Kp(θ
i
p)

KΘ(θ
i
Θ)


,hk,t(θ

i) =


href (θ

i)

hspring(θ
i)

hforces(θ
i)

hconst(θ
i)

 (7.10)

ydes
k,t =


ydes
ref

ydes
spring

ydesforces

ydesconst


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where the control parameters, θi
k,t ∈ R24k, include the gains of the admittance controller,

Md, Dd, and Kf , which in total includes 18 gains to be tuned per fingertip, and the spring

constants Kp and KΘ, which in total includes 6 constants to be tuned per x, y and z

components. Note, we do not tune Kd in (7.1) because in this work we are primarily

interested in tracking force not position, i.e., the gripper must be in contact and we set Kd

to be zero. The evaluation function hk,t(θ
i) ∈ R14k contains 4 main components, including

the cost of following a reference wrench trajectory (href ∈ R6k), the cost of estimating the

spring constants (hspring ∈ R6k), the cost of ensuring that the control output generates forces

that do not cause slipping (hforces ∈ Rk), and the cost of satisfying kinematic and controller

constraints (hconst ∈ Rk). The costs of each will now be described in the following subsections

and also include the corresponding desired values, represented by ydes
k,t (which must be the

same size and format as hk,t(θ
i)).

7.2.1.1 Reference trajectory

One of the main goals for auto-tuning the admittance controller is to tune the gains such that

a reference wrench trajectory, which was calculated using the methods found in [127], can be

closely followed. To do so, for fingertip k at timestep t, where k, t notation are omitted for

simplicity, we let href (θ
i) = [W(θi)G] or specifically, href (θ

i) = [f(θi)G⊤, τ (θi)G⊤]⊤, which

represent the fingertip force and torque values based on the model propagation using (7.6)

to evaluate W(θi)G. Note, that both are functions of the sigma points or θi which provide

the current gains of the admittance controller in (7.1). If we then let our desired parameters

of (8.9) or ydes
ref = [WG

ref ], where WG
ref is received directly from the reference trajectory from

(7.1), then the training objective is to produce control outputs that follow this trajectory as

closely as possible.
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7.2.1.2 Spring evaluation

One of the challenges of the model propagation described in (7.6) is in propagating the

fingertip wrenches from timestep t − 1 to t. The approach used in this work is to assume

a spring model, where we estimate the wrench at timestep t by propagating the fingertip

position and orientation instead, as shown in (7.8) and (7.9). However, to use this model

we must know the spring constants Kp and KΘ for the x, y, and z displacements, which

requires extensive system identification methods. To automate this process, we can also use

our auto-tuning method to evaluate Kp and KΘ during system operation directly. Thus,

we have hspring(θ
i) = [Kp(θ

i)∆p(θi)G⊤,KΘ(θ
i)∆Θ(θi)G⊤]⊤, where the values of the sigma

points θi are equivalent to the spring constant Kp and KΘ itself. Our desired parameter then

becomes ydes
spring = [fG⊤

meas, τ
G⊤
meas]

⊤, where fGmeas and τG
meas are the actual fingertip force and

torque. By minimizing the difference between hspring(θ
i) and ydes

spring (in (8.9)), the training

objective of the auto-tuner is to find parameter θi which best estimates the value of Kp and

KΘ such that the spring model gets closer to the actual current values from (9.7). Note,

that by improving the model through updating the spring constants, we also improve the

performance of the auto-tuner over time as the auto-tuning method relies on estimating the

model mismatch in (7.6) for propagation.

7.2.1.3 Force limits

During the evaluation of our costs, or hk,t, (θ
i), which requires simulating each sigma point

using our dynamics model from timestep t − 1 to t, it is possible that some combination

of controller gains may propagate forces that are near or at the boundary of slipping (i.e.,

slipping between the fingertip contact point and its environment). As described previously,

and written in more detail in [72], we assume a contact model which has a finite contact

patch that includes frictional and normal forces, and a torsional moment with respect to the
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contact normal. To prevent control outputs that cause slippage, we can make use of (7.11):

−λfG
k,z ≤ τGk,z ≤ λfG

k,z (7.11)

where the fingertip is least likely to slip when τGk,z is between −λfG
k,z and λf

G
k,z. This behavior

can be achieved by setting an arbitrary high cost (say δ) when (7.11) is not satisfied, and if

(7.11) is satisfied, we can set the cost to be a function of how ‘far’ away the system is from

slipping. Thus, we can let hforces(θ
i) = [δ] if (7.11) is not satisfied, and if it is satisfied, we

can let hforces(θ
i) = [ 1

|λfG
k,z |−|τGk,z |

]. In both cases, our desired parameter is ydesforces = [0]

7.2.1.4 Kinematic and controller constraints

As we propagate our admittance control output x based on different values for θi during our

propagation from t−1 to t, we may get unreasonable values for x, due to ‘bad’ choices of θi,

that are kinematically infeasible or outside the workspace of the robot causing singularity, or

obtain controller gains which are not positive semi-definite. A simple solution to avoid our

auto-tuning method to choose these θi values, is to impose a large cost, which we arbitrarily

term as ζ, when x is infeasible or violate the semi-definite property. Thus, we can write

that if θi are chosen such that it causes a kinematic infeasibility or violates the positive

semi-definite property then hconst(θ
i) = [ζ], and if the solution does not cause violations,

then hconst(θ
i) = 0, where our desired value ydesconst = [0].

7.3 Experimental Validation

We implement our controller on the SCALER [130] quadruped climbing robot. SCALER

weighs 9.6 kg, and has two configurations, a walking configuration used to track ground

reaction forces from an MPC [34], 3 DoF per leg, and a climbing configuration to track

fingertip wrenches, 6 DoF per leg in addition to a 1 DoF two-finger gripper, which totals 7

DoF per limb [130]. At the wrist of the robot, or endpoint of 3 DoF or 7 DoF configuration,
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we use BOTA’s force/torque sensor [17], and have 1-axis strain gauges at each fingertip of our

gripper, where actuation for grasping is done using a linear actuator. We demonstrate the

efficacy of auto-tuning our gains using the H2 norm defined as ||Wmeas −Wref ||H2 (defined

as a scalar value). Thus, a decrease in the H2 norm indicates better tracking of the reference

wrench trajectory. Overall, we show our results through three different experiments as

shown in Figures 7.4, 7.5 and 7.6. In Sec. 7.3.1, we discuss the tuning process for grasping,

and apply our method toward tracking grasping force on objects with different degrees of

compliance. In Sec. 7.3.2, we discuss the tuning and then tracking of not only forces, but also

torques, which is necessary for free-climbing tasks. In Sec. 7.3.3, to show how our admittance

controller can handle tracking reference forces that rapidly changes, we apply our controller

for tracking the ground reaction force outputs of an MPC controller during a fast moving

trot gait. For 7.3.1 and 7.3.2, our baseline or no auto-tuning, is an admittance controller

that has been hand-tuned to the best of our abilities to achieve convergence according to

[112]. We do not show a baseline for 7.3.3, as we were not able to hand-tune the gains of

the admittance controller that could successfully track or converge for fast moving reference

forces. Finally, we note that we ran the admittance controller and auto-tuner at 100 Hz, and

applied the auto-tuning procedure for one fingertip only.

7.3.1 Experiment 1: Tracking grasping force

As shown in (A)-(C) in Fig. 7.4, we were able to track the grasping force of a stiff object,

or bouldering hold, as well as compliant objects, or paper towel and a soft ball. We show

the tuning results in (D), where we see a lower H2 norm with auto-tuning (blue) compared

to not using auto-tuning (orange), using the bouldering hold as seen in (A) as our example.

Additionally, without auto-tuning the system diverges and becomes unstable as shown by

the large peaks. In (E) we show how the auto-tuner updates the admittance controller gains,

here we only update Md and Dd, which show that both gains initialized at 0.1 converge to

a constant value once the controller becomes stable or follows the reference trajectory. We
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also show in (F) how the Kp spring constant, here just a single value, changes as the gripper

is increasing its grasping force, where eventually it reaches a very high value as the gripper’s

change in position decreases with respect to increasing grasping force. Lastly, we note that

the auto-tuner only needed 0.8 seconds to converge to optimal gains for this test.

7.3.2 Experiment 2: Tracking wrenches for free-climbing

To auto-tune other force/torque components, we updateMd, Dd, Kf and spring constants by

hanging the robot on a bar and having it grasp a bouldering hold while following a constant

reference wrench trajectory. In total, we tune the following components of wrench: fG
1,2,x,

fG
1,2,z, τ

G
1,2,x, τ

G
1,2,y, and τ

G
1,2,z. (A)-(C) of Fig. 7.5 shows that with auto-tuning we demonstrate

quicker convergence to our reference compared to without auto-tuning for fG
1,2,x, f

G
1,2,z, and

τG1,2,z as an example. We note that with and without auto-tuning the H2 norm eventually

converged for the case of tracking force, likely as the initialized gains were already sufficiently

stable. However, without auto-tuning, the H2 norm could not converge for tracking the

additional torque (see (C) of Fig. 7.5), τG1,2,z, while convergence occurred using auto-tuning.

Additionally, the auto-tuner took about 3 seconds to converge for fingertip force in the x

direction, 7 seconds for force in the z direction, and 5 seconds for torque in the z direction.

After using auto-tuning to find optimal gains, we use these updated gains to track a

changing wrench trajectory, namely shear force, grasping force with fingertip normal force

offset as described in Sec. 7.1.1, and additional torque due to rotational friction along the

yaw axis, or fG
1,2,x, f

G
1,z, f

G
2,z, and τ

G
1,2,z simultaneously (results for fG

1,z are shown for brevity).

The results of tracking this wrench is demonstrated in (D)-(F) in Fig. 7.5 for the robotic

free-climbing task.
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7.3.3 Experiment 3: Tracking fast reference forces

Lastly, we demonstrate the speed of our admittance controller when applied to a single point

contact robot during a trot gait as shown in Fig. 7.6. Output ground reaction forces from a

point contact (fG
z ) are produced by an MPC controller, formulated identically to [34], and

we show a step response of ≈ 0.03 seconds across 8 steps of a trot gait (i.e., it took about

0.03 seconds for the admittance controller to track the force profile per step). We note that

while the step response was adequate for climbing and even for locomotion tasks, the MPC

only needs to run every ≈ 0.03 seconds, faster response rates may be achievable with motors

that have a lower gear ratio, as our motors have a high gear ratio.

7.4 Conclusion

We demonstrated an auto-calibrating admittance controller that could track wrench trajec-

tories during locomotion and manipulation tasks. We show that we could successfully track

the additional torque due to rotational friction simultaneously with other force components

for an extreme manipulation case trajectory - namely for robotic wall-climbing. In future

work, we aim to use the auto-tuner to derive various spring constants for different surfaces,

and examine more complex training objectives such as recovering from slipping.
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CHAPTER 8

Real-to-Sim: Predicting Residual Errors

8.1 Introduction

One of the primary challenges in the field of robotics is to successfully exploit simulation-

based results and apply these results to real-world applications. Simulations are convenient

as they provide data with low-cost, and can be run safely for long periods of time without

risking potentially expensive hardware. However, in almost all cases (even for high-fidelity

and expensive simulators), the simulation and reality will differ, i.e., ‘reality gap’, due to error

or mismatch from sensors and actuators that are difficult to correctly model. Because of this

reality gap, it typically takes a significant amount of engineering effort to successfully train

an agent in simulation and then transfer this learning to hardware. In previous work (see

Section ??), there have been numerous approaches to close this reality gap [152], however,

these approaches still require intricate hand-tuning and substantial data collection. Ideally,

one way to close the reality gap is to either have an accurate dynamic model of the robot itself

and/or directly use hardware data to inform and improve the simulator. Still, the challenge

remains in that access to a highly accurate dynamic model is difficult and typically only

sparse amounts of data can be received from hardware experiments. Thus, methods that

can quickly improve a dynamic model, or a simulator using sparse amounts of data are

needed.

In this work, our objective is to provide a method to learn the residual errors assumed to

be non-linear and non-Gaussian between a dynamic or simulator model, and the real robot.
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Manipulator Robot

Wheeled Robot

Figure 8.1: Real-to-Sim. Here we show our experimental setup, where we learn the residual

error between the actual and simulated robot.

By learning these residual errors, we can either improve an existing dynamic model to be

closer to the real robot, or improve the simulator to be closer to the real robot. The former

may be useful for model-based controls (e.g., model predictive control) or for model-based

planners, while the latter can be used for reinforcement learning (RL) applications. The

residual errors are learned using a neural network, where the parameters of a neural network

are updated through an Unscented Kalman Filter (UKF) which can quickly converge to

desired parameters (i.e., minimizing the difference between the current and reference model)

[93]. A UKF is useful (relative to other filtering methods) as they can better handle non-

linear and non-Gaussian residual errors during the update step.

Summary of our contributions

1. An implementation of neural networks and a UKF to update network parameters are

used to quickly learn residual errors between the current and reference model.

2. We show how our approach learns the residual error for several test cases, in particular

Sim-to-Dyn (simulator is the reference model and the dynamic model with residual

error is the current model), Real-to-Dyn (the real robot is the reference model and
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Figure 8.2: Methods flowchart. Here we show the overall methods of this paper as

described in Section 8.2. Overall, the goal is to learn the residual model error between a

simulator model and a dynamic model or Sim-to-Dyn (boxed in blue), the real robot and

a dynamic model or Real-to-Dyn (boxed in green), and the real robot and the simulator

model or Real-to-Sim (boxed in brown). The model is learned using a UKF method which

calibrates weights and bias parameters of a neural network (the weights and bias variables

are parameterized by δ(yt)). Although not necessary, the learned residual model of one case

may also be used as part of a warm-start procedure for the next case (e.g., the residual model

for Sim-to-Dyn may be used as the starting residual error for the Real-to-Dyn case–which

we found to reduce the amount of learning required to model any additional residual error).

the dynamic model with residual error is the current model), and Real-to-Sim (the

real robot is the reference model and the simulator with residual error is the current

model).

3. Our results are demonstrated in simulation and hardware using a mobile and stationary

manipulator robot.
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8.2 Problem Definitions

8.2.1 General Model

We assume the following model propagation from time step t to t+ 1:

xt+1 = Dyn(xt,ut) + δ(yt) (8.1)

where xt is the state, ut is the control input, Dyn(xt,ut) is some dynamic model of the robot

to help propagate the states of the robot from timestep t to t + 1, and δ(yt) is considered

the model mismatch (or residual error of the model), which we assume to be a non-Gaussian

and non-linear function parameterized by yt. Note, throughout this paper, we will model

the derivative terms of the system dynamics since our environment is assumed uniform, and

the residual term is not a function of positional space. The objective of this paper is to learn

the function δ(yt) through a neural network combined with a UKF (see Section 8.2.2). Here,

we will learn the residual error for several different cases, and transfer the learned residual

from one case to the next case to help decrease the overall learning time. Note that from

this point, we will use the hat notation on states that result from a predicted model (i.e.,

dynamic model with the addition of our residual error function) and a bar notation on states

that are received directly from the localization result of the simulation or the real robot.

Our first test case will be Sim-to-Dyn, where we use a predefined dynamic model,

Dyn(xt,ut), and learn the residual error δ(yt)1 to predict the state of the model of a simu-

lation, x̂sim
t+1. Thus, we can write the Sim-to-Dyn case as the following:

x̂sim
t+1 = Dyn(xt,ut) + δ(yt)1 (8.2)

The next test case will be Real-to-Dyn, where we try to learn the error between the dynamic

model of the robot and the results from the real robot. For this case, instead of starting with

just the dynamic model, Dyn(xt,ut), we instead apply the learned residual from equation

(8.2) in addition to the dynamic model, and learn the remaining (new) residual error specified
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by δ(yt)2. Note, by using the previously learned model as the updated dynamic model, we

may decrease the amount of training time needed to find the remaining residual error (i.e.,

warm-start) – however, this is only true if we assume that the simulator model is more

accurate than the initialized dynamic model as we do in this paper (although this is not a

prerequisite to using our methods and the previously learned model error may also be set to

zero if equation (8.3) is not true):

|x̄real
t+1 −Dyn(xt,ut)| > |x̄real

t+1 − x̂sim
t+1| (8.3)

The Real-to-Dyn case can then be specified as:

x̂real
t+1 = Dyn(xt,ut) + δ(yt)1 + δ(yt)2 (8.4)

where the goal is to learn the residual error, δ(yt)2, while δ(yt)1 was already learned from

the previous Sim-to-Dyn case.

Lastly, we will test the Real-to-Sim case, where our goal is to match the simulator model

to the real robot. As before, we can make use of the previously learned cases to inform and

facilitate the training procedure. For example, we can combine equations (8.2) and (8.4)

to get the following relationship (with the goal of finding the remaining new residual error

δf(yt)3):

x̂real
t+1 = Dyn(xt,ut) + δ(yt)1 + δ(yt)2 + δ(yt)3 (8.5)

which can be identically represented as:

x̂real
t+1 = x̂sim

t+1 + δ(yt)2 + δ(yt)3 (8.6)

However, we note that in this test case we aim to compare the state estimation of the

simulator to the state estimation of the real robot. Thus, we can replace the predicted

simulator model, x̂sim
t , with the actual simulator values defined by x̄sim

t (in this case, δ(yt)2

may act as a ‘warm-start’ for modeling the behavior of the real robot, since the term was

learned during Real-to-Dyn):

x̂real
t+1 = x̄sim

t + δ(yt)2 + δ(yt)3 (8.7)
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The overall method is also demonstrated in Fig. 8.2.

8.2.2 Neural Network with Unscented Kalman Filtering

As described previously, the goal is to learn the residual error δ(yt) from equation (8.1)

in order to minimize the difference between the current and a reference model. Depending

on the test case, what is designated as the current and reference model may differ. For

example, in Sim-to-Dyn the reference model is the simulator while the current model is the

specified dynamic model, in Real-to-Dyn, the reference model is the real robot while the

current model is the specified dynamic model, and in Real-to-Sim, the reference model is the

real robot while the current model is the simulator model. Each of these cases and which

specific residual model we wish to learn is described in Section (8.2.1).

To learn this residual error δ(yt) we use a fully connected neural network (see Fig. 9.3)

that has one input layer (with either 5 inputs when using our mobile robot or 6 inputs when

using our manipulator robot), one hidden layer with 10 nodes, and one output layer (with

3 outputs when using our mobile or manipulator robot). We can write this network as the

following:

δ(y) = yout σ
(
ylay σ

(
yin z+ yin ,0

)
+ ylay ,0

)
+ yout ,0 (8.8)

where yout ∈ R3×10 are the weights of the output layer, yout,0 ∈ R3×1 are the bias of the

output layer, ylay ∈ R10×10 are the weights of the hidden layer, ylay,0 ∈ R10×1 are the bias of

the hidden layer, yin ∈ R10×5 or ∈ R10×6 are the weights of the input layer, and yin,0 ∈ R10×1

are the bias of the input layer, and lastly, the inputs are represented by z ∈ R5×1 or ∈ R6×1.

Thus, in total, δ(y) is a function parameterized by y ∈ R198×1 for the mobile robot, and

y ∈ R209×1 for the robot manipulator. The σ represent leaky ReLu activation functions

a = σ(b) with a = max(0.01b,b), where b is the input to the activation function.

Equation (8.8) is considered the feed-forward procedure of a neural network. However, in

this paper, instead of using typical back-propagation methods with optimization functions
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Figure 8.3: Neural Network with UKF. We illustrate the UKF method as described

in Section 8.2.2. The UKF calibrates weights and bias values of a neural network that is

composed of a hidden layer. The result of this calibration is to produce an output or residual

model error that minimizes the difference between a current and reference model. The green

and blue arrows simply indicate that we are doing a two sequential for loop iterations.

such as Batch Gradient Descent, we instead apply the UKF method described in [93]. The

motivation of using this method opposed to other more typical back-propagation methods is

that it’s model-based and has been shown in previous works [117, 118] to tune parameters
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quickly with sparse amounts of data. Additionally, compared to gradient-descent methods, a

UKF can be more robust to the presence of outliers in the data (i.e., uses a weighted average

of sigma points), has reduced computational complexity as it uses a fixed set of sigma point

to represent the system state rather than requiring the calculation of higher-order derivatives,

and shows improved convergence as it uses deterministic sampling process to propagate the

sigma points through the system.

While we refer readers to [93] for a full description of the UKF method, the main objective

of how we apply this method in this paper, is to update the neural network weights/bias

parameters in (8.8) or yt (where t is the current time step) such that the difference between

a predicted model, xpred
t , and a reference model, xref

t , is minimized. This calibration is done

through finding a Kalman gain Kt of the UKF using a recursive implementation. In other

words, we first collect the history of past reference and predicted values using a time horizon

specified by t−N (where N is the number of time steps in the past time horizon), and make

the Kalman gain update at the current time step t. Thus, we formulate the update of our

neural network parameters as:

yt = yt−N +∆yt, (8.9)

where the update ∆yt is computed based on the following equation:

∆yt = Kt

(
xref
t − x̂pred(yt)

)
(8.10)

Finally, the Kalman gain (Kt) is calculated using the following UKF formulation:
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Kt = Csz
t S−1

t (8.11a)

St = Cv +
∑2L

i=0w
c,i(xpred,i

t − x̂pred
t ) (8.11b)

(xpred,i
t − x̂pred

t )⊤ (8.11c)

Csz
t =

∑2L
i=0w

c,i(yi
t − ŷt)(x

pred,i
t − x̂pred

t )⊤ (8.11d)

x̂pred
t =

∑2L
i=0w

a,ixpred,i
t (8.11e)

xpred,i
t = xpred(yi

t) (8.11f)

Pt|t−1 = Cθ +
∑2L

i=0w
c,i(yi

t − ŷt)(y
i
t − ŷt)

⊤ (8.11g)

ŷt =
∑2L

i=0w
a,iyi

t (8.11h)

Pt|t = Pt|t−1 −KtStK
⊤
t (8.11i)

where yi
t with i=0, ..., 2L are the sigma points, wc,i and wa,i are the weights of the sigma

points, Csz
t is the cross-covariance matrix, St is the innovation covariance, and Pt|t is the

estimate covariance. The weights are user defined, and in this paper, we use the same

weights as described in remark 6 of [93]. Lastly, note that the covariance matrix Cθ (which

is initialized by the user) defines the aggressiveness of the update, while Cv defines the

‘weight’ given to the components of xref
t [93].

8.3 Implementation

8.3.1 Computer specifications

Our method was performed on a laptop with 4 CPU cores (Intel core i7-8850H CPU at 2.60

Ghz) with a Quadro P3200 GPU. We note that the computation time of our method de-

scribed in Section 8.2.2 was ≈ 0.3 seconds for each update of our neural network parameters,

which includes a time horizon of N = 20. However, the computation time of the UKF update

does increase with either a greater time horizon or number of parameters (i.e., larger neural
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Figure 8.4: Manipulator trajectories. For evaluating the modelling of residual errors

on the manipulator arm, we use two trajectories. The first trajectory (shown in top half)

consists of only x and y components–drawing a 2D circle, with a straight line in the middle.

This was done to ensure we can model circular and also linear motions simultaneously. The

second trajectory, shown on the bottom half, consists of x, y, and z components–drawing

a circle in x and y while moving up and down in z. The red line on the last image of the

trajectory shows the complete trajectory made by the arm.

networks). Although we chose a relatively small network in this work (since we only needed

a small network to learn the residual errors for our application), larger networks can still be

chosen because the computation time of our method is not critical and can be computed (as

we do here) on its own CPU core through multi-processing. In other words, the update to

our parameters can be performed at any point during the experiment operation and does

not need to be updated at any specific frequency. To show the generality of our method, we

apply our method on two different robot configurations (both in hardware and in their state

localization methods).

8.3.2 Differential Drive Robot

We first demonstrate our methods on a differential drive two-wheeled robot as validation

(before applying our methods on our manipulator robot). Localization for the real robot

is done using April tags on each corner of a 1 by 1 meter square box and on the robot
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itself, with an Intel RealSense D435i RGB-D camera in a bird’s eye view configuration. The

localization provides state estimation of the robot’s position and heading angle in addition

to their corresponding velocities. For simulating our robot, we use the Webots software [95]

which includes system noise and contact dynamics.

To propagate our states (where the residual error is an error on velocity), we use the

following differential drive model:
ẋt

ẏt

Θ̇t

 = R


ct
2

ct
2

st
2

st
2

− 1
L

1
L

ut + δ(yt) (8.12)

where ẋ, ẏ, Θ̇ represent the linear and angular velocity (Θ is yaw heading angle), R is

the radius of the wheel, L is the length from the left to the right wheel, and u ∈ R2×1 is

the control input, wheel angular velocity for the left (ult) and right (urt ) wheel. Lastly, δ(yt)

represents the residual error predicted by the neural network (see Section 8.2.2). For the

differential drive robot, our input to this neural network is zt=[ẋt, ẏt, Θ̇t, u
l
t, u

r
t ]
⊤. Note, that

our residual error is an error on the velocity.

To apply the Kalman gain update as described in equation (8.9), we will use the following

for the differential drive robot:

xref
t =


ẋreft−N |tCẋ

ẏreft−N |tCẏ

Θ̇ref
t−N |tCΘ̇

 , x̂pred
t =


ẋt−N |tCẋ

ẏt−N |tCẏ

Θ̇t−N |tCΘ̇

 (8.13)

where xref
t is received directly from state estimation of the simulator or the real robot. x̂pred

t

are the values received from the UKF equations described in (8.11), and utilizes the dynamic

model or the simulator (with the appropriate residual error(s) depending on the test case)

from equation (8.1). To clarify the notation, and using Real-to-Dyn as the example (8.4),

xref
t would be equivalent to x̄real

t , and x̂pred
t equivalent to x̂real

t .
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Figure 8.5: Differential drive robot results The results of learning the residual error of

our two-wheeled robot is shown here and described further in Section 9.4. In all cases, the

H2 norm converges to a steady-state value near zero, indicating the residual model could

be learned. We do note that for the real robot (Case C-E) we observed very noisy data

due to our hardware (e.g., the wheels would stick and slip on the ground) and error-prone

localization. By using a low-pass filter on the output of our neural network however, we

could generate a more robust convergence even for this difficult setup.

Moreover, we also include a cost term, Cẋ, Cẏ, Cθ̇, on each component of xref
t and xpred

t —

these costs can (if desired by the user) bias learning residual errors of certain components

over others (e.g., if the robot’s reference trajectory is composed of mainly turning in place,

putting a higher cost on Θ̇ may be preferable over other components). In this work, we chose

a cost of one for all components and test cases.
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Figure 8.6: Manipulator arm results. The results of learning the residual error of our

manipulator robot is shown here, and described in more detail in Section 9.4. For the

manipulator arm, we use two trajectories (one consists of 2D motion, i.e., Cases A-C, while

another demonstrates 3D motion, i.e., Case D). The motion is described and visualized in

Fig. 8.4. Overall, the H2 norm decreased for all cases. We also not only show the overall H2

norm but also the H2 norm of each individual component (i.e., ẋ,ẏ, and ż). Unlike the case

for our wheeled robot, the localization of our manipulator arm was more stable (we used

encoders for localization) and did not require any additional filters to our outputs.
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8.3.3 Manipulator Robot

After validating our methods on the mobile wheeled robot, we then demonstrate our methods

on one of the arms of our manipulator robot SCALER [130]. The arm has 6 degrees of

freedom, and is composed of a five-bar linkage combined with a shoulder joint and a spherical

wrist joint. Localization for the real robot is done using joint encoders from the motors

placed at each joint. For simulating our robot, we use the PyBullet physics engine [39].

Taking advantage of the rigid body dynamics constraint solver in Pybullet, we simulate the

manipulator robot with a closed loop kinematics chain. In the simulator, we use the in-built

position control to control the actuators, and set the simulation time step to be 0.01 seconds.

Our objective will be to add the residual error in task space (i.e., on end-effector velocities).

The velocities in task space are then used as part of our estimation of x̂pred
t . As was done in

the implementation of the differential drive robot, we compared x̂pred
t to the reference value

xref
t . Thus, to propagate the states of our manipulator robot, we have:

ẋt

ẏt

żt

 =
FK(θt−1 + θ̇t−1∆T )− FK(θt−1)

∆T
+ δf(yt−1) (8.14)

where FK(θt−1) represents the forward kinematics of our manipulator robot with joint

angles θt ∈ R6×1, joint velocities θ̇t ∈ R6×1, and ẋt, ẏt, and żt are the end-effector velocities

(a Jacobian can also be used in place of our differentiation). The residual error for the

manipulator robot, δ(yt), to be predicted by the neural network with the UKF update (see

Section 8.2.1), will have the following input zt = [θ̇t,1, θ̇t,2, θ̇t,3, θ̇t,4, θ̇t,5, θ̇t,6]
⊤, where θ̇t,1− θ̇t,3

are the shoulder joint velocities, and θ̇t,4 − θ̇t,6 are the spherical joint velocities. Similar to

equation (8.13) for the differential drive robot, we have the following definitions for x̂pred
t

and xref
t (with cost C = 1 for our case):

xref
t =


ẋreft−N |tCẋ

ẏreft−N |tCẏ

żreft−N |tCż

 , x̂pred
t =


ẋt−N |tCẋ

ẏt−N |tCẏ

żt−N |tCż

 (8.15)
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8.4 Experimental Results

Our results are demonstrated for the mobile wheeled robot in Fig. 8.5 and for our manipula-

tor robot in Fig. 8.6. For both robots, we evaluate the results of our method by comparing

the current model (i.e., dynamic or simulator model) with a reference model (simulator model

or the real robot) by calculating the H2 norm for each time step during the training process

(i.e., defined as ||xref
t − xpred

t ||2). Thus, if the H2 norm decreases over time and reaches a

steady-state value (ideally close to zero), we can assume convergence of the UKF update

procedure. In Fig. 8.5, we show that the H2 norm decreases for each test case (in light blue)

which is estimated based on the model values (dark blue) and reference values (orange). A

and B present the Sim-to-Dyn cases, where in A we use a reference trajectory where the

robot spins in place and Θ̇ changes from -2 to 2 rad/s, and in B we use a reference trajectory

that drives the robot back and forth in the x-direction (where ẋ ranges from -0.2 to 0.2 m/s).

The Real-to-Dyn cases are shown in C and D (both used a reference trajectory which only

changes the angular velocity). However, we note that for the real robot we faced several

issues due to localization and hardware. For example, the localization would at times cause

large amplitude spikes when estimating the state, and our wheeled robot was made out of

low-cost material causing sticking and slipping behavior (as seen by the orange graph in case

C). This noise affected the predicted model produced by our UKF update (graph in blue),

which still managed to converge but to a local optima solution (as shown by the offset).

One option is to introduce a low-pass filter, which we applied on the predicted model output

as seen in Case D (we could have also applied the filter on the localization output instead,

however, this would not demonstrate as strong of a case for controller robustness under large

uncertainty). With the filter, we show a convergence without offset. Lastly, we test the

Real-to-Sim case in E (using the filter as done in D) and with a reference trajectory that

imposes a constant angular velocity. Some spikes are observed (likely due to bad localization

values as seen in the graph in orange) but was able to converge within approximately 17

minutes.
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The results from using our manipulator robot are shown in Fig. 8.6. For cases A -

C we used the same reference trajectory as illustrated in the top half or Traj. A of Fig.

8.4 (circular 2D motion and drawing a line through the circle—this trajectory was chosen

as transitioning from a circular to linear motion causes additional residual error, which we

plan to account for with our methods). Note, that the Real-to-Dyn case (or B) produced

more robust results (i.e., less transient errors) compared to the Sim-to-Dyn case (or A). One

explanation is that as formulated in equation (8.4), the residual model error trained in the

Sim-to-Dyn case is used as part of the formulation in equation (8.4). Thus, this additional

knowledge may serve as a good initialization for the learning parameters when training the

next test case. Finally, we demonstrate two Real-to-Sim cases (C and D), where C is trained

on the same reference trajectory as A-B, and D is trained on a reference trajectory shown

in the bottom half or Traj. B of Fig. 8.4 (A circle for the x, and y components and moving

up and down in z). In both of these cases, the H2 norm reaches near zero and converges.

Lastly, we note that convergence typically occurs in approximately 8 minutes of data, and

low-pass filtering on model output was not required for our manipulator robot (due to good

localization values through joint encoders).

8.5 Conclusion

In this paper we demonstrated a method that can learn and predict the residual model er-

rors between dynamic/simulator models and the real robot. Approximately 17 minutes of

experimental data for the wheeled robot and 8 minutes of experimental data for the manip-

ulator robot was required to achieve convergence (i.e., learn the residual model error). Thus,

this method is feasible for employment on hardware and with sparse amounts of data. Al-

though the wheeled robot imposed hardware limitations (i.e., wheels would stick/slide on the

surface), and we required low-pass filtering to generate more robust convergence (although

convergence was received even without filters), this result showed that experimenting with
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filtering techniques as part of the parameter calibration process may be promising to increase

robustness. One limitation of this work is that the computation time does scale exponentially

with an increased neural network. Some analysis in how to reduce the computation time

of the algorithm may be needed, so that we can apply our method for more complex tasks

(i.e., modelling residual error while grasping an object while considering contact) and legged

systems (i.e., quadrupeds and bipeds), and employing larger neural network structures that

consists of more challenging data-types (i.e., vision-based data).
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CHAPTER 9

State Estimation of Legged Robots

So far, we have demonstrated algorithms capable of motion planning for legged, wheeled,

and aerial robots. Shown that an Unscented Kalman filter can be used to calibrate gains of

controllers and planners, and learn residual errors to bridge the real-to-sim gap. However, in

all of these applications, some form of dependence on an accurate state estimation system is

required. Based on previous literature, there is an opportunity to employ the unification of

model-based and learning-based methods towards state estimation as well to correct for the

underlying assumptions and errors associated with using only model-based or only learning-

based algorithms.

Autonomous legged locomotion typically employs sophisticated planners and/or con-

trollers, whose success and stability are directly dependent on an accurate state estimation

system. However, state estimation for legged robots is difficult because dynamic motion

produced by footsteps can cause camera motion blur, making vision data less reliable. Due

to constantly making and breaking contact, along with slipping, kinematic information can

be error prone as well, particularly in environments with large disturbances (i.e., obstacles)

or compliant surfaces. Because legged robots produce dynamic motion which demands high

frequency control, low computational cost then becomes a necessary design requirement for

state estimation systems.

Overall, state estimation methods on legged robots can be subdivided into several design

approaches. For example, methods that employ Kalman filtering on either proprioception

alone [43], combining proprioception with exteroceptive information [37], using optimization
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Figure 9.1: Top left shows the attached body frame (B), and world frame (W). The trunk state x is

in the world frame, while footstep positions p is relative to the body. Ground reaction forces (blue

arrow) from our MPC control policy are given by f , also in world frame. We verify our algorithm,

OptiState, on slippery surfaces (top right), incline (bottom left), and rough terrain (bottom right).

[147] or neural networks [19] on some part of the overall estimation framework, and/or with

the addition of factor graphs [20].

In this work, we take a hybrid approach that combines model-based Kalman filtering,

optimization, and learning methods for state estimation using proprioception and exterocep-

tive information. The motivation of this approach is to facilitate fast nonlinear modeling in

Visual-Inertial Odometry (VIO) estimation while addressing the limitations of pure model-

based methods in capturing error from inaccurate state or measurement models, and achieve

generalization in learning by incorporating domain knowledge.

Specifically, we use a Kalman filter that takes as input joint encoder and IMU measure-

ments, and employ a single-rigid body model to propagate states by reusing the ground

reaction force control outputs from a convex Model Predictive Control (MPC) optimization
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[34]. The output of this Kalman filter, along with the state input history over a receding

time horizon, is then fed as input to a Gated Recurrent Unit neural network (GRU).

Additionally, the GRU uses as input the latent space representation of depth images

through a Vision Transformer (ViT) [57], which helps provide information not only on robot

height, but can infer semantic information about its environment to help the estimator.

After an offline training phase using a loss function which compares its prediction with the

ground truth state output provided by a motion capture system, the goal of the GRU is

to update (or correct) the Kalman filter state output to help alleviate the nonlinearities

that may exist from noisy measurements and inaccuracies of our single-rigid body model.

Using this hybrid approach, we will demonstrate the improved generalization capabilities of

our GRU. Specifically, our GRU leverages the Kalman filter’s output knowledge and image

latent space vector, while remaining robust in predicting state components even in scenarios

where our model-based Kalman filter assumptions break down, such as assuming non-slipping

conditions and small angle approximations in roll and pitch, see Sec. 9.1.3.

9.1 Methods

The rest of the paper is organized as follows: an introduction to our overall framework, called

OptiState, is given in Sec. 9.1.1, the measurements and model we employ in Sec. 9.1.2 and

Sec. 9.1.3 respectively, the Kalman filter equations in Sec. 9.1.4, and the GRU to update

our Kalman filter estimation and uncertainty in its prediction as well as the ViT to encode

the depth image into latent space in Sec. 9.1.5.

9.1.1 Problem Definition

Our state estimation framework estimates the trunk state (robot’s CoM) orientation, posi-

tion, angular, and linear velocity in the world frame. We assume access to a 6-axis IMU,

depth camera, joint encoder position and velocity, and during the training procedure of the
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Figure 9.2: Overall state estimation architecture as described in Sec. 9.1.

GRU, access to the ground truth (i.e., motion capture system). The variables used and their

size are compiled in Table 9.1. Our framework can be summarized in two parts: first, a

Kalman filter is formulated that provides an initial estimate of the robot’s trunk state:

x̂k = KF(Θk, Θ̇k,θ
imu
k ,ωimu

k , nc
k, fk, x̂k−1) (9.1)

whereΘk, Θ̇k are the joint encoder positions and velocities for all feet, θimu
k , ωimu

k are the Eu-

ler orientation (converted from raw quaternion values) and angular velocity from the IMU, nc
k

is the number of feet currently in contact with the ground given by reference contact matrix

C, fk are the ground reaction forces generated by an MPC controller formulated identically

to [34] (model described in Sec. 9.1.3), k is the current time step, and the output of the

filter is x̂k or the trunk state of the robot which includes the following order of components:

heading angle in roll, pitch, and yaw, position in x, y, and z, angular velocity in roll, pitch,

and yaw, and linear velocity in x, y, and z, or x̂k = [θx, θy, θz, rx, ry, rz, ωx, ωy, ωz, vx, vy, vz]
⊤.

Note, because many legged robots [34] use ground reaction force control outputs to sta-
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bilize the robot’s trunk along a given reference trajectory, we simply can reuse these control

outputs within the model of our Kalman filter without re-solving another optimization prob-

lem. A key component of our algorithm is that due to our learning module described in Sec.

9.1.5, we do not explicitly require a contact detection algorithm (i.e., nc
k can be received

from the reference instead of explicitly measuring it), as errors associated with our Kalman

filter are corrected by the second step described by:

Ok = δ(x̂k−N :k,L
depth
k−N :k,pk−N :k, ṗk−N :k,

aimu
k−N :k,α

imu
k−N :k, fk−N :k)

(9.2)

where δ is a function describing the GRU (see Sec. 9.1.5), with the following inputs: x̂k−N :k,

which is the estimated trunk state from (9.1), Ldepth
k−N :k is the latent space of the depth image

from our ViT described in Sec. 9.1.5, pk−N :k and ṗk−N :k are the estimated footstep positions

and velocities (obtained from the joint encoder positions and velocities, as explained in Sec.

9.1.2), aimu and αimu are the IMU linear and angular accelerations respectively (we use

these IMU accelerations because they may indicate instances of slipping or sudden falling),

fk−N :k are the same ground reaction forces described in (9.1), the GRU output is given by

Ok = [x̄k,µk], where x̄k is the updated trunk state and µk is the absolute error between the

GRU prediction and ground truth (xmocap) written as |x̄k−xmocap
k |, and we use N time steps

to indicate the recurrent nature of the GRU. We include ground reaction forces as inputs as

they contain information on the reference trajectory and contact sequence from the MPC

optimization, and depth images to convey robot height and environmental semantics in our

training procedure.

The main motivation for our use of the Kalman filter within our learning algorithm is the

following: (1) The filter offers a reasonable initial estimation of the state, serving as a warm-

start for our network and leverages the received domain knowledge, useful for generalization.

We substantiate this claim through an ablation study in which we exclude the Kalman

filter state as input to the GRU, resulting in a noticeable decline in overall performance

(refer to Section 9.2.1); (2) As we also acquire knowledge of the uncertainty associated with
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the GRU prediction, we can identify estimates that may carry significant errors. In such

instances, users can rely on the Kalman filter estimate, as it remains unaffected by any

learning components.

9.1.2 Measurements

For our Kalman filter described in Sec. 9.1.4, we use IMU measurements that provide the

Euler angles of the trunk (converted from raw quaternion) θimu = [θx, θy, θz]
⊤ (roll, pitch,

and yaw), and corresponding angular velocity ωimu = [ωx, ωy, ωz]
⊤. To measure the linear

velocity of the trunk we first convert joint encoder position (Θ) and velocity (Θ̇) using

the Jacobian (J) into footstep velocities or ṗ = J(Θ)Θ̇. Leg odometry can then measure

linear velocity of the trunk, vodom = [vx, vy, vz]
⊤, and robot height, rodomz , using the following

relationship:

vodom = − 1

nc

n∑
i=1

Rw
b (ṗ

i + ωimu × pi) (foot i in contact) (9.3)

rodomz = − 1

nc

n∑
i=1

piz (foot i in contact) (9.4)

where n is the number of feet, and nc is the number of feet in contact with the ground, and

pz is the height component of the footstep (received from forward kinematics of joint encoder

position), and Rw
b is the rotation matrix from body to world frame. Note, this measurement

assumes no foot slippage. Lastly, for the training module described in Sec. 9.1.5, we will

measure motion capture data symbolized by xmocap, and the raw depth image as Idepth.

9.1.3 Model

The model used for our Kalman filter is based on the single-rigid body that is subject to forces

at a contact patch. While ignoring leg dynamics and assuming small angle approximations

in roll and pitch [34] does simplify the actual robot dynamics, we argue that the decreased
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Table 9.1: Notation of Critical variables. Frames are defined in either world frame (W),

body frame (B), or neither (N/A)

Name Description Size Frame

x Trunk State from System Model R12×1 W

x̂ Trunk State from KF R12×1 W

x̄ Trunk State from GRU R12×1 W

µ Trunk State GRU Prediction Error R12×1 W

θ Trunk Orientation R3×1 W

r Trunk Position R3×1 W

ω Trunk Angular Velocity R3×1 W

v Trunk Linear Velocity R3×1 W

p, ṗ Footstep Position, Velocity R12×1 B

i Foot Number R1 N/A

k Time Step R1 N/A

n, nc # of Feet, # of Feet in contact R1 N/A

Ci Reference Contact of Foot i R1 N/A

f i Ground Reaction Force R3×1 W

Θi, Θ̇
i

Joint Encoder Position, Velocity R3×1 N/A

Ldepth Latent Space of Depth Image R128×1 N/A

Idepth Raw Depth Image R224×224 N/A

Î Inertia Tensor of Trunk R12×12 W

In Identity Matrix Rn×n N/A
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computational cost outweighs this issue. The added error due to the model’s simplification

can also be accounted for by the introduction of our learning module discussed in Sec. 9.1.5.

Simplifying this model’s nonlinear dynamics through approximations [34] and expressing it

in discrete-time form yields:

xk+1 = Dyn(xk, fk) (9.5a)

Dyn(xk, fk) =


θk +∆TRw⊤

b ωk

rk +∆Tvk

ωk +∆T (
∑n

i=1 Î
−1
[
pb
i,k

]
× f ik)

vk +∆T (
∑n

i=1

f ik
m
+ g)

 (9.5b)

where xk is the trunk state of the robot, the ground reaction forces are represented by f ik for

each foot i, m is the total mass of the robot, g is the gravity vector, Î is the inertia tensor

matrix in world coordinates, pb
i,k is the footstep position of foot i in the body frame, ∆T

is the discretized time step, and lastly, [•]× is defined as the skew-symmetric matrix (same

definition as used in [34]). We can rewrite (9.5):

xk+1 = (I12 +Ak∆T )xk + (Bk∆T )fk + g∆T (9.6)

where I12 ∈ R12×12 is an identity matrix (not to be confused notationally with the inertia

tensor matrix Î), fk ∈ R3n×1 is the ground reaction force vector (consisting of the x, y,

and z components of force), stacked vertically for each of the n feet, and g ∈ R12×1 is the

gravity vector, or g = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−9.81]⊤, and Ak ∈ R12×12 and Bk ∈ R12×3n

represent the discrete-time system dynamics:

Ak =


03 03 Rw⊤

b,k 03

03 03 03 I3

03 03 03 03

03 03 03 03

 (9.7)
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Bk =


03 ... 03

03 ... 03

Î−1
[
pb
1,k

]
× ... Î−1

[
pb
n,k

]
×

I3/m ... I3/m

 (9.8)

During operation of the robot, the MPC QP outputs ground reaction forces of the feet in

contact with the ground, which are assigned into joint motor torques. These outputs enable

the robot trunk to follow a reference state over a time horizon [34]. Thus, we can simply use

these forces with the trunk state and footstep positions at time step k in the model described

by (9.5), to predict the trunk state at time step k + 1.

9.1.4 Kalman Filter

From Sections 9.1.2 and 9.1.3, we have the necessary information to use the Kalman filter

equations, which are:

9.1.4.1 Prediction

x̂k|k−1 = Dyn(xk−1|k−1, fk−1|k−1) (9.9)

Pk|k−1 = FkPk−1|k−1F
⊤
k +Q (9.10)

9.1.4.2 Update

ŷk = zk −Hx̂k|k−1 (9.11)

Sk = HPk|k−1H
⊤ +R (9.12)

Kk = Pk|k−1HS−1
k (9.13)

x̂k|k = x̂k|k−1 +Kkŷ (9.14)

Pk|k = (I12 −KkH)Pk|k−1 (9.15)
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where Fk = e(Ak∆T ), zk ∈ R10×1 are the measurements received directly from the heading

angles of the IMU and odometry (see Sec. 9.1.2) written as zk = [θimu
k , rodomk,z ,ωimu

k ,vodom
k ]⊤.

Thus, H ∈ R10×12, selecting the components of x̂k that match the components of zk, or all

components except for rx and ry horizontal trunk position.

9.1.5 Improving Estimation through Learning

A ML approach is employed to consider nonlinearities associated with model and measure-

ment error to better estimate the state of the robot’s trunk (see Fig. 9.3). The approach

includes training a ViT and then using the ViT model to train a GRU offline, before em-

ploying them simultaneously in the testing phase online. We first collect the following data

used for our learning modules (the robot moved randomly in all terrains except for slippery

and inclined surfaces, where it was commanded to move straight): the ground truth state

of the robot’s trunk using a motion capture system or xmocap, joint positions and velocities,

IMU data or aimu and αimu, depth images or Idepth, control outputs of our MPC controller,

or f (see Sec. 9.1.3), and foot contact reference matrix C. We can then make use of (9.1)

and the data collected to calculate the output of the Kalman filter, or x̂, at each time step

during collection. We use an autoencoder to convert the raw depth image Idepth to the latent

space Ldepth through a ViT architecture similar to [57]. By applying various operations such

as rotation, flipping, and zooming on the collected depth images (to facilitate generality of

the images for training), we convert these depth images into grayscale and then input them

to the encoder. The encoder consists of a patch size equal to 16, embedding dimension of

128, depth of 4, multi-layer perception ratio of 4, and number of heads equal to 4. The

decoder consists of these same hyperparameters. The AdamW [88] optimizer is used with

weight decay of 0.1, learning rate of 4e−4, and β1 = 0.90, β2 = 0.95. The Mean Squared

Error (MSE) loss function is used to minimize the error between the original depth image,

and the reconstructed depth image from the output of our decoder. After training, we use

the encoder output to represent the latent space of our depth image (Ldepth).
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We then use (9.2) to predict the state of the robot’s trunk using the GRU (δ), which

requires the Kalman filter estimate of the trunk, latent space of the depth image, odometry

(i.e., p and ṗ), IMU, and ground reaction forces as input, over a receding horizon of N time

steps (we chose N = 10). δ also outputs the error between the predicted state output and

the ground truth, or µ = |x̄ − xmocap|, which is learned during training. In other words,

µ helps provide an indicator of uncertainty of our GRU model. This uncertainty may be

useful in a stochastic control/planning framework, or used as an indicator to employ the

estimate from the Kalman filter instead of the GRU model in certain cases (i.e., x̂ instead

of x̄). The GRU uses a learning rate of 1e−5, number of hidden layers of 4 with each layer

of size 128, batch size of 64, Adam optimizer with weight decay of 1e−5, and with MSE as

our loss function. We also normalize the input and output data from 0 to 1 (using min/max

of dataset) to help stabilize the training. See (B) and (C) in Fig. 9.3 for the training loss

of the autoencoder and GRU respectively.

9.2 Experimental Validation

For data collection, we used six VICON Vero v2.2 cameras running at 330 Hz to estimate

the ground truth trunk state of our SCALER robot [131]. We compare OptiState with VIO

SLAM from the the Intel RealSense T265 camera [56] running at 200 Hz. For collecting

depth images, we use the Intel RealSense D435 camera pointed at a 45 angle to the ground,

running at 60 Hz. Our encoder runs up to 500 Hz, which is well above the frequency of

our camera. Note, our GRU estimator (i.e., up to 1600 Hz) is limited by the frequency

of our motion capture system (i.e., 330 Hz), where lower frequency components are simply

repeated during the training procedure. Evaluation was done on an Intel i7 8850H CPU with

a Quadro 3200 GPU. As the T265 camera is our main baseline, and to compare this baseline

with our architecture, we down-sample our GRU estimation to 200 Hz, with ∆T=0.005 s

when plotting results.
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9.2.1 Results

Overall, we collected 16 different trajectories for training the GRU using a trot gait, where

each trajectory lasted between 1 to 2 minutes (total of ≈ 288,000 data points) and included

flat, slippery, incline, and rough terrain. See Fig. 9.1 and accompanied video for the robot

motion during collection. After training, we evaluate on four trajectories previously unseen

during training (one trajectory per surface). The results of the testing phase are shown in

(A), (B) and (C) of Fig. 9.4. Note that in (A), we display only a portion of the four trajec-

tories and baseline comparison for easier visibility. However, in (B), we computed the Root

Mean Squared Error (RMSE) between the ground truth and the estimation algorithm over

the entire evaluation testing set, which totals 72,000 data points at ∆T=0.005 s. In (A), we

see that both OptiState and VIO SLAM performed well, though VIO SLAM struggled more

with predicting linear velocity and, notably, the robot’s z height which becomes apparent

during the incline and especially on rough terrain. This may be due to the fact that our

rough terrain contains compliant surfaces, which can easily disrupt estimation systems and

produce drift particularly in z height.

In (B), we compared our estimation algorithm, OptiState, under three different condi-

tions: one without the Kalman filter state x̂ as input to the GRU, another without the vision

component or Ldepth as input to the GRU, and using the Kalman filter alone as described in

Sec. 9.1.4. We also included a baseline comparison with the VIO SLAM method (T265). In

(C), we compared RMSE percent improvements over our VIO SLAM baseline for each state

component, with the average percentage across all state components shown in the right-most

column. OptiState’s percent improvement was generally higher by not excluding the Kalman

filter state or depth image input, except for ẏ, confirming the importance of including these

inputs into our GRU. OptiState outperformed both the Kalman filter and VIO SLAM for

all components. The Kalman filter had the poorest performance at average RMSE improve-

ment of -52%, while OptiState performed the best at 65%. The Kalman filter’s errors may

be due to slippery and rough terrain conditions, which can violate the model’s assumptions

156



(see Sec. 9.1.3). However, the Kalman filter showed less error in velocities. Note that during

evaluation, the trace of P (covariance matrix) of the Kalman filter never diverged. The

deviation between trace values throughout the entire testing trajectories remained within

a small range, always less than 1e−5. In Fig. 9.5, we show one example on how µ, which

predicts the absolute error between the GRU estimate and the ground truth, can highlight

potential prediction errors. It correctly predicts higher uncertainty when the GRU estimate

is less accurate.

9.3 Limitations and Conclusion

In this work, we demonstrated state estimation of legged robots using joint encoder infor-

mation, IMU measurements, a ViT autoencoder, and outputs of a Kalman filter that reuses

the control forces from MPC in its system model, wrapped within a GRU framework. In

addition to predicting the trunk state of the robot, we also showed that we can predict the

uncertainty or error of the GRU’s prediction. Although OptiState showed improved per-

formance for all states compared to VIO SLAM, there are several limitations to using our

approach. First, although the GRU can reach up to 1600 Hz, we must note that the quality

and frequency of our estimation is predicated on the ground truth setup (i.e., in our setup, up

to 330 Hz). Because we employed a motion capture system for ground truth with a limited

training space, accurate prediction of x and y world coordinate positions is challenging when

the robot goes beyond this space—although velocity components can be predicted normally.

In these cases, the user may integrate the velocity components of the GRU predictions to

get a more accurate position, although accumulation of drift would occur. Overall, we have

created a robust state estimation system for legged robots using a hybrid ML-Kalman filter

approach, and emphasize ground truth motion capture collection as a key area of future

improvement.
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Figure 9.3: Transformer and Gated Recurrent Unit (GRU) network architecture. From (A), model

1 is the transformer model, model 2 is the GRU (δ) that predicts the robot’s trunk state and

uncertainty of its own prediction. Input/output state and hidden layer sizes indicated by the

numbers. Training loss of model 1 shown in (B) and for model 2 in (C). MSE is the loss function

(see Sec. 9.1.5).
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Figure 9.4: Results during the online testing phase, as described in Sec. 9.2.1. In (A) we show

the state estimation for all state components from OptiState, VIO SLAM, and the ground truth.

We show 4 distinct trajectories connected by solid lines to symbolize the various terrain under

evaluation, such as flat, slippery, incline, and rough terrain. The RMSE results over all 4 trajectories

and per state component are shown in (B), and includes OptiState without the Kalman filter input,

or vision input, and the Kalman filter alone. Lastly, we show the percentage improvement of RMSE

over the VIO SLAM baseline for each state in (C) per estimation algorithm shown in the first

column.
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CHAPTER 10

Current and Future Work, and Conclusion

10.1 Modification of Auto-Tuning

Although the auto-tuning framework can facilitate tuning controller/planning parameters,

once we have too many parameters to optimize over, the computation can get significant.

Additionally, the covariance matrices Q, and R associated with the UKF must be properly

initialized for robust and converging performance. For example, the scale of these matrices

can directly determine the aggressiveness of the parameter calibration, and also the relative

selection of which parameters to prioritize in the update. If not initialized correctly, the

Auto-tuner may diverge. Knowing the most optimal initialization, or perhaps even changing

these parameters online depending on the current situation, may be an interesting avenue

for future work.

10.2 Resolving Model Complexity with Reinforcement Learning

So far, in this dissertation, we mainly used model-based methods for control, such as model

predictive control. In the majority of cases, this perfectly suffice for most robot types.

However, in my experience, there can be cases where it becomes very challenging to employ

model-based control on increasingly difficult dynamical systems. For instance, we developed

a new robot called SCALER-B, which is a modification of our climbing robot SCALER [131],

and is now capable of not only climbing tasks, but locomotion, manipulation, and grasping

through its multi-modal design. This multi-modality enables the robot to go into biped mode,
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where it has two larger forearms for manipulation and grasping tasks. Additionally, the robot

can go into quadruped mode, being able to crawl and even peforming rolling motion (see Fig.

10.1). Although SCALER-B has such multi-modal capability, it is not inherently designed

for only say, bipedal motion. Thus, the dynamics of this robot is incredibly challenging to

model, and I found that model-based control such as MPC is difficult to employ on this

particular system. Due to this, using reinforcement learning is a viable potential technology

for this system. As some simulators such as Isaac Gym and more recently Mujoco with MJX

are becoming capable of training using a GPU with parallel environments, several works [96,

65] have shown enormous success in quickly training legged robot locomotion to overcome

challenging terrain. These algorithms can be applied zero-shot through sufficient domain

randomization. I now present a typical set of rewards used to do both planning and control

of our SCALER-B robot for bipedal locomotion:

10.2.1 Reward Equations

To design an effective reward function for reinforcement learning, we need to consider various

aspects of the agent’s behavior. Below are the reward equations for different aspects of

the agent’s performance, including penalizing undesired behaviors and rewarding desired

outcomes.

10.2.1.1 Penalize Velocity in z

Rvz = −αv |vz|

where vz is the velocity in the z-direction and αv is a penalty coefficient.

10.2.1.2 Penalize Angular Velocity in x-y

Rωxy = −αω (|ωx|+ |ωy|)
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Figure 10.1: SCALER-B. We show the hardware and motion capabilities of our SCALER-

B robot, capable of (a) quadruped mode, (b) biped mode, (c) rolling, (d) climbing vertically,

(e) pull-up, and (f) ceiling.

where ωx and ωy are the angular velocities around the x- and y-axes, respectively, and αω is

a penalty coefficient.

10.2.1.3 Reward Tracking Orientation

Rθ = βθ (1− ∥θdesired − θ∥)

where θdesired is the desired orientation, θ is the current orientation, and βθ is a reward

coefficient.
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10.2.1.4 Penalize Torques

Rτ = −ατ

n∑
i=1

|τi|

where τi are the torques applied at each joint, and ατ is a penalty coefficient.

10.2.1.5 Penalize Change in Actions

R∆a = −α∆a

n∑
i=1

|ai,t − ai,t−1|

where ai,t is the action at time step t for joint i, ai,t−1 is the action at the previous time step,

and α∆a is a penalty coefficient.

10.2.1.6 Reward Tracking Linear Velocity

Rvlinear = βvlinear (1− ∥vdesired − vlinear∥)

where vdesired is the desired linear velocity, vlinear is the current linear velocity, and βvlinear is

a reward coefficient.

10.2.1.7 Reward Tracking Angular Velocity

Rvangular = βvangular (1− ∥ωdesired − ω∥)

where ωdesired is the desired angular velocity, ω is the current angular velocity, and βvangular

is a reward coefficient.

10.2.1.8 Reward Feet Air-Time

Rair-time = βair-time

n∑
i=1

Ti,air

where Ti,air is the air time for foot i, and βair-time is a reward coefficient.
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10.2.1.9 Reward Stand Still

Rstand-still = βstand-stillI{vlinear = 0}

where I is the indicator function that returns 1 when vlinear = 0 and 0 otherwise, and βstand-still

is a reward coefficient.

10.2.1.10 Penalize Foot Slip

Rfoot-slip = −αfoot-slip

n∑
i=1

|vi,foot|

where vi,foot is the slipping velocity of foot i, and αfoot-slip is a penalty coefficient.

10.2.1.11 Total Reward

The total reward Rtotal is the sum of all individual rewards and penalties:

Rtotal = Rvz +Rωxy +Rθ +Rτ +R∆a +Rvlinear +Rvangular +Rair-time +Rstand-still +Rfoot-slip

Using Mujoco [135] but with the capability to run in parallel environments on a single

GPU (Mujoco with MJX), we show that the agent is capable of learning both planning and

control while following a desired joystick velocity command, see Fig. 10.2 and Fig. 10.3.

Training time was approximately 10 minutes using PPO, which results in 300, 000 timesteps.

This result is quite remarkable considering the difficulty of applying MPC to such a complex

dynamical system. With reinforcement learning however, we were able to demonstrate a

working result, as the motion can be learned through experience and using the model based

on STL files with more accurate dynamics.
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Figure 10.2: Average Reward Results. We show how the average rewards during training

converges.

Figure 10.3: Mujoco with MJX simulator. We show a disturbance being applied while

the robot is doing locomotion, as represented by the pink-red arrow. The green-blue arrows

signify the ground reaction forces.
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10.3 Rise of Large Language and Vision Models

Finally, I conclude this dissertation with some comments on Large Language Models (LLM)

and Vision Language Models (VLM). With the rise of GPT models, it is becoming indis-

putable that they are having a large impact on our daily lives – and this includes robotics

[86, 128]. How far this technology will go in affecting robotic research is currently unknown,

although in the next decade from the publication of this thesis, we may soon have an answer

or at least a better idea of it. Nevertheless I can only postulate, in the reference frame of the

contents of this thesis, how VLM and LLM can potentially affect the Active SLAM field.

10.3.0.1 Enhanced Perception and Understanding

VLMs integrate visual and language processing, improving the robot’s ability to interpret

complex environments. This integration leads to better recognition and categorization of

objects and scenes, resulting in more detailed maps.

10.3.0.2 Semantic Mapping

VLMs enable the inclusion of semantic information in the maps created by Active SLAM.

Instead of producing purely geometric maps, robots can generate semantic maps that provide

contextual details about objects and their relationships. For instance, a VLM can help a

robot distinguish between a chair, a table, and a person, thereby enriching the spatial data

with meaningful context. Critically, VLM can make this decision based on a very general

model - unlike typical object detection system which would require pre-trained models on

known objects.
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10.3.0.3 Improved Decision-Making

In Active SLAM, the robot must decide where to move next to enhance its map and localiza-

tion. VLMs can improve this decision-making process by providing a deeper understanding

of the environmental context and identifying the most informative areas for exploration,

leading to more efficient exploration strategies. For example, it is very difficult to train a

basic neural network model to actually understand that a red stop sign means the vehicle

needs to stop, unless it is specifically programmed to do so and trained on images of stop

signs. A LLM in combination with a VLM can first recongize the stop sign, and then use its

contextual understanding to know the vehicle needs to stop.

10.3.0.4 Natural Language Interaction

VLMs facilitate natural language understanding and generation, enabling intuitive human-

robot interaction. In Active SLAM, this capability can be used for issuing high-level com-

mands, requesting clarifications, or giving real-time updates. For example, a user might

instruct the robot to “map the kitchen” or “avoid the crowded area,” and the robot can

comprehend and act on these instructions.

10.3.0.5 Cross-Modal Integration

By combining visual and linguistic data, VLMs offer richer contextual interpretations of the

environment. In Active SLAM, this integration helps the robot understand annotations,

signs, or instructions within the environment, adding valuable layers of information that

purely visual or language-based models might overlook.
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10.3.0.6 Learning from Language

VLMs can leverage large datasets of visual and textual information for pre-deployment learn-

ing about different environments and objects. This pre-training provides the robot with

extensive knowledge, enhancing initial performance and reducing the training time required

in new environments.

10.3.0.7 Context-Aware Planning

The contextual awareness provided by VLMs can improve planning and navigation strategies

in Active SLAM. For instance, understanding that a kitchen is likely to contain obstacles

such as tables and chairs can help the robot plan more efficient paths.

10.3.0.8 Challenges and Considerations

While VLMs offer numerous advantages for Active SLAM, several challenges need to be

addressed:

• Computational Complexity: Integrating VLMs into SLAM systems requires sig-

nificant computational resources, which may be challenging for real-time applications.

• Robustness and Reliability: Ensuring reliable performance of VLMs in diverse and

dynamic real-world environments is crucial for practical deployment.

VLMs have the potential to significantly enhance Active SLAM by providing richer se-

mantic understanding, improving decision-making, enabling natural language interaction,

and offering context-aware planning. However, these benefits come with challenges that

must be carefully managed. In particular, the question of how to make VLM or LLM ro-

bust, and repeatable is an open problem. Somehow framing these algorithms in a control

context may be an interesting avenue for future research.
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10.3.0.9 Example of Implementing a Simple VLM-based Motion Planner

I provide one example for how a VLM can be used for motion planning. As seen in Fig.

10.4, I first use an RGB image and perform segmentation through typical computer vision

algorithms. For each segmentation (as seen by the various colors in the image), I place a

single marker at the center position of the segmented part. Around this center, I place a

few markers around it, evenly spaced (unless the marker reaches outside the image bound,

in which case we remove this marker from the image). The markers can be seen in the

image below the segmented image on the right corner of the figure. I then use GPT4-Vision

to query the image with markers. Besides an input image, we must also provide a general

prompt alongside this image. I use the following as an input prompt: You are a walking robot

with an RGB-D camera attached on the head. You are navigating an environment and want

to avoid colliding into obstacles, and are searching for open areas. You cannot climb, fly, or

walk over obstacles. You can only walk on flat surfaces, and want to avoid high areas. It is

absolutely critical you do not collide in nearby obstacles and prefer walking on floors away

from obstacles. I provide an image, where on the left side is a depth image, and on the right

side is a rgb image. Both images are based on the exact same scene. Please note that seeing

black means the depth information for that black pixel is uncertain, so the pixel location may

be far away or close, try to avoid making decisions based on black pixels. Try to mainly

make decision on rgb, but still use depth to try and understand how far or close objects are.

”You will pick the next appropriate joystick command for the robot which are the following:

Left, Right, Backward, Forward, Stop, Turn Left, Turn Right. You MUST select only among

those commands, and your output is in the same words as those commands. After you pick

the command, the robot will spend about 5 seconds for a linear velocity command (which is

Left, Right, Backward, Forward), and 2 seconds for angular velocity command (Turn Left, or

Turn Right). Ideally, you want to avoid turning if possible and you may decide to stop, but

do not idle too long while just stopping unless in front of box, but make the turn if needed.

The linear velocity is at most 0.3 m/s, and angular velocity is 1.5 rad/s.
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Figure 10.4: VLM for Motion Planning

Additionally, to standardize the output of the GPT4-Vision, we also include the desired

output prompt format as an example:

outputPrompt = {

"selected_keypoint": "A",

"selected_command": "Forward",

"reasoning": "Empty space in front, safe to go forward."

}

With such a simple setup and query, I can show motion planning for our robot, where

it can do some form of obstacle avoidance and intelligent decision making. I note that the

reason for using markers as a setup for motion planning, is that currently VLM are most

adapt at multiple-choice questions [86]. This shows the potential these VLM models have

in the near future. Of course, as this is just a quick and simple example, the objective in

future work is to include some forms of safety to this architecture, which may still include

some form of obstacle avoidance algorithm (to ensure collision do not occur) or safety, in
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cases the VLM makes the wrong choice. I believe that knowledge in traditional controls

and optimization can still be useful to provide stronger metrics of guarantees to this general

models.

10.4 Conclusion

In this dissertation, I started with a simple energy-efficient motion planner, which required

no optimization or machine learning – this was done to demonstrate how reactivity can

be achieved through purely analytical means. When including uncertainty calculation or

more complex scenarios, I demonstrated how a recurrent neural network can be used to

quickly propagate and predict uncertainty covariances which can in turn be used within a

Stochastic Model Predictive Control format. This allows us to use traditional optimization

algorithms while reducing computational complexity but still show robustness. I then show

that we need algorithms that can automatically calibrate various components used in Active

SLAM, such as MPC or Kalman filters, as it is challenging to manually tune all of these

components individually. One option is presented through the use of a UKF approach. A

state estimation system that employs a hybrid model and learning-based approach is then

shown, showcasing the effectiveness of including dynamic models within a machine learning

context. Finally, I provide an example of using VLM for motion planning, to demonstrate the

potential effectiveness for a robot to truly understand its environment and make autonomous

and smart decision-making. I believe that research in model-based control and optimization

along with VLM (e.g., formulating a VLM within an optimization or control context) to be

the key for safe but truly autonomous behavior in robotic systems.
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