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Temporal Improvements in COVID-19 Outcomes for Hospitalized
Adults: A Post Hoc Observational Study of Remdesivir Group
Participants in the Adaptive COVID-19 Treatment Trial
Gail E. Potter, PhD; Tyler Bonnett, MS; Kevin Rubenstein, MS; David A. Lindholm, MD; Rekha R. Rapaka, MD, PhD;
Sarah B. Doernberg, MD, MAS; David C. Lye, MBBS; Richard A. Mularski, MD, MSHS, MCR; Noreen A. Hynes, MD, MPH;
Susan Kline, MD, MPH; Catharine I. Paules, MD; Cameron R. Wolfe, MBBS, MPH; Maria G. Frank, MD;
Nadine G. Rouphael, MD, MSc; Gregory A. Deye, MD; Daniel A. Sweeney, MD; Rhonda E. Colombo, MD, MHS;
Richard T. Davey, Jr., MD; Aneesh K. Mehta, MD; Jennifer A. Whitaker, MD, MS; Jose G. Castro, MD;
Alpesh N. Amin, MD, MBA; Christopher J. Colombo, MD, MA; Corri B. Levine, PhD, MS, MPH; Mamta K. Jain, MD, MPH;
Ryan C. Maves, MD; Vincent C. Marconi, MD; Robert Grossberg, MD; Sameh Hozayen, MD, MSc; Timothy H. Burgess, MD, MPH;
Robert L. Atmar, MD; Anuradha Ganesan, MBBS, MPH; Carlos A. Gomez, MD; Constance A. Benson, MD;
Diego Lopez de Castilla, MD, MPH; Neera Ahuja, MD; Sarah L. George, MD; Seema U. Nayak, MD; Stuart H. Cohen, MD;
Tahaniyat Lalani, MBBS, MHS; William R. Short, MD, MPH; Nathaniel Erdmann, MD, PhD; Kay M. Tomashek, MD, MPH, DTM*;
and Pablo Tebas, MD*

Background: The COVID-19 standard of care (SOC) evolved
rapidly during 2020 and 2021, but its cumulative effect over
time is unclear.

Objective: To evaluate whether recovery and mortality
improved as SOC evolved, using data from ACTT (Adaptive
COVID-19 Treatment Trial).

Design: ACTT is a series of phase 3, randomized, double-blind,
placebo-controlled trials that evaluated COVID-19 therapeutics
from February 2020 through May 2021. ACTT-1 compared
remdesivir plus SOC to placebo plus SOC, and in ACTT-2 and
ACTT-3, remdesivir plus SOC was the control group. This post
hoc analysis compared recovery and mortality between these
comparable sequential cohorts of patients who received remdesi-
vir plus SOC, adjusting for baseline characteristics with propen-
sity score weighting. The analysis was repeated for participants
in ACTT-3 and ACTT-4 who received remdesivir plus dexametha-
sone plus SOC. Trends in SOC that could explain outcome
improvements were analyzed. (ClinicalTrials.gov: NCT04280705
[ACTT-1], NCT04401579 [ACTT-2], NCT04492475 [ACTT-3], and
NCT04640168 [ACTT-4])

Setting: 94 hospitals in 10 countries (86% U.S. participants).

Participants: Adults hospitalized with COVID-19.

Intervention: SOC.

Measurements: 28-day mortality and recovery.

Results: Although outcomes were better in ACTT-2 than in
ACTT-1, adjusted hazard ratios (HRs) were close to 1 (HR for
recovery, 1.04 [95% CI, 0.92 to 1.17]; HR for mortality, 0.90
[CI, 0.56 to 1.40]). Comparable patients were less likely to
be intubated in ACTT-2 than in ACTT-1 (odds ratio, 0.75 [CI,
0.53 to 0.97]), and hydroxychloroquine use decreased.
Outcomes improved from ACTT-2 to ACTT-3 (HR for recov-
ery, 1.43 [CI, 1.24 to 1.64]; HR for mortality, 0.45 [CI, 0.21 to
0.97]). Potential explanatory factors (SOC trends, case
surges, and variant trends) were similar between ACTT-2
and ACTT-3, except for increased dexamethasone use (11%
to 77%). Outcomes were similar in ACTT-3 and ACTT-4.
Antibiotic use decreased gradually across all stages.

Limitation: Unmeasured confounding.

Conclusion: Changes in patient composition explained
improved outcomes from ACTT-1 to ACTT-2 but not from
ACTT-2 to ACTT-3, suggesting improved SOC. These results
support excluding nonconcurrent controls from analysis of plat-
form trials in rapidly changing therapeutic areas.

Primary Funding Source: National Institute of Allergy and
Infectious Diseases.

Ann Intern Med. doi:10.7326/M22-2116               Annals.org 
For author, article, and disclosure information, see end of text.
This article was published at Annals.org on 29 November 2022.
* Drs. Tomashek and Tebas contributed equally to this work.

T he COVID-19 pandemic has caused more than 6 mil-
lion deaths and half a billion cases globally (1). The

standard of care (SOC) for patients hospitalized with
COVID-19 has evolved rapidly during the pandemic and
includes changes in oxygenation practices; airway man-
agement; use of prone positioning; anticoagulation
practices; and use of antivirals, corticosteroids, and

other immunomodulators (2–7). Some of these interven-
tions were implemented after efficacy was determined
by large clinical trials, whereas others were based on
results of observational cohort studies or extrapolation
from other disease states. These interventions have
affected the morbidity and mortality of patients with
COVID-19, but it is difficult to quantify their cumulative
effect as the pandemic progresses.

In the United States, the in-hospital mortality rate for
patients with COVID-19 peaked in March and April 2020,
then decreased from approximately 20% to 10% by June
2020 (8). Recovery rates also improved during this
period (9, 10). In-hospital mortality is associated with
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patient characteristics and hospital factors (10, 11),
but adjustment for these factors explains only some of
the decrease in the mortality rate over time (10–13).
Trends in COVID-19 SOC, including medication use
and oxygen supplementation, may further explain the
reduction in mortality rates (9).

We analyzed clinical outcome data from 3 sequential
cohorts of hospitalized patients in the first 3 stages of
ACTT (Adaptive COVID-19 Treatment Trial), which was
conducted in multiple countries, with 86% of the partici-
pants from the United States (Supplement Table 1, avail-
able at Annals.org) (14–17). The first 3 stages of ACTT
each included a remdesivir group; it was the treatment
group in ACTT-1 and the control group in ACTT-2 and
ACTT-3 (Figure 1). Instead of comparing treatment
groups within each stage, we analyzed the 3 remdesivir-
only groups from these 3 stages. We compared recovery

and mortality between remdesivir cohorts, using trial
stage as a proxy for SOC given during that period.
Propensity scores were used to balance cohorts on
baseline characteristics.

ACTT-4 did not include a remdesivir monotherapy
group. A secondary analysis applied the same methods to
compare outcomes between participants in the remdesivir-
plus-dexamethasone group in ACTT-4 versus remdesivir
recipients in ACTT-3 who also received dexamethasone.

METHODS

Data
The ACTT trials were sequential, double-blind, random-

ized, placebo-controlled trials that evaluated novel investiga-
tional therapeutics for the treatment of adults hospitalized
with COVID-19. Figure 1 shows enrollment and follow-up

Figure 1. U.S. hospitalization rates (8) and treatment milestones (A) and time trends of concomitant medication use (B) in ACTT-1,
ACTT-2, and ACTT-3.
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periods for ACTT-1, ACTT-2, and ACTT-3, whose con-
secutive remdesivir groups make up our primary analy-
sis population. These stages enrolled approximately
500 people per group (Supplement Figure 1, available
at Annals.org) and completed follow-up before COVID-
19 vaccination began. ACTT-4 compared remdesivir
plus baricitinib to remdesivir plus dexamethasone and
was included in a secondary analysis (Supplement Figure 2,
available at Annals.org). The ACTT protocol is available at
Annals.org.

Data collected on demographic characteristics, labo-
ratory parameters, baseline disease severity, comorbid-
ities, and concomitant medication use were similar for the
4 stages of ACTT, with additional data added as under-
standing of COVID-19 evolved and based on the interven-
tions studied in each stage. For example, beginning with
ACTT-2, additional data were collected on baseline risk
factors, such as history of deep venous thrombosis, pul-
monary embolism, and coagulopathy, and more specific
data were collected on dexamethasone use for COVID-19
before enrollment. Clinical assessments were performed
daily from day 1 through day 29 while patients were
hospitalized and at follow-up visits on days 15, 22,
and 29 for those who were discharged from the hospital.
Disease severity was measured with an 8-category ordinal
scale (Supplement Table 2, available at Annals.org) and
the National Early Warning Score (NEWS) (Supplement
Table 3, available at Annals.org) (18). Categories of ordi-
nal scale for hospitalized patients are based on oxygen
delivery method (Figure 2), and a person's value on the
scale is their “ordinal score” (OS). Our outcomes are 28-day
mortality and 28-day recovery, defined as the day of dis-
charge or the first day of continued hospitalization without
a requirement for supplemental oxygen ormedical care.

Statistical Analysis
Our primary analysis included participants assigned to

receive remdesivir plus SOC in ACTT-1, ACTT-2, and ACTT-3
(Figure 1). We used Cox regression to estimate recovery and
mortality rates, with trial stage as a categorical predictor vari-
able representing SOC given during that stage. Because we
analyzed only remdesivir group participants, the data are
effectively observational, as the randomization does not
relate to our scientific question. Therefore, we analyzed the
“as-treated” population and used propensity score weight-
ing to balance baseline characteristics between cohorts. We
followed STROBE (Strengthening the Reporting of Observa-
tional Studies in Epidemiology) reporting guidelines for
observational cohort studies (19). Although ACTT-4 did not
include a remdesivir monotherapy group, a secondary anal-
ysis compared outcomes between those in the remdesivir-
plus-dexamethasone group in ACTT-4 with the 77% of
remdesivir recipients in ACTT-3 who also received dexa-
methasone as part of SOC.

The platform trial was designed to keep inclusion crite-
ria relatively constant across stages, but exclusion criteria
could be modified for study product safety considerations,
including changes to laboratory thresholds and concomitant
medication use. Modifications to stage-specific exclusion
criteria were minor, and the proportions of patients who
were excluded due to stage-specific exclusion criteria

were 1.9% for ACTT-1, 1.6% for ACTT-2, 1.5% for ACTT-3,
and 2.7% for ACTT-4 (Supplement Tables 4 and 5, avail-
able at Annals.org). Modifications to inclusion criteria
were minor except for those relating to baseline OS
(Supplement Table 5): ACTT-3 excluded patients with a
baseline OS of 7 and also excluded those with a baseline
OS of 6 after a mid-trial review by a data safety monitoring
board (Figure 2). ACTT-4 included only participants with a
baseline OS of 5 or 6. Causal inference with propensity
scores requires all participants to have a nonzero proba-
bility of falling into any cohort (20). To ensure this, we
omitted participants with a baseline OS of 7 when com-
paring ACTT-2 with ACTT-3 and included only those with
an OS of 5 or 6 when comparing ACTT-3 with ACTT-4.
We also excluded participants with chronic liver disease
(an exclusion criterion for ACTT-3) from comparisons
involving ACTT-3. Sensitivity analyses were planned to
enforce identical laboratory exclusion criteria across stages
(Supplement Table 5) and to include only sites participat-
ing in both stages for a given comparison.

Covariates were selected for inclusion in the propen-
sity score model on the basis of clinical judgment and
are summarized in Table 1. As measures of baseline dis-
ease severity, we included the NEWS and a modified 4C
Mortality Score, a validated score that ranges from 0 to
21 and is based on age, sex, number of comorbidities,
respiratory rate, peripheral oxygen saturation, level of
consciousness, urea level, and C-reactive protein (CRP)
level (Supplement Tables 3 and 6, available at Annals.
org) (21–30). Because urea level was not recorded sys-
tematically in ACTT, our modified scale omits the urea
point contributions (+1 for urea level of 7 to 14 mmol/L
and +3 for urea level >14 mmol/L), but we included esti-
mated glomerular filtration rate (eGFR) as a separate
variable in the propensity score model to account for dif-
ferences in kidney function. Although most covariates in
the propensity score model were missing few data (0% to
2% of participants [Supplement Table 7, available at
Annals.org]), CRP level wasmissing for 10% of participants
(21% in ACTT-1, 3% in ACTT-2, 3% in ACTT-3, and 2% in
ACTT-4). Multiple imputation was performed for missing
CRP values. The Supplement (available at Annals.org) pro-
vides further details on the statistical analysis.

Evolving clinical understanding and external epide-
miologic data suggest that intubation practices became
more conservative between ACTT-1 and ACTT-2 (31, 32),
but precise intubation protocols were not documented
for ACTT sites. To estimate a change in intubation practice
between ACTT-1 and ACTT-2, we fit a logistic regression
model with baseline intubation as the outcome and trial
stage as the predictor. The analysis included only patients
with a baseline OS of 6 or 7 because we believe that few
participants with an OS of 4 or 5 in ACTT-2 would have
been intubated at baseline if they had instead contracted
COVID-19 during ACTT-1 (Supplement Figure 3, avail-
able at Annals.org). Propensity scores were used to adjust
for baseline characteristics. We modeled baseline intuba-
tions rather than time to intubation to prevent confound-
ing from temporal improvements in SOC causing fewer
patients to progress to severe illness in ACTT-2 than in
ACTT-1. A small amount of confounding could have been
introduced by care received between hospitalization and
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Figure 2.Oxygen delivery system/OS by day and phase (ACTT-1, ACTT-2, and ACTT-3) for enrolled remdesivir recipients.
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enrollment, so a sensitivity analysis repeated the model
for only those enrolled within 2 days of hospitalization.

Institutional Review Board Approval
The trial protocol was approved by the institutional

review board at each site or by a centralized institutional
review board as appropriate.

Role of the Funding Source
The ACTT protocols were designed and written by

the ACTT investigators and the study sponsor (National
Institute of Allergy and Infectious Diseases [NIAID]), with
input from themanufacturers of remdesivir (Gilead), bariciti-
nib (Eli Lilly), and interferon-b1a (EMD Serono). Principal
investigators and site staff gathered the data, which were

Table 1. Baseline Characteristics of Analyzed Remdesivir Recipients in ACTT-1 and ACTT-2

Characteristic Unweighted Propensity Score–Weighted

ACTT-1 (n = 492) ACTT-2 (n = 496) ACTT-1 (n = 493) ACTT-2 (n = 497)

Demographic characteristics
Male sex, n (%) 321 (65) 319 (64) 319 (65) 322 (65)
Race, n (%)

American Indian or Alaska Native 3 (1) 8 (2) 4 (1) 8 (2)
Asian 77 (16) 50 (10) 63 (13) 63 (13)
Black or African American 99 (20) 75 (15) 85 (17) 86 (17)
Multiple 2 (0) 0 (0) 3 (1) 0 (0)
Native Hawaiian or other Pacific Islander 2 (0) 7 (1) 2 (0) 7 (1)
Unknown 62 (13) 120 (24) 91 (18) 87 (17)
White 247 (50) 236 (48) 244 (49) 246 (50)

Ethnicity, n (%)
Hispanic or Latino 126 (26) 257 (52) 191 (39) 193 (39)
Not Hispanic or Latino 345 (70) 229 (46) 286 (58) 288 (58)
Not reported/unknown 21 (4) 10 (2) 16 (3) 16 (3)

Mean age (SD), y 58.4 (14.7) 55.4 (15.7) 57.5 (29.6) 57.6 (38.6)

Baseline disease severity and risk factors
Ordinal score, n (%)

4 (hospitalized and not requiring supplemental oxygen) 69 (14) 68 (14) 77 (16) 64 (13)
5 (hospitalized and requiring supplemental oxygen) 216 (44) 266 (54) 233 (47) 248 (50)
6 (hospitalized and requiring NIPPV or high-flow oxygen) 81 (16) 109 (22) 79 (16) 110 (22)
7 (hospitalized and receiving invasive mechanical ventilation or ECMO) 126 (26) 53 (11) 104 (21) 75 (15)

Mean NEWS (SD) 5.6 (3.2) 5.4 (2.8) 5.5 (3.8) 5.5 (4.8)
Mean symptom duration before enrollment (SD), d 9.6 (5.7) 8.6 (4.6) 9.2 (5.9) 9.2 (9.2)
Mean symptom duration before hospitalization (SD), d 6.9 (5.1) 6.8 (4.4) 6.7 (5.5) 6.7 (6.3)
Mean comorbidities (SD), n* 1.9 (1.5) 1.8 (1.5) 1.9 (1.9) 1.9 (1.8)
Mean 4C Mortality Score (SD) 8.9 (3.2) 8.1 (3.2) 8.5 (4.6) 8.5 (6.8)

Vital signs
Mean heart rate (SD), beats/min 84.7 (15.5) 83.8 (14.6) 84.1 (39.9) 84.1 (46.2)
Mean oxygen saturation (SD), % 93.7 (3.3) 94.2 (3) 94.0 (45) 94.0 (44.4)
Mean respiratory rate (SD), breaths/min 23.6 (5.7) 23 (5.7) 23.3 (11.3) 23.3 (14.4)
Mean systolic blood pressure (SD), mm Hg 122.7 (19.2) 123.9 (19.1) 123.3 (62.2) 123.3 (61.2)
Mean temperature (SD), �C 37.2 (0.8) 37.2 (0.8) 37.2 (17) 37.2 (18)

Geometric mean laboratory parameters (IQR)†
Alanine aminotransferase, U/L 33.6 (20–53.2) 35.3 (23–55) 34.0 (21–53) 34.0 (22–54)
Aspartate aminotransferase, U/L 42.4 (29–59) 41.8 (29–57) 41.7 (29–59) 41.7 (29–57)
Bilirubin

μmol/L 11.2 (6.8–13.7) 9.3 (6.8–12.7) 10.0 (6.8–12.0) 10.1 (6.8–13.7)
mg/dL 0.7 (0.4–0.8) 0.5 (0.4–0.7) 0.6 (0.4–0.7) 0.6 (0.4–0.8)

C-reactive protein, mg/L 103.3 (70.9–195.9) 100.1 (62.6–190) 101.6 (71.7–181.1) 101.8 (64.1–195)
eGFR, mL/min/1.73 m2 88.6 (73–107) 90.1 (75–113.8) 89.1 (73–107.2) 89.0 (75–113)
Eosinophil count, � 109/L 0 (0–0.07) 0 (0–0.04) 0 (0–0.06) 0 (0–0.06)
Proportion of eosinophils among circulating leukocytes 0 (0–0.01) 0 (0–0.007) 0 (0–0.009) 0 (0–0.009)
Hemoglobin, g/L 122 (111–139) 128 (119–142) 124 (114–141) 124 (116–140)
Leukocyte count, � 109/L 6.6 (5.1–8.9) 6.7 (5.1–8.8) 6.7 (5.2–8.9) 6.7 (5.1–9)
Lymphocyte count, � 109/L 0.9 (0.7–1.3) 1 (0.7–1.4) 1 (0.8–1.4) 1 (0.7–1.4)
Proportion of lymphocytes among circulating leukocytes 0.1 (0.1–0.2) 0.1 (0.1–0.2) 0.1 (0.1–0.2) 0.1 (0.1–0.2)
Neutrophil count, � 109/L 4.8 (3.5–7.1) 4.9 (3.4–7.1) 4.9 (3.5–7.1) 4.9 (3.4–7.3)
Proportion of neutrophils among circulating leukocytes 0.7 (0.7–0.8) 0.7 (0.7–0.8) 0.7 (0.7–0.8) 0.7 (0.7–0.8)
Platelet count, � 109/L 209 (160.8–287) 214.1 (168.8–278) 213 (161.9–289.8) 212.8 (170–278)

ACTT = Adaptive COVID-19 Treatment Trial; ECMO = extracorporeal membrane oxygenation; eGFR = estimated glomerular filtration rate; NEWS =
National Early Warning Score; NIPPV = noninvasive positive pressure ventilation.
* Comorbidities include body mass index >30 kg/m2, diabetes, chronic kidney disease, chronic liver disease, chronic respiratory disease, asthma,
chronic oxygen requirement, coronary artery disease, hypertension, congestive heart failure, cancer, and immunodeficiency.
† Geometric means are shown for skewed variables and were log-transformed before balancing.
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analyzed by statisticians at the statistical and data coordinat-
ing center (The Emmes Company) and NIAID. The funder
(NIAID) participated in the writing of the manuscript and
the decision to submit themanuscript for publication.

RESULTS

Figure 1 shows time trends in use of concomitant
medications by remdesivir recipients in ACTT. Enrollment
and follow-up periods are distinguished visually because
periods with no new enrollments include more partici-
pants later in their disease trajectory who tended to have
less severe disease. Hydroxychloroquine was used by
about 40% of participants eachmonth during ACTT-1, but
very little was used in ACTT-2 and ACTT-3. Use of antibiot-
ics in general and azithromycin in particular decreased
across the 3 stages. Steroids were not recommended
initially because of concerns about worsening viral repli-
cation from prior studies of severe acute respiratory syn-
drome (33). Use of corticosteroids, which were allowed
for indications other than COVID-19, was about 20% in
ACTT-1 and ACTT-2 and surged to about 70% in ACTT-3.
Anticoagulant use (both prophylactic and therapeutic) was
high during all 3 stages. Use of antivirals other than remde-
sivir was generally under 10% and decreased over time.

Table 1 shows unweighted and propensity score–
weighted statistical summaries for remdesivir recipients
analyzed in ACTT-1 and ACTT-2. Several variables, includ-
ing age, race, OS distribution, modified 4C Mortality
Score, and interval between symptom onset and enroll-
ment, suggest that the ACTT-2 cohort was at lower risk for
poor outcomes than the ACTT-1 cohort. ACTT-2 had sub-
stantially more Hispanic patients, whose risk profile may
differ from that in non-Hispanic patients (34), than ACTT-1
(52% vs. 26%). A “Love plot” (Supplement Figure 4, avail-
able at Annals.org) (35) shows excellent balance after
weighting. Figure 3 shows propensity score–weighted
and unweighted survival curves with hazard ratio (HR) esti-
mates and CIs. The unadjusted recovery rate for ACTT-2
participants was 1.23 times higher than for ACTT-1

participants (95% CI, 1.06 to 1.40). However, the adjusted
HR was close to 1 (1.04 [CI, 0.92 to 1.17]), indicating that
remdesivir recipients with comparable characteristics had
similar recovery rates between ACTT-1 and ACTT-2.
Similarly, although the unweighted 28-day mortality rate
was estimated to be 0.69 times lower in ACTT-2 than
ACTT-1 (CI, 0.45 to 1.04), the weighted HR was closer to
the null value of 1 (0.90 [CI, 0.56 to 1.40]).

Figure 2 summarizes oxygen delivery systems by
day and trial stage for remdesivir participants. For those
with a baseline OS of 6 or 7, the unadjusted odds of intu-
bation in ACTT-2 were 0.31 times lower than in ACTT-1
(CI, 0.20 to 0.48). The adjusted odds ratio was 0.75 (CI,
0.53 to 0.97), suggesting a change in practice between
stages. Sensitivity analysis results were similar (Supplement
Figure 5 and Supplement Table 9, available at Annals.org).

Table 2 shows unweighted and weighted statistical
summaries for remdesivir recipients in ACTT-2 and ACTT-3.
Although several variables (including race, ethnicity, OS,
NEWS, and CRP level) suggest that the ACTT-3 population
was at lower risk for poor outcomes, the ACTT-3 population
was older (mean age, 59 vs. 55 years). The 2 cohorts were
well balanced after weighting (Supplement Figure 6, avail-
able at Annals.org). Figure 4 shows survival curves with HR
estimates. The adjusted HR for recovery indicates that the
recovery rate was 1.43 times higher during the ACTT-3 pe-
riod than the ACTT-2 period for people with comparable
characteristics (CI, 1.24 to 1.64). The 28-daymortality rate in
ACTT-3 was 0.45 times that in ACTT-2 for people with com-
parable characteristics (CI, 0.21 to 0.97).

Supplement Figure 7 and Supplement Table 10 (avail-
able at Annals.org) show results from3preplanned sensitiv-
ity analyses that 1) applied the same laboratory-based
eligibility criteria across study stages, 2) included only sites
that enrolled participants in both stages being compared,
and 3) analyzed only patients with complete baseline data.
Results of these analyses are similar to themain results.

Outcomes for recipients of remdesivir plus dexa-
methasone between ACTT-3 and ACTT-4 were similar
(Supplement Figure 8, available at Annals.org). Recovery

Figure 3. Propensity score–weighted and unweighted survival curves for recovery andmortality in ACTT-1 and ACTT-2.
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rates were nearly identical between stages for this group:
The unweighted HR was 0.97 (CI, 0.84 to 1.11), and the
weighted HR was 1.02 (CI, 0.89 to 1.19). The mortality rate
was higher in ACTT-4 than in ACTT-3 (weighted HR, 1.75
[CI, 0.84 to 3.78]), but the CI was wide and these findings
did not provide strong evidence of a difference in mortal-
ity rates between stages.

DISCUSSION

This study compared 28-day recovery and mortality
between comparable cohorts of hospitalized adults with
COVID-19 who participated in 4 sequential stages of
ACTT spanning February 2020 to May 2021. Although
our unadjusted HR estimates describe differences in out-
comes between trial stages, the propensity score–weighted

Table 2. Baseline Characteristics of Remdesivir Recipients in ACTT-2 and ACTT-3, From an Analysis That Excluded Patients
With Chronic Liver Disease and a Baseline Ordinal Score of 7 (Exclusion Criteria for ACTT-3)

Characteristic Unweighted Propensity Score–Weighted

ACTT-2 (n = 428) ACTT-3 (n = 457) ACTT-2 (n = 437) ACTT-3 (n = 466)

Demographic characteristics
Male sex, n (%) 276 (64) 251 (55) 264 (60) 282 (60)
Race, n (%)

American Indian or Alaska Native 6 (1) 3 (1) 4 (1) 3 (1)
Asian 45 (11) 38 (8) 36 (8) 38 (8)
Black or African American 62 (14) 80 (18) 77 (18) 82 (18)
Multiple 0 (0) 3 (1) 0 (0) 2 (0)
Native Hawaiian or other Pacific Islander 5 (1) 5 (1) 5 (1) 6 (1)
Unknown 107 (25) 58 (13) 83 (19) 87 (19)
White 203 (47) 270 (59) 232 (53) 248 (53)

Ethnicity, n (%)
Hispanic or Latino 225 (53) 151 (33) 180 (41) 193 (41)
Not Hispanic or Latino 195 (46) 300 (66) 250 (57) 267 (57)
Not reported/unknown 8 (2) 6 (1) 7 (2) 7 (1)

Mean age (SD), y 55 (16) 58.9 (16.1) 57.4 (60) 57.4 (57.8)

Baseline disease severity and risk factors
Ordinal score, n (%)

4 (hospitalized and not requiring supplemental oxygen) 65 (15) 66 (14) 71 (16) 72 (15)
5 (hospitalized and requiring supplemental oxygen) 260 (61) 361 (79) 302 (69) 325 (70)
6 (hospitalized and requiring NIPPV or high-flow oxygen) 103 (24) 30 (7) 64 (15) 69 (15)

Mean NEWS (SD) 4.8 (2.3) 4.4 (2.1) 4.6 (5) 4.6 (6.1)
Mean symptom duration before enrollment (SD), d 8.6 (4.5) 8.6 (4.3) 8.5 (9.2) 8.5 (9.7)
Mean symptom duration before hospitalization (SD), d 6.8 (4.4) 7.1 (4.3) 7.0 (8.6) 7.0 (8.3)
Mean comorbidities (SD), n* 1.8 (1.5) 2.2 (1.6) 2.0 (3.3) 2.0 (2.2)
Mean 4C Mortality Score (SD) 7.7 (3.1) 8 (3) 7.9 (8) 7.9 (9)

Vital signs
Mean heart rate (SD), beats/min 83.5 (14.2) 80 (13.7) 82.0 (68.5) 82.0 (84.9)
Mean oxygen saturation (SD), % 94.8 (2.8) 94.3 (2.6) 94.5 (78.2) 94.5 (90.5)
Mean respiratory rate (SD), breaths/min 22.1 (5.3) 20.9 (4.5) 21.5 (17.9) 21.5 (23.8)
Mean systolic blood pressure (SD), mm Hg 124.9 (18.9) 126.7 (17.7) 125.5 (112.4) 125.5 (117)
Mean temperature (SD), �C 37.1 (0.7) 36.8 (0.6) 37.0 (30.9) 37.0 (35.7)

Geometric mean laboratory parameters (IQR)†
Alanine aminotransferase, U/L 35.2 (23–54) 33.3 (21–51) 33.6 (23–53.9) 33.6 (22–52)
Aspartate aminotransferase, U/L 41.2 (29–55) 37.9 (27–52) 39.7 (28–54) 39.7 (27.4–56.1)
Bilirubin

μmol/L 8.9 (6.8–12.0) 8.5 (6.8–12.0) 8.9 (6.8–12.0) 8.9 (6.8–12.0)
mg/dL 0.5 (0.4–0.7) 0.5 (0.4–0.7) 0.5 (0.4–0.7) 0.5 (0.4–0.7)

C-reactive protein, mg/L 93.9 (56.7–180.3) 66.9 (45.8–129.6) 75.9 (44.6–168.4) 75.9 (55.2–133.1)
eGFR, mL/min/1.73 m2 92.2 (77–114.8) 85.2 (71–109) 87.6 (71–110) 87.6 (71.9–114)
Eosinophil count, � 109/L 0 (0–0.03) 0 (0–0.01) 0 (0–0.03) 0 (0–0.01)
Proportion of eosinophils among circulating leukocytes 0 (0–0.007) 0 (0–0.002) 0 (0–0.005) 0 (0–0.002)
Hemoglobin, g/L 130 (120–144) 130 (120–145) 130 (121–144) 130 (119–146)
Leukocyte count, � 109/L 6.4 (4.9–8.2) 6.6 (4.9–9.2) 6.6 (5.1–8.5) 6.6 (5.1–8.6)
Lymphocyte count, � 109/L 1.1 (0.8–1.4) 0.9 (0.6–1.3) 1 (0.7–1.3) 1 (0.7–1.4)
Proportion of lymphocytes among circulating leukocytes 0.2 (0.1–0.2) 0.1 (0.1–0.2) 0.1 (0.1–0.2) 0.1 (0.1–0.2)
Neutrophil count, � 109/L 4.6 (3.3–6.5) 5 (3.4–7.2) 4.8 (3.5–6.7) 4.8 (3.4–6.8)
Proportion of neutrophils among circulating leukocytes 0.7 (0.7–0.8) 0.7 (0.7–0.8) 0.7 (0.7–0.8) 0.7 (0.7–0.8)
Platelet count, � 109/L 215.4 (168–276) 218.9 (171–279) 215 (168–275.9) 215 (171.4–273.1)

ACTT = Adaptive COVID-19 Treatment Trial; eGFR = estimated glomerular filtration rate; NEWS = National Early Warning Score; NIPPV = noninva-
sive positive pressure ventilation.
* Comorbidities include body mass index >30 kg/m2, diabetes, chronic kidney disease, chronic liver disease, chronic respiratory disease, asthma,
chronic oxygen requirement, coronary artery disease, hypertension, congestive heart failure, cancer, and immunodeficiency.
† Geometric means are shown for skewed variables and were log-transformed before balancing.
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HRs account for changes in patient composition over time
and represent a “stage effect” attributed to the SOC
received during different stages.

Remdesivir recipients in ACTT-2 (spanning May to
July 2020) recovered faster and had numerically better
mortality outcomes than those in ACTT-1 (February to
May 2020). Observed SOC changes included a dramatic
decrease in hydroxychloroquine use between ACTT-1
and ACTT-2 and a gradual decrease in empirical antibi-
otic use. We also found that the odds of baseline intuba-
tion in ACTT-2 were 25% lower than for comparable
ACTT-1 participants. However, we did not find evidence
that these changes affected 28-day recovery or mortality:
Our adjusted HR estimates were close to 1, indicating
that the better outcomes in ACTT-2 were due to differen-
ces in patient composition rather than improved SOC.

When comparing ACTT-3 (August to December 2020)
with ACTT-2, the adjusted analyses showed improved 28-
day recovery and mortality, suggesting improved SOC.
Given that 77% of remdesivir recipients in ACTT-3 but only
11% in ACTT-2 received dexamethasone as SOC and the
RECOVERY trial found a mortality benefit from dexameth-
asone, dexamethasone use is likely a key contributor to
these improvements, although this observational analysis
cannot confirm causality (36, 37). Another change in SOC
between these stages was a gradual decrease in the use
of antibiotics (including azithromycin). The large mortality
reduction of 0.45 must be interpreted in the context of its
wide CI (0.21 to 0.97), which is consistent withmoremoder-
ate reductions. A detailed examination suggests low risk of
bias from differences in stage-specific laboratory eligibility
criteria (Supplement Table 11, available at Annals.org).

We did not find evidence for improved outcomes
between ACTT-3 and ACTT-4 (December 2020 to May
2021) among people receiving remdesivir plus dexameth-
asone. This may be because concomitant medication use
stayed fairly constant between these periods. The use of
combination immunomodulatory therapy (dexametha-
sone plus a Janus kinase inhibitor or an interleukin-6

inhibitor) in patients with the most severe disease did
not become part of SOC until March 2021 with the
COV-BARRIER and RECOVERY baricitinib and tocilizu-
mab trials (6, 7). Hospitalization rates were higher during
ACTT-4 (Supplement Figure 2), and COVID-19 surges can
stress the hospital system, increasing mortality (38), which
could explain the numerically worsemortality outcomes in
this stage. The appearance of the B.1.1.7 (Alpha) variant
during ACTT-4 could also explain part of this mortality dif-
ference (39) (Supplement Figure 9, available at Annals.
org). ACTT-4 spanned the initial availability of vaccines,
but only 25 (0.5%) analyzed ACTT-4 participants were vac-
cinated, so bias from vaccination is probably low.

This study illustrates several issues related to the inclu-
sion of nonconcurrent controls in analysis of data from
platform trials (40–42). Even with similar eligibility criteria
across stages, participant composition changed enough
over time to substantially affect clinical outcomes. Early in
a pandemic of a novel pathogen, patients may be more
hesitant to present to a hospital, so those who do may
tend to have more severe disease. Similarly, patients may
be more hesitant to enroll in a trial of a novel therapeutic
unless they are experiencing severe disease. We also
found that SOC changed enough over time to substan-
tially affect clinical outcomes for comparable patients.

These analyses also highlight issues related to out-
come definitions. Although time to intubation and time
to intubation or death have been used as outcomemeas-
ures in clinical trials (43, 44), we found that intubation
practices becamemore conservative over time. This could
make outcomes appear worse for nonconcurrent controls,
thus exaggerating the treatment effect. When contempo-
raneous controls are used, the temporal shift in the rela-
tionship between the outcome and the underlying
disease severity affects treated and control participants
simultaneously and equally.

Time to recovery is also not a purely objective out-
come. ACTT participants were defined as having “recov-
ered” when they were discharged from the hospital or if
they remained hospitalized without requiring supplemental

Figure 4. Propensity score–weighted and unweighted survival curves for recovery and mortality for the comparison between ACTT-2
and ACTT-3.
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oxygen or ongoing medical care. This definition is a proxy
for a certain point in the underlying, unobserved, actual dis-
ease trajectory. The relationship between this proxy and
the actual disease trajectory can vary. As the pandemic
progressed, clinicians may have discharged patients ear-
lier in their recovery trajectory, which could artificially
inflate a treatment effect in a comparison with nonconcur-
rent controls. It could also explain part of the improve-
ment in recovery outcomes between ACTT-2 and ACTT-3.
Mortality is potentially more objective, although this can
depend on varying protocols for withdrawal of care.
Furthermore, low death rates mean that very large trials
are needed for adequate power to detect a mortality
reduction. In addition, treatments that reduce objectively
measured symptoms are beneficial even if they do not
affect mortality, and objective outcomes are needed to
test such treatments.

This study has limitations. First, valid propensity
score inference requires inclusion of all confounders in
the analysis. Although we included many important con-
founders, some potential confounders were not meas-
ured. In particular, urea level was not recorded in ACTT,
and this variable contributes either 1 or 3 points to the
21-point 4C Mortality Score. Our modified scale omitting
urea level is therefore less predictive than the complete
scale, although we included eGFR as a separate variable
to account for differences in kidney function. D-dimer,
interleukin-6, and interleukin-10 were not collected across
ACTT stages. Another limitation is the restriction of mor-
tality comparisons to a 28-day interval. It is possible that
SOC changes between ACTT-2 and ACTT-3 delayed
deaths past the 28-day time point without reducing the
overall in-hospital mortality rate. However, more people
in ACTT-2 were still intubated on day 28 than in ACTT-3
(4% vs. 1% weighted [Supplement Table 12, available at
Annals.org]), making a reversal of the mortality HR after
day 28 unlikely. Improved outcomes may have been influ-
enced by unmeasured time-dependent factors, such as
greater clinician bedside experience, although this may
be more applicable to the comparison of ACTT-1 versus
ACTT-2. COVID-19 surges can increase mortality, but hos-
pitalization rates were higher in ACTT-3 than ACTT-2,
which would tend to attenuate the estimated mortality
improvement from SOC (average weekly rates were 8.5
and 6.3 per 100000 persons in ACTT-3 and ACTT-2,
respectively [Figure 1]). Circulating variants were generally
unidentified during 2020 (Supplement Figure 9), and their
effect on mortality was probably small. This trial mostly
enrolled patients at academic research sites; results are
generalizable to similar hospitals whose populations
resemble the ACTT patient population.

This study analyzed time trends of mortality and re-
covery for comparable cohorts of hospitalized COVID-19
clinical trial participants and described evolving SOC
practices. We found that intubation practice became
more conservative between the period from February to
May 2020 and the period fromMay to July 2020 and that
improvements in recovery andmortality between these inter-
vals were explained by differences in cohort composi-
tion. This contrasts with other studies examining U.S.
in-hospital mortality, which found that mortality improve-
ments persisted after patient characteristics were accounted

for (10–13). Our mortality rates were lower: The unadjusted
rate decreased from 11% to 7%, whereas other studies
found a decrease from approximately 20% to 10% (10–13).
The difference could be because the hospitals participat-
ing in ACTT may have more resources and experience
and/or a different learning curve than other hospitals, fol-
lowed protocol-specified care requirements, or drew a dif-
ferent patient population. We found improved recovery
and mortality outcomes between the period from May to
July 2020 and the period from August to December 2020,
likely due to increased dexamethasone use. We did not
find evidence for improvements in recovery or mortality
between the period from August to December 2020 and
the period from December 2020 to May 2021, possibly
because SOC did not change substantially (the use of com-
bination immunomodulatory treatment was implemented
later). These findings support the exclusion of nonconcur-
rent controls when analyzing data from platform trials, par-
ticularly for COVID-19 treatments and vaccines.
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