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Abstract

Quantales and Hyperstructures

by

Andrew Joseph Dudzik

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Martin Olsson (Chair)

We present a theory of lattice-enriched semirings, called quantic semir-
ings, which generalize both quantales and powersets of hyperrings. Using
these structures, we show how to recover the spectrum of a Krasner hyper-
ring (and in particular, a commutative ring with unity) via universal con-
structions, and generalize the spectrum to a new class of hyperstructures,
hypersemirings. (These include hyperstructures currently studied under the
name “semihyperrings”, but we have weakened the distributivity axioms.)

Much of the work consists of background material on closure systems,
suplattices, quantales, and hyperoperations, some of which is new. In par-
ticular, we define the category of covered semigroups, show their close
relationship with quantales, and construct their spectra by exploiting the
construction of a universal quotient frame by Rosenthal.

We extend these results to hypersemigroups, demonstrating various folk-
loric correspondences between hyperstructures and lattice-enriched struc-
tures on the powerset. Building on this, we proceed to define quantic semir-
ings, and show that they are the lattice-enriched counterparts of hyper-
semirings. To a quantic semiring, we show how to define a universal quo-
tient quantale, which we call the quantic spectrum, and using this, we show
how to obtain the spectrum of a hypersemiring as a topological space in a
canonical fashion.

Finally, we we conclude with some applications of the theory to the or-
dered blueprints of Lorscheid.

1



Wer das Tiefste gedacht, liebt das Lebendigste.

— Friedrich Hölderlin,
Sokrates und Alcibiadese

In memory of Kiel Sturm
1983 – 2012

i



A C K N O W L E D G M E N T S

I could not possibly have completed this work without the support of many
amazing people, who are too numerous to list without fear of omission. But
thank you Dad, and thank you Anne—you were there for the worst of it.
And thanks to the old friends who believed in me for no apparent reason.

Thank you Ellen; you sent pie. Broad thanks to the rest of my family, to
my fellow students, and to the co-workers who respected my decision to
go back to school, even while warning me how hard it would be.

I would have not known where to begin without my advisor Matt Baker,
who repeatedly challenged me to produce better work than I thought pos-
sible. His patience with my struggles and false starts was more valuable
than any mathematical contribution.

Oliver Lorscheid and Ben Steinberg provided much-needed feedback on
an early draft of this work. Oliver helped give me confidence that the lan-
guage of closure operators is a good way to study exotic algebraic struc-
tures, and Ben helped give me confidence that applying quantales to the
theory of hyperrings is not completely crazy.

Finally, thanks to the person who opened the doors for me to pursue
mathematics in the first place, Zvezdelina Stankova. When I was in high
school, her work at the Berkeley Math Circle provided me with the back-
bone for all of my future explorations of mathematics. When I was in grad-
uate school, working as her teaching assistant was a master class in running
a successful university course.

ii



C O N T E N T S

0 introduction iv
1 closure systems and suplattices 1

1.1 Closure systems 1

1.2 Suplattices 2

1.3 Closure domains 4

1.4 Examples of closure domains 5

1.5 Suplattices as closure domains 10

2 quantales , F1 , and the pointless spectrum 12

2.1 Covered semigroups 12

2.2 Semilattices 14

2.3 Lax and Colax Morphisms 15

2.4 Quantales 16

2.5 Frames 18

2.6 Pointless topology 20

2.7 F1 22

2.8 Spectra of covered semigroups 23

n interlude : algebra over the power monad 25

n.1 Hyperoperations 25

n.2 Hypersemigroups and hypermonoids 26

n.3 Covered hypersemigroups and their spectra 28

n.4 Subdistributivity 29

3 quantic semirings and hypersemirings 31

3.1 Quantic semirings 31

3.2 The quantic spectrum 32

3.3 Hypersemirings 34

4 examples and applications 37

4.1 The spectrum of a Krasner hyperring 37

4.2 Nuclei on ordered blueprints 38

4.3 Thoughts and further directions 44

bibliography 46

iii



0
I N T R O D U C T I O N

We cannot understand what something is without grasping what, under
certain conditions, it can become.

— Roberto Mangabeira Unger,
The Singular Universe and the Reality of Time

Classical algebra, in its most innocent form, concerns the study of sets,
functions, and operations An → A of finite arity n, which are usually re-
quired to satisfy some list of axioms. In this generality, we encounter all
the familiar objects, like groups, rings, and fields, as well as their less main-
stream counterparts, including semigroups, semirings, and so on.

There is a growing fashion to consider a more general kind of algebra,
hyperalgebra, in which some functions A → B (usually the operations) are
replaced by hyperfunctions A → P(B) taking values in the powerset of B.
Classical algebra then becomes the special case of hyperalgebra in which
all morphisms and all operations take only singleton values.

There are tremendous pro tanto benefits to the study of hyperalgebra, by
which we mean that there are very real advantages that must be weighed
against the increased difficulty of a more general theory. We will begin by
listing some of these advantages, and their manifestations in the develop-
ing theory of Krasner hyperrings—a hyper-analogue of commutative rings
with unity which still have single-valued multiplication, but which are al-
lowed to have multi-valued addition.

The first advantage is one of unified language, of which tropical bend
relations are a key example. If p(~X) is a polynomial with coefficients in the
tropical semifield T = (R>0, ·, max), then the tropical vanishing locus of p
has a definition that is not always easy to work with: it is the set of points
~a where the minimum value of the monomials in p(~a) is achieved at least
twice. However, if we instead regard T as a hyperfield—a field where the
addition is allowed to be multi-valued—by setting a+ b = {max(a,b)} for
a 6= b and a+ a = [0,a], then ~a is in the tropical vanishing locus if and
only if 0 ∈ p(~a).[17] In this setting and others, hyperfields allow us to place
new concepts and old ones beneath the same umbrella.

The second advantage is the formation of arbitrary quotients. If A is a
set equipped with an operation ∗ : An → A, then identifying elements of A
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according to an arbitrary equivalence relation will generally not allow us
to define an operation on the quotient. However, if ∗ is a hyperoperation,
there is an inherited hyperoperation: if A1, · · · ,An are equivalence classes,
just define ∗(A1, · · · ,An) to be the set of equivalence classes generated
by
⋃
ai∈Ai ∗(a1, · · · ,an). This is the perspective of Connes and Consani in

studying the hyperring of adèle classes [2]—the adèles form a ring, and
the adèle classes form a multiplicative group, but the addition becomes a
hyperaddition in the quotient.

The final advantage we’ll mention has to do with the surprising connec-
tions between hyperfields and projective geometry, which hint at the broad
class of phenomena lurking within hyperstructures. For example, there is a
close correspondence between projective incidence groups and extensions
of the Krasner hyperfield [4], which is the final object in the category of
Krasner hyperrings. In the ongoing related work of Baker and Bowler [1],
a definition of matroids over hyperfields is used to unify seemingly dis-
parate theories of matroids, such as matroids over the tropical hyperfield
being precisely valuated matroids.

As promised, these advantages come with technical challenges relative
to classical algebra. Many of these challenges arise from one fundamen-
tal problem: sets are basically discrete, while powersets have structure, in-
cluding a natural partial order. In practice, this means that axioms and
propositions will tend to involve the asymmetric predicate ⊂ rather than
the symmetric predicate =. For example, we mentioned above that the con-
dition {0} ⊂ f(~a) is the appropriate hyper-analogue of vanishing of poly-
nomials. But the fact that we cannot usually write the opposite inequality
f(~a) ⊂ {0} introduces severe difficulties in adapting classical proofs to the
hyper-setting.

Another mathematical mainstay threatened by this asymmetry is the dis-
tributive law, which does not lift to the powerset. Instead, we often have to
make do with the subdistributive law:

S · (T +U) ⊂ S · T + S ·U

Consider the following example in P(Z):

{0, 2} = {0, 1} · ({1}+ {1})

( {0, 1} · {1}+ {0, 1} · {1} = {0, 1, 2}

Another naturally-occurring example of sub-distributivity is the arith-
metic of intervals, an area of research that has acknowledged sub-distributivity
for at least a half-century, e.g.:
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[−1, 1] = [0, 1] · ([−2,−1] + [1, 2])

( [0, 1] · [−2,−1] + [0, 1] · [1, 2] = [−2, 2]

The loss of distributivity is particularly harmful for the theory of poly-
nomials. If a hyperring A is not distributive, then the collection of polyno-
mials A[X], with its natural hyperoperations, will fail to have associative
multiplication.

A challenge of a more philosophical nature arises when we attempt to
generalize basic concepts from ring theory, such as ideals and prime spec-
tra. Jun [7] has given a description of the spectrum of prime ideals of a
Krasner hyperring, and showed that—at least in the integral case—it shares
many of the nice properties of its classical counterpart. However, in gener-
alizing this construction further (say, to multi-valued multiplication), it is
difficult to know in advance whether we should expect our imitations of
the classical definitions to hold up. In practice, simply porting definitions
leads to unintuitive guesswork and tedious verifications.

our approach

We believe that the best way to reckon with the technical challenges of
hyperalgebra, while preserving its beneficial attributes, is to exploit a pow-
erful relationship between powersets and complete lattices. Specifically, if
L is a suplattice—a partially ordered set with all suprema—and f : A → L

a map of sets, then there is a unique extension of f to a map f : P(A) → L

such that f(
⋃
S) =

∨
f(S). Similarly, we can uniquely lift lattice-valued

operations to operations on P(A) that preserve joins in each variable. If
we wish to recover the original operations, we can simply restrict to the
singletons.

The aim of our project is to make use of this canonical lifting in order
to study hyperstructures by studying their lattice counterparts. This incurs
a cost: we take on the responsibility of managing an additional operation,
the infinitary join

∨
. However, by doing so we can retain the luxury of

working with single-valued operations.
One may object to this approach on the grounds that it leads to an over-

complicated picture of classical algebra. However, we have found the oppo-
site to be the case. In particular, the theory of ideals of a commutative ring
takes on a particularly elegant character when described in the language of
lattices, a fact observed as early as the 1960s by Kirby.[8] And many of the
well-known constructions from a first course in commutative algebra—the
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relationship between set-theoretic and ideal-theoretic product, the construc-
tion of colon ideals, and the prime ideal spectrum, to name three—can be
seen to be general, universal constructions in this setting.

This project has already been carried out, albeit in a somewhat folkloric
way, for the theory of semigroups and monoids. The corresponding lattice-
enriched objects are called quantales, and we will need to establish their
basic properties before turning our attention to our destination, lattice-
enriched semirings.

quantales and pointless topology

A quantale is, simply, a semigroup in the category of suplattices. They were
first introduced by Mulvey in 1986 [11], where they were used to study
quantum logic and non-commutative C∗-algebras. The field of “pointless
topology”—the work of Johnstone in particular—had used frames/locales
(a certain kind of complete lattice) to give new insights into general topol-
ogy, topos theory, spectra, and other things. Quantales, or “quantum lo-
cales”, were supposed to capture non-commutative phenomena that go
beyond the world described by frames.

But even commutative quantales already have an interesting theory. For
example, the ideals in a commutative ring form a quantale under ideal-
theoretic multiplication, and many old constructions in ring theory are
most natural when seen from this perspective. An excellent treatment is
given by Rosenthal in [14], from which we will borrow several technical
results.

A frame is a quantale such that the multiplication equals the binary great-
est lower bound. For our work, the most important thing about the cate-
gory of quantales is that it reflects onto the category of frames. That is, for
any quantale Q there is a frame, which we suggestively call SpecQ, and a
morphism Q → SpecQ initial among all morphisms of quantales Q → F,
where F is a frame. In the general case, this construction is somewhat ab-
stract, though it may be easy to write down in particular cases. For example,
the universal frame associated to the quantale of ideals of a commutative
ring is exactly the lattice of radical ideals.

Every frame F has an associated T0 sober topological space pt(F), and
a quotient map from F to the open sets of pt(F). As we can see, this map
is sometimes an isomorphism, in which case we will say that F is spatial.
Since pt(F) can actually be empty for nontrivial F, it behooves us to regard
SpecQ as a lattice, not a space. This is the perspective of pointless topology.
Since the category of T0 sober topological spaces is dual to the category of
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spatial frames and unital morphisms, this is a safe thing to do, provided
that we can remember which way the arrows go.

One note: As written, Spec does not always produce unital morphisms,
which means that we may wind up with too many morphisms. There is
more than one way to fix this problem, but the easiest is just to restrict to
the category of unital quantales and unital morphisms. This is an impor-
tant point to make, since we will construct spectra for (hyper)semigroups
and (hyper)semirings, but these constructions will only be functorial in
a meaningful sense when we restrict to (hyper)monoids and unital (hy-
per)semirings.

Our basic method for writing down the spectrum of a semigroup A is to
first embed A in its powerset A→ P(A), considered as a quantale, and then
give some instructions for producing a quotient quantale P(A) → C(A).
The second step is where we use the theory of quantales, while the first
requires some digression about the power monad.

motivation : the power monad

When Emmy Noether gave the first general definition of a commutative
ring in 1921 [12], she was computing the algebras for a monad. Specifically,
if R denotes either Z or a field, then there is an endofunctor T on Set send-
ing S to the set of polynomials R[Xs]s∈S. There is a natural transformation
η : id → T sending s to Xs, and another natural transformation µ : T2 → T

given by expansion of polynomials. We have the following commutative
diagrams:

T3

µT
��

Tµ // T2

µ

��

T

Tη
��

id

��

T
ηT //

id ��

T2

µ

��
T2 µ

// T T2 µ
// T T

In modern terms, these diagrams say exactly that the functor T is a monad
over the category of sets, but establishing that they commute involves only
basic properties of sets, functions, and polynomials, and is therefore en-
tirely within the domain of 19

th century mathematics.
Understanding the character of this monad, however, requires the mod-

ern definition of adjoint functor. The easiest way to create a monad from
scratch is to compose a pair of adjoint functors, and all monads arise this
way. However, a monad usually arises from many different adjunctions:

viii



For any monad T on a category C, there is a category whose objects are
categories D equipped with an adjunction C→ D giving rise to T .

This category has both an initial object and a final object, which we can
think of as the minimal adjunction and the maximal adjunction. The mini-
mal adjunction is usually called the Kleisli category of T , and we can visual-
ize it in two ways: as C itself, where a morphism A → B is a C-morphism
A → TB, or as the category of the “free objects” TA, where morphisms
TA → TB arise from lifts of A → TB. The maximal adjunction is the cat-
egory of Eilenberg-Moore algebras for T , and it has many nice properties,
characterized by Beck’s monadicity theorem. For example, if C = Set, then
the category of algebras admits kernel pairs and coequalizers.

The state of commutative algebra in the late 19
th century was that there

was tremendous interest in the Kleisli category of T(S) = R[Xs]s∈S, the cat-
egory of polynomial rings and polynomials maps. The great achievement
of Noether’s definition was to take us into the larger Eilenberg-Moore cat-
egory of T -algebras, where the proofs are simpler and the examples richer.

The crucial monad in our work is the power monad sending a set S to its
powerset P(S), where the unit η : S → P(S) is given by η(s) = {s}, and the
composition µ : P2(S)→ P(S) is given by µ({Sα}) =

⋃
α Sα.

Hyperalgebra is stuck in the 19
th century with respect to the power

monad. That is, it takes place entirely within the Kleisli category of sets
and hyperfunctions. Perhaps we will get simpler proofs, and a better the-
ory, if we explore algebra instead in the Eilenberg-Moore category of P:
The category of suplattices. The philosophy of our work here is to apply
this view fully to semigroups and semirings.

(Note: The general theory of lifting algebraic theories over a monad is
beyond the scope of this work, but it seems essential to use 2-categories to
explain the appearance of laxness.)

our results

After spending some time developing basic facts about lattices and quan-
tales, we establish the following dictionary between classical algebraic struc-
tures, hyperalgebraic structures, and lattice-enriched (“quantic”) algebraic
structures:
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Classical Algebra Hyperalgebra Quantic Algebra

Sets Sets Suplattices

Semigroups Hypersemigroups Quantales

Monoids Hypermonoids Unital Quantales

Semirings Hypersemirings Quantic Semirings

Of these, only quantic semirings are completely new, though we give a
more general definition of hypersemiring than what currently appears in
the literature, as we only assume subdistributivity, not strong distributivity.

Our main result is that, given a covered hypersemigroup A—that is, a hy-
persemigroup A equipped with a certain kind of closure operator—there
is a universal morphism D : A → SpecA (in the category of covered semi-
groups) to a frame. If the closure on A is finitary (generated by finite rela-
tions), then SpecA is the lattice of open sets of a T0 sober topological space
pt(SpecA), whose points are the prime ideals of A, and {D(a) | a ∈ A}
forms a basis of quasi-compact open sets. When restricted to covered hyper-
monoids, this gives a contravariant functor to the category of topological
spaces.

Furthermore, we describe how to give a hypersemiring A a canonical
structure of a finitary covered hypersemigroup under multiplication, giv-
ing a definition of the spectrum of a hypersemiring. This definition coin-
cides with the usual definition of the (completely) prime spectrum of a
(possibly non-commutative) ring, but it also coincides with the definition
of Jun (and, earlier, Procesi-Ciampi and Rota [13]) of the spectrum of a
Krasner hyperring.

Finally, we develop some connections of this theory to the ordered blueprints
of Lorscheid.[10] An ordered blueprint satisfying a certain associative ax-
iom is shown to give rise to a quantic semiring, which incidentally helps
resolve an issue in the theory that the spectrum of a Krasner hyperring qua
ordered blueprint is given too many points.

Overview

Chapter 1:

Chapter 1 is devoted to establishing the basic theory of closure operators on
suplattices. In particular, we discuss the category of sets equipped with a
closure operator on their powerset. We call these closure domains, instead of
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the more standard term closure systems, which we feel is more appropriately
given to the collection of flats of a closure domain.

Whatever name they go by, closure domains are a very fundamental and
general concept. For example, the category of topological spaces can be
identified with the full subcategory of closure domains where the closure
respects empty and binary unions. By placing other restrictions, we can
identify other categories, such as matroids, convex geometries, and various
kinds of lattices.

Suplattices and closures form the engine that makes this theory go. The
closures on a suplattice are in bijection with its quotients, so they play a
similar role as kernels do in the theory of abelian groups. In particular, the
lattice of flats of a closure domain A is naturally a quotient of the pow-
erset lattice (P(A),

⋃
), which will be important for establishing universal

properties later.

Chapter 2:

In Chapter 2, we look at semigroups and monoids in the category of closure
domains, which we call covered semigroups and covered monoids, respectively.
For a covered semigroup, the lattice of flats is no longer just a suplattice,
but a quantale, and we spend some time discussing properties of such.

(Note: Many of the ideas in this chapter appear in a similar form in [15],
though we take a slightly different focus—in particular, we take care to
establish certain universal properties to more precisely apply the theory of
quantales to our study of these objects.)

Since covered semigroups are in particular ordered semigroups, which
are in particular categories, it is important to establish the essentially 2-
categorical notions of lax morphisms and colax morphisms between them. (We
do not directly use any higher category theory, but the connection is impor-
tant and worth mentioning.) We also define F1 as a covered monoid, and
show that the various kinds of morphisms to it are characterized by many
familiar concepts, such as filters and ideals. In particular, prime ideals of a
covered semigroup A are in bijection with strong morphisms A → F1. (In
fact, these are the points of SpecA, which we define later.)

We also look at the more general situation of a closure operator on a
quantale that is compatible with the multiplication. These are known as
nuclei in the literature, and they inherit many of the nice properties of
closures on suplattices. In particular, they characterize quotient quantales.
As such, the construction of certain nuclei is fundamental in showing the
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existence of universal quotient quantales, and we quote a few important
results from Rosenthal on this matter.

In particular, every quantale has a universal quotient that is a frame—that
is, a quantale where the multiplication coincides with the binary greatest
lower bound. We use this to show that the spectrum of a commutative
ring, as a covered monoid, has a universal morphism to a frame, namely
the lattice of opens of its spectrum. In fact, we show that every covered
semigroup A has a such a universal frame—by abuse of notation, we call
this SpecA, identifying any sober T0 space with its lattice of opens—which
is necessarily the frame of opens of a topological space. One thing this
gives us is a contravariant functor from the category of covered monoids
to the category of spectral spaces.

Interlude:

Having spent Chapters 1 and 2 mostly giving new breath to old results,
we turn, in the Interlude, towards something a bit new (though probably
known, secretly, by the experts): the relationship between quantales and
hypersemigroups.

In fact, we describe a general relationship between hyperoperations on a
set A and lattice-enriched operations on the powerset lattice (P(A),

⋃
). We

show that a hypersemigroup structure on a set A is the same as a quantale
structure on P(A), and likewise a hypermonoid structure on A is the same
as a unital quantale structure on P(A).

We use this to extend our results on spectra to covered hypersemigroups.
We also show that if X is a topological space with a basis of quasi-compact
opens, then the set A of all quasi-compact opens forms a covered hyper-
semigroup, with SpecA = O(X). In particular, if X is also sober and T0,
then SpecA = X.

While associative binary hyperoperations lift nicely to P(A), we need a
more delicate touch when dealing with more complicated hyperstructures,
such as hyperrings.

Chapter 3:

Chapter 3 explores quantic semirings, which are designed to be the suplat-
tice counterpart to hypersemirings. In fact, the definition that we obtain
for hypersemirings is compatible with the definitions already given in the
literature, and even somewhat more general, since we do not assume dis-
tributivity.
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The key property of quantic semirings is subdistributivity:

S · (U+ T) 6 S ·U+ S · T

Unlike distributivity, subdistributivity lifts to the powerset.
Our key result is that quantales form a full reflective subcategory of

quantic semirings. That is, there is a universal morphism from a quantic
semiring to a quantale. For example, if A is a semiring, then the universal
quantale associated to P(A) is the lattice of multiplicative sub-monoids of
A. Since we can compute the spectrum of this quantale (and get the right
answer!), this gives us a way to define the spectrum of a quantic semiring
as a universal frame.

In general, the spectrum of a quantic semiring does not come from a
topological space. However, we show that if A is a hypersemiring, then
the spectrum of a quantic semiring P(A) coincides with the spectrum of A
given a natural covered semigroup structure, and is therefore spatial. We
show that this precisely recovers the spectrum of a hyperring constructed
by Jun and others.

Chapter 4:

Chapter 4 explores examples and applications. One major application is to
Lorscheid’s theory of blueprints. We show how to interpret blue spectra us-
ing our language of covered monoids, and construct an additional nucleus,
the nucleus of downward-closed sets, that gives additional insight into hy-
perrings as ordered blueprints. We show that, for any associative blueprint,
the suplattice of downward-closed sets has natural operations that make
it into a quantic semiring, whose spectrum is the space of ordered prime
ideals. This suggests a new definition of spectra for ordered blueprints.
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1
C L O S U R E S Y S T E M S A N D S U P L AT T I C E S

1.1 closure systems

Definition 1.1. A closure system1 on a poset P is a subset C ⊂ P such that,
for every S ∈ P, there is a minimum T ∈ C with S 6 T .

Definition 1.2. A closure operator on a poset P is a self-map j : P → P

such that:

• S 6 j(S).

• S 6 T =⇒ j(S) 6 j(T).

• j(j(S)) = j(S).

In the presence of the first two conditions, the third condition may be
replaced by the weaker j(j(S)) 6 j(S).

Proposition 1.3. The following three structures on a poset P are equivalent:

• A closure system on P.

• A closure operator on P.

• A self-map j : P→ P such that S 6 j(T) ⇐⇒ j(S) 6 j(T).

Proof. The first and third conditions are easily seen to be equivalent, with
C = j(P). If j is a closure operator, and S 6 j(T), then j(S) 6 j(j(T)) = j(T).
If j(S) 6 j(T), then S 6 j(S) 6 j(T). On the other hand, if j satisfies the third
condition, we check that it is a closure operator.

• j(S) 6 j(S), so S 6 j(S).

• If S 6 T , then S 6 T 6 j(T), so j(S) 6 j(T).

• j(S) 6 j(S), so j(j(S)) 6 j(S).

1 The term Moore family also appears in the literature.
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Remark 1.4. The categorically-minded reader may notice that the third con-
dition says exactly that j : P → C is left adjoint to the inclusion C ⊂ P.
In fact, a closure operator on P is the same thing as a monad on P, a fact
which we do not use, but is nevertheless of great conceptual importance.

Definition 1.5. A closure on a poset P will mean the equivalent data of a
closure system or a closure operator on P. The elements of the associated
closure system will be called flats, and, given a closure operator j, the
collection of flats will be denoted Pj.

Remark 1.6. We do not use the more common term “closed sets” for the
elements of C, as this might cause confusion later. In some cases, we will
see that the flats of a closure will correspond to closed sets in a topology,
but in cases of greater importance to us, they may correspond to open sets!

1.2 suplattices

Definition 1.7. A suplattice is a partially ordered set with all suprema. If
L is a suplattice, and S ⊂ L is a subset, we denote the supremum of S by∨
S. Sometimes, if a subset of L is given as an indexed set {Sα}, we will

write the supremum as
∨
α Sα. A morphism of suplattices is a function

f : L→ L ′ that preserves the join: for any S ⊂ L, f(
∨
S) =

∨
f(S).

Remark 1.8. The partial order underlying a suplattice can be recovered from
the join

∨
, so it is often a good idea to present a suplattice as a set equipped

with an infinitary operation
∨

: P(L)→ L satisfying
∨
{S} = S for all S ∈ L,

and
∨
α

∨
Sα =

∨⋃
α Sα for all collections Sα ⊂ L. (In this form, it is not

hard to see that suplattices are exactly the algebras over the power monad,
a perspective we will return to in the interlude.)

Example 1.9. If S is a set, then the powerset (P(S),⊂), ordered by inclusion,
is a suplattice, with join given by

∨
S =

⋃
S.

Proposition 1.10. On a partially ordered set, the existence of arbitrary least up-
per bounds is equivalent to the existence of arbitrary greatest lower bounds. In
particular, a suplattice has all infima.

Proof. If L is a suplattice, and S ⊂ L is a subset, then let T be the set of all
lower bounds for S. It is immediate that

∨
T is a greatest lower bound for

S. The reverse direction follows by the same argument applied to the dual
poset.

In particular, a suplattice has a binary meet, which we denote by ∧. Note
that the above argument does not require T to be nonempty, though this is
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in fact the case: every suplattice has a bottom element, the supremum of
the empty set.

Proposition 1.11. The set of closure operators on a suplattice S, ordered pointwise,
is a suplattice.

Proof. By Proposition 1.10, it is enough to show that it has infima. Given
closure operators jα, in fact j(a) =

∧
jα(a) is a closure operator.

Proposition 1.12. If j is a closure operator on a suplattice L, then Lj is also a
suplattice.

Proof. This follows from Proposition 1.10, and the fact that any infimum of
flats is a flat. We could also show the existence of suprema more directly:
If {Cα} is a collection of flats, then a flat D contains each Cα if and only if∨
αCα ⊂ D. It follows that j(

∨
αCα) is the least upper bound for {Cα} in

Lj.

Note that j : L → Lj is a morphism of suplattices. We could also char-
acterize the suplattice structure on Lj as the unique one making j into a
morphism of suplattices. In fact, Lj is a quotient of L, in the following
sense:

Proposition 1.13. Suppose that L,L ′ are suplattices, j a closure operator on L.
If f : L → L ′ is a morphism of suplattices with f(S) = f(j(S)) for all S ∈ L,
then there is a unique morphism fj : Lj → L ′ such that the following diagram
commutes:

L

f ��

j // Lj

fj
��

L ′

Proof. It is clear that fj exists and is unique as a map of sets—we must
have fj(C) = f(C)—so all we need to check is that it is really a morphism
of suplattices. If

∨
j denotes the join in Lj, we have:

fj(
∨
j

S) = f(
∨
j

S) = f(j(
∨

S)) = f(
∨

S) =
∨
f(S) =

∨
fj(S)

Another way to see that closures characterize quotients is to compare
them to congruence relations:
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Definition 1.14. A congruence relation on a suplattice L is an equivalence
relation ∼ such that, if s ∼ t for all s ∈ S, t ∈ T , then

∨
S ∼

∨
T .

Proposition 1.15. The closure operators and congruence relations on a suplattice
are in bijection.

Proof. Given a congruence relation, we can define a closure operator j(S) =∨
S∼T T . Conversely, a closure operator gives a congruence: S ∼ T if j(S) =

j(T).

1.3 closure domains

Definition 1.16. A closure domain is a set a equipped with a closure on
(P(A),⊂). We will also refer to a closure operator or closure system on A,
when this will not cause confusion. The lattice of flats of a closure domain
A will be denoted C(A).

Remark 1.17. We will generally use the notation S 7→ [S] to describe closure
operators that live on powersets. Having a second notation will be useful
when both a poset and its powerset possess a closure operator.

Definition 1.18. A closure relation on A is a relation ` between P(A) and
A, such that:

• a ∈ S =⇒ S ` a.

• If T ` s for all s ∈ S, and S ` a, then T ` a.

Remark 1.19. It may be helpful to pronounce S ` a as “”S covers a”, and
to call ` a “covering relation”. However, we will prefer to reserve the ter-
minology of covers for the situation of Chapter 2, where the closure is
compatible with some semigroup operation.

Proposition 1.20. Closure relations on A are in bijection with closure systems
and closure operators on A.

Proof. Given a closure relation `, define [S] = {a | S ` a}. Conversely, given
a closure operator [−], define S ` a if a ∈ [S]. We omit the verification that
these give a bijection between closure relations and closure operators.

Proposition 1.21. Let A and B be closure domains, f : A→ B a function on the
underlying sets. The following three conditions are equivalent:

• For all C ∈ C(B), f−1(C) ∈ C(A).
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• For all S ⊂ A, f([S]) ⊂ [f(S)].

• For all S ⊂ A, a ∈ A, S ` a =⇒ f(S) ` f(a).

Proof. The second and third conditions are easily seen to be equivalent.
If the first condition is satisfied, then, since [f(S)] is a flat, f−1([f(S)])

is also a flat. We have S ⊂ f−1(f(S)) ⊂ f−1([f(S)]), so [S] ⊂ f−1([f(S)]),
therefore f([S]) ⊂ [f(S)].

Suppose the second condition is satisfied. Let C be a flat, and set S =

f−1(C). Since f([S]) ⊂ [f(S)] = [C] = C, we have [S] ⊂ f−1(f([S])) ⊂ f−1(C) =
S. Since S ⊂ [S], we have [S] = S and S is a flat.

Definition 1.22. A morphism of closure domains is a function f : A → B

satisfying any and all of the above three conditions. A covering morphism
is a morphism such that [f(A)] = B.

Remark 1.23. We include the notion of covering morphism because it may
have algebraic significance in the absence of a multiplicative unity—for ex-
ample, a (not necessarily unital) morphism f : A→ B of commutative rings
with unity is unital if and only if f(A) generates B as an ideal. For the
most part, we will focus on the unital case for simplicity, and briefly dis-
cuss, in an aside, the use of covering morphisms in the non-unital case. The
main thing to note, for now, is that identity maps are covering morphisms,
and covering morphisms and are closed under composition, and therefore
covering morphisms define a subcategory.

Definition 1.24. A closure or closure domain is called finitary or algebraic
if, whenever S ` a, there is a finite subset S ′ ⊂ S such that S ′ ` a. Equiva-
lently:

[S] =
⋃
S ′⊂S
S ′ finite

[S ′]

1.4 examples of closure domains

Algebraic examples

In general, set-theoretic models for algebraic theories give rise to finitary
closure domains.2 Here are some examples:

• A is a group, and [S] is the subgroup generated by S.

2 Here we use the word “model” in a technical sense, for instance a group is a set-theoretic
model of the first-order theory of groups.
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• A is a left R-module for a ring R, and [S] is the submodule of A
generated by S.

• A is a left G-set for a group G, and [S] is the the union of the orbits
meeting S.

These examples all arise from monads: If T is a monad on Set, and A is
a T-algebra with structure map TA → A, then we can define a closure on
A by taking [S] to be the image of TS→ TA→ A.

But there are also interesting examples that do not appear to arise from
monads on Set:

• A is a group, and [S] is the normal closure of the subgroup generated
by S.

• P(X) is a powerset, and, for some collection S ⊂ P(X), [S] is the coars-
est topology containing S.

Galois connections

If P,Q are posets, and f : P → Q,g : Q → P is a Galois connection (either
covariant or contravariant), then g ◦ f is a closure operator on P. In fact, all
closures arise this way, as we will see later.

The underlying preorder

A preordered set is a set P equipped with a reflexive and transitive relation
6. A morphism f : P → P ′ of preordered sets is a function such that
a 6 b =⇒ f(a) 6 f(b).

Preordered sets embed as a full subcategory of closure domains: the
closure relation is given by S ` a if a 6 s for some s ∈ S. The flats of this
closure are exactly the sets that are downward-closed: C is a flat exaclty if
x 6 y and y ∈ C implies x ∈ C.

A closure domain arises from a preordered set if and only if, whenever
S ` a, there is some s ∈ S such that {s} ` a. And given a closure domain A,
we have a natural preorder on A, given by a 6 b if a ∈ [{b}]. In fact, this is
a coreflection:

Proposition 1.25. Let P be a preordered set, A a closure domain. A function
f : P → A is a morphism of preorders if and only if it is a morphism of closure
domains.
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Proof. Suppose that f is a morphism of preorders, and S ` a. Then there is
some s ∈ S with a 6 s, so f(a) 6 f(s). Then [{f(s)}] ` f(a), so f(S) ` f(a).

Conversely, if f is a morphism of closure systems, and a 6 b, then {b} ` a,
so {f(b)} ` f(a), and f(a) 6 f(b).

Definition 1.26. A closure or closure domain is called proper if its under-
lying preorder is a partial order.

Topological Spaces I

Let X be a topological space. Then S 7→ S is a closure on X, with flats the
closed sets. Of course, the topology on X can be recovered directly from
the closure system.

In fact, by Proposition 1.21, this gives a full and faithful embedding of
the category of topological spaces as a full subcategory of the category of
closure domains. By an old insight of Kuratowski [9], we can characterize
its essential image as those closure domains satisfying the following two
properties:

• [∅] = ∅.

• [S∪ T ] = [S]∪ [T ].

These two axioms, together with those for a closure operator, are fre-
quently named in the literature as the Kuratowski closure axioms.

Topological spaces II

Let X be a topological space, and let B be a basis. Then there is a natural
closure on B, given by S ` a if a ⊂

⋃
S, where a ∈ B is an element of the

basis and S ⊂ B is a collection of basis elements. The flats with respect to
this closure are the open sets in X. In particular, the collection of all open
sets, O(X), is a closure domain.3

Note that if f : X → Y is a continuous map of topological spaces, the
natural morphism of closure domains goes in the opposite direction: f−1 :
O(Y)→ O(X).

This example reflects what we intend to do with closures much more
than the previous one. We are primarily interested in algebraic examples
with geometric flavor, and so our morphisms will generally point in the

3 In fact it is a suplattice, which will be discussed later in the section, and furthermore a
frame, which will be discussed in the next chapter.
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opposite direction of the natural geometric interpretation. This will be re-
visted in the next chapter.

Join-semilattices

A join-semilattice is a set L equipped with an associative, commutative,
idempotent binary operation ∨. Equivalently, L is a poset such that any
pair of elements has a least upper bound. A morphism f : L → L ′ of join-
semilattices is a function such that f(a∨ b) = f(a)∨ f(b) for all a,b ∈ L.

A join-semilattice L comes equipped with a canonical finitary closure:
S ` a if a 6 s1 ∨ · · · ∨ sn for some si ∈ S. The flats of this closure are
usually referred to in lattice theory as ideals: they are the sets C that are
downward-closed, and satisfy x,y ∈ C =⇒ x∨ y ∈ C.

If L and L ′ are join-semilattices, then a function f : L→ L ′ is a morphism
of join-semilattices if and only if it is a morphism of closure domains. So
join-semilattices are a full subcategory of closure domains.

Directed-complete partial orders

A directed-complete partial order or dcpo is a poset P such that every
directed subset has a least upper bound. Morphisms of dcpos are func-
tions preserving the directed join, which are often called Scott-continuous
functions.

Once again, these form a full subcategory of closure domains. The clo-
sure on a dcpo is given by: S ` a if there is a directed set D ⊂ S with
a 6

∨
D. Its flats are the Scott-closed sets: the downward-closed sets closed

under directed joins.

Matroids

A matroid is a closure domain satisfying the exchange axiom: a ∈ [S ∪
{b}] \ [S] =⇒ b ∈ [S ∪ {a}]. A wide class of matroids arise from vector
spaces:

Let k be a field, V a vector space over k, and take any subset A ⊂ V . Then
A is naturally a closure domain, with closure given by [S] = A∩ 〈S〉, where
〈S〉 denotes the vector space generated by S. By standard linear algebra, A
is furthermore a matroid.

The morphisms of matroids that are morphisms of closure domains are
called strong morphisms by some authors.
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Convex geometries and antimatroids

A convex geometry is a closure domain satisfying [∅] = ∅, and the anti-
exchange axiom: if a 6= b, and a,b /∈ [S], then a ∈ [S∪ {b}] =⇒ b /∈ [S∪ {a}].
The flats of a convex geometry are called convex sets.

If K is an ordered field, and A ⊂ Kn, then there is a closure on A taking
S to the intersection of A with the convex hull of S. A basic result of convex
geometry is that this operator is finitary: in fact, Carathéodory’s Theorem
says that if a ∈ [S], then a ∈ [S ′] for some S ′ with |S ′| 6 n+ 1—the convex
hull of S is the union of the (possibly degenerate) n-simplices with vertices
in S. Since simplices are exactly the finitely generated flats, S 7→ [S] is
finitary.

An antimatroid is a set A and a collection D of subsets of A whose
complements form a convex geometry. Antimatroids themselves are not
literally closure domains, but they can be thought of as coclosures: closures
on the dual poset (P(A),⊃).

There does not seem to be a widely accepted definition of morphisms
for convex geometries and antimatroids, but the morphisms as closure do-
mains are certainly of interest. For example, a function f : Km → Kn is
a morphism of closure systems if and only if f preserves betweenness: if x
lies on the line segment between p and q, then f(x) lies on the line seg-
ment between f(p) and f(q). Affine transformations have this property, but
characterizing all such functions appears to be a difficult problem, even for
K = R.

Closures on a ring

Let A be a commutative ring with 1. A comes equipped with many closures
of interest. We enumerate, suggestively, some of the notable ones:

• S 7→ S.

• S 7→ bSc, the (additive) semigroup generated by S.

• S 7→ [S], the (additive) monoid generated by S.

• S 7→ 〈S〉, the (additive) abelian group generated by S.

• S 7→ (S), the ideal generated by S.

• S 7→ |S|, the radical ideal generated by S.
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We have S ⊂ [S] ⊂ 〈S〉 ⊂ (S) ⊂ |S| for all S, so each of these closures
factors through the previous one. Each subsequent extension loses infor-
mation, but gains algebraic structure:

• bSc+ bSc ⊂ bSc.

• 0 ∈ [S].

• −1 · 〈S〉 ⊂ 〈S〉.

• R · (S) ⊂ (S).

• x2 ∈ |S| =⇒ x ∈ |S|.

Critically, in the final step we have a closure whose flats are the open
sets of a topological space SpecA. As we proceed, we will see that this is
not at all a coincidence: we will describe the general procedure by which
closures may be employed to turn algebra into topology.

1.5 suplattices as closure domains

If L is a suplattice, we can consider it as a closure domain, with [S] = {a |

a 6
∨
S}. The flats are the principal downward-closed sets.

This gives us an equivalence between the category of suplattices and the
full subcategory of closure domains such that, for any S ⊂ A, there is a
unique a ∈ A such that [S] = [{a}]. The next few propositions will show
that, in fact, this category is reflective.

Proposition 1.27. If A is a closure domain, then C(A) is a suplattice under in-
clusion, and the natural map A→ C(A) is a morphism of closure domains.

Proof. The first part follows from Proposition 1.12. To check that the map
ι : A→ C(A) sending a to [{a}] is a morphism of closure domains, suppose
that S ` a. Then a ∈ [S], so [{a}] ⊂ [S] =

∨
s∈S[{s}]. So ι(a) ⊂

∨
ι(S),

therefore ι(S) ` ι(a).

Proposition 1.28. Let A be a set, L a suplattice. If f : A → L is any set map,
there is a unique morphism P(f) : P(A) → L of suplattices making the following
diagram commute:

A

f ""

// P(A)

P(f)
��
L
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Proof. If P(f) is such a morphism of suplattices, then we have:

(P(f))(S) = (P(f))(
⋃
S) =

∨
s∈S

(P(f))({s})

=
∨
s∈S
f(s) =

∨
f(S)

It remains to check that (P(f))(S) =
∨
f(S) defines a morphism of suplat-

tices. (It obviously makes the diagram commute.)

(P(f))(
⋃
α

Sα) =
∨⋃

α

Sα

=
∨
α

∨
Sα =

∨
α

(P(f))(Sα)

Proposition 1.29. Let A be a closure domain, L a suplattice. If f : A → L is
a morphism of closure domains, then there is a unique morphism of suplattices
C(A)→ L making the following diagram commute:

A

f !!

// C(A)

∃!
��
L

Proof. This is a consequence of Proposition 1.28 and Proposition 1.13: first
we lift f to P(f) : P(A) → L, then to a morphism C(A) = [P(A)] → S. The
only thing we need to check is that P(f) respects the closure. But this is
equivalent to the statement that f is a morphism of closure domains.
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Q U A N TA L E S , F 1 , A N D T H E P O I N T L E S S S P E C T R U M

2.1 covered semigroups

Let (A, ·) be a semigroup. By convention, we extend the multiplication to
the powerset P(A) by setting S · T = {s · t | s ∈ S, t ∈ T }.

Definition 2.1. A coverage on (A, ·) is a closure [−] that satisfies:

[S] · [T ] ⊂ [S · T ] for all S, T ⊂ A

Equivalently:

a · [T ] ⊂ [a · T ] and [S] · a ⊂ [S · a] for all a ∈ A,S, T ⊂ A

A covered semigroup is a semigroup equipped with a coverage.

Remark 2.2. To see that these two conditions are equivalent, notice that the
second is the same as the assertion that U · [V] ⊂ [U ·V] and [U] ·V ⊂ [U ·V]
for all U,V ⊂ A. Combining these gives us:

[S] · [T ] ⊂ [S · [T ]] ⊂ [[S · T ]] = [S·]

Remark 2.3. In the case that (A, [−]) is a partially ordered set, this is identical
to the usual notion of an ordered semigroup. In fact, the following propo-
sition shows that this definition is compatible with the forgetful functor to
preordered semigroups.

Proposition 2.4. If A is a covered semigroup, then · is monotone on (A,6).

Proof. If a 6 b and c 6 d, then a ∈ [b] and c ∈ [d], so a · c ∈ [b] · [d] ⊂ [b ·d],
and therefore a · c 6 b · d.

Definition 2.5. If A is a covered semigroup, a left ideal of A is a flat I such
that A · I ⊂ I, and a right ideal is a flat I such that I ·A ⊂ I. A ideal is a
flat that is both a left ideal and a right ideal. A prime ideal is an ideal such
I 6= A, and x · y ∈ I =⇒ x ∈ I or y ∈ I. A prime filter is the complement
of a prime ideal.
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Remark 2.6. In the case of non-commutative multiplication, it may be more
familiar to use the name “completely prime ideal” instead of “prime ideal”.
We use the simpler term to emphasize a more unified approach, though
we will see presently that these definitions are more well-behaved in the
commutative case.

Proposition 2.7. If A is a commutative covered semigroup, there is a smallest
coverage (−) above [−] such that A · (S) ⊂ (S), and the flats of this coverage are
exactly the ideals of A.

Proof. Since A · [S ∪A · S] ⊂ [A · S ∪A ·A · S] = [A · S] ⊂ [S ∪A · S], it is
enough to show that (S) = [S∪A · S] is a coverage. First, we check that it is
a closure operator:

• S ⊂ S∪A · S =⇒ S ⊂ (S).

• S ⊂ T =⇒ S∪A · S ⊂ T ∪A · T =⇒ (S) ⊂ (T).

• ((S)) = [(S)∪A · (S)] = [(S)] = [[S∪A · S]] = [S∪A · S] = (S).

Next, we check multiplicativity:

(S) · (T) = [S∪A · S] · [T ∪A · T ]

⊂ [(S∪A · S) · (T ∪A · T)]

= [S · T ∪A · S · T ] = (S · T)

Finally, if S is an ideal of A, we have (S) = [S ∪A · S] = [S] = S, so S is
a flat of (−), and conversely, if S is a flat of (−), S = (S) = [S ∪A · S] =⇒
A · S ⊂ S, and S is an ideal of A.

Remark 2.8. In the non-commutative case, the above proposition becomes
much more complicated. It is still true that there is a smallest coverage (−)

such that every flat is a left ideal, but it is no longer true that the left ideals
of [−] are necessarily flats of (−). This inconvenient fact is responsible for
the divergence of the concepts of prime ideal and completely prime ideal
in the theory of noncommutative rings, and it means that great care should
be taken in applying our results in the noncommutative setting.

For more details on this construction, see Chapter 3 of [14], or our outline
of the spectrum construction later in the chapter.

Definition 2.9. A covered monoid is a covered semigroup with a multi-
plicative unit.
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Remark 2.10. If A is a covered monoid, the construction of Proposition 2.1
can be simplified: we can take (S) = [A · S].

Definition 2.11. A covered monoid is affine or strictly two-sided if 1 is a
top element of its preorder.

2.2 semilattices

Definition 2.12. A is a closure domain with meets if the underlying pre-
order is a meet-semilattice. That is, A is proper, and every pair of elements
has a greatest lower bound. Likewise, a covered semigroup with meets
(resp. covered monoid with meets) is a covered semigroup (resp. covered
monoid) such that the underlying closure domain is a closure domain with
meets.

Definition 2.13. A covered semilattice is a proper covered semigroup such
that a ·b is a greatest lower bound for {a,b} for all a,b ∈ A. Equivalently, it
is a closure domain whose underlying preorder is a meet-semilattice, and
[S]∧ [T ] ⊂ [S∧ T ] for all S, T ⊂ A.

Remark 2.14. It is worthwhile to note that these two equivalent definitions
mean that we can think of covered semilattices as either a full subcategory
of covered semigroups, or a non-full subcategory of closure domains.

Remark 2.15. Coverages on semilattices are closely related to the structures
of the same name studied by Johnstone. (see, e.g. Section II.2.11 of [6].)
The differences are mainly philosophical: For example, Johnstone does not
require {s} to be a cover of s. A meaningful comparison is that his cover-
ages are similar to Grothendieck pretopologies, while ours are similar to
Grothendieck topologies.

Proposition 2.16. Suppose that (A, ·, 1) is a covered monoid. Then A is a covered
semilattice if and only if it is proper, idempotent, and affine.

Proof. In a covered semilattice with 1, it is easy to see that ∧ is idempotent
and 1 is the top element. Conversely, A is proper, idempotent, and affine,
then we have, for all a,b ∈ A:

a · b 6 a · 1 = a

a · b 6 1 · b = b

So a · b is a lower bound for {a,b}. On the other hand, if x is any lower
bound of {a,b}, we have:
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x = x · x 6 a · b

It follows that a · b is a greatest lower bound of {a,b}. Since A is proper,
we have · = ∧ and A is a covered semilattice.

2.3 lax and colax morphisms

Definition 2.17. If A,B are covered semigroups, a weak morphism is just
a morphism of closure domains f : A → B. We say that a weak morphism
f is a lax morphism if it satisfies:

f(a) · f(b) 6 f(a · b)

Likewise, f is a colax morphism if it satisfies:

f(a · b) 6 f(a) · f(b)

f is a strong morphism if it is both lax and colax. f is a strict morphism
if it is a morphism of semigroups in the usual sense. Note that strict mor-
phisms are strong, and, if B is proper, strong morphisms are strict.

Remark 2.18. There are many examples in the literature that use the reverse
of our definitions for lax and colax. We have good reasons for choosing this
terminology, however: First, we wish for an inequality a 6 b to be treated
as a morphism a → b rather than b → a, to respect the convention that
an inclusion of sets is a morphism. Second, the notions of lax and colax
appear in the theory of monoidal categories, and we wish to be consistent
with the terminology there.

Proposition 2.19. If A is a closure domain and semigroup, then it is a covered
semigroup if and only if [−] is a lax morphism P(A)→ P(A).

Proof. This is a formal consequence of the definitions, since A is a covered
semigroup if and only if [S] · [T ] ⊂ [S · T ].

Definition 2.20. If A and B are covered monoids, we call any of the above
classes of morphism unital if f(1) = 1.

Remark 2.21. If A is a monoid, B is a covered monoid, and f : A → B is
a morphism of closure domains, we can define lax-unital morphisms to be
those with 1 6 f(1), and colax-unital morphisms to be those with f(1) 6 1.
We can similarly define the terms strong-unital and strict-unital.
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Here we will assume strictness for simplicity—though some results gen-
eralize to lax-unital morphisms—but there are interesting examples in the
literature of various combinations of laxness and colaxness for the multipli-
cation and unit. For example, [3] considers lazy morphisms, which are colax
and lax-unital.

2.4 quantales

Definition 2.22. A quantale is a triple (Q,
∨

, ·), where (Q,
∨
) is a suplattice

and (Q, ·) is a semigroup, that satisfies, for all U,V ,Uα,Vα ∈ Q:

U ·

(∨
α

Vα

)
=
∨
α

(U · Vα)

(∨
α

Uα

)
· V =

∨
α

(Uα · V)

A unital quantale is a quantale with a unit. A (lax/colax/strong) mor-
phism of quantales is a function f : Q → Q ′ that is both a morphism of
suplattices and a (lax/colax/strong) morphism of ordered semigroups.

In most cases, it is probably best to think of quantales concretely as sets
equipped with two operations, · : Q2 → Q and

∨
: P(Q)→ Q, or as partially

ordered sets with suprema and a compatible multiplication.
But crucially, quantales (with lax/colax/strong morphisms) can be real-

ized as a full subcategory of covered semigroups (with lax/colax/strong
morphisms). Specifically, they are the covered semigroups whose underly-
ing closure system can be identified with a suplattice. Put differently, they
are the covered semigroups such that every flat is principal with a unique
generator.

Example 2.23. If A is a covered semigroup, then the multiplication C ·[−]D =

[C ·D] makes C(A) into a quantale. In particular,if (A, ·) is a semigroup,
then (P(A),

⋃
, ·) is a quantale. (We will see later that A → C(A) is a reflec-

tion.)

Definition 2.24. A nucleus on a quantale Q is a closure j on the underlying
suplattice, such that j(S) · j(T) 6 j(S · T) for all S, T ∈ Q.

By comparing definitions, we can see that a coverage on a semigroup
(A, ·) is precisely the same as a nucleus on the quantale (P(A),

⋃
, ·). We will
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tend to use the words “coverage” and “nucleus” somewhat interchange-
ably, the former when we wish to emphasize the underlying set A, and the
latter when we wish to emphasize the lattice of subsets (P(A),

⋃
).

As with closure operators on suplattices, nuclei characterize quotients of
quantales. In particular, they have the following universal property:

Proposition 2.25. Suppose that Q,Q ′ are quantales, [−] a nucleus on Q. If f :

Q → Q ′ is a lax(/colax) morphism of quantales with f(S) = f([S]) for all S ∈ Q,
then there is a unique lax(/colax) morphism [f] : [Q]→ Q ′ such that the following
diagram commutes:

Q

f ��

// [Q]

[f]
��
Q ′

Proof. Since [−] is a closure, we can use the universal property of closures
on suplattices to construct [f] as a morphism of suplattices: [f](C) = f(C).
It remains only to check that [f] is lax(/colax). If f is lax:

[f](S) · [f](T) = f(S) · f(T) 6 f(S · T) = f([S · T ]) = [f]([S · T ]) = [f](S ·[−] T)

If f is colax, the same proof works with the inequality reversed.

Proposition 2.26. Let A be a semigroup, Q a quantale. If f : A → Q is a
lax(/colax) morphism, then there is a unique lax(/colax) morphism of quantales
P(f) : P(A)→ Q making the following diagram commute:

A

f ""

// P(A)

P(f)
��
Q

Proof. By the earlier universal property of the powerset, it is enough to
show that the natural map P(f) is lax(/colax) when f is. If f is lax:

(P(f))(S · T) =
∨

s∈S,t∈T
f(s · t) 6

∨
s∈S,t∈T

f(s) · f(t)

= (
∨
s∈S
f(s)) · (

∨
t∈T
f(t)) = ((P(f))(S)) · ((P(f))(T))

If f is colax, we just reverse the inequality.
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Proposition 2.27. Let A be a covered semigroup, Q a quantale. If f : A → Q is
a lax(/colax) morphism of covered semigroups, then there is a unique lax(/colax)
morphism of quantales C(A)→ Q making the following diagram commute:

A

f !!

// C(A)

∃!
��
Q

Proof. As in Chapter 1, this is an immediate consequence of the previous
two propositions.

Remark 2.28. Once we have developed the theory of frames, this last propo-
sition can be seen as a generalization of Stone duality. For example, it im-
mediately gives us an equivalence of categories between bounded distribu-
tive lattices and coherent frames with coherent maps, the latter of which is
easily seen to be dual to the category of spectral spaces.

2.5 frames

Recall that a suplattice has infima, in particular it has a binary meet ∧.

Definition 2.29. A frame is a suplattice (F,
∨
) such that, for all U,Vα ∈ F,

we have:

U∧

(∨
α

Vα

)
=
∨
α

(U∧ Vα)

A morphism of frames is a function f : F → F ′ that is a morphism of
suplattices, and satisfies f(x∧ y) = f(x)∧ f(y).

The category of frames, as we have defined it, is easily seen to be a
full subcategory of the category of quantales with strong morphisms. We
have found it useful to think of frames as the covered semigroups which
are simultaneously quantales and covered semilattices. That is, they are
quantales for which the multiplication equals the binary meet.

Remark 2.30. It may be useful to think about colax morphisms in the context
of frames, though we will not do this. It is worth mentioning that a weak
morphism of covered semilattices is automatically colax, so in particular a
lax morphism of frames is automatically strong.

Note that, since every suplattice has a top element, which is necessarily
a unit for ∧, every frame is in fact a unital quantale. By Proposition 2.16,
we can think of frames as exactly the idempotent affine unital quantales.
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Remark 2.31. Most authors take morphisms of frames to be the strong mor-
phisms as unital quantales, i.e. morphisms that preserve the top element.
We will instead call these unital morphisms, in line with the terminology
for quantales, as both the class of strong morphisms and the class of strong
unital morphisms will be important to us, and we want to make the dis-
tinction clear.

Theorem 2.32. Frames are reflective in quantales. That is, there is a functor Spec :

Qua → Frm, and natural transformation idQua → Spec, with the following
universal property: If Q is a quantale, F is a frame, and f : Q → F is a strong
morphism of quantales, there exists a unique morphism of frames SpecQ → F

such that the following diagram commutes:

Q

f ""

// SpecQ

∃!
��
F

Proof. Rosenthal, p.44, Theorem 3.2.5.[14].

The proof of this theorem is nontrivial, though the commutative case is
a good deal easier. Rosenthal proceeds by constructing three nuclei that en-
code algebraic properties of frames, and formally takes their join to obtain
the minimal nucleus such that the corresponding quotient is a frame. Then,
he shows that strong morphisms to frames lift across this nucleus—in ef-
fect, verifying that all such morphisms satisfy the lifting property of our
Proposition 2.25.

We will suggestively refer to this nucleus on Q as S 7→
√
S.

Remark 2.33. The construction of
√
− is abstract in general, but there are

concrete ways to understand it in particular cases. For example, if every
flat of A is an ideal, then the flats C with

√
C = C are exactly the semiprime

ideals, those satisfying D ·D ⊂ C =⇒ D ⊂ C for any flat D. When A
is also commutative, finitary, and with unit,

√
C is the radical of C in the

usual sense of commutative algebra.

For the reader who is not satisfied taking this construction as a black
box, we give a detailed outline of its mechanics:

Rosenthal’s construction

Definition 2.34. Let Q be a quantale, and S ∈ Q. We say that S is:
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• symmetric if, whenever U1 · · ·Un 6 S, we also have Uπ(1) · · ·Uπ(n) 6
S for any permutation π.

• right-sided if S · > 6 S, where > is the top element of Q.

• semiprime if T2 6 S implies T 6 S for any T ∈ Q.

• localic if S is symmetric, right-sided, and semiprime.

The goal is to demonstrate the minimum nucleus jloc on Q for which
the quotient Qjloc is a frame. This turns out to be the same as finding the
minimal nucleus on Q whose fixed points are all localic.

This proceeds in three parts. First, observe that an infimum of (sym-
metric / right-sided / semiprime) elements is (symmetric / right-sided /
semiprime), so that we get three closure operators jc, jr, je. Next, verify that
these closure operators are in fact nuclei, i.e. they are compatible with the
multiplication of Q.

The next step is the most non-constructive: define jloc as the join of nuclei
jc∨ jr∨ je. Recall that nuclei are closed under pointwise infima, so the join
jc ∨ jr ∨ je is just the infimum of all nuclei j with jc, jr, je 6 j. (For those
who worry about empty infima, note that there is a maximum nucleus
j(a) = >.)

This shows that every quantale has a minimal frame quotient, and it pro-
vides some tools to construct it in certain situations. For example, Rosen-
thal shows that if Q is affine (two-sided), then an element is localic if and
only if it is semiprime, and therefore jloc simply sends an element to the in-
fimum of all semiprime elements above it. When applied to the quantale of
ideals in a commutative ring, this recovers the usual notion of the radical.

These results are not quite enough to prove Theorem 2.32. The missing
piece is to demonstrate that any morphism f : Q → F to a frame actually
satisfies the lifting property of Proposition 2.25, i.e. is compatible with the
nucleus jloc. Rosenthal checks this separately for the nuclei jc, jr, je. The
proof, while not particularly difficult, involves an application of the Adjoint
Functor Theorem for lattices.

2.6 pointless topology

The heart of pointless topology is a contravariant functor O on the category
of topological spaces, sending a space X to its frame of opens O(X). This
functor is full onto the category of frames and unital morphisms.

Definition 2.35. A frame is spatial if it is isomorphic to O(X) for some
topological space X.

20



The functor O has an adjoint pt, which we will describe in a moment,
and this adjunction restricts to a duality between the category of spatial
frames with unital morphisms, and the category of T0 sober topological
spaces.

Remark 2.36. To better resemble the theory of topological spaces, pointless
topologists often work in the dual of the category of frames and unital
morphisms, called the category of locales. In fact, the name “quantale” was
originally a contraction of “quantum locale”.[11]

Remark 2.37. The functor Spec gives us a way to construct frames, and
frequently topological spaces, from quantales, and therefore from covered
semigroups. However, to get topologically meaningful morphisms, we must
take care to ensure that this functor only produces unital morphisms of
frames. The most natural way to do this is to restrict to the category of
covered monoids from the start, so that all morphisms will be unital. An
alternative is to take the whole category of covered semigroups, but re-
strict to covering morphisms. These approaches differ in some situations,
and coincide in others.

Definition 2.38. A prime or point of a frame F is an element S ∈ F such
that [{S}] is a prime ideal. Equivalently, we have U ∧ V 6 S =⇒ U 6
S or V 6 S. The set of all points of F will be denoted by pt(F), and given
the topology {D(S) | S ∈ F}, where D(S) = {P prime | U 66 P}.

Remark 2.39. Since all flats in a suplattice are principal with a unique gen-
erator, the prime elements of F are in bijection with the prime ideals (or
prime filters) of F. We will usually use “point” to refer to prime filters and
ideals, and “prime” to refer to the prime elements of F.

Example 2.40. If X is a topological space, the primes of O(X) are exactly the
open sets whose complements are irreducible, and the space pt(O(X)) is
the soberification of X.

Definition 2.41. A frame F has enough points if, for all S ∈ F:

S =
∧
S6P,
P prime

P

Equivalently, whenever S 66 T , there is a prime P such that S 66 P and
T 6 P.

Proposition 2.42. A frame is spatial if and only if it has enough points.

Proof. Johnstone, Section II.1.5 [6].
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2.7 F1

Definition 2.43. F1 is defined to be the suplattice {0 6 1}, equipped with
the usual multiplication ·. We regard F1 as a covered monoid (in fact, a
unital quantale) via its suplattice closure, i.e. [∅] = [{0}] = {0}, [{1}] = [F1] =

F1.

F1 is often defined as simply the monoid {0, 1}, sometimes as the or-
dered monoid {0 6 1}. But it is our view that we should attach the correct
closure operator to it, namely the one that comes from its suplattice struc-
ture. Specifically, we desire [∅] = {0}, not ∅, which is what we would get by
treating F1 as merely an ordered monoid.

F1 appears in many different guises:

• It is the frame of open sets of the one-point space.

• It is the quantale of flats of the trivial monoid.

• It is the initial object in the category of unital quantales.

One feature of F1 is that any set map f : A→ F1 is uniquely determined
by either f−1(0) or f−1(1). This seemingly innocuous fact will help us to
establish a useful dictionary between some familiar construtions.

Definition 2.44. If A is a set and f : A → F1 is a function, call f nontrivial
if 1 ∈ f(A).

If A is a covered semigroup, we have the following correspondence of
properties for a set map f : A→ F1:

f K (= f−1(0)) F (= f−1(1))

f is nontrivial K 6= A F 6= ∅
f is a closure map K = [K] a ∈ F,S ` a =⇒ F∩ S 6= ∅

f is lax x ∈ K or y ∈ K =⇒ x · y ∈ K x · y ∈ F =⇒ x,y ∈ F
f is colax x · y ∈ K =⇒ x ∈ K or y ∈ K x,y ∈ F =⇒ x · y ∈ F

From this dictionary, we can see a few things immediately: The weak
morphisms A→ F1 parametrize the flats of A, the lax morphisms A→ F1
parametrize the ideals of A, and the nontrivial strong morphisms A → F1
parametrize the prime ideals of A. If A is a semigroup with trivial coverage,
the colax morphismsA→ F1 parametrize the subsemigroups ofA, and ifA
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is a monoid with trivial coverage, then the unital colax morphism A→ F1
parametrize the submonoids of A. Finally, if A is a meet-semilattice with
the poset coverage, the colax morphisms A→ F1 parametrize the filters on
A.

2.8 spectra of covered semigroups

We can extend the functor Spec to the category of covered semigroups as
follows. If A is a covered semigroup, then C(A) is a quantale, and we define
SpecA = SpecC(A). Since Q→ C(Q) is an isomorphism for any quantale Q,
this is safe notation.

Proposition 2.45. If A is a covered semigroup, the prime ideals of A are in bijec-
tion with the points of SpecA.

Proof. This is a straightforward application of Theorem 2.32, Proposition
2.27, and the above dictionary. The prime ideals of A are in bijection with
the nontrivial strong morphisms of covered semigroups A→ F1, which are
in bijection with the nontrivial strong morphisms of quantales C(A)→ F1,
which are in bijection with the nontrivial morphisms of frames SpecA →
F1, which are in bijection with the primes of SpecA, which are in bijection
with pt(SpecA).

Corollary 2.46. If A is a covered semigroup, SpecA is spatial if and only if, for
every flat C ∈ C(A), we have:

√
C =

⋂
C⊂P,

P is a prime ideal

P

Definition 2.47. An element S of a quantale Q is compact if, whenever S 6∨
S for some collection S ⊂ Q, then S 6

∨
S ′ for some finite collection S ′ ⊂

S. A quantale is algebraic if every element is a join of compact elements.

Theorem 2.48. Every algebraic quantale has a spatial spectrum.

Proof. Rosenthal, p.59, Theorem 4.1.1. [14].

Remark 2.49. The proof of Theorem 2.48 requires the axiom of choice, and it
is the only result in this work that does. If we are comfortable working with
frames instead of topological spaces, the axiom of choice can be avoided
entirely.
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Remark 2.50. Not every T0 sober space is the spectrum of an algebraic quan-
tale, as such a spectrum necessarily has a basis of quasi-compact opens.
However, we will see later, in the interlude, that all such topological spaces
arise in this way.

Definition 2.51. A topological space is called quasi-spectral if it is T0 and
sober, and it has a basis of quasi-compact opens that is closed under inter-
section. A space is spectral if it is quasi-spectral and quasi-compact.

Proposition 2.52. Let A be a covered semigroup. If A is finitary, then SpecA
is spatial, and pt(SpecA) is quasi-spectral. If A has a unit, then pt(SpecA) is
spectral.

Proof. Let A be a finitary covered semigroup. Since every flat is a join of
principal flats, Theorem 2.48 tells us that, to show SpecA is spatial, it is
enough to show that every principal flat is compact. Suppose that [{a}] 6∨
S = [

⋃
S] for some collection S of flats. Since A is finitary, there is a finite

collection S ′ ⊂ S such that a ∈ [
⋃
S ′] =

∨
S ′, so [{a}] ⊂

∨
S ′, as desired.

We can identify {D(a) | a ∈ A} with a basis of pt(SpecA) of quasi-
compact opens, and D(a) ∩D(b) = D(a · b), so it is closed under inter-
section, thus pt(SpecA) is quasi-spectral. If A has a unit, then D(1) is the
top element of SpecA, therefore pt(SpecA) = D(1) is quasi-compact, hence
spectral.
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N
I N T E R L U D E : A L G E B R A O V E R T H E P O W E R M O N A D

n.1 hyperoperations

Definition N.1. Let A be a set, n > 0. An n-ary hyperoperation on A is
any set map ? : An → P(A). (Note that we allow the range to include the
empty set.)

Definition N.2. Let (L,
∨
) be a suplattice, n > 0. An n-ary lattice operation

on L is a map ? : Ln → L that is a morphism of suplattices L→ L in each
variable. Equivalently, the following should hold for all collections {Siαi} of
elements of L:

?

(∨
α1

S1α1 , . . . ,
∨
αn

Snαn

)
=

∨
α1,...,αn

?(S1α1 , . . . ,Snαn)

We will often work in the powerset rather than with A directly. When it
will not cause confusion, we will blur the distinction between the element
a ∈ A and the singleton {a} ∈ P(A).

Given an n-ary hyperoperation on A, there is a natural extension to P(A),
given by:

?(S1, . . . ,Sn) =
⋃
si∈Si

?(s1, . . . , sn)

Proposition N.3. This extension induces a bijection between n-ary hyperopera-
tions on A and n-ary lattice operations on (P(A),

⋃
).

Proof. We can check that any lattice operation on (P(A),
⋃
) is uniquely

determined by its values on A according to the above formula:

?(S1, . . . ,Sn) = ?(
⋃
s1∈S1

{s1}, . . . ,
⋃

sn∈Sn

{sn}) =
⋃
si∈Si

?(s1, . . . , sn)

So we just need to verify that the formula always gives a lattice operation:

?

(⋃
α1

S1α1 , . . . ,
⋃
αn

Snαn

)
=

⋃
si∈
⋃
αi
Siαi

?(s1, . . . sn)
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=
⋃

α1,...,αn

⋃
si∈Siαi

?(s1, . . . sn) =
⋃

α1,...,αn

?(S1α1 , . . . Snαn)

Remark N.4. Note that we proved the n = 1 case much earlier, in Chapter
1.

Example N.5. A
⋃

-preserving map P(A) → P(A) is the same as a unary
hyperoperation on A, i.e. a relation on A or a directed graph with vertex
set A.

Remark N.6. It is possible to develop this correspondence more abstractly
using the tensor product of suplattices. As we have defined it, an n-ary
lattice operation on L is exactly a morphism of suplattices L⊗n → L. Then,
Proposition N.3 follows from the fact that the functor Set → Sup sending
A to P(A) is a strong morphism of monoidal categories (P(A×B) ∼= P(A)⊗
P(B)) and is left adjoint to the forgetful functor Sup→ Set, as follows:

HomSet(A
n,P(A)) ∼= HomSup(P(A

n),P(A)) ∼= HomSup((P(A))
⊗n,P(A))

As a consequence of Proposition N.3, we can always study classical oper-
ations on lattices instead of hyperoperations. However, there is frequently
some work to be done in relating properties of a hyperstructure to prop-
erties of its associated lattice. We will see shortly that associativity and
commutativity of binary operations lift, as does a multiplicative hyperunit.
However, later we will see that distributivity does not lift from semirings
to lattice-enriched semirings.

A more basic counterexample is additive inverses: Although every ele-
ment of Z has an additive inverse, the only elements of P(Z) with additive
inverses are the singletons. In any case, the next section concerns itself with
the algebraic properties that extend from A to P(A) without incident.

n.2 hypersemigroups and hypermonoids

The definitions and results of this section appear to be folkloric. Some have
been observed in online discussions by Trimble (for example, [16]).

Definition N.7. Let � be a binary hyperoperation on a set A. We say that
� is associative if a� (b� c) = (a� b)� c (as sets) for all a,b, c ∈ A. A set
equipped with an associative binary hyperoperation is called a hypersemi-
group.
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Proposition N.8. Let A be a set, � any binary hyperoperation on A. Then (A,�)
is a hypersemigroup if and only if (P(A),

⋃
,�) is a quantale.

Proof. One direction is easy: the associative law for the quantale (P(A),
⋃

,�)
implies the associative law for (A,�), a fortiori.

For the other direction, suppose that � is associative on A. By Proposi-
tion N.3, we know that � distributes over

⋃
, so all that remains to check is

associativity. If S, T ,U are subsets of A, we have, by distributivity:

S� (T �U) =

(⋃
s∈S
s

)
�

 ⋃
t∈T ,u∈U

t� u


=

⋃
s∈S,t∈T ,u∈U

s� (t� u) =
⋃

s∈S,t∈T ,u∈U
(s� t)� u

=

 ⋃
s∈S,t∈T

s� t

�(⋃
u∈U

u

)
= (S� T)�U

Since� is associative and distributes over
⋃

, we conclude that (P(A),
⋃

,�)
is a quantale.

Definition N.9. A hypermonoid is a tuple (A,�, 1), where (A,�) is a hy-
persemigroup, and 1 is a nullary hyperoperation (i.e., a set 1 ∈ P(A)) such
that 1� a = a� 1 = a for all a ∈ A.

Remark N.10. There may be good reasons to generalize this by merely re-
quiring a 6 1 � a and a 6 a� 1, though we will not explore this idea
here.

Proposition N.11. (A,�, 1) is a hypermonoid if and only if (P(A),
⋃

,�, 1) is a
unital quantale.

Proof. If 1 is a unit in P(A), then it is certainly a unit in A. Conversely, by
Proposition N.8, all we need to check is that a unit in A extends to a unit
in P(A):

1� S =
⋃
s∈S
1� s =

⋃
s∈S
s = S

Similarly, S� 1 = S, so 1 is a unit of P(A).

Example N.12. It is easy to check that every semigroup is a hypersemigroup,
and every monoid is a hypermonoid.
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Example N.13. If A is any set, then (P(A),
⋃

,∩) is a frame, therefore a unital
quantale, and so we have a hypermonoid structure on A given by:

1 = A

a� b = {a}∩ {b}

Example N.14. Similarly, if A is any set, we have a hypersemigroup struc-
ture on A, given by:

a� b = {a}∪ {b}

This is not, however, a hypermonoid: Since we are forced to define ∅�
S =

⋃
a∈∅,b∈S a� b = ∅, there is no hyperunit when A has more than one

element.

Definition N.15. A hypersemigroup or binary hyperoperation is commu-
tative if a� b = b� a for all a,b ∈ A.

Proposition N.16. A binary hyperoperation � is commutative on A if and only
if it is commutative on P(A).

Proof. If P(A) is commutative, then A is immediately commutative. If A is
commutative, and S, T ∈ P(A), then:

S� T =
⋃

s∈S,t∈T
s� t =

⋃
t∈T ,s∈S

t� s = T � S

n.3 covered hypersemigroups and their spectra

Many basic results about covered semigroups extend immediately to hy-
persemigroups.

Definition N.17. Let (A,�) be a hypersemigroup. A coverage on A is a
closure such that [S] � [T ] ⊂ [S � T ] for all S, T ⊂ A. A covered hyper-
semigroup is a hypersemigroup equipped with a coverage, and likewise a
covered hypermonoid is a hypermonoid equipped with a coverage.

Since a coverage on a hypersemigroup (A,�) is exactly a nucleus on
the quantale (P(A),

⋃
,�), the lattice of flats C(A) is naturally a quantale,

allowing us to extend the functor Spec to covered hypersemigroups in the
same way we did for covered semigroups.
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Proposition N.18. The spectrum of a finitary covered hypersemigroup is spatial.

Proof. The proof is identical to the first half of the proof of the similar
proposition for covered semigroups in Chapter 2.

Proposition N.19. If X is a T0, sober topological space with a basis of quasi-
compact opens, then X is the spectrum of a finitary covered hypersemigroup.

Proof. Let A be the set of all quasi-compact opens of X. For a,b ∈ A, define
a� b = {x ∈ A | x ⊂ a ∩ b}, and give A the closure defined by S a a if
a ⊂

⋃
S. It is not difficult to check that A satisfies the axioms for a finitary

covered hypersemigroup.
Furthermore, if C is a flat and x ⊂

⋃
C, then x ∈ C, so C 7→

⋃
C is an

isomorphism of suplattices C(A) → O(X), which preserves the multiplica-
tion and is therefore an isomorphism of quantales. It follows that C(A) is
already a frame, so SpecA = C(A) ∼= O(X).

n.4 subdistributivity

One basic algebraic property that almost never lifts to the powerset is dis-
tributivity. For example:

{0, 1} · ({1}+ {1}) ( {0, 1} · {1}+ {0, 1} · {1}

However, there is a much better-behaved property:

Definition N.20. If �,� are two binary hyperoperations on a set, we say
that � subdistributes over � if the following two conditions hold:

a� (b� c) ⊂ (a� b)� (a� c)

(a� b)� c ⊂ (a� c)� (b� c)

If �,� are two binary lattice operations, we say that � subdistributes
over � if the following two conditions hold:

S� (T �U) 6 (S� T)� (S�U)

(S� T)�U 6 (S�U)� (T �U)

Proposition N.21. If � subdistributes over � in A, then � subdistributes over
� in P(A).
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Proof.
S� (T �U) =

⋃
s,t,u

s� (t� u) ⊂
⋃
s,t,u

(s� t� s� u)

⊂
⋃

s,s ′,t,u

(s� t� s ′ � u) = S� T � S�U

The other condition holds by symmetry.

Remark N.22. It is no coincidence that subdistributivity is equivalent to the
condition that multiplication by a fixed element is a colax morphism with
respect to �. The next chapter will examine this more closely.
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3.1 quantic semirings

Definition 3.1. A quantic semiring is a tuple (S,
∨

, ·,+, 0) such that:

• (S,
∨

, ·) is a quantale.

• (S,+, 0) is a commutative monoid.

• + distributes over non-empty countable joins.

• For all S, T ,U ∈ S, S · (T +U) 6 S · T + S ·U and (S+ T) ·U 6 S ·U+

T ·U.

• For all S ∈ S, 0 · S 6 0 and S · 0 6 0.

Remark 3.2. The last axiom may be surprising, but it cannot easily be strength-
ened. Indeed, in the powerset of a ring, we have ∅ · {0} = ∅, not {0}. We can
see this axiom as a form of sub-distributivity that applies to the empty
sum.

Remark 3.3. In practice, the third axiom may be strengthened, so that +

distributes over all non-empty joins. But it is too much to assume that
it distributes over the empty join, as this fails for one of our principal
examples: quantales.

Definition 3.4. If S, S ′ are quantic semirings, then a morphism of quantic
semirings f : S→ S ′ is a function on the underlying sets such that:

• For all T ⊂ S, f (
∨
T) =

∨
f(T).

(f is a morphism of suplattices.)

• For all S, T ∈ S, f(S) · f(T) = f(S · T).
(f is a strong morphism of multiplicative quantales.)

• For all S, T ∈ S, f(S+ T) 6 f(S) + f(T), and f(0) = 0.
(f is a colax morphism of additive ordered monoids.)

As with ∧, we use the lower-case ∨ to denote the binary join.
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Proposition 3.5. Let (Q,
∨

, ·) be a quantale with bottom element 0. Then (Q,
∨

, ·,∨, 0)
is a quantic semiring. Furthermore, a morphism of quantales is a morphism of
quantic semirings.

Proof. It is clear that (Q,∨, 0) is a commutative monoid. ∨ also distributes
over non-empty joins: S∨

∨
T∈T T =

∨
T∈T S∨

∨
T∈T T =

∨
T∈T(S∨ T). Fur-

thermore, 0 · S = 0 and S · 0 = 0 for all S, and the fact that · distributes over∨
means that it also distributes over ∨.
To see the statement about morphisms, note that a morphism of suplat-

tices preserves joins, and is therefore strong with respect to ∨.

The above proposition allows us to interpret quantales as quantic semir-
ings, which we will do from now on.

Definition 3.6. An element M ∈ S is monoidal if 0 6M and M+M =M.
The collection of monoidal elements will be denoted M(S).

Remark 3.7. The sum of two monoidal elements is monoidal, but the prod-
uct of two monoidal elements generally isn’t.

Proposition 3.8. A quantic semiring S is a quantale if and only if every element
of S is monoidal.

Proof. This is just the dual of the multiplicative version in Chapter 2. Every
element of a quantale is clearly monoidal, and conversely if the conditions
are satisfied, we have, for all S, T ∈ S:

S+ T 6 (S∨ T) + (S∨ T) = S∨ T

S = S+ 0 6 S+ T

T = 0+ T 6 S+ T

It follows that S+ T = S∨ T , so S is a quantale.

Next, we will give a universal way to “monoidify” a quantic semiring.

3.2 the quantic spectrum

Definition 3.9. For S ∈ S, define 0 ∗ S = 0 and n ∗ S = S+ · · ·+ S︸ ︷︷ ︸
n times

for n > 1.

We also define:

[S] =
∨
n>0

n ∗ S
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Remark 3.10. It may be useful to the reader to note the similarities with
the Kleene star of computer science. In fact, if A is a ring or monoid and
S = P(A), then [S] is exactly the multiplicative monoid generated by S.

Proposition 3.11. S 7→ [S] is a nucleus on (S,
∨

, ·), whose fixed points are exactly
the monoidal elements.

Proof. The first statement follows from sub-distributivity:

[S] · [T ] =
∨
n>0

n ∗ S ·
∨
m>0

m ∗ T

=
∨

n,m>0

(n ∗ S) · (m ∗ T) 6
∨

n,m>0

(nm) ∗ (S · T)

=
∨
k>0

k ∗ (S · T) = [S · T ]

Clearly, if S is monoidal then [S] = S. The fact that [S] is always monoidal
follows from 0 6 [S] and the fact that + distributes over non-empty count-
able joins:

[S] + [S] =
∨
n>0

n ∗ S+
∨
m>0

m ∗ S

∨
n,m>0

(n ∗ S+m ∗ S) =
∨

n,m>0

(n+m) ∗ S

=
∨
k>0

k ∗ S = [S]

Proposition 3.12. [−] : S→M(S) is a morphism of quantic semirings.

Proof. Since [−] is a nucleus, this is a strong morphism of quantales, so all
we need to check is that [S] + [T ] > [S+ T ]:

[S] + [T ] =
∨
n>0

n ∗ S+
∨
m>0

m ∗ T

=
∨

n,m>0

(n ∗ S+m ∗ T) >
∨
k>0

(k ∗ S+ k ∗ T)

=
∨
k>0

k ∗ (S+ T) = [S+ T ]
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Proposition 3.13. Let S be a quantic semiring, Q a quantale, and f : S → Q a
morphism of quantic semirings. There is a unique strong morphism of quantales
[f] : M(S)→ Q making the following diagram commute:

S

f !!

//M(S)

[f]
��
Q

Proof. By the results of Chapter 2, it is enough to show that f(S) = f([S])

for all S ∈ S. Since f(S) 6 f([S]), it suffices to show that f(n ∗ S) 6 f(S) for
all n:

• f(0 ∗ S) = f(0) = 0 6 f(S).

• f(n ∗ S) = f(S+ · · ·+ S︸ ︷︷ ︸
n times

) 6 f(S) + · · ·+ f(S)︸ ︷︷ ︸
n times

= f(S).

This shows that quantales are a reflective subcategory of quantic semir-
ings: to every quantic semiring, there is a universal associated quantale.

Definition 3.14. For a quantic semiring S, we call the quantale M(S) the
quantic spectrum of S. We define the classical spectrum of S by composi-
tion with M: Spec S = SpecM(S).

3.3 hypersemirings

Definition 3.15. A hypersemiring is a tuple (A,�,�, 0) such that:

• (A,�) is a hypersemigroup.

• (A,�, 0) is a commutative hypermonoid.

• For all a,b, c ∈ A, a� (b� c) ⊂ (a� b)� (a� c) and (a� b)� c ⊂
(a� c)� (b� c).

• For all a ∈ A, 0� a ⊂ 0 and a� 0 ⊂ 0.

Proposition 3.16. Let A be a set, � and � binary hyperoperations and A, and
0 ⊂ A. Then (A,�,�, 0) is a hypersemiring if and only if (P(A),

⋃
,�,�, 0) is a

quantic semiring.
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Proof. The last two conditions follow a fortiori, and the first condition
follows from the results of the interlude. Note that � is a lattice opera-
tion by the interlude, so it necessarily distributes over all joins. Then, if
(P(A),

⋃
,�,�, 0) is a quantic semiring, (P(A),

⋃
,+, 0) is a commutative

unital quantale, and, by the results of the interlude, the second condition
follows.

Conversely, if (A,�,�, 0) is a hypersemiring, then (P(A),
⋃

,�) is a quan-
tale by the interlude, (P(A),

⋃
,�, 0) is a commutative unital quantale by

the interlude, sub-distributivity follows from the interlude, and the final
condition is easily shown:

0� S =
⋃
s∈S
0� s ⊂

⋃
s∈S
0 = 0

Similarly, S� 0 ⊂ 0.

Definition 3.17. A morphism of hypersemirings is a function f : A → B

that lifts to a morphism P(A) → P(B) of quantic semirings. Equivalently,
it is a strong morphism of multiplicative hypersemigroups, and a colax
morphism of additive hypermonoids.

As a result of Proposition 3.16, we can assign a canonical coverage to
a hypersemiring A, namely the monoid nucleus S 7→ [S] on the quantic
semiring P(A). Since every hypersemiring is then naturally a covered hy-
persemigroup, it makes sense to talk about its spectrum.

Definition 3.18. An ideal of a hypersemiring A is a subset I ⊂ A satisfying:

• 0 ⊂ I.

• I+ I = I.

• a ∈ I or b ∈ I =⇒ a · b ⊂ I.

An ideal I is prime if it also satisfies:

• I 6= A.

• a · b ⊂ I =⇒ a ∈ I or b ∈ I.

Theorem 3.19. The spectrum of a hypersemiring is spatial. Its points are given
by the prime ideals of A, and it has a basis of quasi-compact opens given by the
sets D(a) = {I | a /∈ I} for a ∈ A.
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Proof. To see that SpecA is spatial, it is enough to check that the coverage
on A is finitary. Suppose that a ∈ [S] =

∨
n>0 n ∗ S. Then a ∈ n ∗ S for some

n. Either n = 0, in which case a ∈ 0 = [∅], or n > 0, in which case there are
s1, . . . , sn such that a = s1 + · · ·+ sn. Then a ∈ [{s1, . . . , sn}].

To compute the points, note that we have 0 ⊂ I and I+ I = I if and only
if I is a flat of the coverage on A. Thus the prime ideals of A are exactly the
prime ideals of M(P(A)), which are the points of SpecM(P(A)) = SpecA.
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4.1 the spectrum of a krasner hyperring

The primary example motivating our development of quantic semirings
was that of the spectrum of a Krasner hyperring. Specifically, we wanted to
show that existing definitions could be arrived at through a process more
canonical than imitating the definitions from standard commutative ring
theory.

To show that we have been successful, we will show that our approach is
consistent with the standard definitions. Our main reference is Jun’s recent
paper [7], though these ideas go back further (e.g. [13]).

Let A be a Krasner hyperring—that is, a unital hypersemiring with a
commutative, single-valued multiplication, satisfying two axioms for in-
verses:

• For every a ∈ A, there is a unique b ∈ A, denoted −a, such that
0 ∈ a� b.

• For every a,b, c ∈ A, a ∈ b� c ⇐⇒ c ∈ a� (−b).

Remark 4.1. The above two axioms say that (A,�, 0) is a canonical hypergroup.
We will not actually use these two axioms, but they appear to be important
for other theoretical concerns, and we include them for completeness.

Remark 4.2. Every hypersemiring with single-valued multiplication is auto-
matically strongly distributive, so in particular every Krasner hyperring is
strongly distributive. This is ususally taken as an axiom for Krasner hyper-
rings, but it follows in our case from sub-distributivity.

Remark 4.3. We have omitted the axiom that the addition be non-empty, but
this follows from the existence of additive inverses.

Recall that we defined the coverage on a hypersemiring as follows: The
flats are subsets C ⊂ A such that 0 ∈ C and C+C = C. An ideal is then a
flat I such that A · I = I.

In fact, this is equivalent to other definitions in the literature of an ideal
of a Krasner hyperring. For example, the definition in [7] is that I 6= ∅ and
x,y ∈ I,a ∈ A =⇒ x−ay ⊂ I. But x−ay = x+a(−y) = x+a(−1)y, since
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the multiplication is single-valued, so this precisely asserts that I is a flat
(in our sense) and closed under multiplication by A.

It is then straightforward that our notion of prime ideal is equivalent to
the usual one. We can also compare the topologies on pt(SpecA): [7] gives
them a basis consisting of the principal opens D(a), while our machinery
does precisely the same thing. (See, for example, Proposition 2.52 and its
proof.)

One notable insight is that the spectrum of a Krasner hyperring is spec-
tral precisely because of two facts: first, the multiplication is single-valued,
which guarantees that the standard basis is closed under intersection, and
second, there is a unit for the multiplication, which guarantees that the
spectrum itself belongs to the standard basis. This puts Krasner hyper-
rings among a broader class of examples: any hypersemiring such that the
product of any two elements is a finite set must have a quasi-spectral spec-
trum, and if it furthermore has a finite hyper-unit, its spectrum is a spectral
space.

4.2 nuclei on ordered blueprints

The ordered blueprints of Lorscheid, as defined in [10], provide a rich set
of examples of our theory. Unlike in the case of commutative rings, where
the various nuclei all give the same notion of ideal, on an ordered blueprint
there may be several reasonable choices for a nucleus. Below, we explore
three that we believe to be of interest, and discuss the implications of com-
bining them.

Briefly, an ordered blueprint (A, ·,6) is a multiplicative commutative
monoid with absorbing element 0, together with a preorder 6 on the semir-
ing N[A]+ of formal finite sums of elements of A, that is compatible with
the addition and multiplication on N[A]+, and also satisfies the following
two axioms:

• If
∑

denotes the empty sum, 0 6
∑

and
∑
6 0.

• If a 6 b and b 6 a for a,b ∈ A, then a = b.

The relation 6 is called a preaddition. If
∑
i ai 6

∑
j bj and

∑
j bj 6∑

i ai, we write
∑
i ai ≡

∑
j bj. A blueprint is called algebraic if6 coincides

with ≡, i.e. if 6 is symmetric.
Throughout the section, A and Bwill be ordered blueprints. Recall that a

morphism of ordered blueprints is a morphism of multiplicative monoids
f : A→ B such that

∑
i ai 6

∑
j bj implies

∑
i f(ai) 6

∑
j f(bj).
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The algebraic nucleus

Proposition 4.4. The following relation gives a coverage on A: S ` a if there are
si, s ′j ∈ S such that a+

∑
i si ≡

∑
j s
′
j .

Proof. First, we check that ` is a closure relation. Since a ≡ a, we certainly
have S ` a for a ∈ S. Suppose that T ` s for every s ∈ S, and S ` a. Then
there are si, s ′j ∈ S, tik, t ′il,ujm,u ′jn ∈ T such that:

a+
∑
i

si ≡
∑
j

s ′j

si +
∑
k

tik ≡
∑
l

t ′il

s ′j +
∑
m

ujm ≡
∑
n

u ′jn

Combining these gives us:

a+
∑
il

t ′il +
∑
jm

ujm

≡ a+
∑
i

si +
∑
ik

tik +
∑
jm

ujm

≡
∑
j

s ′j +
∑
ik

tik +
∑
jm

ujm

≡
∑
jn

u ′jn +
∑
ik

tik

So T ` a, and ` is a closure relation.
To check that we have a coverage, we just need to show that S ` a =⇒

x · S ` x · a. But this follows immediately from multiplicativity of ≡.

Definition 4.5. The above coverage is called the algebraic coverage or al-
gebraic nucleus. Its flats and ideals will be called algebraic flats and alge-
braic ideals respectively.

Given a morphism f : A → B of ordered blueprints, it is not hard to see
that f is a morphism of covered monoids when we given both A and B the
algebraic coverage. Indeed, if a+

∑
i si 6

∑
j s
′
j and a+

∑
i si >

∑
j s
′
j , then

f(a) +
∑
i f(si) 6

∑
j f(s

′
j) and f(a) +

∑
i f(si) >

∑
j f(s

′
j).
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Proposition 4.6. The ideals of the algebraic nucleus are exactly the k-ideals in the
sense of Lorscheid, and the spectrum of A as a monoid with this coverage coincides
with the prime spectrum as an ordered blueprint.

Proof. A k-ideal is defined to be a subset I ⊂ A with 0 ∈ I, I ·A = I, such
that if c+

∑
i ai ≡

∑
j bj with ai,bj ∈ I, then c ∈ I. The last condition is

equivalent to saying that I is an algebraic flat. Together with the condition
I ·A, this says exactly that I is an algebraic ideal. So, to compare k-ideals
to algebraic ideals, it suffices to show that 0 ∈ I whenever I is an ideal of
the algebraic nucleus. But it follows from the definition that ∅ ` 0, so every
algebraic flat and in particular every algebraic ideal contains 0. To compare
the spectra, it is enough to notice that the points are the same (prime ideals)
and the topologies are the same (generated by the principal sets D(a)).

Remark 4.7. As we see, the algebraic nucleus is closely related to Lorscheid’s
definintion of the prime spectrum of an ordered blueprint. However, since
it depends only on the algebraic core of A—the symmetric relations only—
it is likely to be the wrong definition in many cases where the ordering is
critical. In particular, if we take a Krasner hyperring qua ordered blueprint,
the algebraic nucleus has too many ideals and prime ideals. We will fix this
problem in the next example.

The monomial nucleus

Proposition 4.8. The following relation gives a coverage on A: S ` a if there are
si ∈ S such that a 6

∑
i si.

Proof. The proof is similar to the previous example, but simpler: If a 6∑
i si, and si 6

∑
j tij, then a 6

∑
ij tij.

Definition 4.9. The above coverage is called the monomial coverage or
monomial nucleus, its flats and ideals the monomial flats and monomial
ideals.

As with the algebraic coverage, morphisms of ordered blueprints respect
the monomial coverage, since a 6

∑
i si =⇒ f(a) 6

∑
i f(si).

Proposition 4.10. If A is a Krasner hyperring, then the ideals of A as a hyperring
coincide with the monomial ideals of A as an ordered blueprint.

Proof. It is enough to show that the monomial coverage on A coincides
with the canonical coverage constructed in Chapter 3. Recall that the sub-
addition on A is defined to be the one generated by relations of the form
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a 6 b + c, whenever a ∈ b � c. By induction, we can see that any sub-
addition containing these relations must contain all relations of the form∑
i ai 6

∑
j bj, whenever �iai ⊂ �jbj. Furthermore, the collection of all

such relations forms a subaddition, and is therefore the subaddition asso-
ciated to A.

From there, the result is almost immediate: the monomial relations are
those of the form a 6

∑
i si, where a ∈

∑
i si, and these relations give

exactly the closure relation of Chapter 3.

Remark 4.11. As we can see from the example of hyperrings, the mono-
mial nucleus is useful in practice. However, it has the shortcoming that it
depends only on the monomial relations of A, and may therefore be too
crude in situations where more complicated relations are involved. In par-
ticular, for algebraic blueprints the monomial nucleus is more crude than
the algebraic nucleus.

The order nucleus

Proposition 4.12. The following relation gives a coverage on A: S ` a if there is
s ∈ S such that a 6 s.

Proof. This is a closure operator by our discussion of posets in Chapter 1.
Since ordered blueprints are in particular ordered monoids, this is compat-
ible with the multiplication as well.

Definition 4.13. The above coverage is called the order coverage or order
nucleus, its flats and ideals (recall Definition 2.5) the order flats and order
ideals. If S ⊂ A, we define S6 = {a 6 s | s ∈ S} to be the flat generated by
S.

The spirit of this example is different from the other two. We are ignor-
ing the additive structure on A, taking only its structure as an ordered
monoid, so it would seem that we cannot extract much useful information.
However, any nucleus that respects the order structure of A (for example,
the monomial nucleus) will be a specialization of the order nucleus, so
it is worth keeping in mind as an intermediate step. There is an analogy
in Lorscheid’s work: he uses the spectrum of an algebraic blueprint as a
monoid to define the “subcanonical spectrum”; we propose that it may be
interesting to consider the spectrum of an ordered blueprint as an ordered
monoid.

There is a particular case in which the order nucleus provides a strong
connection to our work in Chapter 3.
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Definition 4.14. An ordered blueprint A is associative if, whenever a 6
s+ t+ u, there is some b 6 s+ t such that a 6 b+ u.

Remark 4.15. We use the word “associative” for this property because it
is actually (in some sense) equivalent to the associativity of addition for
Krasner hyperrings: if A is a Krasner hyperring qua ordered blueprint,
then a 6 s+ t+ u implies a ∈ s� t� u (we showed this in the proof of
Proposition 4.10). So a ∈ (s� t)� u =

⋃
b∈s�t b� u, so A is associative.

On the other hand, we will see in the proof below that associativity of a
literal addition follows directly from this property.

Proposition 4.16. If A is an associative ordered blueprint, the following opera-
tions make the order flats of A into a quantic semiring:∨

α

Sα =
⋃
α

Sα

S� T = (S · T)6

S⊕ T = {a | a 6 s+ t for some s ∈ S, t ∈ T }

0 = {a | a 6 ∅}

Proof. First, it is straightforward to check that these operations all produce
downward-closed sets. Furthermore, since S 7→ S6 is a nucleus, it is im-
mediate that the downward-closed sets form a multiplicative quantale. We
will check the other properties directly:

• 0 is an additive identity: if a 6 s+ t with t ∈ 0, then a 6 s+ t 6
s+ ∅ = s, and a ∈ S. It follows that S⊕ 0 ⊂ S. But since there is some
z ∈ A with z ≡

∑
∅, we have a 6 s =⇒ a 6 s+ z, so S ⊂ S⊕ 0.

• ⊕ distributes over joins: We have
⋃
α Sα⊕T = {a | a 6 s+ t for some s ∈⋃

α Sα, t ∈ T } =
⋃
α{a | a 6 s+ t for some s ∈ Sα, t ∈ T } =

⋃
α(Sα ⊕ T).

• Sub-distributivity: If a ∈ S� (T ⊕U), then there are s ∈ S, t ∈ T ,u ∈
U such that x 6 t + u and a 6 s · x. But then a 6 s · t + s · u, so
a ∈ (S�U)⊕ (T �U).

• S� 0 ⊂ 0: If t 6 ∅, then s · t 6 ∅, so S� 0 ⊂ 0.

• ⊕ is associative: if a ∈ S⊕ (T ⊕U), then there are s ∈ S, t ∈ T ,u ∈ U
with a 6 s+ t+u. By associativity, there is some x ∈ A with x 6 s+ t
and a 6 x+u, so a ∈ (S⊕ T)⊕U, therefore S⊕ (T ⊕U) ⊂ (S⊕ T)⊕U.
Similarly, (S⊕ T)⊕U ⊂ S⊕ (T ⊕U).
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Proposition 4.17. If f : A → B is a morphism of associative ordered blueprints,
then F(S) = f(S)6 defines a morphism of the associated quantic semirings.

Proof. We check:

• F preserves joins:

F(
⋃
α

Sα) = f(
⋃
α

Sα)
6 = (

⋃
α

f(Sα))
6

=
⋃
α

f(Sα)
6 =

⋃
α

F(Sα)

• F is multiplicative: F(S� T) = F(S · T) = f(S · T)6 = (f(S) · f(T))6 =

f(S)� f(T).

• F is colax-additive: Since f is a morphism of ordered blueprints, a 6
s+ t =⇒ f(a) 6 f(s) + f(t), and therefore F(S⊕ T) = f(S⊕ T)6 ⊂
f(S)⊕ f(T) ⊂ F(S)⊕ F(T).

Proposition 4.18. If A is an associative ordered blueprint, its monomial nucleus
is equal to the composition of the order nucleus with the nucleus M on the quantic
semiring of order flats.

Proof. This follows from the fact that any relation a 6
∑
i si in an associa-

tive ordered blueprint is generated by relations of the form a 6 b+ c.

Remark 4.19. One interesting thing about this construction is that if the
ordering on A is discrete, every subset of A is an order flat. In particular, if
A is an algebraic blueprint or a Krasner hyperring, we are just passing to
the powerset.

Remarks on composite nuclei

It is a useful fact that the collection of all nuclei on a semigroup is a suplat-
tice, as it means that we can combine arbitrary nuclei in a universal manner.
This combination may have nontrivial properties, since it is constructed in
an abstract manner as the pointwise infimum of upper bounds.

So, for example, there is a canonical minimal nucleus sitting over both
the algebraic nucleus and the order nucleus, and one (most likely different)
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sitting over the algebraic and monomial nuclei. These are good candidates
for defining “order ideals” for ordered blueprints that would share features
of the ideal theory of algebraic blueprints (k-ideals) and the ideal theory of
hyperrings.

There do not appear to be one-line descriptions of these nuclei, but they
can most likely be described in terms of finite chains of relations, alternat-
ing between algebraic relations and monomial/order relations.

4.3 thoughts and further directions

Polynomials over hyperrings: double distributivity

If A is a hypersemiring, then there is a canonical multiplication and ad-
dition on the set P(A)[X] of power-polynomials, polynomials with coeffi-
cients in P(A): simply define (

∑
i aiX

i)� (
∑
i biX

i) =
∑
i(ai � bi)X

i and
(
∑
i aiX

i)� (
∑
j bjX

j) =
∑
n

∑
i+j=n(ai � bj)X

n. This pulls back to a hyper-
structure on A[X]: the hyperproduct of two polynomials is just the set of
all polynomials contained in the power-polynomial product, and similarly
with addition.

Unfortunately, A[X] is not, in general, a hypersemiring, because the mul-
tiplication may easily fail to be associative. And there is another problem:
the evaluation map et : A[X] → A sending p(X) to p(t) may fail to be a
multiplicative homomorphism in a meaningful sense.

However, both of these problems go away if we impose the condition of
double distributivity, which says that (a+ b)(c+ d) = ac+ ad+ bc+ bd for
all a,b, c,d ∈ A. By induction, it implies that (

∑
i ai)(

∑
j bj) =

∑
ij aibj, so

it is in some sense the strongest possible form of distributivity.
Particularly in light of the fact that double distributivity appears to be

important for getting a good theory of matroids over a Krasner hyperfield
[1], it appears to be worthwhile to explore the theory of double distributive
hypersemirings and their polynomials.

Connections to topos theory

One of the most elegant definitions of a topos is: A category with finite lim-
its and power objects. In fact, every topos has an associated power monad,
whose algebras are the internal suplattices. Since the power monad appears
to be so fundamental in topos theory, it strikes us as inevitable that there
should be a dialogue between the present work and the broad theory of
toposes.
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As a concrete example, the definition of quantic semirings appears to
make sense in an arbitrary topos, and the construction of the universal
quantale M(S) is most likely valid in any topos with a natural numbers
object.

On a more speculative note, there has been a lot of interesting work done
on the category of relations in a topos (e.g. [5]). In the category of sets, and
certainly in greater generality, a relation on A× B can be identified with a
hyper-map A→ P(B). It would appear fruitful to make a precise compari-
son between hyperalgebra and the algebra of relations in this context.
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