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ABSTRACT OF THE DISSERTATION 

 

A Progressive-Adaptive Music Generator for Videogames (PAMG): an Approach to 

Real-Time Algorithmic Composition 
 

by 
 

Alvaro Eduardo Lopez Duarte 

 

Doctor of Philosophy, Graduate Program in Music 

University of California, Riverside, September 2023 

Dr. Tim Labor, Co-Chairperson 

Dr. Ian Dicke, Co-Chairperson 

 

 

Automated methods of musical composition have a broad range of history and 

techniques. Throughout the last seventy years, digital technology solidified the field 

adding stochastic computational methods and machine learning models, multiplying both 

efficiency and possibilities. Lately, procedural music generation shifted from ‘possible’ 

to ‘commercially viable’ driving a new wave of services and products.  

Videogames use procedural methods to modify audiovisual conditions in real time. Game 

developers currently use pre-produced music/sound design audio sequences, aiming for 

sound quality, balancing storage space and variety. In this paradigm, real-time 

manipulation is limited to adaptive mixing procedures (e.g., rules for overlapping, EQ, 

and effects), and recombination (e.g., random or sequential containers, stretching/pitch 

shifting, fragmentation). Those are standard options in popular sound design middleware 

platforms (FMOD and Audiokinetic’s Wwise) designed to allow adaptation, 

transformation, and multiplication of existent material according to gameplay. 

Nevertheless, recurring audio clips (especially music) are recognizable. In extended 
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gaming sessions, the resulting repetition is unpredictably tiring, and reduces the musical 

storytelling support through generalized reappearance.  

Although generative adaptive music has been implemented in select cases, it is not part of 

current commercial game development pipelines. While algorithmic note-by-note 

generation can offer interactive flexibility and infinite diversity, it poses significant 

challenges such as achieving human-like performativity and producing a distinctive 

narrative progression through measurable parameters or variables.  

In this study, I introduce the Progressive Adaptive Music Generator (PAMG) algorithm, 

which uses parameters derived from gameplay variables to produce a continuous music 

stream output that transitions seamlessly between moods/styles and progresses among 

tension/complexity levels. I cover methodological bases found in the literature, identify 

implementation challenges, sample PAMG produced material, and present a test scenario 

that includes a trial videogame and a preliminary comparative perceptual experiment. The 

test shows that players tend to prefer PAMG over conventional music implementation in 

a number of capacities although results are not globally conclusive. It additionally 

suggests particular priming effects that occur in connection with incidental generative 

game music perception. 

Lastly, I assess current experiment and PAMG’s limitations and future directions, and 

present a debate about authorship in the upcoming generative-AI context. 
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1. Introduction 

1.1. A composer’s perspective on automated tools for music creation 

The generation of music, a (mostly) composer’s task, has employed a range of tools, 

techniques and skills whose framework habitually depends on the intended output. 

Analytic and stylistic feature classifications, for example, have been references for music 

content creation even before computer models.  

 

Although a composer’s personal methods and philosophic approach may vary, the final 

piece gives hints of recurrent methodologies, personal priorities, and signature gestures 

used in its conception. Recurrent patterns in music construction can be associated with 

preferred stylistic goals, whether those are commissioned, programmatic, or explorative.  

In this context, a myriad of methodologies and tools have been developed throughout 

time to arguably —and subjectively— optimize the musical result within an expected 

aesthetic. Examples can be found on composition exercises framed on stylistic features, 

composition techniques ranging from improvisation to replication, and also automated 

methods for material suggestion, analysis, and management. In most cases, these 

practices involve the use of collections of relative musical parameters that frame 

standardized style shapes.  

 

Composition processes are conscious logical methodologies that depart from simple 

elements grouped into more complex structures, in a similar way algorithms work. 

Basically, abstraction levels in musical features and structures acquire a role in the 
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compositional modus-operandi stage associating sound events hierarchically into more 

complex and semantically meaningful musical concepts—in other words, music 

composition is algorithmic by nature (Rowe, 1993).  

 

These compositional practices normally are subscribed to serve a range of human 

purposes that include ethical and existential principles (i.e., identity framing, style 

representation, personal expression, entertainment, among others (Novak & Matt, 2015)), 

and also have adapted their methodologies to keep up with contextual1 and/or industrial 

production requirements—including regulations and definitions of copyright and 

authorship. As a subset of composer practices, computation methods for music creation, 

including any level of automation, offer partial solutions for determined and defined 

technical problems inside that labor, fulfilling sections of the production pipeline. Even 

with current text-to-music algorithms, there is a human with a purpose triggering the 

process whose skills in managing the tool using a range of parameters will reflect in how 

fit the result is to the purpose. 

 

Hence, a common task is to translate compositional methods to logical algorithms. The 

use of algorithmic rules, a basic old system for example, defines and creates a musical 

lexicon, even if those rules include stochastic principles. Deep learning models create a 

                                                 
1 David Cope (2000) and Gerard Nierhaus (2009), among others, overview a number of methodologies 

used throughout history as algorithmic methods to create music within stylistic frameworks. These include 

examples as old as the isorhythmic motet, the rota (wheel) or the Musikalisches Würfelspiel (musical 

dices), to mention a few, which generate new music from combinatorial procedures, a pre-designed 

material, and rules for interaction. 
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set of mathematical relationships that act as a compositional framework by extracting 

statistics from a music corpus to output imitation.  Analogously, human composers use 

auditory and/or performing experiences in their creations, either consciously or 

unconsciously.  

 

Contemporary composers have questioned themselves about the tools they use either 

regularly or in experimentation (Mazzola et al., 2011). Within the commercial music 

composition paradigm, producers and composers tend to evaluate these techniques in 

terms of efficiency and adequacy, especially to address intended media. For instance, in 

the interactive art field, which includes real-time performance structures such as 

videogames, specific features such as responsiveness, and support for multiple possible 

timelines2 are required. For this reason, game music composers adjust their techniques to 

fit not only storytelling style and aesthetic, but also music modularity and functionality 

within gameplay implementation. 

 

The perspective of a tool that implements compositional logic in real-time may appeal to 

composers or music designers that want to address a multi-linear output. It potentially 

allows them to establish transition frameworks or interpolation methods directly into 

music features like shapes, instrumentation, ranges, gestures, and harmonic tension, 

among others. 

                                                 
2 In this work I refer to multi-linear storytelling in music as an extension of multi-linear narrative described 

by Bembeneck, 2013: “The difference between a uni-linear narrative and a multi-linear narrative is that the 

first only ever has one possible path. In a multi-linear narrative though, a single story can be told in a 

variety of ways.” 
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Additionally, the idea of automated music software—like any AI these days—puts 

forward many questions about authorship, disruption of the composer’s labor, structures 

for licensing/regulation, and more. In general, it will add nuance to the ‘aesthetic-source’ 

pointer (e.g., artistic origin) in combination with the production means, especially in 

commercial schemes.  

 

1.2. Motivation  

1.2.1. Game enhancement 

In game programming, structures such as characters, environments, actions, and events 

are connected through algorithms that react to gameplay variables. Light rendering is the 

result of light, textures, and material colors interacting in real-time and analogously 

diegetic sound playback reproduces the environmental acoustic properties. If the outcome 

is verisimilar within game diegesis, storytelling, narrative, and mechanics immersion is 

fostered and the gameplay experience may be extended.  

 

Gameplay, from the player’s perspective, is the result of all the elements working 

concurrently to produce an experience. Engagement and immersion usually include a 

balance and variation of surprise, satisfaction and challenge (Abbasi et al., 2017). As 

these qualities shift and define narrative sections at gameplay, multiple levels of 

emotional support and their transitions are required in music underscoring. A growing 

body of literature and technologic solutions explore the possibilities and methodologies 

of interactive music that features wider interpolation range and transition possibilities 
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reinforcing a continuous and immersive experience for the player (see section 2). Among 

these approaches, real-time generation of music is thought to achieve higher 

responsiveness than using longer segments, comparable to how buffer size in digital 

audio processing correlates to latency. Smaller music modules as, for example, a musical 

note would achieve deeper interpolation possibilities for gameplay than conventional, 

clip-based3 game underscoring, adding adaptive properties and variance. A parametric 

music engine would provide tight responsiveness and transition possibilities to states, 

actions, situations, or characters. Additionally, because real-time generative properties4 

mostly produce music variation, the changing music stream provides: a refreshing 

variance in music material, an active information layer from the game story to the player. 

 

Although the advantages of procedural music seem to pair well with multi-linear 

narratives such as videogames, the reasons for its lack of wide-spread adoption deserve 

attention. Investigating the actors involved, the tools and pipelines of game developing 

should shed light on this issue. Game designers, audio programmers, sound designers, 

and game music composers already have an idea of the role AI, adaptive, and generative 

music plays in game development, the influence it can have on their jobs, and any pros 

and cons of its implementation5. Additionally, exploring conventional methods of music 

implementation and software solutions involved will potentially expose ways to introduce 

                                                 
3 A digital file, either MIDI or audio commonly used in different Digital Audio Stations (DAWs). In the 

current work, the term ‘clip’ will be used to reference audio clips as pre-recorded audio segments loaded in 

a platform or a middleware engine for game audio implementation. 
4 See section 2.2. 
5 This assertion stems from an industry exploration detailed in section 2.5.  



6 

PAMG. Is it possible that game music is good enough as it is now? Are the actors 

involved in game design hopeful, skeptic, or scared of automatic music? 

 

From the perspective of gamers, how important is actually a music that adapts granularly 

to their game? Is this distinction only noticeable by heavy gamers or experienced 

musicians? Although there are reports of music repetition as a dis-engaging factor in 

gaming, what kind of experiment can be designed to provide information about satiation 

due to repetition or relief thanks to re-generation? Is music with a low rate of repetition 

actually promoting engagement?  

 

AI as a global phenomenon is being rapidly introduced into many aspects of our lives as 

these lines are written. Many music composers, or music content producers are now 

forging an idea of the impact generative models will have on their labor. The music 

commission framework, or ‘composing for hire’, as a common way to delegate and 

transfer copyright an authorship may be directly affected in the short term. In addition, 

interpretation and formulation of legal definitions to implement copyright protection may 

also need a revision. Are there ethical responsibilities to be assumed when creating an 

automatic model of music generation?  

 

My stance on authorship is applied practically in the present model by using an 

algorithmic method—interactive/behavioral (Wooller, R., Brown, A. R, et al., 2005)—

instead of machine-learning, since the input is a direct choice on music features used as 
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parameters, as opposed to statistical properties extracted from a training set. Despite these 

issues, technically, any digital tool designed to generate music material would enable 

humans (and perhaps other beings such as animals) with a broader range of music 

skills/background to make music. 

 

Likely, I will not answer all the inquiries posed here and others will surface, but these 

issues and the future directions of this project will be discussed at length.    

 

1.3. Objectives and research question 

The main question that guided the current research is: 

 

Addressing interaction in a videogame, how does the present Progressive-Adaptive 

Music Generator (PAMG) model design compare to conventional, pre-recorded, clip-

based implementation (CBI)?  

 

The comparison comprises two aspects:  

I. Efficiency in music implementation to address the challenges of style 

interpolation, responsiveness, and variance posed by the nonlinear structure of a 

videogame. 

II. The gamers’ subjective perception at gameplay in relation to their backgrounds. 
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The central objective of this project is the development of PAMG. It features parametric 

streaming properties in real time. The model produces a malleable and continuous music 

flow, employing melody, harmony and percussion agents. As opposed to machine 

learning paradigmatic need for extensive training datasets, it uses a multidimensional 

music-feature setup that reacts progressively and on-the-fly to input parameters.  

 

The testing objectives are: 

 To develop a suitable trial game in which the real-time capabilities of generation 

and interpolation can be tested.   

 To develop, assign, and implement a multi-parameter control and interpolation 

system that sends information about selected videogame variables in real time to 

PAMG. 

 To evaluate how this particular model compares to CBI in the same game, in 

terms of implementation efficiency and game experience. 

 

1.4. Scope 

The project is an exercise in algorithmic composition addressing the task of multi-linear, 

parametric, real-time music generation. It comprises design and demonstration of the 

PAMG algorithm which translates compositional ideas6 into logic. Also, it involves 

parameter I/O design for implementation into interactive setups to create reactive music 

                                                 
6 Importantly, the model generates music using theory, tonal management, and tuning systems included in 

the Western music system, since most videogames and a significant amount of generative music research 

are developed within that paradigm.   
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progressively. It links and develops on methods studied in the algorithmic composition 

literature, and discloses the reasons to use, modify, or put them aside. It includes testing 

its real-time multi-parameter control through a gameplay experiment where the system is 

evaluated against a conventional game music implementation. 

 

Lastly, it includes data analysis, limitations, and future work. This includes a view 

outside game development where I address the debates about authorship under the 

perspective of generalized use and commercialization of automated music services and 

their regulation in the near future. 

 

Concretely, this project comprises: 

 The PAMG algorithm design and explanation. It is built using the Max/MSP 

environment, and includes a developing interface design. Its musical output is 

conventionalized using Western tonal music behavior, and a limited set of four 

full range orchestral MIDI instruments: strings, piano, woodwinds, brass, and 

cinematic percussion. This selection intends to fit common commercial game 

music paradigms.   

 

 A review and justification of the methods employed in PAMG design, their roots 

on the literature, and an overview of similar examples in the field of generative 

music.   
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 A discussion of common and current game music implementation methods, 

connected software solutions, and their place in game production to identify their 

limitations and a possible place for PAMG.  

 

 A test setup, consistent of:  

i. a First Person Shooter (FPS) game designed to use variables that include 

3D location and game events/conditions to control the musical parameters 

in PAMG,  

ii. a clip-based music implementation (CBI), and  

iii. a questionnaire in which participants play the game and compare the two 

experiences (PAMG and CBI) and answer questions about their 

music/gaming background.  

 

 The concluding section includes data analysis, a discussion of the test and PAMG 

development possibilities, and their current limitations. Additionally, it includes a 

debate of the perspectives of automated music into authorship. 

 

 Lastly, it includes accompanying PAMG-produced material that comprises:  

i. video recordings of gameplay sections, CBI-PAMG comparative 

transitions, and a walkthrough of PAMG parameters modified in real-time 

by game events,  
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ii. PAMG music pieces and also music recordings resulting of gameplay 

interactions during the test, 

iii. a compiled Windows executable game using PAMG music implemented 

as music clips (CBI), and 

iv. a compiled Widows executable standalone PAMG application.  
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2. The field of algorithmic generative music 

This is an overview of the global field of algorithmic composition that mentions studies 

and approaches that inspired PAMG design, going from the general idea of music 

generation to the particular and specialized subsection of generative adaptive music for 

videogames. It is not intended to be a historical model survey, for which Nierhaus (2009) 

or Zhao et al. (2022) for example, offer a thorough overview.  

 

2.1. Algorithmic composition in connection with PAMG  

The use of algorithms, a sequence of instructions that lead to solve a problem in the same 

way each time it is followed, has been employed before the age of computing to make 

music (McLean & Dean, 2018). Cope (1996) includes the combination of musical 

elements into a piece as a crucial component of his music algorithm definition and model 

in Experiments in Musical Intelligence EMI. Hiller and Isaacson (1959) are usually 

credited as the first to utilize a computational model with random-number generators and 

Markov chains (Norris, 1998) to create their famous Illiac Suite (1957). Although these 

two models use different approaches, they employ numerical symbols (besides other 

codes) to represent notes in a similar way PAMG does. However, they also employ music 

as input for transformation in EMI and analytic feature acquisition through ‘probability 

theory’ i.e., Markov models by Hiller and Isaacson (Ames, 1987). PAMG, on the other 

hand, uses relatively measurable music parameters as constraints for music material 

generation. This fits the category of knowledge based systems (Papadopoulos & Wiggins, 

1999), in which explicit structures or rules produce a consistent aesthetic result. The 
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structures used by PAMG are tied to a grammar, as another category distinguished by 

Papadopoulos & Wiggins (1999), which has been extensively employed to construct 

harmonic progressions (e.g., Johnson-Laird, 1981, Steedman, 1984, Cope, 1991, 1996).  

 

2.1.1. Multi-agent systems (MAS) 

MAS are distributed and autonomous systems with perception and action abilities (Tatar 

& Pasquier, 2019). MAS can be useful in modeling and designing musical creativity 

because it involves independent and coordinated entities, similar to a music ensemble. 

PAMG is a multi-agent systems that employs agents in charge of musical feature creation 

in an ensemble-like network. These features are melody, harmony, rhythm, and 

orchestration. Additionally, there is a structure that distributes I/O in the agent system 

and helps communicating the different algorithms (see Appendix A: Algorithm 

Description, 6. MPIC). 

 

2.1.2. Melody creation and accents  

The start of the process is a clock that activates pseudo-random number generators 

(PRNG) (Luby, 1996), which are used for melodic material creation and recalling 

through seeding. This methodology has been used extensively through stochastic 

processes and Markov chains by composers (Ames, 1989) due to seemingly low 

complexity. Although it is possible to alter the weights directly, Markov chains were not 

employed in PAMG since it implies a statistical input, either from a corpus or synthetic. 

This can still be adapted to improve stylistic replication (see chapter 6). In the meantime, 
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double seeded random walk (Pearson, 1905) algorithms are employed for melody 

generation and other sequences that require range and step parameters (see Appendix A, 

2.3.1.). 

 

Melodic accents (Thomassen, 1982) are onsets perceived with more importance than 

others in the sequence, due to higher sound level, operations in the time domain such as 

delays, and in some cases a relationship with higher pitch. Listeners also expect a 

‘periodicity’ which relates to meter. In PAMG an offset in the velocity parameter gives 

the accent (see section 2.3.6.). Accents in a loop are assigned to beats (in-pulse onsets), 

and delayed or anticipated beats which builds the rhythmic structure of the main melody 

to be shared throughout the system. The pattern also is assigned to pitch-contour nodes in 

the dcontour mode (see section 3.2.3.). 

 

2.1.3. Tension, complexity and progression  

An important feature taken in account in PAMG design is the need for progressive 

transition from simple to complex music structures. This is driven by quantization of 

tension and complexity mostly in connection with the Western tonal harmony system 

(Christensen, 2002), which fits incidental music for games’ commercial languages. The 

following are some roots in the literature that influenced its design. 
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2.1.3.1.  Tension 

Attempts to measure tension in music have evinced many challenges (Lerdahl, 1996, 

Farbood, 2012). In fact, a definition that encompasses musical tension in general has been 

puzzling (Ruiz Marcos, 2022). It establishes a link to music psychology (Granot and 

Eitan, 2011) and maps expectations of conclusion or continuation that sectionalize form 

(Huron, 2006, Bigand and Parncutt, 1999). These approaches tend to gravitate towards 

tonal harmony, in which tension has been related to dual concepts such as 

stability/instability and consonance/dissonance, and tension/relaxation (Lerdahl and 

Krumhansl, 2007). This also connects to tonal hierarchy in chord sequences that travel 

within tonal space (Krumhansl, 2001). Tonal progressions have been characterized by 

rising stress towards a climatic section, which is associated with building tension, and 

then a resolution which is related to a decrease of tension (Navarro-Cáceres et al., 2020).  

As an extension of GTTM (Lerdahl and Jackendoff, 1983) a function of the “tonal pitch 

space” (Lerdahl, 1988) is to calculate “the psychological distance of any pitch, chord, or 

region of a given reference point” (Lerdahl, 1996, p. 322). The system provides levels of 

tension increasing from stability at Octave level, Fifth level, Triadic level, Diatonic Level, 

and Chromatic level, each of them with a pitch class set that includes the previous and 

adds the required pitch classes. In PAMG, the levels are distributed to add one pitch per 

level to complete 12 levels per chord. The sequence of pitches added with increasing 

dissonance also has been associated with historical music periods (Dahlhaus, 2014, 

Jensen & Hebert, 2016), in which use of dissonance has different levels of 
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sophistication7. It is also constructed using perceptual affinities based on spectral distance 

(Helmholtz, 1877, Parncutt, 1989), although it varies depending on the chord function 

within the progression (Kostka, 2013). 

 

2.1.3.2. Progression complexity 

Complexity estimation is a recurrent topic in Music Information retrieval (MIR). Some 

studies have found links between complexity and cultural music evolution, preference, 

and arousal (Vitz, 1964, Heyduk, 1975, Berlyne, 1971). For tonal harmony, harmonic 

rhythm, harmonic dissonance, and harmonic evolution were considered as the main 

components of complexity values (Temperley, 2004). PAMG employs a network that 

handles transitions within chord pools organized by levels in a similar way David Cope 

(1996) uses an Augmented Transition Network (ATN) to concatenate musical material. 

ATN in Cope’s method uses segments from its ‘learning’ stage to establish the material 

and the possibilities of transition or concatenation, while PAMG uses chords transition 

probabilities established mostly by the Western tonal system (Dahlhaus, 2014) with no 

pre-composed pattern matching. The harmonies are used both as chords and as ordered 

pitch collections that provide a distributed tonal grid for melody. 

 

 

                                                 
7 Jensen and Hebert (2016) provide a statistical method based on Chroma analysis developing their own: 

the Jensen Chroma Complexity (JCC), and analyze music from a 70-year period of popular songs. 

However, in a deeper spectrum, Dahlhaus (2014) compares and articulates the systems of Helmholtz, 

Rameau, Schenker, Riemann, Hauptmann, von Oettingen, Sechter, and others. From these analyses, 

gradual incorporation of less-consonant pitch classes in stylistic composition idioms from historical music 

periods are evident until it reaches atonalism in a 12-tone system in the twentieth century. 
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2.1.3.3. Temporal complexity 

Perception of temporal patterns has been associated with the notion of an internal clock 

(Povel & Essens, 1985). This clock tends to be a hierarchical clock in which the pulse 

interval rarely is the shortest value and the time unit continuously adapts to the perceived 

sequence. Accented events in music affect the calibration of that value, which ultimately 

conforms into a steady clock (Thomassen, 1982). Shmulevich and Povel (1998) propose a 

complexity score for the best internal clock (a decision of what grouping works better) 

that accounts for the number of ticks that coincide with unaccented pulses and with 

silence. This will give higher scores to syncopated patterns in comparison to non-

syncopated. Similarly, Lerdahl and Jackendoff (1983) offer a hierarchical framework of 

complexity levels based on perception. It involves cognitive processes that parses music 

material through segmentation based on regularities and relationships between resulting 

parts. Rhythmically, patterns containing a higher number of sub-symmetries are 

considered less complex or simpler than patterns with few sub-symmetries (Toussaint & 

Trochidis, 2018). Other measures of complexity include the pairwise variability index 

(Toussaint, 2013) and the Keith’s measure of complexity (Keith, 1991) that connect sub-

symmetries with metric grouping of 2 and 3 as the minimum rhythmic unit. Euclidian 

patterns (Toussaint, 2010) were considered, but a structure for progression works better 

with hierarchical models. Using these considerations, a pattern with one sub-symmetry 

per beat (in this case, one onset per beat, or a pattern that follows the pulse) is regarded as 

the simplest version of a rhythmic pattern in PAMG rhythm generation algorithm. The 

rupture of those steady structures comes easily by displacing or moving onsets, one at a 
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time, to increase complexity progressively. Evidently, the direction of such relocation and 

the chosen onset play a role, so alternating direction and dividing pulses on even and odd 

to apply anticipation/delay prevent the pattern progression from becoming simpler again. 

As structures of 2 are less complex than structures of 3 (Hasty, 1997), displacing beats by 

half a pulse (8th note) would be simpler than a quarter pulse (16th note), which are the 

available values in the current model. The displaced pattern is then the base accent 

structure when adding onsets in the progression, in a similar way terminal branches in 

Lerdahl and Jackendoff (1983) are tree structures. 

 

2.1.4. Algorithmic orchestration 

Computer aided orchestration mainly addresses symbolic methods and sample-based 

methods (Carpentier et al., 2012). In sample-based methods, the most common task is 

timbral information gathering from instrumental audio samples to structure instrument 

combinations that address perceptual requirements (Esling et al., 2010, Psenicka, D. 

2003). Although playability (Collins, 2000)—measures for human performance—is 

important in algorithmic composition, it is only addressed in terms of constraint solving 

(Laurson and Luuskankare, 2001) as current task is machine performance. Nevertheless, 

rules that address instrumentation play an important role in the idiomatic result. 

Assigning constraints for instruments’ range, recombining instruments in succession, and 

harmonizing and assigning instruments to the melody agent’s output are the primary tasks 

in the PAMG orchestration agent. Some basic orchestral functions are actually prepared 

by the source agent such as keeping larger gaps between voices in lower registers and 
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managing texture thickness through voices placing (Gilreath & Aikin, 2004). Current 

design has a limited set of specific instrument rules since it manages full-range 

instrument families, and also it is expected to modularly manage other virtual 

sample/synth instruments with minimum setup to address further style development (see 

future directions in chapter 5.) 

 

2.2. Adaptive generative music for videogames 

Music has an important role on immersion in media in general, but particularly on 

videogames (Jiulin Zhang & Xiaoqing Fu, 2015). Immersion is characterized by a 

focused attention, thoughts and goal-targeted actions (Jennett et al., 2008, Wood et al., 

2007, Ermi & Mäyrä, 2007). Immersion enhancement through music is related to the way 

it supports emotions, plot/narrative changes, environmental mood, activity pace, aesthetic 

consistency, and thematic unity (Vorderer & Bryant, 2006). If the videogame presents a 

multi-linear narrative, music adaptability to changes boosts immersion and engagement at 

gameplay (Sweet, 2015). In fact, players perform differently in response to stimuli from 

dissimilar music (Wharton & Collins, 2011). Likewise, sound effects contribute to 

immersion and engagement (Grimshaw & Schott, 2008). 

Adaptive, interactive, or dynamic music in videogames refers to alteration possibilities in 

the music flow based on a control input, making it an efficient fit for interactive, multi-

linear narratives (Plut et al. 2022, Hutchings & McCormack 2020, Lopez Duarte 2020, 

Elmsley et al. 2017, Scirea et al. 2016, Brown 2012). Properties of “procedural 

composition” defined by Collins (2009) such as controlled real-time, rule-based evolution 
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also imply a level of adaptability. Procedural content generation in games addresses game 

content creation with “limited or indirect user input” (Togelius et al., 2011a, p.6). 

Additionally, conventional implementation methods based on pre-recorded segments, re-

orchestration, randomization, and re-mixing (see 2.4.) also achieve adaptive properties.  

 

The generative property, used among others by Brian Eno working with SSEYO8 to 

describe music that always changes, has been incorporated into the analysis and 

perspectives of algorithmic music (Wooller, R., Brown, A. R, et al., 2005). Generative 

aspects are usually divided in: Linguistic/Structural, where analytic theories such as 

generative grammars support generation rules (Lerdahl and Jackendoff, 1983, Cope, 

1991, Chomsky, 1956); Interactive/Behavioral, resulting of a process with no music input 

(does not transform pre-made music) (Rowe 1993; Lippe 1997, p 34; Winkler 1998); 

Creative/Procedural, resulting from setup processes configured by the composer9; and 

Biological/Emergent, music that relays on processes that guarantee non-deterministic 

results (Biles 2002a). PAMG features linguistic/structural algorithms. Its music is the 

result of interactive/behavioral processes with no music material input, and creates music 

material through creative/procedural algorithmic processes set by the user. PAMG 

utilizes non-seeded pseudo-random number generators to produce variance in features 

like velocity and slight variance in phrase resolutions which may point to a 

                                                 
8 https://intermorphic.com/. Accessed 5/1/2023. 
9 http://www.inmotionmagazine.com/eno1.html. Accessed 8/15/2023. 

https://intermorphic.com/
http://www.inmotionmagazine.com/eno1.html
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biological/emergent property. However, seeding is used to recall sequential patterns and, 

in general, pseudo-random generators are deterministic by nature. 

 

In an attempt to formalize a generative music definition in videogame paradigms, Plut et 

al. (2022), characterize it as “having systemic autonomy from the game logic”, to avoid 

covering single-piece tied to single-event cueing within the concept. For this writing, I 

address generative music as a process in which events parsed in a MIDI-like format are 

generated in real-time. A typology of generative music in videogames described by Plut 

and Pasquier (2022) is used also to describe PAMG features in section 3.   

 

There is a growing body of generative adaptive systems for videogames (e.g., Plut et al., 

2022, Hutchings and McCormack 2020, Plans & Morelli, 2012, Elmsley et al. 2017, 

Scirea et al., 2016, among others). Generative music in videogames has a number of 

entries that fit within the current definition. A more inclusive list of significant examples 

(that include horizontal and vertical arrangements of pre-composed material) has been 

elaborated by Plut and Pasquier (2020). Based on PAMG typology (see section 3.), some 

examples of games using generative music in a similar way are: 

 

Ghost-Writer (Robertson et al., 1998) is a music generating system that uses affect and 

highlights tension levels in its generation algorithms. It follows a sequence of three tasks: 

first, it creates an over-all structural form, second, it generates rhythmic patterns using 

poetic syllabic accents, third, it chooses a triad type among the four tonal possibilities 
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(augmented, diminished, major, and minor). Finally, it generates random melodies using 

the constraints laid down by the previous processes. Instruments are then assigned based 

on the tension level. Similar to PAMG, it uses mostly the author knowledge, constrained 

stochastic methods, and tension as drivers for generation. 

 

A notable example of evolutionary music (Vico et al., 2021, Miranda & Biles, 2007) 

would be Spore (2008). It is the only system known to implement a modified version of 

PureData10 to automate music generation. The system uses a multi-agent approach to 

generate independent musical phrases employing seeded random processes and 

parameters driven by game state changes. As its reaction is not tied to linear processes, it 

may be classified as linear as opposed to adaptive. However, it can apply real-time DSP 

effects. In Spore, the system uses more generative procedures during segments with 

lower quantity of game processes to avoid higher consumption of resources11. As in 

PAMG, there is a multi-agent structure, a series of parameters for music generation, and 

seeded preudo-random generators for new and recurrent material.    

 

Engels et al.'s (2015) music generation system uses a Markov chain to encode musical 

events that occur at the same time into a state, increasing the number of simultaneous 

voices the system can play. The system also segments musical sections using a support 

vector machine (SVM) based on pitch, duration, timbre, and volume. A Hidden Markov 

                                                 
10 https://puredata.info/. Accessed 8/11/2023. 
11 https://www.gdcvault.com/play/323/Procedural-Music-in. Accessed 4/3/2023. 

https://puredata.info/
https://www.gdcvault.com/play/323/Procedural-Music-in
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Model is used with chords as hidden states to avoid clashes between individual voices, 

and these chords can be provided externally or tagged automatically by the system. 

Although PAMG does not use Markov chain models to generate chord grammars, it uses 

chords as guidelines for melodies and other aspects of phrasing. 

 

Anthony Prechtl (2016) created a generative music system that closely adapts to the level 

of tension during gameplay, and tests it in his abstract horror game, Escape Point. The 

system uses a Markov chain to compose a chord progression and adjusts the probabilities 

of each chord based on the game state and tension level. There are 12 parameter sets that 

control the generation of music, with four parameters altering the music performance. 

PAMG also controls music generation with parameters but they are independent.   

Prechtl found that experienced players preferred the generative music over linear 

composed music and that all players found the generative music more intense and 

exciting. Skin conductance responses supported these findings, providing subjective and 

objective support for the strengths of generative and adaptive music.  

 

Although the Adaptive Music System (AMS) (Hutchings & McCormack, 2020) alters 

pre-composed music based on affective mapping taken from the game state, it offers 

generative properties. AMS uses a combination of rule-based algorithms, genetic 

algorithms, and a Recurrent Neural Network (RNN). It extends a model of affect with 6 

categories: happiness, fear, anger, tenderness, sadness, and excitement. AMS uses a 

"spreading activation" model to connect game state and affective data. It uses a multi-
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agent approach with three agent roles: harmony, melody, and a percussive line—a similar 

approach to PAMG. The harmony agent builds a chord progression, while the melody 

agents alter pre-composed music using a rule-based approach. AMS has been evaluated 

using real-world games and has been integrated into an open-source Zelda clone and the 

Real-time strategy game StarCraft II. A correlational analysis found that AMS slightly 

increases player immersion. 

 

The Audience of the Singular (AOTS) (Plut, 2017) is a generative system that uses 

primarily modified Markov chains. It learns symbolic music representation from a corpus 

of 30 pieces of videogame music from the 1980s and 1990s. AOTS uses a variable-order 

Markov model for its core horizontal generation and creates four versions of five musical 

lines, starting with the bass line. The system then composes a primary and secondary 

melodies in addition to two harmony lines based on probabilities from previous notes, 

learned melodic contours, and the bass line. AOTS also has a game built around it but the 

system can function as a stand-alone music instrument, a similar approach to PAMG. 

 

The Agate (AGMS)12 system addresses composition and arrangement with both 

horizontal note granularity and vertical instrument assignation, like PAMG. The system 

uses a rule-based algorithm with both symbolic and audio musical representation. It 

organizes its music in libraries and rule sets associated with moods provided and attached 

to a game state externally. Agate generates music with a set of rule-based constraints on 

                                                 
12 https://www.gdcvault.com/play/1012710/An-Adaptive-Generative-Music-System. Accessed 4/3/2023. 

https://www.gdcvault.com/play/1012710/An-Adaptive-Generative-Music-System
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random generation—like PAMG—while the arrangement task uses constrained random 

generation of short musical phrases provided by the user. Agate creates ambient music by 

playing short musical phrases using constrains of activity level at random times over the 

generated soundscape. 

 

AMEE (Hoeberechts et al., 2009) is a real-time music generation system that can create 

musical compositions based on desired emotional characteristics. Although it is 

applicable to videogames, its characteristics are designed in general for real-time 

interactive systems. It has an adaptive methodology and an application programming 

interface written in Java for external use. However, it currently lacks smooth transitions 

between different musical selections, and its audio quality is limited to MIDI files. The 

system offers an interactive way to modify musical parameters in real-time, but changes 

in the output only occur after the generated musical block completes its playback. PAMG 

also presents a UI to change parameters in real time, but does not use emotional mapping 

directly. 

 

barelyMusician (Gungormusler et al., 2015) uses a system architecture based on 

Hoeberechts et al.'s pipeline structure for real-time music production, and is designed to 

reflect a typical real-life musical performance. The main component of the architecture is 

the Musician algorithm, responsible for managing and communicating with other 

components. The Sequencer serves as the clock of the engine, tracking highly grained 

audio pulses and sequencing beats, bars, and sections. This function is similar to the 
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Clock in PAMG. The audio events are hierarchically designed using common sectional 

forms. The Ensemble component creates the song structure using its generators (macro, 

meso, and micro) which it passes to the Performers module to generate actual sequences 

of musical notes. Performers produce the next sequence, initially using abstract structures 

of notes that can be modified adaptively before being played. The Conductor agent 

transforms the generated note sequence according to user-determined musical parameters 

interactively, and the meta information is converted into actual notes and written into the 

musical score. Finally, each instrument generates the audible output by playing all the 

notes in its performer's score. PAMG controls act directly on agents’ parameters which 

act on top of generative algorithms, as opposed to the method of transforming music after 

generation present in barelyMusician. 

 

2.3. Generating change from external parameters 

A range of transition methodologies have been developed to address the need to switch 

between stylistic properties based on continuous (or sudden) changes in the videogame. 

Cutajar (2020) details usage and examples of the most referenced techniques: abrupt cut 

transition, crossfading, stingers, horizontal re-sequencing, and vertical re-orchestration. 

In his evaluation of what makes successful binary transitions (i.e., between two themes), 

Cutajar’s analysis mentions: gradual change rate, smooth fitting, and subtlety. He also 

develops a method for transitions in generative music based on Markov chains and 

viewpoints (Conklin & Witten, 1995).  
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As game development went mostly in the direction of clip-based implementation, these 

transition techniques are now common tools in conventional adaptive implementation 

software solutions13. They are mainly based on the concept that instantaneous gameplay 

events can be used to trigger transition rules for orchestral layering and segment re-

sequencing14, besides abrupt cut, crossfading and stinger playback. Despite the fact that 

this system falls short in style development and variance compared to generative 

models15, it has been able to handle adaptive music features. As they are designed around 

a source and a target piece, their approach is a 1-dimensional musical transition (i.e., 

connects only two themes), even if the target is variable. In this paradigm, transitions can 

use the rules and methods mentioned and also specific transitional music segments—i.e., 

stingers—as a sort of ‘bridge’. Sweet (2015) categorizes transitions into zone and event-

triggered. The following are considerations for zone transitions in conventional 

implementations:  

 

                                                 
13 Like Audiokinetic’s Wwise, FMOD, Elias Studio, etc. 
14 Sweet (2015) explores several composition techniques that improve concatenation of musical segments 

in which loops can be seamless and randomly re-sequenced. He also discusses re-orchestration, a technique 

in which voicing layers for each musical segment i.e., tracks can be added/subtracted and in some cases 

exchanged with other segments to achieve variety and change. 
15 Music material reappears in CBI, while in generative models it is constantly generated which gives a 

higher range of variation. Collins (2007) talks about listener fatigue, a phenomenon discussed also by 

Sweet (2015) that involves reports of players rejecting the reappearing music segments, especially if they 

sound the same and are back to back. More on the effect of repetition in 2.4.  
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The figure exemplifies a square, 2D map game level. By current design, the corners are assigned to a mood 

that is supported by its respective music theme A, B, C, and D. In conventional implementations, if the 

player (i.e., the black dot) walks through the transition area (i.e., shaded pattern) the rules in place should 

start the transition process to another theme. This region is arbitrary, and can be a single boundary (dashed 

line). In any case, this transition model always connects two themes.  

 

Fig. 1, 2-dimensional transitional regions suggest consideration of some particular cases: 

what happens if the transition is triggered by the player’s location and the player decides 

to go back to the previous region? And what happens if the player is in the center of the 

graph?   

 

Cuatajar (2020) solves the first situation by using a system of transition sub-regions that 

adds weight to the closest theme. The use of a transitional region accounts for a direction 

that triggers the corresponding theme weight, or in the case of CBI, a transition 

method/segment depending on the target theme. For the first question, as player’s 

A B 

C D 

A B 

C D 

Fig. 1. 2D transitional regions. 
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direction can change in the middle of the transition, any process started should be 

reversible or able to re-transition to a new target before arriving to a new musical theme. 

This transition design may also address the four-point intersection in the middle, but is 

still a binary decision system that needs a transition design to address variable theme 

transitioning. 

 

Within the same tools, a transition design based on layers (vertical re-orchestration) that 

are introduced in the mix using location may address the limitation of the above binary 

transition, allowing multiple themes to intervene: 
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Fig. 2. 2D Transition through layering 

Two distinct designs: Top: Constructing squared areas growing from the corners and assigning a maximum 

of 3 tracks per theme, the color coded regions are: red is the theme in its purest version, using all its tracks 

and none from other themes. Blue uses 2 tracks from the closest theme, 1 from the closer neighbor (vertical 

or horizontal), and 0 from the furthest diagonal theme. Green uses 2 tracks from the closest theme and 1 for 

each of the other three themes for a total of five tracks. Bottom: As the squared representation may not 

depict the actual influence of a punctual object placed in the corner, another distance-based representation 

to the corners will form three concentric regions per theme and the resulting intersections to generate a 

richer structure. For simplicity, this example continues with four regions with 0 to 3 tracks maximum for 

each theme. Using the same color code red is the 3-track theme, blue uses 2 tracks from the closest theme, 

1 from the closer neighbor (vertical or horizontal), and 0 from the furthest themes. Green uses 1 for each 

neighbor and 0 from the furthest. New regions appear in orange with the same 2 tracks from blue, 1 for 

each neighbor, and 0 from the furthest, Yellow as the intersection of three 1-track regions, and black as the 

intersection of all the 1-track regions.  

 

Fig. 2 shows a system of regions in which tracks are layered depending on the player’s 

proximity to the corners, using squared (a) and circular (b) structures. Although the areas 
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are arbitrary divisions of the label area (arguably, more suitable subdivisions including an 

empty region can be imagined), it is an example of natural occurrences in overlaying. The 

last one (b), offers more varied combinations and tends to be easier to code since it is 

based on linear distance to the corners, as a contrast to the squared, established Cartesian 

areas (a).  For this system to work, it is essential that the themes share musical features 

such as tempo, meter (or its multiple), and similar harmonic/tonal progression aspects 

whenever superposition occurs. The difference in track sums per region (2-4 tracks in (b) 

and 3-5 tracks in (a)) stands out. This variation range increases if more tracks are used, 

requiring mixing adjustments to be included in the transition rules. 

 

A combination of these techniques is able to produce effective transitions16 but the 

resulting overlapping needs to be carefully tested to avoid intended loudness 

increase/decrease. This system inspires CBI in section 4, in which layering is used for 

one of the location themes and for the action variations.  

 

Besides re-orchestration, horizontal re-sequencing—i.e., scheduling of musical cues 

(usually following the meter grid) as a response to game events—is used in combination 

to layering in CBI to trigger track transitions at zone boundaries.  

 

In generative music, the problems of music segment transition can be addressed in a more 

continuous way. Wooler and A. R. Brown (2005) explore the concept of morphing in 

                                                 
16 Cuatajar (2020) finds smoothness and coherence as the main features of a successful transition. 
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composition practice, in music parameters or features, and in historic/stylistic music 

analysis. From their analysis, morphing itself is a pattern-merging process that generates 

interpolated material for transitions. They also define interpolation as “the technique of 

estimating appropriate transitional values between known points.” p. 5. This approach is 

used in the PAMG interpolation module (see Appendix A, 6.).  

 

Hutchings and McCormack, 2020, Lykartsis et al. 2013, and Zentner et al., 2008 for 

example, address styles, moods, and musical features in relation to affects, and propose 

generative interpolation techniques. Although the studies utilize music-affect 

relationships for transition, the current PAMG method differs in that multi-parameter 

preset interpolation affects generation constantly. In other words, most of the time the 

musical result is an interpolation between moods or styles.  

 

Besides interpolation, transition methods that can be used in generative paradigms 

include i) cyclostationary, (Slaney et al.,1996) which introduces small changes within a 

repetitive sequence, ii) interleaving, which alternatively selects elements from music 

inputs (Oppenheim, D. V., 1997), and iii) weighted averaging, which involves two 

Markov chain weighted selections based on the transition position (Wooler and A. R. 

Brown, 2005).  
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2.4. Game music testing 

Testing music for videogames has been focused on measuring its impact in immersion 

(Klimmt et al., 2019), support for emotions and affections (Plut et al., 2022, Hutchings 

and McCormack 2020), and valence/arousal (Reuderink et al., 2013). Additionally, there 

is a possibility of estimating human reactions through physiological measurement 

(Prechtl, 2016). In the realm of automatic music generation, listening tests mostly deal 

with one or more musical excerpts for which participants rate or rank quality. Modified 

Turing-like tests (Turing, 2009), in which participants estimate if the music is generated 

by a machine or human (Hadjeres et al., 2017, Thickstun et al., 2018; Donahue et al., 

2019), select excerpts from a pair, or rates them in an attempt to gauge synthetic music 

quality.  

 

Although these approaches have deep foundations in thorough experimentation, to test 

PAMG performance at gameplay I adopted a comparative perspective, designed to gauge 

how and if the difference between clip-based music implementation and PAMG is 

appreciated by players. It takes into account the participant’s cultural background (Eerola 

et al., 2006) as an important influence in a listening experiment.  

 

One of the advantages of a generative model is its ability to generate musical variance17 

exceeding what is achieved by clip-based implementation. This would address listener 

fatigue (Collins 2007). Schellenberg et al., (2008) explore liking of music as a function of 

                                                 
17 Variance is used as a way to describe variation around a central thread, similar to development in music. 
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exposure. They also point to the role of expertise and stimuli complexity as a factor for 

arousal potential (Orr & Ohlsson, 2005). An inverse U curve was found showing an 

increase in familiarity as a result of the first iterations, and then an onset of “satiation” at 

around 8 exposures for focused stimuli and 32 for incidental. The ranges are longer if the 

stimuli are longer and more complex, and the arousal potential decreases as the listener 

expertise increases. Referencing a number of other observations that include an account 

of complexity as an influence in the inverted U liking curve, they note “The peak occurs 

after relatively few exposures for simple stimuli and/or focused attending, but much later 

(if at all) with more complex stimuli and incidental exposure”. 

 

As the type of listening in a videogame is incidental and the current themes in the CBI 

are around 2-minutes long, the combined exposure to test the onset of satiation (i.e., 

negative liking) at gameplay would be 64 minutes—if a theme is repeated back to back 

the whole time. As the effect of repeated exposure is lessened by techniques like layering 

and also other themes are introduced, a dedicated experiment able to test music satiation 

should include around 80 minutes of gameplay only on CBI. This constitutes a limitation 

discussed in section 6.  

 

Questionnaires are built using mostly Likert scales (Likert, 1932), and can be seen in 

Appendix E. 
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2.5. Why has generative/AI/algorithmic music not taken over game music? 

It is easy to recognize why a non-linear storytelling medium like videogames would 

benefit from non-linear music scoring (Sweet, 2015). It has been addressed by 

researchers in the last three decades and many theoretical and practical models/tools exist 

as a result 18. Generative adaptive, as a subset of multi-linear music, is considered as the 

most flexible system to implement non-linearity due to the real-time parameter 

accessibility linked to in-game variables—which would make it fit the category of 

procedurally generated game elements. Among the many advantages cited (e.g., reducing 

literal repetition, granular adaptability, context-specific scoring, etc.), generative adaptive 

paradigms enable players to recognize themselves as agents of change and variety, and 

also offers the possibility of transmitting real-time contextual information in advance of 

gameplay events execution. Arguably, immersion is fostered19 by stimulating player’s 

curiosity, or refreshed by performing less unintentional repetitions throughout longer and 

numerous audition sessions. 

 

For these reasons, it is not immediately clear why such a small percentage of current 

games use generative adaptive music scoring instead of many. To be fair, strictly linear 

                                                 
18 Examples of systems that address multi-linear clip playback are iMuse 1991, DirectMusic 1996, Elias 

2019, Psai 2016 and other game-specific models detailed by Plut and Parquier, 2020.  Brown 2012, Scirea 

et al. 2016, Sweet 2015, Elmsley et al. 2017, Lopez Duarte 2020, Hutchings and McCormack 2020, and 

systems such as Melodrive 2017, Metacompose 2017 address generative adaptive models.  
19 Hutchings and McCormack 2020, and Scirea et al. 2016 have test results that support the idea that 

generative music reinforces immersion. However, it is done with their systems and more large scale testing 

is needed. The present research also has shown some results in this subject (see section 4.2.3.4.). 
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music has been fading out in the last decades20 in connection with the increase in memory 

and CPU capabilities, which allows larger clips and more reactive rules. Still, to find out 

why generative music is not wide spread, other game developing and production 

dynamics should be considered, such as the investment risk, for example.  

 

Akin to film music production, comprehensive funding in game development will 

translate to top composers, known performers/orchestras, and experienced, well-equipped 

sound engineers that are assumed to yield high quality music clips. Low commercial risk 

has been represented by prestige authors and professional recordings. Either with music 

libraries or other outsourced production and licensing methods, this clip-based production 

pipeline has become common in all budgets, propelled by game development tools that 

facilitate CBI in both sound design and game music. CBI methods allow games to have a 

full range of pre-produced sound, including licensed music. To achieve an equivalent 

generative output, real-time synthesis, mix and effects would use more hardware 

resources such as CPU processing and data bandwidth than CBI. A known limitation in 

audio clip assignment is the low music variability and responsiveness. Although 

procedural sound design (Farnell, 2010) and multi-linear adaptive music require more 

work, game composer tools such as Elias Studio or Psai Unity plugin and middleware 

solutions such as FMOD21 or Wwise22 currently offer a range of tools for adaptive CBI. 

                                                 
20 A resourceful blog https://splice.com/blog/adaptive-music-video-games/ summarizes the history, and 

Sweet 2015 offers an explanation of techniques and tools developed throughout videogame history. 
21 https://www.fmod.com. Accessed 5/5/2023 
22 https://www.audiokinetic.com/en/. Accessed 5/5/2023 

https://splice.com/blog/adaptive-music-video-games/
https://www.fmod.com/
https://www.audiokinetic.com/en/
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Some techniques employed by composers, music implementers, and sound designers 

include:    

 Assigning mix parameters to real-time gameplay variables like in sound 

design23. These include but are not limited to levels, Q/frequency in filters, 

threshold/ADSR/ratio in dynamic processes, pitch-shift/tempo-change, and 

acoustic effect properties.  

 Random clip playback from a selected pool with the possibility of avoiding 

immediate repetition, which can be combined with transitional sections to 

connect segments.  

 Sub-mix section layering using overlap-able instrument clips. Diverse 

combinations of instrumental sets not only result in a range of variety but also 

offer several levels of intensity and mood variation assignable to game 

conditions and events. 

 Progression designing in which harmony follows a continuous form and 

supports overlapping. This harmonic segment composition may also include 

especial transitional progressions. Although time consuming, crafting music 

segments that connect with each other and with themselves, and that work 

harmonically when played together, benefits music modularity.   

                                                 
23 For example, in Audiokinetic’s Wwise, RTPC (real-time parameter controller) can assign any 

float/integer game variable, through a range and curve set in a Cartesian mapping graph, to any mix 

parameters.  
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Procedural sound design, as predictable evolution of current clip-based paradigms, has 

been proposed and implemented in physics-informed phenomena such as real-time 

geometry-generated reverb (Fırat et al., 2022). Meanwhile in visuals, procedural lighting 

systems already interact and render results based on materials, source, point of view, and 

game conditions. Automatic music generation in games, however, has scattered 

examples, mainly because it requires significant pipeline arrangements and programming 

work24. Despite being innovation advocates, game developers know the implications of 

altering or creating new production models, and have faced the uncertainties and 

downsides of improvisation. If a game prospect represents an outstanding and distinctive 

game through mechanics, narrative, and aesthetics, developers come up with a feasible 

pipeline. There, tasks are itemized for an attainable production timeline. If the added 

work of, for example, automatic music programming—which is not in conventional 

pipelines—and game parameterization is reflected in game uniqueness and sales, the 

project might be considered viable. For those seldom cases, the result tends to be a 

music-centric game25 mostly non-generative, and in an even smaller subset, complex 

unique systems and workflows devised by their programmers have achieved generative 

adaptive results26. If that extra work of designing a music engine was taken over by a 

software tool that readily fits into the current pipelines (i.e., by offering game engine 

                                                 
24 This subject was addressed in interviews with Guy Somberg (https://www.linkedin.com/in/guy-somberg-

2a72b79/details/experience/), author of the Game Audio Programming book series, and Aleksandar 

Zecevic (https://www.linkedin.com/in/aleksandarzecevic/details/experience/) Senior Audio Designer\Audio 

Director at Electronic Arts (EA) for more than 15 years.     
25 e.g., Rez Infinite, Beat Go, and others, besides the music rhythm genre that includes Guitar Hero and 

similar games. 
26 For a comprehensive spectrum of adaptive and/or generative music games please see Plut and Pasquier 

(2020) table 1. 

https://www.linkedin.com/in/guy-somberg-2a72b79/details/experience/
https://www.linkedin.com/in/guy-somberg-2a72b79/details/experience/
https://www.linkedin.com/in/aleksandarzecevic/details/experience/
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compatibility, scalability, ability to compile and build within the game) then a higher 

number of non-music centric games may employ automatic music.  

 

Up to the present, there is a limited supply of commercial tools for generative music in 

general game development, or software solutions to simplify its implementation in 

conventional game audio production.27    

 

Although generative-adaptive music and sound design are feasible and desirable, 

hardware resources have been occupied and kept for video acceleration and other game 

mechanics. In part, CBI has had enough quality to provide immersion while using low 

computing power. Audio engines stream from RAM and storage devices, and the 

bandwidth would depend on simultaneous voices but, even with a high count, it is several 

orders of magnitude lower than video processing. Music can employ several layers but 

rarely beyond twenty simultaneous tracks in playback. Sound design often surpasses that, 

but in practice, crowded environments are avoided not only to save bandwidth but also to 

control noise. Some effects such as filters and reverbs may use additional CPU resources 

but their share is monitored and kept to a minimum. 

 

In comparison, synthesized/procedural sound would definitely consume more resources 

than conventional clip playback by executing more real-time calculations. Generative 

                                                 
27 Recently, several startups are rising funds for automatic composition technologies such as DAACI, 

AIVA, Amper, Jukedeck, and many others. They also foresee implementation solutions for videogames.   
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music may not use much more CPU than CBI, but if the system uses instrument samples, 

simultaneous playback grows to sound design levels, and RAM usage also increases. If 

instead of samples it uses synthesis, additional processing power needs to be allocated 

(synthesis can be light for modern CPUs but added sources and effects may increase its 

load significantly). In general, current multi-thread processing and bandwidth growth 

may accommodate for those modest additions, while methods for memory reduction like 

compression and SSD streaming would have to be evaluated for each platform.  

 

Machine-learning music generators are also a possibility. Current constraints point to a 

pre-trained model that is able to interpolate among styles e.g., Magenta’s MusicVAE28 

(Roberts et al. 2019). As neural network models have reduced real time modification 

features, the use of embeddings may cover the need for malleability using game 

parameters. Implementation in videogames may need tools to train or swap pre-trained 

models, monitor resources usage, and test for unforeseen results. Once the models are 

trained and the interpolation among styles or moods is working, real-time rendering 

possibly continues to be the most computationally expensive task, although still less than 

video.  

 

In general, material capability to include intelligent generative models is already there 

and is increasing. Doubts can surface in terms of licensing frameworks for deep learning 

models—already actors and content producers are licensing their signature styles for 

                                                 
28 https://magenta.tensorflow.org/music-vae. Accessed 5/7/2023.   

https://magenta.tensorflow.org/music-vae
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replication—and how the result seamlessly connect with the previous model both in 

production pipelines and in consumer reception.  

 

2.6. PAMG in commercial game development pipelines: How it fits into game 

development and possible problems  

Automatic music systems need to define a role inside game development pipelines. 

Specifically, their function and value into the connection between the director and/or 

producer with the composer. That link works on a contractual agreement in which 

creative material fulfills aesthetic objectives and become a commodity for the buyer, in 

this case the game producer. Then, the first barrier to overcome is how operationally the 

work of a composer in an algorithmic system guaranties the director’s framework. This 

involves for example, a redesign of screening and testing sessions. Subsequently, as 

stated before, an evaluation of commercial risk occurs. This likely places the value of 

generative music more as a contextual gameplay asset—less as a static recording 

susceptible of publication like in current soundtracks—and also as a potential creative 

product: a logical model of musical behavior. 

 

Technically and operationally, a tool that facilitates music generation that integrates with 

current game developing pipeline models has more chances of being employed than the 

prospect of assigning programing labor and design time to incorporate such a feature. 

Successful software solutions currently employed in game design have ‘pre-cooked’ user 

interfaces, functions, utilities, and processes that promote interdisciplinary collaboration. 
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For example, animation artists and modelers normally use a specialized software like 

Blender, Adobe Substance, Cinema 4D, 3Ds Max, or even the same Unreal 

Engine/Unity, instead of coding. Integration efficiency depends on compatibility and 

fewer steps to carry their output into the game. Nowadays, their skills should also include 

source version control (Git/BitBucket) and online/remote networking implementation 

using agile software development systems (Jira, Monday, Asana, etc.) Although 

knowledge about technical implementations and game developing flow structures—

besides some programming—is desirable for artists and designers, it is not a requirement 

in current pipelines. Similar to model design artists, a sound designer uses audio 

editing/mixing DAWs such as ProTools, Reaper, or Cubase, and in some cases modeling 

solutions like Max/MSP, Pure Data or any synthesizer to create content. To insert their 

work into current game developing pipelines they use middleware such as Wwise or 

FMOD, which not only allow assignation and conditional transformation of audio clips to 

gameplay events but also compiles the logic into the final game build. Sound designers 

and music composers require a close contact with the audio programmer which 

supervises game integration, and whose labor is highly supported by the middleware 

capabilities (Somberg, 2016). Without middleware, the music/sound design audio clips 

would have to be implemented directly by the audio programmer. In mid-to-low budget 

games, engines and middleware are trusted with audio handling and programmers and 

game designers only expose events and variables to middleware users to work with. 

Hence, sound designers are in charge of music implementation through middleware in 

most cases.  
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2.6.1. Into the pipeline 

The audio pipeline has seen many improvements in terms of efficiency, independence 

and possibilities through middleware. Currently, finding a way to implement PAMG as a 

plugin for Wwise/FMOD seems like the best solution. Also coded as a game engine 

plugin (within Unity/UE) is considered as a second option, but since monitoring 

possibilities for mix and assignments are available in the middleware, the first option is 

preferred for an eventual built-in software solution29.   

 

Fig. 3. PAMG implementation diagram. 

The game engine sends control values through via middleware to individual generation parameters and to 

MPIC, and receives music information data that includes MIDI events, beats, tempo, current harmony, and 

parameter levels.  

                                                 
29 In conversations with game developers at GDC2023, plugins for the game engines surfaced as viable 

options for low budget games too, since they have simplified pipelines that do not include audio 

middleware. 
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PAMG receives parameter control and generates MIDI-formatted data.30 Audio output 

rendering (assigned sampler/synth instruments) may be carried either by the audio engine 

inside the middleware (Fig. 4) or by platform-native MIDI instruments (Fig. 6).  

 

2.6.2. Two ways to implement PAMG into middleware 

 

Fig. 4. PAMG using instruments within the middleware. 

 

The first prospect shown in Fig. 4 requires instruments (samplers/synths) either integrated 

into the compiled PAMG plugin or as a middleware instrument. An all-in-one solution 

would allow homogenous audio quality, and mix monitored and tested along sound 

design and voice-over, in addition to resource usage reports through middleware editing 

                                                 
30 MIDI protocol seems to be a simple and effective solution for music output, although instrument 

sampling and/or synthesis would be in charge of the final rendering.   
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features. The final result is compiled into the game, making it a consistent solution across 

platforms.  

In Wwise (middleware), the Synth One synthesizer is able to playback loaded MIDI files 

and also can be linked to a MIDI input through control surface assignment. Additionally, 

it is possible to load instrument samples and setup a multi-sample structure for MIDI 

playback. However, setting up either multiple Synth One31 synths with their own 

parameters, and/or multiple instrument samples each one with routings and ranges is time 

consuming. Currently, only MIDI files loaded as Music Segments32 or assigned to Music 

Play-List Containers33 can be routed to instruments or multi-sample structures, and only 

one-to-one connections are available. A plugin could be programmed to have MIDI 

output but until now it has not been done. For those reasons, the inclusion of 

synth/sampler instrument output from the plugin would be a straight-forward option. In 

fact, Enzien Audio’s “hvcc” or Heavy34 is a python-based dataflow audio programming 

language compiler that generates C/C++ code wrappers that allow PureData35 (Pd) 

patches to be converted to Wwise plugins. Although objects allowed are limited and 

support has been suspended since 2018, it is still able to compile a plugin with a custom 

set of parameters and embedded audio sources. Fig. 5 illustrates a basic music generator 

                                                 
31 

https://www.audiokinetic.com/en/library/edge/?source=SDK&id=wwiseobject_source_wwise_synth_one.h

tml. Accessed 5/5/2023. 
32 https://www.audiokinetic.com/en/library/edge/?source=Help&id=what_is_music_segment. Accessed 

5/5/2023. 
33 

https://www.audiokinetic.com/en/courses/wwise201/?source=wwise201&id=lesson_1_re_sequencing_crea

ting_variation_using_horizontal_approach_using_playlist_containers. Accessed 5/5/2023. 
34 https://github.com/enzienaudio/hvcc. Accessed 5/5/2023. 
35 https://puredata.info/. Accessed 5/5/2023. 

https://www.audiokinetic.com/en/library/edge/?source=SDK&id=wwiseobject_source_wwise_synth_one.html
https://www.audiokinetic.com/en/library/edge/?source=SDK&id=wwiseobject_source_wwise_synth_one.html
https://www.audiokinetic.com/en/library/edge/?source=Help&id=what_is_music_segment
https://www.audiokinetic.com/en/courses/wwise201/?source=wwise201&id=lesson_1_re_sequencing_creating_variation_using_horizontal_approach_using_playlist_containers
https://www.audiokinetic.com/en/courses/wwise201/?source=wwise201&id=lesson_1_re_sequencing_creating_variation_using_horizontal_approach_using_playlist_containers
https://github.com/enzienaudio/hvcc
https://puredata.info/
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in Pd that exposes some parameters in Wwise, and embeds piano samples within the 

plugin. I explored the possibilities for a MIDI output but the only two plugin categories 

available—effects and source plugins36—are enabled to exclusively receive MIDI. Still, 

the possibility of building a plugin with MIDI output may exist through Audiokinetic’s 

SDK. 

 

For a complete solution featuring synth/sampler output—a full-fledged version of the Fig. 

5 patch—commercial capabilities to be considered besides music generation would 

include access to different voices and their parameters inside the middleware, which adds 

programming labor and sample licensing to developing costs. 

                                                 
36 Effects transform audio, and sources output audio triggered by events or MIDI. 
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Fig. 5. Pd generator with embedded audio samples in Wwise. 

The available Pd objects to use in order to compile the plugin with Heavy is limited. For 

example [counter], [expr], abstractions, and other functions that could simplify the 

structure are not supported, requiring a combination of basic objects and then increasing 

the use of boxes and connections. The patch shown in Fig. 5 (top) is a highly simplified 
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version of PAMG with one instrument and eight samples of piano. It uses a clock based 

on [metro], loop size for possible onsets, and a Euclidian rhythm generator with 

additional onset filling parameter (sub-onset). Then, onsets activate a seeded random 

generator that distributes them among chords and single notes using three possible pitch 

sets I, IV, and V. Then the notes are played back using buffers with [tabread4~]. Fig. 5 

bottom shows the resulting parameters exposed in the Wwise UI interface. 

 

Fig. 6. PAMG using instruments from the game platform. 

 

The second option offers the versatility of platform-available MIDI instruments 

customized by the final user. For example, in PC platforms, it can be routed to virtual 

instruments with their custom libraries in addition to MIDI recording software, or even to 

external hardware instruments through MIDI out ports. However, MIDI instruments may 

not have an output quality comparable to CBI, and effects and mix levels are an 

additional setup to manage for final users. Additionally, the current Wwise structure does 
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not include MIDI out as a compiled in-game feature, although Unreal Engine has this 

capability. This means that additional coding either in the middleware plugin or in the 

game engine scripts/blueprints should be done to enable MIDI out port access.  

 

In general, the easiest way to fit PAMG into a game developer’s pipeline is by 

introducing the least changes possible, which translates into readily available 

compatibility with currently employed technology and business models. A well designed 

and simplified user interface also is paramount to integrate with current visualization 

paradigms in middleware and/or game engines.  By including PAMG as a sound-design 

middleware plugin, sound designers will have an opportunity to be in charge of music 

design through PAMG, making them the music authors.  

 

Through a PAMG, a composer (or user) can come up with a style as a result of 

algorithmic parametric structure setup used by the engine to generate a range of musical 

developments or progressions. Then, the music underscoring process would include the 

design of those setups as aesthetic requirements for game sections, and the technical 

aspects of generating streams, transitions and interactions are handled by the music 

engine. The composer will handle the creation of a musical identity while the engine will 

deploy and implement it. 

 

Game composers, as regular content creators, may incorporate their linear productions for 

higher-impact music that are in charge of the game’s storyline identity (e.g., headers, 
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openers, and cues) while generative music sections address gameplay. Using PAMG as a 

middleware plugin has the advantage of allowing conventional and generative music 

implementations in the same game sound track. This would make important the 

establishment of aesthetic consistency among the material and the system used.  
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3. PAMG algorithm 

 

Fig. 7. Progressive-Adaptive Music Generator (PAMG) developing UI 

 

A thorough description of the PAMG can be found in Appendix A.  

The architecture used to build PAMG is an agent network with granular control over 

several levels of melodic, rhythmic and harmonic complexities. In addition, parameters 

belonging to each agent and global system setup can be modulated by incoming 

gameplay variables. 
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It comprises a Melody Agent (MA), a Harmony Agent (HA), and a Percussion Agent 

(PA) (blue, light green, and orange in Fig. 7 respectively)(Appendix A, 2.-5.) Also, 

visualized in the black matrix ctrl object, an Orchestrator Agent (OA) receives note 

generation from MA and HA and assigns instrument families to the output, controls 

instrument range, and automatically makes real-time decisions about instrument 

appearance. A preset manager and Multi-Parameter Preset Interpolator and Controller 

(MPIC) (purple, and lower grey XY pads section in Fig 7) have the function of receiving 

individual parameter control, and interpolate among multi-parameter presets respectively 

(Appendix A, 6.) Each agent’s presets are assigned to the four corners of an XY pad, 

where the interpolated result is displayed in the respective lower multi-slider display. 

In the right, a score-like visualization of the generated notes and their range for MA and 

HA is displayed. Other global controls such as MIDI port selectors, tempo visualization, 

Harmonic Rhythm speed, Seeded Phrase controls, and Modulation algorithm toggle can 

be viewed in the upper right section. 

 

3.1. PAMG typology 

Using Plut and Pasquier (2020) typology model, PAMG can be an example of some of 

the proposed categories37. The classification should be understood as descriptive rather 

than restrictive.  

 

                                                 
37 In their article “Generative music in video games: State of the art, challenges, and prospects” (2020) Plut 

and Pasquier offer a complete explanation of their typology, and an overview of 34 adaptive music systems 

and/or games. In the current section, I use italics to denote the mode or subcategory that fits PAMG closer 

within each category.  
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3.1.1. Musical dimensions 

 Generative task: 

Composition. The system is in charge of creating new music.  

Arrangement. It addresses the recombination of extant elements from melody lines, and 

chords within chord pools. 

Performance. Interpretation is primarily the result of parameter variation on a MIDI 

event’s velocity (granular dynamics), and through algorithms like 

Melody/Harmony/Percussion Change (see Appendix A, 2.5., 3.4., and 4.4.). 

 

 Directionality: 

Mixed. PAMG handles vertical and horizontal directions in music. It creates and manages 

sequential events and temporal superposition of musical elements. MA for example, 

handles the horizontal direction of the leading music line, while the HA handles the 

vertical grid for any note event. MA also handles the ‘moved list’, a rhythmic pattern that 

other agents can follow vertically either by supporting it or diverting from it, adhering to 

the meter hierarchy. HA also handles voicing and range generation which belongs to the 

vertical direction. OA handles the instrument families and the ranges assigned among 

them. It also reassigns instruments to provide variance.  

 

 Granularity: 

Phrase, measure, beat, note, chords, instrument group. PAMG uses the note to execute 

the most immediate changes especially in the melody. The measure granularity type is 



54 

used as a ‘loop size’, which in some cases would not reflect a musical measure. For 

example, a ‘loop size’ of eight beats can be felt as a measure in 8/4 or two measures on 

4/4. Although ‘Loop size’ is the default window used to switch chords by HA, any beat-

sized onset in the loop can trigger a change—no chord switch is permitted when the unit 

is shorter than a beat or a ‘moved’ beat. The Phrase granularity type is used to trigger or 

allow changes in the arpeggiator and instrument family among others. Chords generate a 

grid for any note performed. They also can be manipulated by adding and subtracting 

tension which limits the available pitch classes.     

 

 Grid/Groove: 

On. The subdivision of the loop size—the ‘grain’—is the minimum event duration with 

the exception of the arpeggiator output, the ratchet, and onsets in ‘staccato’ mode. 

 

3.1.2. Gameplay dimensions  

 Diegesis: 

Non-diegetic. The music is not produced within the game world and belongs to the 

storytelling presented to the player. 

 

 Ambience: 

Ambient. The music is not connected to a source. 
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 Adaptivity/Autonomy: 

Adaptive. Although the music generation has more than fifty parameters that can be tied 

to game variables, PAMG is able to execute changes if left unsupervised or unchanged 

which adds a level of autonomy from gameplay.  

 

3.1.3. Architecture dimensions 

 Generality of the system: 

Generic. PAMG is designed to work on a plurality of games. The presets elaborated by 

the user and the decisions of parameter assignment are specific to a game. 

 

 Generative algorithm: 

Rule-based and stochastic. Rules in PAMG act as modifiers and constraints for stochastic 

event generation. Deterministic (e.g., pattern generation) or non-deterministic variance 

(e.g., velocity generation) are established by seeding/not seeding pseudorandom 

generators. 

  

 Musical representation: 

Symbolic. Inside PAMG, basically two types of symbolic information are shared: 

numerical (integer and float) and harmonic (see Fig. 11). The numerical symbols cover 

magnitudes such as MIDI-like formatting (pitch, length, and duration), handle paradigms 

of organization such as loop onsets indexing, and establishes variance ranges such as 



56 

Seeded Phrase generation.  The harmonic symbols managed by the chord pools use 

Western roman numerals (e.g., I, ii, IV, V7, etc.). 

 

 Musical knowledge source: 

External. PAMG currently uses algorithmic methods with a number of parameters that 

affect ranges and behavior. The musical result is unique in the sense that no previous 

music analysis is employed to structure the model (besides the knowledge and experience 

of the composer/user). 

 

3.2. Music creation methods overview 

In this section, current visualization and the corresponding parameters38 are explained 

from the point of view of music generation. 

 

3.2.1. Rhythmic structure creation and progression 

The rhythmic development algorithm is based on Lerdahl & Jackendoff (1983) 

Generative theory, in which the onsets in the timeline acquire a hierarchical place 

according to its position in the established meter and the accent management. The most 

simple version of a motive has a superior level in that system (i.e., higher in the tree 

structure) while the final subdivision of onsets that includes syncopation would be at the 

end of the tree branches.  

                                                 
38 Parameters’ names will use italics when the name is exactly as displayed by the user interface, or if it is a 

named information used in the algorithm description in Appendix A. 
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Fig. 8. Odd and Even beats moved and their related sliders. 

In the first row, a 4/4 measure with 4-grain (16th note) producing main beat, and the corresponding slider 

positions. Note that the +/- notes is not on 0, since it has a number of onsets. From this point down, it will 

subtract one onset at a time. In the second row, a syncopated rhythm based on the previous onsets. MvEven 

is at maximum meaning that all the even onsets (2 and 4) have been shifted by the amount shown in the 

setting Move Even By. This main rhythm will constitute the Moved List and Beat List to be used by other 

agents. 

 

The beat itself is used as a starting point, since it is likely the simplest information that 

can be carried by a rhythmic pattern. As this ‘beat-following’ pattern still has the same 

number of onsets as the meter, the algorithm executes a subtractive operation in the lower 

section of the +/- Notes slider to get the range from 0 to the maximum number of beats 

within the loop (Loop Size). It populates the main beats one by one using seeded random 

number generators and checks if they are moved as shown in the Moved List (Appendix 
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A. 2.1.) Then, it continues populating in lower levels in the hierarchy, i.e., 8th notes, 

followed 16th notes one by one until the maximum grid onsets (Loop Size x grid). In the 

current design, an algorithm permits a small overlapping in the onset filling algorithm for 

8th and 16th note levels in the melody so the obtained patterns are slightly richer—it fills 

some 16th notes before finishing filling 8th notes. As a result, the rhythmic pattern grows 

in onsets and complexity on top of an original accent structure39. The resulting list also 

affects the event velocity to preserve the groove and the accent/beat (acc/beat) parameter 

for all agents (Appendix A, 2.1., 3.1., and 4.1.). The algorithm also calculates the distance 

to other onsets to set the duration parameter as either legato or staccato (Appendix A, 

2.1.3. and 3.1.3.)   

 

3.2.2. Phrasing 

The harmonic progression determines the phrase (Appendix A, 3.3) in the sense of 

departing, acquiring tension and reaching resolution, which constitutes a harmonic cycle. 

In the melody, pitch generation (either drunk or drunk-contour dcontour) is seeded in the 

start of the loop to repeat the gesture whenever the seed is sent. Seeds can be switched for 

each loop completion, creating a sequence that enables different gestures per loop until 

the harmonic cycle has terminated (Seeded Phrase). This also applies to the Rhythm Seed 

producing greater complexity when more shapes are used.  

                                                 
39 Accents are onsets whose velocity parameter is proportionally higher than others. In the current model, 

the onsets that receive this emphasis belong to the beat or Moved List. 
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Fig. 9. Seeded Phrase controls. 

 

Additionally, the Change algorithm (Appendix A, 2.5, 3.4, and 4.4) lowers the amount of 

onsets when there is a harmonic resolution and increases them on dominant sections. 

Higher values in the Harmonic Complexity parameter (Cpx prog) produce a growing 

number of Boxes containing harmonic pitch collections or chord possibilities (see 

Appendix B) managed by the Chords Pool Manager (Appendix A, 3.3.2.1.) The 

Harmonic Speed parameter adds or subtracts chord-switching onsets within the loop to 

change the structure of the phrase and making it shorter or longer. The pools and the level 

assigned can be seen in Appendix B: Chord Pools.  

Segmentation in phrasing is reinforced by changes in orchestration (instrument 

assignments in the OA), change and switch on/off in the arpeggio algorithm, and 

fluctuations in number of onsets and pitch-class lists depending on dominant/tonic 

entrances. In addition, an algorithm enables sections with longer endings as ‘breakdown 

interludes’ disabling harmonic and melodic changes for a number of measures depending 

on Cpx prog and Loop size parameters. 
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3.2.3. Melody contour/shaping 

The drunk and drunk contour (drunk and dcontour) modes (Appendix A, 2.3.1) are 

modified versions of the Drunk40 object in Max/MSP. The drunk mode acts basically as 

the drunk object with the difference of receiving a seed for the sequence and not for the 

range, although the range is easily set.  

 

Fig. 10. Drunk Contour (dcontour). 

 

The direction of the melody line is then affected and can be distinguished by the listener 

when the seed starts the repetition. The dcontour mode uses said drunk output to generate 

a pitch contour per loop. Then, new onsets added will follow the interpolation lines 

between the Moved List onsets provided by the rhythm generation algorithm in MA—the 

same producing the accent structure. Additionally, a long range shape (Appendix A, 2.4) 

is able to granularly modify the pitch range from 1/4 up to 8 loops (Loop Size). This 

preserves the contour, and also provides pitch directionality.  

 

 

 

                                                 
40 Random walk. https://www.britannica.com/science/random-walk. Accessed 5/9/2023. 

https://www.britannica.com/science/random-walk
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3.2.4. Harmonic progression 

The progressions follow generative grammar procedures similar to David Cope’s (1996) 

Augmented Transition Networks. The system’s node values reflect a complexity level. In 

addition, the complexity parameter value adds nodes and swaps chord options to the 

phrase. The following is a graph of available chords: 

 

Fig. 11. Chords. 
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The symbols chosen borrow from traditional Roman numerals used in Western tonal 

music analysis used first by J.P. Rameau (Christensen, 2002) to describe basic tonal 

functionality41. Chords symbols with yellow background are formed in the major and 

minor scale. Additional chords formed in the same grade’s root occupy the same vertical 

axis (blue on top and green below), and receive a name closer to its tonal functionality. 

For example, ii in Major mode can be modified to be a major chord, which in functional 

terms it is called V7/V (blue background). As the Major and Minor modes will interleave 

in further complexity levels, the III in Minor is called bIII to distinguish its root from iii 

in Major, in a similar way v exists in Minor mode and shares fundamental with V for the 

global root (tonic). bIII with one modification can become minor suggesting a ii grade in 

an eventual modulation to a bII, in short ii/bII. In general, blue chords are modifications 

that make them secondary dominant, while green chords are ‘secondary subdominant’ 

(either as a ii or a ii° of an eventual tonal path). This symbolic naming is used to remind 

the possibilities in progression when chords are chosen and determine possibilities for the 

next node. The purple chord symbols constitute a third level of modification that connects 

complexity with tension when chromatic pitch additions are included. Among them I 

included the Neapolitan, Italian and French augmented sixth chord structures (N7, It+, 

Fr+). The German augmented sixth (Ger+) was considered as a possible V7/bii since its 

configuration is a dominant seventh chord, hence the blue background. The dark grey 

                                                 
41 Some differences are: any diminished minor seventh chord, e.g., ii°m7 is seen more often as iiø7. In 

general, including ‘descriptive’ information is due to the gradual inclusion of pitch classes—in the first 

three tension values it does not include 7th—and the possible directions in harmonic progression. Also, to 

write the augmented 6th chords I described the intervallic and harmonic relations before It+, Fr+, and Ger+. 

Another reason to modify original symbolic notation is the limited supply of special characters and plain 

text tools in Max like superscript.  
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message (message box) under each colored chord contains the actual symbol employed in 

the algorithm. 

 

3.2.5. The tension parameter 

As discussed in section 2.1., the tension method chosen adds selected upper pitch classes 

one at a time with increasing dissonance to the harmonic node (chord) completing 12 

levels. In the case of I in major (Fig. 12), it starts with conventional consonances—0, 7, 

4—, then introduces upper pitch classes in thirds—11, 2, 5, 9—increasing harmonic 

tension by adding dissonance with the first classes, then adds pitches that belong to the 

parallel minor pitch collection—3, 10, 8—, and finally adds chromatic dissonances in 

relation to the root—6, 1. For chords executed by HA, tension is combined with number 

of voices (voice ins) to choose the pitch classes. For example, if the voice ins parameter 

selects 3 voices and the Tension parameter is its maximum value, the voices chosen are 

the right-most in the 12 level: 8, 6, 1 for I (Fig. 12.). In case Tension is 7 the voices 

would be 7, 11, and 2. This adapts the available pitches to the current number of voices to 

reflect the tension assigned.   

  

Fig. 12. Tension levels for I in C major. 
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Pitch class sets per level and per chord are stored in a dictionary. This output is converted 

to a harmonic grid that serves as a playground for chords and melody. It also feeds the 

bass algorithm for HA and fluctuates as a result of tension-resolution changes to reinforce 

phrasing. The complete dictionary can be seen in Appendix C.  

 

3.2.6. Velocity generation 

As each agent produces MIDI formatted data (pitch, duration, and velocity), each one has 

an independent velocity parameter that affects the general loudness of any instrument 

assigned, and that level serves as a center for fluctuation or ‘humanization’. This is 

accomplished by a drunk object with a variable step and range. It is affected by the main 

accent pattern (moved list/beat list), which increases the value in a range between 10 and 

25 (out of 127) on accented onsets, as can be seen in Fig. 13: 

 

Fig. 13. Velocity generation with accent. 
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3.2.7. Interpolation 

The MPIC module (see Appendix A, 6.) handles I/O for agent’s parameters, stores 

presets for themes, and manages interpolation through XY pads.  

 

Fig. 14. Multi-Parameter Preset Interpolator and Manager (MPIC). 

Parameters per agent are color coded: MA blue, HA green, PA orange. Parameters in red 

(Tension, Cpx Prog, Tpo, and size loop) are managed by the corresponding agent setup 

but affect global aspects. Presets are organized in rows of 4, and are assigned per agent to 

a corner of their respective XY pad interpolator (letters A-L), using the buttons in the top. 

Each corner in the XY pads is associated with preset shown by a color-coded multi-

slider, and in the bottom, the interpolated result is shown. In the top right, a Reset button 

restores interpolated values for presets, since parameter sliders can carry an offset when 

handled individually. 

 

In the current version, it also contains the setup for OSC I/O that can receive data from 

another user interface like a multi-touch screen on an iPad. This is provisional interface 
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design for performance that employs a subset of parameters. Selected sampled pieces 

present in the accompanying Media (see Appendix F) were performed using this layout.  

 

Fig. 15. Performance UI in TouchOSC. 

 

3.2.8. System specifics 

The current design is optimized to work with full range instrument sets of Strings, Piano, 

Wood winds, and Brass. Some algorithms would need to be revised to act in other 

instrument sets. For example, arpeggios within a brass section are not idiomatic so they 

are avoided, only ‘piano solo’ allows arpeggio rates of 1/32 note value, and key switches 

are used for staccato strings (this also is particular to the sampler/bank device). In PAMG 

description (Appendix A), I excluded technical methods such as math functions, counters, 

loops, and the like, and user interface (UI) visualization and construction items—unless 

they serve a purpose in music generation—to focus on the functionality. 
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4. Evaluating PAMG 

This section includes a description of the Trial Game, its origins, game plot, and variables 

used in the present research to evaluate PAMG. Then, it explains a PAMG-CBI 

comparative test in which participants play the Trial Game in both configurations and 

respond a questionnaire about the gameplay experience. This comprises a description and 

comparison of the methods used to design CBI and PAMG implementation, and the 

gameplay experiment with its results. 

 

4.1. The Trial Game 

A First Person Shooter style template was chosen and a hybrid adventure-action story 

selected due to the presence of the mentioned characteristics in recent years42. This 

choice aims to test several modes of style interpolation capabilities present in PAMG that 

vary in reaction time (action vs. location), storytelling (hints about player performance), 

and instantaneous musical needs (game state changes such as death, pause, and menu).  

 

4.1.1. Origins 

The trial game Music Portals was designed in the beginning of this research as a test 

ground for interactive music layering. The idea was to use available tools in Audioketic’s 

Wwise middleware to try assignation of gameplay variables to musical changes in 

combination with the FPS (first person shooter) Unreal Engine (UE) template in an open 

world environment. Specifically, its single-level size was used to experiment layered 

                                                 
42 https://www.statista.com/chart/24700/favored-video-game-genres-in-the-us/. Accessed 5/6/2023. 

https://www.statista.com/chart/24700/favored-video-game-genres-in-the-us/
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music crossfade based on distance to map location points. As disclosed in evaluation (see 

Chapter 5), this earlier implementation experiment did not yield the best musical results. 

 

The current game is an updated version, in which PAMG solves, using generative 

properties, the problem of style interpolation among multiple map location points. The 

idea of using a simple scenario for localized testing was replaced by a basic albeit 

complete, one-level game, with narrative, story, and aesthetic to achieve a real-life 

scenario for testing. Action and adventure game narratives present in Music Portals and 

other FPS are desirable to test transition, progression, and responsiveness; a reason to 

continue developing on top of the existing game. Although developing NPC behaviors 

and managing lights and textures consumed some time, it was economical in the sense 

that most of the dynamics and the map are in place already. For example, instead of 

creating new assets, I modified the factory default mannequins as non-player characters, 

the first-person gun and arm available on the template, the portal dynamics, and the map 

from the earlier game. As a compromise between game developing time and simplicity, I 

settled for a straight-forward story although verisimilar enough to produce an immersive 

experience that allows the model to demonstrate its potential and limitations. I learned 

UE programming and also hired a game developer to speed the process of pulling 

variables. I also developed and implemented conventional sound design in Wwise.  
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4.1.2. The game plot  

You—the player character—are a robot left in a seemingly mysterious world. Your 

energy is depleting with time. You have a gun that sends what it seems like an 

incandescent ball. At game start, you are told to ‘find the cube’ which possibly can fix the 

problem of depleting energy, and is perceived as the main game level goal. Also, you are 

told that there would be hints to help you find the path. The nightly world seems like an 

open field with mountains and dirt grounds mostly arid in which you need to adventure 

before your energy is gone.  

 

You quickly encounter other robots that wander the land. The mystery of ‘friend or foe’ 

is broken when you notice they chase you. Shooting them seems to affect their speed 

allowing you to escape, but they do not perish and there are many. They suck your energy 

if you allow them to reach you. It does not feel good; the action provokes a glitch in your 

screen, and a chunk of energy is lost.  

In the run, you may find a portal. It looks like a door to another world, easy to see 

through the threshold. When you cross it, your energy is replenished which grants you 

extra time to continue your journey.  

 

At some point in the level, you may find a lake in which you can submerge and notice 

that your energy depletes faster at deeper depths. You may see also a big mountain with a 

path signaled by an arrow and a note saying it leads to the top. As you examine the 

mountain, thunder and lightning suggests that the path may lead to the goal. The path is 
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long, since it circles the mountain, and often dark, so you use your light balls to 

illuminate the terrain. The higher you get, the clearer it is that you approach something 

important, aided by the music’s development. As you approach the top, you clearly feel 

the change of mood and several blinking lights show you that something big is about to 

be revealed. There is a red flashing light coming from a crack and you decide to 

approach, which is supported by dramatic music and an increase of the blinking’s 

frequency. You realize that it is not the cube, but a direct sight of where it actually is. It is 

not close, but your effort of reaching the top is rewarded by a replenishment of energy.  

 

The search continues. At some point you find another portal that is especially hidden but 

when you approach the music gradually becomes epic. When you reach it, you read a 

sign that states that you are getting closer. After crossing, you notice that your options 

narrow: no space to run free because you have steep mountains on one side and lava on 

the other. You follow some arrow signs that guide you through a path that crosses the 

lava and towards a mountain. Then, beyond the mountain, you clearly see the cube which 

is emphasized by the music. Trying to stay in the path —falling may mean death by lava 

burn— you get closer to the cube and feel the epic and celebratory music.  

 

By reaching the cube, you get into a ‘winning’ level. This level only serves the purpose 

of showing the music transformations in a minimal map with the portals. It is possible to 

play again by crossing a central door. 
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4.1.3. The game variables  

A list of variables43 exposed for assignation to PAMG parameters, visible using a switch 

at gameplay, are outlined below:  

 

1. Player’s world location.   

2. Player’s distance to totems. 

3. Player’s orientation in relation to goal (camera on pawn rotation in relation to 

goal in map). 

4. Player’s distance to goal.  

5. Average of weapon usage (trigger pull) in an interval of 1 sec. 

6. Density of enemies (NPC) in proximity (enemies in radius). 

7. Number of enemies in chase mode. 

8. Distance to closest enemy in chase mode. 

9. Number of enemies hit by player’s projectiles in an interval of 2 sec. 

10. Amount of player’s energy lost by enemy attacks. 

11. Player’s current energy. 

 

The totems (Bright, Mysterious, Tense, and Epic) are invisible objects with a map 

location in proximity to the portals, with the exception of Tense. Their distance to the 

player is sent in real time to PAMG to determine the degree of a preset used to associate a 

                                                 
43 In this section Italics indicate the game variable or object name used in the design, and the parameter 

names in PAMG. 
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‘mood’. As the player gets closer to a totem, the interpolation algorithm in PAMG 

assigns parameter values that are closer to the preset. As the portals are a binary teleport 

system, totems are duplicated and the distance is calculated as the minimum of the two or 

three values —Epic has a third instance placed in the goal cube’s location. Tense’s only 

instance is at the mountain’s peak. 

 

Fig. 16. Map and totem location. 

Cube + Epic 3 

Mystery 1 

Epic 1 
Epic 2 

Bright 2 

Mystery 2 

Bright 1 

Tense 
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Individual, bipolar parameter control was the selected input mode in PAMG and the 

output mode from the game. This means that, in addition to the relative distance to 

totems that is assigned to the preset interpolator, it is possible to assign any variable from 

gameplay to single or multiple parameters, either adding or subtracting from its current 

position. The variables cited above were thought to be useful in this assignment. After 

testing, some of them received more importance and additional parameters to modify 

while others remained unchanged. These are the current assignments: 

 

● Player’s world location, Z axis: 

a. +/- notes Mel. Increases the number of onsets in melody the higher the 

player is, to put some movement going up the mountain. 

b. Shape Depth. Increases the depth of the curve the higher the player is, to 

shape the melody either ascending or descending. 

c. Shape Length. Decreases the length of the curve the higher the player is, to 

add tension in melody movement. 

d. Invert. Finds if the player is ascending or descending to apply the same 

principle to the melody through the shape. 

● Enemies in radius:  

a. DimOn. When the player is in the radius of an enemy, the diminished filter 

for harmony is turned on to add an enigmatic sense to the environment. 
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●  Enemies in chase mode: 

a. Vel Chords. Increases the velocity parameter, to support the tension and 

action. 

b. Tension. Increases to add dissonance supporting a dangerous situation. 

c. +/- notes Mel to 0. To allow the chords to depict the action and tension, 

the melody is muted. 

d. ArpAlg/Arp off. This allows the chords to maintain ostinato and also 

intensity. 

e. Vel perc. Increases to support action. 

f. Toms +/-. Increases the toms onsets also to support action. 

g. SeedRhy to random. Avoids same rhythmic pattern when NPCs enter 

chase mode. 

● Distance to closest enemy: 

a. Reg Ins. Increases the register of the chords to add tension. 

b. +/- notes Harm. Increases the number of onsets according to distance to 

closest enemy in chase mode to add movement progressively in an action 

passage. 

c. Reset on non-being-chased. Returns values to default interpolation. 

 

Besides the variables, a number of trigger boxes are placed in the map to provide 

additional toggle and local functionality: 
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● Trigger box by Epic (in goal direction):  

Begin overlap: 

a. Loop size to 4. Reinforces the epic mood. 

b. Min/Maj to Maj. Sets the tonality to major. 

c. Vel Perc to max. Adds percussion presence. 

● Trigger box by Epic (reverse direction): 

Begin overlap: 

a. Loop size to 8. Longer phrases may suggest longer paths. 

b. Min/Maj to Min. Sets the tonality to minor. 

● Trigger box Pre goal 1: 

Begin overlap: 

a. Loop size to 2. Reinforces the epic mood. 

b. Arp Off. Allows the chord impact to support epic mood. 

● Trigger box Pre goal 2: 

Begin overlap: 

a. Arp Off.  

b. Acc/beat harm to minimum. Reduces any syncopation to minimum. 

● Trigger box Mountain: 

Begin overlap: 

a. Arp/ArpAlg Off. In a short distance to the mountain top, the chords are the 

basis for the dramatic progression.   

b. Acc/beat harm to minimum.  



76 

c. Brass Mel Off, Piano Mel On. Mutes the Brass in melody to allow faster 

idiomatic melodies in piano, woods and strings. 

End overlap: 

a. Arp/ArpAlg On. Returns functionality to default. 

b. Reset. All parameter values go to the interpolated value. 

● Spot light Mountain: 

c. Reg ins. Calculates the distance to player and applies an increase on 

register to chords the closer the player is. 

 

Additionally, the game receives and can potentially assign any variable from PAMG. In 

the current version, I assigned: 

● Beat duration in milliseconds, used for event synchrony in tempo on dancing 

animations in the Winning level. 

● First beat of a measure and main beat, used to trigger changes at the same time as 

the music in dance types. 

● MIDI note-on events for percussion (except cymbals), trigger lighting in the 

mountain top. 

 

The game presents many possibilities of musical relationships that unfold during 

gameplay. Local variables and instant events can easily send parameters by implementing 

trigger boxes, local executions, or other actors. The implementation of random variations 
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triggered from the game also proved effective to set user seeds. This prevents repetitive 

developments, especially noticeable within rhythmic motives. 

 

4.2. Comparative test 

In this section, I evaluate PAMG by comparing its implementation with CBI. It consists 

of two distinct sections:  

 

a) Comparison of efficiency in music implementation between CBI and PAMG. The 

music composition and production labor—which is carried in the experiment by 

PAMG in real time and PAMG music recordings in CBI—is not part of the 

present evaluation44. Gauging implementation efficiency starts with a description 

of the process and the methods to achieve design goals. The comparison will 

address time consumption and found limitations.  

b) Gamer subjective perception test. The experiment intends to compare the two 

implementations from the perspective of a player’s experience, accounting for 

background factors.     

 

 

 

 

                                                 
44 My experience as a composer suggests that a composer likely would take less time setting up four themes 

using PAMG parameter presets than writing four orchestral themes in the same instrumental setup, plus 

editing and mixing. However, there are very effective and competent composers that could challenge that 

assumption. This comparison, is suitable for further evaluation. 
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4.2.1. Description of the implementation process 

The aim is to provide a comparative observation between two methods of game 

underscoring in one videogame, aiming to match PAMG’s design goals with CBI (see 

design goals below). The two methods are: 

i. Generative, progressive-adaptive music implementation using PAMG being 

controlled by the game variables in real time. The music authorship belongs to 

the person that designs the PAMG parameter setup and game variable 

assignation.  

ii. Audio clip-based music (CBI) implementation using Wwise middleware. The 

music is recorded from PAMG output to focus comparisons on adaptability 

rather than on music style or mix. Hence, the implementation using Wwise 

intends to follow the same principles of PAMG implementation—to the extent of 

middleware possibilities (see limitations)—and the recorded music segments 

employ the same PAMG theme parameters. 

 

The ‘composition’ phase in PAMG—before implementation—consists of assigning 

values to PAMG parameters and store them as presets. These are the four Themes 

assigned to each XY pad corners in the interpolation module. Although comparing 

composition efficiency is not part of this evaluation, other automated music generation 
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evaluations45 suggest that traditional composition would still win in ‘quality’ while 

PAMG as other automated models would be efficient in ‘amount’.  

 

The implementation using PAMG consisted of assigning game variables to MIDI 

controller change messages (cc), and testing results. This is an implementing-testing-

tweaking cycle that includes ranges, curves, switches, and so on. The experience of 

implementing parameters involved setting up methods to send game variables through a 

MIDI interface from the game engine. Once the MIDI plugin is installed in Unreal 

Engine, the objects are able to send specified cc values. Several methods were designed 

to adapt ranges and send messages only when a variable is changed, and scaling the 

output to a 7-bit range (0-127), also having in account the bipolar property—a value of 63 

resets the controller to interpolated value, between 64 and 127 sets a proportional 

increase in the current parameter value, and between 62 and 0 sets a decrease. PAMG’s 

message reception must be minimized since the format of some game variables are 

updated every frame and represented by a floating point number. In a game developer 

work environment, this labor may consume less time with the help of a programmer that 

sets the music events and other variables that would be sent to the PAMG.46  

 

                                                 
45 Examples of subjective perception Turing-like tests (Hadjeres, et al., 2017; Thickstun, et al., 2018; 

Donahue et al., 2019), and quality perception tests (Huang et al., 2019; Huang, et al., 2017; Hawthorne et 

al., 2019; Roberts, et al., 2018) suggest that human-made music quality is still generally superior to 

automated music.  
46 In the current game development, a programmer was hired to expose the required variables (see the trial 

game description), although I designed the conversion from these frame-updated, float-format variables to 

0-127 byte MIDI cc messages sent only when they change or as initialization parameters.   
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Analogously, implementation on CBI included creating game calls47, which is 

accomplished from the game engine side. Designing an implementation method in Wwise 

to accomplish the design goals that PAMG was already able to perform consumed 

additional time besides the implementation itself. In general, upsetting conventional 

music implementation methods with higher number of Wwise objects and a wider range 

of game variables could get closer to the design goals set for the current project, but this 

would require an even longer timeline for production and implementation. To some 

extent, this approach is used to obtain progression (e.g., NPCchase and Tense additional 

tracks with their own algorithms) but by extending implementation time, CBI efficiency 

was lower than PAMG. Nevertheless, the question of achieving a close result to PAMG 

was still present. 

 

4.2.2. Covering PAMG design goals with CBI: 

PAMG was designed to accomplish style interpolation and progressive development 

through parameters, which are included in the Trial Game design as implementation 

goals. In general, the method used consists of assigning game variables to specific 

PAMG parameters. These assignments can be seen in section 4.1.3. The following are the 

implementation goals and their respective methods employed in CBI to get PAMG results 

as close as possible using Wwise48: 

 

                                                 
47 The term used in Wwise to assign game variables to its own object system that includes game states, 

switches, parameter control (RTPC), and events. The names given to assets that belong to these categories 

in Wwise will be denoted in Italics. 
48 Italics will be used for method, asset name and proprietary asset categories in Wwise.  
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I. Implement interpolation among the four environmental themes (Bright, Mistery, 

Tense, and Epic). 

Method: assigning the variable “player’s distance to totems” to the switch group 

“Music” and the state group “Tense”. 

 

The minimum value of four distances to player location—one for each totem—is used to 

decide which totem (Bright, Mistery, Tense, and Epic) is closer. Evidently, the result is 

transition and/or blending i.e., one source to one destination, or progressive track 

layering, but not musical interpolation as PAMG performs (see section 5.3.) 

 

The music is available in instrument audio tracks, classified into melodic and harmonic 

plus percussion for each theme except Tense, whose tracks are included in each theme’s 

music segment container to blend them progressively. 
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Each of the multi-track themes is implemented as a music segment wrapped in a playlist 

container, and each track as a switch track. The themes can be characterized by ‘active’ 

(Bright, Mystery, Tense, Epic1-3) or ‘static’ (Menu, Pause, Dead, and Winning) referring 

to the design goal of interpolating among them or not respectively. The Tense theme is 

applied as progressive track replacement on each of the other active themes and is tied to 

the ten states (one per track plus ‘Tense_0’) of the state group Tense (see Fig. 17 right). 

The switch tracks can individually use transition settings as a blending method for active 

Fig. 17. Music themes (left), game switches (center) and states (right). 
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themes, and also can be assigned to ‘Tense_x’ states to replace progressively other theme 

tracks in a layered blending. The three Epic themes are also triggered by a game state that 

would be switched to ‘None’ in case the music theme switch is not on Epic. 

 

II. Implement musical variations for: 

i. Action sections i.e., when the player is attacked by NPCs. They should work 

in any of the environments.  

Method: assigning the variable “number of enemies in chase mode” to “NPCchase” 

game state group. 

 

The NPCchase game state group (Fig. 17 right) receives 1-4 NPCs-in-chase-mode 

variable from the game, which activates progressive track replacement in Gameplay 

themes, one per instrument, increasing tension. For example, with one NPC in chase 

mode, the original drum track is replaced by the Tense drum track. If a second NPC 

enters chase mode, then the Tense wood-winds harmonic track replaces the original wood 

winds and so forth. This setup accomplishes the required synchrony among themes, and 

the layering allows four levels of NPCchase tension. 

 

ii. The player gets closer to the cube (goal) within the Epic environment. 

Method: assigning the current trigger boxes on Epic to the corresponding Music Switch.  
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The Epic state group allows each of the Epic themes’ tracks to use their transition settings 

when switching to a different state triggered by a game box. This theme has a switch state 

and a state group that need to act in combination. 

 

iii. The player gets higher in the mountain (within the Tense environment). 

Method: assigning an average of the variables “player’s world location, Z axis” and 

“Distance to Tense” to the corresponding State group (Tense). 

 

The Tense theme is applied using the progressive track replacing method described in the 

first design goal, tied to the average of the mentioned variables. 

  

iv. The player is lower in energy and can die. 

Method: applying transposition/tempo change to music correlated to the variable 

“player’s current health.” 

 

Below half player’s health, music is transposed up one half-step (100 cents) in correlation 

to the amount of health lost, and the tempo is increased using a curved RTPC.  
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Fig. 18. Time Stretch and Pitch Shift in Wwise. 

 

v. The player dies. Short arrangement/effect. 

Method: assign the Dead event in game to Dead game state. 

 

The Dead theme is played back when the Dead game state is called from the game. 

 

vi. A modified version of Epic for the small ‘Winning’ level. 

Method: assigning the begin-play event—Winning level— to the corresponding Music 

Switch. 

 

The Winning theme is played back when the Winning music switch group is called from 

the game at ‘Winning’ level begin-play event. 
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vii. Affect current music during the “pause” screen. 

Method: assigning the Pause event in game to the corresponding GameState.  

 

The respective Pause theme is played back when the Pause State is called from the game. 

It uses the music switch group and Tense State to allow the corresponding tracks to sound 

when the Pause event is triggered.  

 

viii. Create/modify music for the start menu. 

Method: assigning the Start Menu Level begin play event to the corresponding 

GameState. 

 

Menu from GameState group is triggered whenever the Menu screen is loaded in the 

game. 

 

4.2.2.1. CBI limitations  

Although not part of implementation observations, the most salient limitation of CBI is 

the amount of work needed in the composing stage to accomplish variety and adaptability 

through randomization and vertical/horizontal layering. In CBI, a composer could design 

a large number of short segments to increase granularity, which would resemble PAMG 

closer, but it would be a non-conventional, highly-time-consuming labor (see section 

2.3.) For this experiment, I decided to cover the variety aspect by using longer-than-usual 
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segments (~2 min.) and the same tonality/meter/tempo (A minor/major, 4/4, 98 BPM) to 

allow easier musical overlapping and distinct cue-points for phrasing.  

  

As the PAMG implementation setup is based on a four-theme interpolation algorithm, a 

similar approach needed to be found among Wwise tools. There, the switch/state based 

transition paradigm is limited to act between two themes or tracks (source and 

destination) allowing for an optional transition segment. A normal use would suggest to 

activate the themes’ playlist containers through a music switch container event or a 

RTPC that controls gain assigned to distance in gameplay but the musical result was 

poor: either a deterministic crossfade for all tracks in a theme (theme switching) or 

overlapped themes in their own volume with unclear musical intention (RTPC mixing). 

For this reason, the method chosen was to trigger all the music segments through their 

wrapping playlist containers, and set each track to the switch track type to access their 

rules independently. The transition-rules system is designed to use either playlist or music 

segment containers as source and destination but it is limited on music tracks (for switch 

tracks, new transition rule and source/destination are unavailable), while Exit Source 

transition values are still available on switch tracks (Next Beat, Next Bar, Next Grid, or 

Next Custom Cue).  Using different values in each track allows an instrument-layered and 

synchronized blend between two themes but not four (the main PAMG interpolation 

feature). In fact, the method used with Tense (switching State instead of Switch) yielded 

more sustained track layering and replacement possibilities. 
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In conclusion, the exercise of designing a CBI is more time consuming and yields less 

interpolation granularity than implementing PAMG for this particular game music. The 

complexity in CBI tends to be higher than PAMG since it involves designing, 

implementing, and testing a high number of transition rules between tracks. In PAMG on 

the other hand, transitions are implemented by variable value assignation, or instant value 

sent to parameter(s) or preset interpolation coordinates.   

 

4.2.3. Gameplay Test  

The test aims to find information leading to answer the research question: 

Addressing gameplay experience, how does the present PAMG model design compare 

to pre-recorded-music CBI?  

  

In general, the test aims to find if PAMG enhances gameplay experiences within a FPS 

(first person shooter), if the difference is negligible, or if the experience is better with 

CBI. Additionally, it attempts to find if and how participant background variables may 

affect that perception. 

 

The test should gather information about the differences in gameplay experience between 

CBI using adaptive techniques (see section 2.3.), and PAMG. The range used for 

comparison is noticeably better, marginally better, or no significant difference perceived.  

More specifically, the test aims to find videogame players’ perceptions of qualitative 

differences between PAMG music and CBI. Hypothetically, game genre, demographics, 
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and personal experience in music and/or videogames may play a role in that distinction. 

The test could find correlations between particular gaming backgrounds (e.g., shooter, 

strategy, platform, etc.), demographic representations (gender, age, education), or type of 

involvement with games and music (e.g., occasional to heavy gamers and music/audio 

consumers), and a preference for one music system over the other. CBI, as explained in 

previous sections, aims to use current tools for adaptive music implementation in 

Audiokinetic’s Wwise, aiming to present a realistic contemporary videogame scenario. 

  

4.2.3.1. Dependent variables: 

The test aims to find if and how the players are able to discern and compare the musical 

influence of CBI and PAMG in their gameplay experiential qualities such as engagement, 

emotional reaction, immersion, and curiosity. The dependent variables are then the scores 

players assign as a comparative measure (Clearly more/better/superior, slightly 

more/better/superior, or no significant difference) to the two musical experiences 

provided for gameplay. 

 

4.2.3.2. Independent variables: 

 Gaming backgrounds: players may be used to particular videogame genres such 

as shooter, strategy, platform, fighting, puzzles, etc. The test aims to find any 

significance in music perception when players are experienced in FPS or not, and 

if there is any correlation with any other preference.  
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 Demographic representations: the test may find correlations between gender, age, 

education, and music preferences. 

 Involvement with games: occasional to heavy gamers may have distinctive 

reactions to game music which reveals a correlation in the testing results. 

 Involvement with music/audio: different levels of experience in music/audio may 

affect subjects’ judgment/perception of game music quality. The test aims to find 

any significance in ear training—i.e., informal/formal training or practice in 

music or audio—in relation to their perception of game music. 

 Music importance in videogames: subjects may have their own priorities 

regarding videogame music. The test may find correlations between the subject’s 

particular view of music function in videogames and their music preference. 

 

4.2.3.3. Groups: 

Half population play CBI first while the other half play PAMG first to balance the 

consequence of experience accumulation. Players are told to compare the two 

experiences knowing that the music will be different in some way. They fill the 

demographics questionnaire, and then are asked to play between 10 to 20 minutes per 

game, being allowed to stop at any point in between. Then, they answer the gameplay 

questionnaire (see Appendix B: Questionnaires). CBI and PAMG use the same game.  
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4.2.4. Test results 

4.2.4.1. Quantitative  

In general, results suggest that PAMG had a slightly higher impact49 on participants than 

CBI in the current test. The general (all comparative questions) vote counts obtained 

were: 

 CBI clearly more/better/superior (CBI ++) = 35 

 CBI slightly more/better/superior (CBI +) = 99 

 No significant difference (CBI~PAMG) = 96 

 PAMG slightly more/better/superior (PAMG +) = 128 

 PAMG clearly more/better/superior (PAMG ++) = 56 

 

Fig. 19. Overall Music Preference. 

                                                 
49 Impact here refers to any inclination in the responses towards slightly or clearly more/better/superior 

(either “+” or “++”, as opposed to equivalent “~”) in comparative questions between the two 

implementation methods in the categories of: emotion production, immersion/curiosity fostering, action-

danger/mystery-suspense/adventure-curiosity/tension/epic appropriateness and adaptability, 

harmony/melody/percussion game support, responsiveness/transitions/variety/emotional 

transmission/gameplay positive influence/engagement performance.  
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The groups CBI first (population that played CBI first) and PAMG first (population that 

played PAMG first) displayed a particular trend shown in Fig. 20 and discussed in 

section 5. It suggests that both models had slightly better scoring when appearing in the 

second game or slightly lower scoring when appearing first. For example, “CBI slightly 

more/better/superior” goes from 16% in CBI first to 32% in PAMG first. Nevertheless, in 

both groups, “PAMG clearly more/better/superior” is larger than “CBI clearly 

more/better/superior” (15% vs. 8%, and 12% vs. 9% respectively). 

 

Fig. 20. Preference in both groups (CBI first and PAMG first). 

 

An analysis of variance is performed in section 5 to find statistical significance in the 

resulting preferences and possible group interaction. 
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Fig. 21. Average scorings for all comparative questions. 

The scorings have a value of -2 = CBI++, -1 = CBI+, 0 = CBI~PAMG, 1 = PAMG+, and 2 = PAMG++ to 

see easily in the y axis the CBI preference average as negative (blue) and PAMG preference average as 

positive (red). Top: Average for comparative questions in general. Middle: Average for CBI first. Bottom: 

average for PAMG first. Positive numbers (red) show the rate of preference of PAMG while negative 

numbers (blue) rate preference for CBI, darker for strong and lighter for weak results. 
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The average score for comparative questions suggests a preference for PAMG in the 

current experiment (Fig. 21 top). Then, detailed results the two sequences of 

implementation (Fig. 21 middle Average for CBI-first and bottom Average for PAMG-

first) suggest that the preference is skewed to the second musical experience, whether 

CBI or PAMG. Bar 1 is the question “In your opinion, which game had BETTER 

MUSIC overall?” in which the middle possibility (music A ≈ music B) was not present. 

Most bars show a change in the direction of the music heard in the second game except:  

- 5, Compare the music stylistic appropriateness in the following game conditions: 

Action-danger. The average score grows positively (to PAMG in PAMG first) by 

0.89 points.  

- 8, Compare the music stylistic appropriateness in the following game conditions: 

Tension-suspense, eager, edgy, uneasy. The average score grows positively (to 

PAMG in PAMG first) by 0.89 points.  

- 10, Compare the music support to game situations. In which game did the music 

ADAPT using a deeper range of possibilities for the following situations: Action-

danger. The average score grows positively (to PAMG in PAMG first) by 0.78 

points.  

- 13, Compare the music support to game situations. In which game did the music 

ADAPT using a deeper range of possibilities for the following situations: 

Tension-suspense, eager, edgy, uneasy. The average score grows positively (to 

PAMG in PAMG first) by 0.33 points. 
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- 17, In which game did the selected musical aspect –percussion– support better 

any game circumstance in general? The average score changed positively (to 

PAMG in PAMG first) by 0.11 points. 

- 18, In which game the following music features performed better: Responsiveness 

to game events and conditions. The average score changed positively (to PAMG 

in PAMG first) by 0.33 points. 

- 21. In which game the following music features performed better: Ability to 

transmit emotional information. The average score changed positively (to PAMG 

in PAMG first) by 0.66 points. 

 

Bars 15 (In which game did the selected musical aspect –melody– support better any 

game circumstance in general?) and 20 (In which game the following music features 

performed better: Variety or non-repetitive) grew from tie towards CBI slightly 

suggesting that they were deemed poorly in PAMG in both exposures.  

 

Bars 4 (In which game did you feel that the music got you more curious about the game 

possibilities), 7 (Compare the music stylistic appropriateness in the following game 

conditions: Adventure-curiosity), 11 (In which game did the music ADAPT using a 

deeper range of possibilities for the following situations: Mystery-suspense), and 12 (In 

which game did the music ADAPT using a deeper range of possibilities for the following 

situations: Adventure-curiosity) show the largest change between groups (in the direction 

of the second music) with a delta of 1.66, 1.55, 1.55, and 1.22 respectively. 



96 

 

4.2.4.2. Qualitative  

Players were asked: Write down in your own words what is your perception of the music 

in the FIRST (and SECOND) game. This attempts a deeper understanding of their 

impressions. Comments on PAMG as second game show allusions to elaboration, 

instrument variety and distinction, and a couple annotations about being relaxing, mostly 

in contrast with CBI. Curiously, when commenting on PAMG as a first experience, the 

remarks tend to highlight a slight dramatic exaggeration, mentioning aspects such as 

mysteriousness, adrenaline, intensity, tension, scariness, eeriness, and even being faster 

than the other. CBI comments as a first game refer contrasting issues like being thinner, 

generic, softer (although there is a mention to louder drums), but also action oriented, 

while as the second game, support to action and adventure was highlighted as 

encouraging. 

Some examples are: 

A heavy gamer that preferred slightly PAMG in their second game, wrote about it:  

“The second game's music had more high pitched sort of piano notes and this kind of 

relaxed me more. This felt more explorative and less of the action aspect. This music 

was somewhat calmer than the other music for me.”  

 

And about the CBI in the first game:  

“The music in the first game was very intense and the drums to me were very 

prominent. This made the game feel very action-y and kind of gets the heart racing 

sort of music.” 

 

A heavy gamer that preferred PAMG slightly in the first game wrote about it:  

“The first game's music seemed more tense? Definitely when the other robots were 

chasing me it felt scarier. I felt my heart beat going up far more in the first than the 



97 

second, but that might just be because I already knew what was up with the robots the 

second time.”  

 

And about CBI in the second game:  

 

“The music felt more epic and less suspenseful here. Also only during this play 

through did I realize that the music changed when you were being chased by robots. 

The soundtrack becomes a lot more chill when enemies aren’t chasing you.”  

 

A heavy gamer that preferred CBI slightly, who scored high in musical experience, and 

had PAMG in the first game wrote about it:  

“The music started out mysterious and got more intense depending on the area I was 

in.” 

 

And about CBI in the second game:  

“Same as first, music started out mysterious and got more intense depending on the 

area I was in. I noticed that towards the end near the cube, this version sounded 

noticeably more triumphant.” 

 

The participant that scored the highest in musical experience who marked PAMG music 

as “considerably better” in the second game wrote:  

“Beautifully written and fitting to the setting.  Less maximalist in the sense that it 

fitted with what was going on-- ambience fitting more of a mystery to explore rather 

than something to fight against.  Music also changed slightly based on location. 

Flashing lights on the mountain section of the game correlated to the percussive 

elements in the music, which I thought was interesting and added to the ambience of 

the game's environment.  The music building up to be more and more full the closer 

that the player got to the objective point also helped to make the game more 

immersive and the ending of the mission more satisfying and fulfilling.”  

 

And about CBI in the first game: 

“Beautifully written but not fitting to the setting or events of the game other than when 

I was faced with the enemy characters and lava pit.  Intense and felt more suited for a 

boss battle or combat based game while the game itself was more of an exploration 

game.” 
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An experienced gamer that considered CBI slightly better, and had it in the first game 

wrote about it:  

“Music A (1st) was the one that really created an immersive experience for moments 

of risk, danger, enemies approaching... The tension on the player while playing is what 

defines this music on my opinion. This is the one that I think is the best for this 

specific videogame.” 

 

And about PAMG in the second game: 

“Music B (2nd) was the one that while was not contributing as much as the other one 

to the immersion experience, helped me to focus better and more on the game and pass 

it at the end. This is the one that, while not being the best for this game, helped more 

to focus on the gaming experience and eventually pass the game.” 

 

In the relationship between preference and music/gaming background, although some 

values suggest a relationship between the participant’s background and their response, 

only further testing may establish such correlation. 

Five people finished the game listening to CBI in the first game, six finished the game 

with PAMG in the first game, six finished the game with CBI in the second game, and 

seven finished the game with PAMG in the second game. 

 

4.2.4.3. Demographics 

 Age distribution: 8 participants between 18-21 years old, 2 between 22-30, and 8 

between 31-50. Total: 18. 

 Gender: 6 women, 10 man, 2 n/a. Same count for Sex: 6 female, 10 male, 2 n/a. 

 Gameplay Time in a week: 20+ hours 1 participant, 16-20 hours 2 participants, 

11-15 hours 2 participants, 6-10 hours 5 participants, 1-5 hours 2 participants, less 

than 1 hour 5 participants, and don’t play videogames 1. 
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 Experience on First Person Shooter: I have never played that kind of games: 5 

participants. I have played them, but is not my favorite: 6 participants. I play them 

regularly, first and/or third person shooter: 6 participants. The shooter is my 

favorite game category: 1 participant. 

 

Fig. 22. Musical experience demographics 
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Fig. 23. Music Consumption demographics 

 

 For the ranking assigned to game music features, the following annotations depict 

the higher and lower ranked: Support to gameplay mood and rhythm got rank-1 

(most important) 8 times, rank-2 5 times, and rank-3 2 times. Transmission of 

emotional content rank-2 7 times, rank-3 4 times, and rank-1 3 times.  

Motivic variety (less repetition) got rank-8 (least important) 8 times, rank-7 5 

times, and rank-6 2 times. Diversity (more musical themes) got rank-7 9 times, 

rank-6 4 times, and rank-5 2 times. Contribution to immersion (non-distracting) 

got rank-8 (least important) 6 times, rank-5 4 times, and rank-4 3 times. 
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5. Conclusions, analysis, future directions and discussion 

            

Fig. 24. Preference Scores Mean 

The two graphs show the score means obtained for each model for the whole test in the left and for each 

model by group in right. Each mark shows the standard error interval. The scores are 1 point for slightly 

more/better/superior and 2 points for clearly more/better/superior.  

 

PAMG had a higher average score in general than CBI (Fig. 24. Left) in the current 

experiment and in each group (Fig. 24. Right).  Also, a slightly skewed preference 

towards the second game music is suggested by Fig. 21. These two observations require 

an analysis of variance (ANOVA) to establish statistical significance and constitute the 

two main hypotheses presented by the experiment: H1: There is a significant preference 

for one model over the other (CBI or PAMG), H2: There is an influence of the group 

(CBI-first and PAMG-first) in the preference of a model.   

Taking the alpha value as .05, the analysis of variance indicated that there is a non-

significant preference of a model in general F(1, 17) = 2.46, p = .13, in the direction of 

PAMG. Additionally, the results revealed a non-significant difference in preference of a 

model between the two groups (CBI first and PAMG first) showing between-subjects 

effects: F(1, 16) = 1.82, p = .19, and within-subjects effects: F(1, 16) = 2.35, p = .14. 
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Fig. 25. Votes’ Count and Groups 

The mean of votes’ count per participant that includes all the comparative questions is plotted for each 

model and each group. This visualizes better the suggestion of a skewed preference for a second music 

model than the score average in Fig. 24. 

 

An analysis of variance performed in general votes’ count in favor of PAMG or CBI per 

group (Fig. 25) indicated a marginally significant effect of group interaction with 

PAMG/CBI votes F(1,16) = 3.79, p = .06 that partially explains the observation of a 

skewed preference towards the second model. 
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5.1. Results by question 

The following results show the behavior of votes in questions that revealed significant 

effects (p < .05) either within subjects or between subjects indicting a preference of a 

model or a group interaction: 

Using votes’ count, the questions In which game did you feel that the music: provoked 

emotions in you (F(1,16) = 5.44, p = 0.03) and In which game the following music 

features performed better: Ability to transmit emotional information (F(1,16) = 6.91 , p = 

0.01), the results indicated a preference of PAMG over CBI independently of the group 

(see Fig. 26 and Appendix F, Table 1). This suggests that PAMG was noticeably able to 

evoke and transmit emotions better than CBI. 

 

     

Fig. 26. Questions with significant within-subjects effects. 

 

In the group of questions related to support (see Appendix E, Gameplay Questionaire, 

question 6b) the analysis found significant between-subject effects (F(1, 16) = 4.5, p = 

0.05), suggesting a difference in how participants of different groups perceive music 

support by music features. In particular, harmony showed a greater difference for each 

group (see Appendix F, Table 2). Other music features were statistically non-significant. 
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In Fig. 27, the trend shows mainly an inferior votes’ mean for PAMG when is listened 

first while CBI seems steady in both groups.  

 

 

  

Fig. 27. Support of music features to the game in general 

 

In several questions, the results also reveal significant within-subjects effects for group 

interaction (see Appendix F, Table 3). In those questions, H2 is adopted, supporting the 

trend of participants favoring the second music model.  

 

For the relationship between participants’ background and music implementation 

preferences, the results suggest some correlations within the confines of the sample size, 

but the statistical value is non-significant. For example, data suggests a correlation of 

Music consumption Folkloric-ethnic to Appropriateness adventure-curiosity in favor of 

PAMG (see 5.1.2.), but the sample is too small to draw conclusions. This invites future 

research into music background as an independent variable for generative music 

perception effects. Additionally, current results propose further investigations of the 



105 

effects of generative music under different stress conditions and as incidental 

background. 

 

5.2. Data interpretation  

Although the statistical results in general are non-significant to conclusively answer the 

research questions, gathered data shows a number of trends in favor of PAMG. In this 

section, an analysis of the combined results between data and the carried qualitative 

comparison are considered.  

 

5.2.1. Perception of Interpolation vs. Layering  

As the tilt towards the second music may be explained by the enlarged focus after the 

priming effect50 recedes (see 5.2.4. below), players’ descriptions show some depth into 

the phenomenon. The tendency of perceiving a larger instrumentation, elaboration, and 

meditative segments are correlated mostly to PAMG in the second game, which supports 

the enlarged attention idea: once players had a confident vision of game mechanics and 

possibly had accomplished the goal, they dedicated more perception focus to the 

background music. Conversely, if they had PAMG during priming, the effect perceived 

was more in the side of unnerving, exaggerated, faster, intense, scary, and even loud. As 

a contrast CBI was perceived as action oriented and less ‘unpredictable’ which may have 

put some players in a confident mode. The qualitative difference in assessment also 

                                                 
50 Joe Cutting, Priming in Video Games | Digital Creativity Labs. Retrieved May 7, 2023, from 

https://digitalcreativity.ac.uk/projects/priming-video-

games.html#:~:text=Priming%20is%20often%20linked%20to,teach%20and%20encourage%20good%20be

haviour. Accessed 5/8/2023. 

https://digitalcreativity.ac.uk/projects/priming-video-games.html#:~:text=Priming%20is%20often%20linked%20to,teach%20and%20encourage%20good%20behaviour
https://digitalcreativity.ac.uk/projects/priming-video-games.html#:~:text=Priming%20is%20often%20linked%20to,teach%20and%20encourage%20good%20behaviour
https://digitalcreativity.ac.uk/projects/priming-video-games.html#:~:text=Priming%20is%20often%20linked%20to,teach%20and%20encourage%20good%20behaviour
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points to another effect produced possibly by the layered transitions in recorded themes 

vs. generative interpolated in PAMG: 

 

Fig. 28. Theme Interpolation vs. Layering. 

In the top, a representation of interpolating two themes (PAMG) and in the bottom transition using layering 

methods (CBI). The themes in their most pure version can be listened closer to the sides. In the middle, the 

result of PAMG interpolation is a hybrid theme with feature values averaged in between the themes, while 

in the CBI layered method, it shares tracks of both themes. 

 

For CBI, themes were recorded from the pure version coming from PAMG presets, 

which are the corners of the interpolators. The result is that, while PAMG interpolation in 

the middle produces hybrid material that ultimately is not completely from either theme, 

in CBI layering the theme’s ‘purest’ material shows up during the transition through track 

playback. 
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Layered transitions would continue the ‘pure’ ideas during transition despite being mixed 

with compatible music material from the other theme, while interpolated themes produce 

new music in the middle. Although this new resulting material contains complete musical 

ideas, it has a mixed style that averages four values per parameter (four themes) making it 

more diverse but less consistent. This may be the reason for the observed comments that 

found some depth, even calm in PAMG after priming, or a wealth of overstated emotions 

during priming. As a comparison, musical ideas that repeat and overlap using instrument 

tracks in CBI offer a binary direction—only two themes instead of four—creating a solid 

and reliable package that is also common in videogame implementation. 

 

This observation attests a higher depth in music variety in PAMG interpolation that is 

perceived more emotionally during priming, and as aesthetic wealth if attention grows 

after priming—although this requires confirmation through further experimentation. In 

general, the experiment suggests a significant difference in how a gamer perceives music 

depending on stress levels and paradigmatic music implementation within game 

categories. 

  

5.2.2. Background correlations 

Most of the higher correlation indexes seem to associate categories in participants’ 

background with preferences of PAMG. Participants with higher experience in music 

tend to prefer PAMG, but the statistical value is non-significant.  
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Among these results, music enthusiasts as a category had more participants inclined to 

rate better CBI in appropriateness: action-danger, appropriateness: tension-suspense, 

and adaptability: tension-suspense, while rating better PAMG in adaptability: adventure-

curiosity. 

Four consumption categories showed correlation within the sample to PAMG preference: 

Folkloric to adaptability and also appropriateness: adventure-curiosity, electronic to 

appropriateness: adventure-curiosity, and tropical to appropriateness: adventure-

curiosity.  

These results invite further inclusion of the selected music background categories in 

upcoming tests. 

  

5.3. Test issues and biases 

The test unveiled several issues that inform a future full-fledged study. Among them, the 

most notable are insufficient gameplay time to test exposure to repetition, the reduced 

number of samples, the variability in gaming background, and the effect of priming and 

experience in the game in question. 

 

5.3.1. Liking as a function of repetition. 

The gameplay time is too short to ensure reflecting the influence of liking vs. repeated 

exposure (Schellenberg et al., 2008, Madison & Schiölde, 2017). In fact, the number of 

times players are exposed to a musical idea in the current experiment—i.e., between 4 

and 10—may cover only the upward section of liking described as familiarity that also 
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appears to be longer on incidental (i.e., current test) than in focused music tests. This may 

explain why a significant number of players preferred the ‘repeating’ music over the 

‘non-repeating’. Hence, the quantity of exposures for the current experiment would only 

show a decrease on liking when there is significant gameplay time, such as accruing at 

least 32 repetitions of a theme—about 80 minutes of gameplay distributed in a game 

session with as few and shorter breaks in between as possible.  

 

5.3.2. Reduced amount of samples 

The reduced number of samples and especially the low statistical significance tend to 

lead to inconclusive results. Not only is a larger sample necessary but also pre-

classification of subject demographics potentially yields more reliable results since 

groups can distinctly relate to the test category.  

 

5.3.3. Background differences 

The large differences in music and/or gaming experience played a role in music 

assessment. While some players successfully completed the game several minutes before 

the end of the first session, some did not reach the Epic theme that appears when players 

are in proximity to the goal, producing bias in their assessment. A way to mitigate this 

background classification is either to adjust the game difficulty configuration, or to limit 

the experiment to subjects with a particular gaming experience level. This pre-

classification may also be applied to music consumption and preferences, either to 
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capture a familiar gaming experience or to find traces of engagement across gaming 

interests/skills. 

 

5.3.4. Game priming and music focus 

In all the experiences, gamers take a learning curve that depends on their gaming 

background and more specifically in FPS experience. They adjust to a new experience 

starting with a higher focus on objectives and mechanics at gameplay, and then, gradually 

their attention is able to include more elements such as the background music. In other 

words, music assessment reliability goes from low to high. It is one of the most salient 

results: players tend to prefer the music in the second gameplay experience which is 

consistent with the adjustment period. A method for diminishing this priming effect could 

be adding a session with no music in the beginning to allow the player to achieve 

technical acquaintance before the actual music assessment. Similarly, the capacity of a 

player to retain their impressions until the end of two sessions showed some bias.   

  

5.3.5. Likert-like scales 

The Likert-like scales used prominently in the questionnaire produce some bias discussed 

by Brill (2008). Among them, central tendency bias, where participants tend to choose 

the neutral comparative option to avoid the extremes that would denounce a higher 

knowledge or understanding of the subject. That is in some way related to the inclination 

to select answers that portray themselves in a better light, or that fulfill an expectation 

(social desirability and acquiescence bias respectively).  
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5.3.6. Ambiguous instructions 

A more robust language and comprehensive instructions may improve biases caused by 

inaccurate responses in the current experiment:   

- A participant with a professional music title and a professorship scored less than a 

student in music experience because they did not mark all the possible fields. The 

intention behind this design was to add up the overall music experience score. It was 

assumed that a participant that marked professional performer and a composer would 

likely mark in addition any formal music education, and also may considered 

themselves a music enthusiast. A professional musician would select more marks 

but, in at least one case, they may have assumed that lower experience fields would 

be implicit.  

- Relating to memory and instructions, a participant made comments about the game 

but not the music in the written portion, and another mentioned forgetting to pay 

attention to music in the first test section.  

 

5.4. PAMG observed limitations 

5.4.1. Specificity 

Although the idea is to produce a model that is versatile enough to be ported from a game 

to another with minimum setup changes, the resulting behavior centers around a 

particular style of western tonal orchestral underscoring music. The current orchestration 

and instrument family management makes style shifting (with instruments) an additional 

task. In this process, several algorithms need modifications and new ones need to be 



112 

incorporated. For example, to produce idiomatic electronic music—besides instrument 

setup—some modifications include assigning a narrower range to bass, allow less multi-

level rhythmic occurrences in kick-snare lines, and assigning other lines to sound effects, 

to mention a few. Additionally, electronic music often employs continuous changes in 

their aural properties as a stylistic feature, which means that a capable model should be 

able to generate them in concurrence with discrete events and phrasing. It is possible to 

argue that many game styles can benefit from the system’s current properties, but 

changing instrumentation—and style—requires thorough testing and possibly deeper 

modifications than anticipated.  

 

5.4.2. Phrasing vs. real-time interaction  

The current model was designed with the idea of incorporating continuous controllers to 

a number of music generation parameters. In most cases, they act directly on algorithmic 

variables to produce real-time changes within the music stream. However, this produces 

an issue with phrasing. Deployment of musical ideas requires a discrete amount of time 

that is often tied to rhythmic properties such as meter and tempo. An occurrence in 

gameplay does not necessarily conform to that rhythmic grid, which means that any 

associated music variation may look out of place, non-consequential, or discontinuous if 

the implementation is instantaneous. Besides some methods for ‘foreseeing the future’ 

(Plut & Pasquier, 2020), it is possible to apply a certain degree of quantization to 

variations based on several grid levels (beat, meter, phrase). When the musical idea 

belongs to a phrase, i.e., a progression, the segment may be too long to offer the 
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responsiveness for certain game events. Some parameters already have implemented a 

quantization method that only permits changes at the start of a phrase, or the beginning of 

a measure (e.g., arpeggio on/off, arpeggio shape change, loop size change, and others). 

The common property of these parameters is that they make a noticeable change in the 

identity of a musical idea which may be broken if it does not resolve or arrive at the end 

of the phrase. The type of parameter that can perform an absolute real-time change, and 

the methods to apply changes without affecting negatively the phrase construction, are 

still under evaluation. 

 

5.4.3. High vs. low resolution control for musical changes  

Although the original idea of ‘smoothing corners’ for all musical transitions is useful—

and studies as Cutajar (2020) assessed as successful—, in practice music is a discrete 

form of time domains, just like anything digital. Many ranges are smaller than the 7-bit 

values provided by MIDI (e.g., usable pitches, melodic intervals, transitions, number of 

notes, instruments, etc.) and their ratios end up sectionalizing the full range. For example, 

using the full range of a 128-positions slider for the 12-positions tension parameter and 

the 9-positions progression complexity parameter ends up having many instances in 

which changing the slider does not produce an actual music change. On the other hand, 

when the interpolation mechanism modifies many parameters in a range that includes a 

change for them, the result may be a steep variation in a small period of time that affects 

the continuity of the musical idea by truncating or redirecting a phrase in an odd time. In 

a number of cases, this was mitigated by employing the phrasing-quantization method 
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(allowing changes only in significant meter positions), and in others implementing a 

gradual change (e.g., for tempo changes). Nevertheless, besides quantizing transition 

changes, controlling the amount of discrete changes when several parameters move may 

regulate the music flow and its variance more efficiently for further development. 

 

5.4.4. Issues of the insertion of PAMG as a product in game development 

Although a discussion of a PAMG path into game design was laid down in section 2.4., 

there are many questions that come up with the prospect of addition of new procedures or 

change to conventional paradigms. Among them: 

● How does PAMG integrate into game authoring systems? 

● How does PAMG create and manage a new format of interactive generative 

music?  

● How does PAMG handle different game (and music) genres? 

● How does PAMG leverage automation? 

● How does PAMG create value by creating new products? What kind of products 

and what audience may be interested in acquire them? 

 

Finding the answers to those questions generates research projects. Additionally, in 

consultations with game developers and other industry representatives of music solutions 

for games51, two main issues for PAMG were spotted: 

                                                 
51 Besides the interviews with Aleksandar Zacevic and Guy Somberg (section 2.6), in the frame of 

GDC2023, a series of interviews with Louis-Etienne Payer of Triptique Audio, Brendan Votano of 

Animatica Studios, Elliot Callighan of Unlock Audio, Bernard Francois of Preview Labs, Damian 

Kastbauer and Simon Pressey of Audiokinetic, and Brett Patterson of FMOD gave a thorough insight of 
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● How does PAMG integrate a composer aesthetic? Or, how does PAMG guarantee 

continuity between its output and the composer’s? 

● How does PAMG handle samples and timbre?  

 

The first, reveals a necessity for a method of addition instead of change. Most game 

composers have setups with demonstrated efficiency that include instrument setup, 

format exchange flow, and their favorite custom software for creation, recording, editing, 

mixing, and delivering. A method that may help to include PAMG in game underscoring 

without replacing a composer can be a system of analysis that scans and translates 

statistics on implemented music in the game and outputs parameters and possible 

progressions paths for PAMG music. It may use machine learning or Markov chain 

analysis to produce stylistic similarity through parameter setup. Its primary input can be 

symbolic, possibly in MIDI format to extend the possibilities of timbre (e.g., a signature 

melody can be assigned to instruments not used by the composer). 

The second, as discussed in section 2.6., is a licensing issue. It may be possible to 

generate timbre through AI scanning in a similar way timbre is generated from a sound 

sample (Wang et al., 2023), but the sample creator may dispute such employment in the 

licensing contract. Nevertheless, other idiomatic acoustic textures used often by 

composers would need a place in the music generation, either as sample management or 

re-synthesis. 

                                                 
competitive, logistic, and marketable aspects of a prospective commercial product in the game development 

pipeline.   
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In general, there is still also a possibility of a new practice for a composer using PAMG 

as an instrument, in which musical ideas are worked and set using the algorithm itself. 

This would also propose a musical product that is not a static audio but a setup for 

adaptive generative music with clear authorship assignation. 

 

5.5. Notes on current PAMG game implementation and future game testing  

The model is able to conduct independent interpolations by each one of the agents, i.e., 

by the three XY pads. However, currently a single controller is implemented in the game 

to place the 2D cursor in the same interpolation location for all agents. Using the PAMG 

as a performance instrument52, showed richer developments when the three agents act 

more independently. For example, while MA and HA are close to Mystery, PA can roam 

through Tense and Epic producing other kinds of progressions. This division has the 

potential of deeply diversify the musical output. However, the algorithm to 

merge/unmerge XYpads locations, which preserves the stylistic properties, has not been 

designed. In a sense, it has not been needed since the style consistency is supported by 

single parameter variation which promotes progressions more than the interpolation of 

moods. 

 

Although many scenarios beyond those currently tested can be subject to trial in an open-

world, action-adventure game like the Trial Game, other formats and genres may benefit 

from generative adaptive music, and also reveal its limitations:  

                                                 
52 Appendix E contains music pieces using PAMG as an instrument. 
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 In action sections, sound design events such as explosions, battles, gun fire, and 

voices tend to occupy most of the aural space. These kind of sounds often are strong 

and dense thus masking music and adding noise to the resulting auditory space. 

Those scenarios promote a simpler and in a sense, more formulaic approach to 

musical support. For example, in the current game the music variation to depict the 

tension on NPC chase proved to work better by muting MA and preventing 

arpeggios from HA to allow only chord onsets. It still may sound noisy if many 

percussion onsets are heard at the same time the player character shoots frequently. 

This kind of considerations also link music implementation design to sound design. 

Action might be a component of other genres outside of First/Third person Shooters 

and sound density also would need to be considered. The following 

recommendations in other genres use information developed by Sweet (2015) and 

Aristopoulos (2023). 

 

 Sandbox games share the open world features of The Trial game, but being open 

ended will put the emphasis on resulting music diversity: music material, 

spectral/timbral distribution, use of register, and contextual support. The player may 

listen to a large amount of music in a single session causing ear fatigue if a pitch, 

pitch range, instrument, and/or timbre is employed extensively and continuously. 

Similarly, conspicuous music developments with high density and complexity may 

divert the attention from the game to the aural events. As in Adventure games, the 

music should allow the player to be curious. To achieve it, drama and tension should 
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be employed sparsely and a more predictable musical structure with a touch of 

enthusiasm and fantasy may help. The premise of these games is to allow the player 

to exhaustively and limitlessly roam the world. The music should enable and 

encourage this with some degree of foreseeable/refreshing variation, light 

progressions, consonance and rewarding happenings linked to gameplay.  

On the other hand, although with caution, Survival and horror games require 

suspense elaborated on unpredictability and slowness, tension—using a fluctuating 

mixture of consonance, dissonance and silence—and drama employed sporadically 

on emotional storytelling or cue lines.  

 

 Strategy games, whether real-time or turn-based, also can benefit from PAMG 

music variance and progressive transformations to map views and eventual 

transitions respectively. Map views in many occasions constitute a large section of 

gameplay time and also are developed in a slow pace. Localized events break the 

monotony and introduce other game modes/views. Music progressions may be used 

as information to the player of an impending event, as support for an undergoing 

circumstance, and/or as a satisfaction reward for an accomplishment, all within the 

same musical theme. 

 MOBA (multi-player online battle arena) games pose the problem of the multi-

lateral point of view. Games present multi-linear stories, but in this case they also 

present multi-linear, simultaneous points of view. Clearly the possibility of having 

one music line created by each gameplay view point is the most plausible. However, 
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merging storytelling in many situations would be desirable like in team play 

paradigms. Interestingly, it still should keep a degree of individuality but having the 

possibility of integration if needed. 

 

 RPG (Role-playing games) have a wider range of mechanics, aesthetic, game pace, 

and storytelling than other genres, leaving the common property of assuming a role 

to structure a range of playing possibilities that seem more open than those in other 

game categories. Crucially, the player controls a character that uses experience to 

evolve. This heterogeneity makes common the inclusion of sections and mechanics 

found in other genres such as strategy, openness, survival, combat, multiplayer and 

more. Depending on the game section dynamics, many RPG games include a great 

portion of gameplay that usually occurs in a neutral environment, with a level of 

surrounding mystery. This is often depicted with slow and inconspicuous music (or 

diegetic music), occasionally building a stylistic texture that supports the 

environmental/circumstantial aesthetic. From this basic stable environment, there is a 

large range of possible developments caused by enemies, informing characters, 

world transitions, findings, etc. Similar to strategy games, it tests music variance in 

the main gameplay section, but also would show how the PAMG is able to develop 

stylistic branches and become dramatic if needed. Interpolation between branches 

also should be tested to avoid apparent lack of direction.   
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 Simulation and Sports is a varied and large game paradigm. It encompasses 

simulations of a gamified business, city building, fighting, driving, piloting, in 

addition to sports. The main environment can vary widely, and the premise of 

achieving a simulation experience places a contextual framework on the auditory 

space. For instance, this comprises geographic and age simulations that link to 

historic stylistic music textures, including present cultural locations. In such games a 

refreshing variety is appreciated since the gameplay modes or environments may 

stay unchanged for long periods of time. In some games, the player has been granted 

a type of control over the music similar to controlling a radio, being able to change 

radically the music style or turning it off as in real life—although is not exclusive to 

simulation games. While a similar effect is possible with the PAMG, mainstream 

music or pre-recorded track playback are not the core of its functionality. To achieve 

a contrasting style variety, it needs to be versatile enough to handle a wider 

assortment of instruments and be tested on a range of mainstream styles’ idiomatic 

algorithmic developments. For example, handling electronic music (e.g., EDM for a 

commercial illustration), it is possible to test if the algorithms currently can use a 

parameter setup that aligns with the common stylistic features expected. In the 

current version, the generator does motives and phrases that depart from the iterative 

nature of EDM, although repetition is within the capabilities. As a core feature in 

EDM, gradual changes in sound texture achieved by effects, filters, modulation, and 

other synthesis-related transformations would require a specialized algorithm capable 

of generating continuous control lines.  
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 Puzzlers and party games may use also PAMG’s variation capabilities in a similar 

way map modes work in strategy games. There may be a higher need of variation 

and instant reaction in conjunction with sound design to support rewarding events, 

for example. The density and drama, however, may need to be kept low to avoid 

overwhelming the player. Small instantaneous changes in register, curious contour 

shapes, and assigned patterns to game achievements may be useful. As in 

Platformer games, chip-tune sound development and timbre manipulation 

(controller line generation algorithms) are desired capabilities to work on. For these 

game genres, variation/repetition balance requires particular attention. In a 

platformer, for example, since it includes retro aesthetics both in timbre and music 

structures, catchy melodies with low or no dynamic range and a careful use of 

repetition are desirable. The possibility of variance and progression within that 

framework is the real advantage PAMG can bring over conventional music 

implementation in these game genres.  

 

5.6. Future use of Machine Learning 

Not employing statistical extraction from music corpora is a conscious decision for the 

current model. The reasons are basically the difficulty in developing a system that affects 

the parameters progressively, and the ethical and legal issues mentioned in the final 

discussion of this text. However, using machine learning, is a real possibility that can 

help in several ways. Pre-trained models can provide a richer range of stylistic features, 
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especially using rhythmic/motivic interpolation. Use of stylistic embeddings may direct 

idiomatic progressions to transition between simple and complex. Each agent could be a 

result of independent training and react to each other’s output to enrich variance. Within 

the current system, trained models using parameters’ data may provide gesture 

classification tied to game conditions, player behavior, and discrete events in a more 

independent manner that the current model does. Regressive models may offer non-linear 

interpolation possibilities to establish any number of localized style assignations as 

opposed to a flat 2D area.  

 

5.7. Accessibility 

When the model enables users to produce material for their own consumption the music 

that comes into existence may grow exponentially. Also, with customization possibilities, 

users will start to relate closely to the output, to the point in which there is an aesthetic 

expectation fulfilled by the model—like an instrument. This means that with time, 

automated music models will enable users to make music more efficiently than if they 

used other tools like instruments, or traditional production software, without the 

limitation of skill learning. As an example outside AI, many have taken a plunge into 

software solutions like Garage Band whose intuitive generative tools allowed them to 

produce finalized music pieces without formal music/music-production knowledge. 

PAMG also can act as a multiplier of musical output for a music creator and an enabler 

for an empirical music enthusiast.  
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5.8. Discussion: The use of automated music tools outside game development and 

the repercussions of its commercialization in composers’ labor 

In current music production pipelines, composers are often requested to perform both 

style replication and quick production of convincing performance sequences ready for 

publishing. As those tasks involve largely mechanical and technical procedures, 

automated-music algorithms emerge as a potentially efficient solution. In film and video 

for example, when montage specificity achieved by temp clips or stock music leads 

directors to request equivalents, construction and style possibilities tend to be limited to 

the reference’s musical features. This re-elaboration of music structures using genre 

constraints has occurred often in commercial and popular fields when musicians 

experiment through the inspiration of a singular piece or author. Analogously, some 

algorithms now are able to perform style replication using parameters or caption. Private 

research funding into AI music is surging to fill a potential niche of AI music software in 

the music production business.   

 

As in other fields, human labor in music faces the impending possibility of replacement 

by automation. Business models of commissioned music may exploit vague definitions 

found on current authoring copyright laws in the field of synthetic music. Nevertheless, 

based on the legal framework, it is possible to anticipate possible scenarios for 

adaptation, assimilation, and revision of the music authorship concept in light of AI 

music. 
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5.8.1. Machine music and human music 

Music automation techniques are creative processes originated and in service of the 

human mind, whether they are rule systems in combination with stochastic distributions 

(i.e., the current methods employed by PAMG), or statistical imitations of existing 

material (i.e., machine learning models). Humans are the final quality judges of 

autonomous systems informed by their own experiences of other human musical 

structures. In the last seventy years, our ears not only recognize cultural but also synthetic 

timbral constructions as styles. Digital devices used to perform as musical instruments 

explore ideas based on numerical possibilities, some of them only playable by machines.  

Parallel to this first branch of human-machine music, automation methods sought to 

perform versatile style replication with seamless quality. Despite questions surrounding 

authorship, machine-composed music aims to compete directly with human creations.  

 

Although rule systems are still viable, recent deep learning developments have propelled 

research and funding in the direction of statistic replication. Mostly called AI music 

(although there is a corporation that uses this precise name), machine learning models 

necessarily employ a training set, which is pre-made material. While this is the source of 

aesthetics for AI music, rule systems use knowledge-based algorithms to produce style. 

As most AI models are designed and deployed by computer scientists, evaluations 

normally are based on statistical validation and Turing-like tests. It has been mostly 

assumed—especially among musicians—that AI models still cannot compete with human 

composers in music quality. In that vein, some studies have been investigating bias 
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against machine creativity. For example, Pasquier et al. (2016) conducted an empirical 

study to investigate whether listeners hold a bias against computer composed music. 

They improved upon previous studies by eliminating the Turing test-like condition and 

attempting to remove any practice effects, and divided their participants into Informed, 

Naive, and Revealed to test the reaction to acquired knowledge of authorship. Their 

results suggest that a bias against AI music may exist, but their results were not 

conclusive and suggested further study with a larger sample size. Hong et al. (2021) 

tested Expectation Violation Theory (Burgoon et al. 2016) hypothesizing that participants 

that found synthetic music beyond their expectations would rate it higher than those who 

found it within their expectations and vice versa. Their result confirmed the hypothesis. 

Zlatkov et al. (2023) revived the initiative but again the result did not show significant 

bias towards AI music. The authors suggest that despite adequate sample sizes, high 

variability in the data and the ranking method used may have contributed to the lack of 

conclusive results. They also acknowledge a single-value velocity (limited dynamic 

range) for computer-composed pieces which in some contexts implies a non-human 

origin.  

 

The results of these tests may show a need to redirect the effort, perhaps towards music 

background for AI music assessment. In fact, since this issue dates back to the musical 
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clocks of the eighteenth century53, a better depiction of what the participant understands 

by the concept of music—what do they think music does or can be used for (Novak & 

Matt, 2015)—may give more light in this correlation. Music made for machines or by 

machines has had—then and now—a place within the human mind (philosophy, ethics, 

ontology, human relations and so on), which is far from homogenous.   

 

For future work—more in the side of music quality—formal music analysis inquiring 

features such as form construction, intertextuality, self-similarity, original motive 

development, coherence, intention, and performance should play a significant role.     

In any case, a commercial niche for AI music output is already here and has raised many 

questions about how it will affect the livelihood of human composers in the future. 

 

5.8.2. The composer’s job 

Although composers can work in several capacities, the possible earnings of music 

licensing, signing a contract, or general commissioning, tend to be more significant when 

dealing within mainstream or popular entertainment projects. As the industry of music 

production and business grows and pipelines aligned to the current technology become 

more entrenched, the labor of composing becomes part of production models ruled by 

copyright laws, and product management dynamics.  

                                                 
53 Annette Richards (1999) for example, depicts a similar playground for mechanical music assessment 

with the works commissioned for music clocks and some curious automatons in the eighteenth century. Not 

only they had a place already in music consumption but also critics and enthusiasts of all sorts referenced 

them. In fact, the idea of mechanical performance as possibly having a superior ranges than human 

performers was acknowledged both by composers, who generated specific content, and also by listeners 

who had a wealth of reactions tied to their vision of music.    
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Composition, as any other activity in corporate production, is subjected to simplification, 

convergence, and automation for the sake of increasing profit margins. With current AI 

advances, basically any job can potentially be automated, i.e., assumed by machines. AI 

music generation—and other composer functions—are on the verge of being assimilated 

into corporate media production because licensing costs and production times will be 

lowered while multiplying the original material volume. Additionally, the composers’ 

work expectations, modified by the result of increased technological environments, tend 

to converge with machine-made music as I explain below.   

 

The framework of commercial music is regulated by copyright laws, but the contracts can 

overrule some of the intellectual property rights generated by a composition. Music 

composers that are hired by producers to create a musical sequence, arrangement, 

orchestration, engraving, etc., have a carefully disclosed assignment of copyrights and 

royalties over a musical piece in their contracts. Although a wide range of agreements is 

possible (from preserving publishing rights to waving authorship and everything in the 

middle), the contract rarely discloses stylistic or aesthetic requirements—directors and 

producers reveal them in meetings and conversations. Projects with different budgets and 

schedules pose diverse challenges in terms of music creation and production times. 

Pipelines influenced by current and emerging digital technologies tend to determine, not 

only the way a composer assumes the labor of creating music, but also the directors’ and 

producers’ expectations. Projects in which editors, directors, and producers use musical 
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references as a framework for musical construction, aesthetic, and/or intentionality, often 

privilege montage specificity over novelty in music composition.  

 

As an example, film or TV directors often use temporary stock music (temp music) in the 

editing sessions, contributing to a specific vision of continuity, storytelling, discourse, 

and aesthetics. Used clips become musical references for which style replication would 

be safe to perform. Normally, directors allow some freedom to composers but the risk of 

rejection increases with the degree of divergence from the reference style. This practice 

translates into a precise audiovisual language but at the same time limits the playground 

for new compositional ideas such as reinterpretation of moods, and leitmotif assignment. 

The result is a tendency to use standardized musical moods in contemporary commercial 

mainstream films, which also is compatible with AI music paradigms. Film composers 

often are required to solve situations of reconstruction when the film is re-edited after 

music sync in an extremely fast pace, which is expected due to the on-the-fly editing 

possibilities offered in current digital platforms. One of the common solutions (besides 

the ‘magic’ audio editing capabilities of the post-production team) is to replicate standard 

references, aiming to barely avoid copyright infringement. Kmet (2019) argues that 

nowadays, composers are prone to produce more fragmentary or modular music clips 

with less motivic development and less synchronized markers than when “picture-lock” 

was delivered in the analog era. These musical features seem to address more effectively 

late post-production requests, as most films now are re-edited several times after the 

music is written, recorded and mixed. 
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As it appears, especially in the commercial arena, style imitation serves several purposes 

such as framing a target audience, or communicating a cultural stereo-typical emotion. 

When the imitation uses a style-based construction, for example similar instruments, 

ranges, gestures, tempi, and rhythm, it brings an association with other iterations used in 

the same vein and with generalized cultural intentions. For example, composers know 

formulas that would classify music as epic, and its variants for action, drama, love, 

adventure, passion, fear, evil, etc. In fact, these emotions act as a template for basic temp 

music used in film editing, and also can be found currently in predesigned ‘moods’ 

modes for automatic artificial composition agents such as Amper54 and Aiva55.  

Within this work dynamic, similarity is an important feature suggested—and in some 

cases required—to film and game music composers, and many pop music producers. For 

game music composers, the modularity of the segments, standardized mood, and the least 

conspicuous transitions conform a production framework, even more than it is for linear 

storytelling.   

 

To fill the labor of a music composer for media, an AI software should be able to respond 

to similarity requests made by producers, directors, and video editors. Analogous to 

music references used by composers, training sets are information whose patterns and 

statistics are used to generate resembling iterations. Then, similarity is the actual 

                                                 
54 https://www.shutterstock.com/discover/ampermusic. Accessed 4/5/2023. 
55 https://www.aiva.ai/. Accessed 4/5/2023. 

https://www.shutterstock.com/discover/ampermusic
https://www.aiva.ai/
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objective and measurable result of AI models. This means that automated music 

algorithms, as long as they can imitate a provided sample (or interpolate among styles), 

has a niche in the music production pipeline which explains the significant increase in 

private funding for AI research in music. 

 

AI composition systems and humans share arguably an exposure to music material that 

informs and affects our output. Interestingly, human composers have borrowed music 

material to re-elaborate pieces virtually all the time throughout history, both deliberately 

and unconsciously56. In western societies (and possibly in all history of human art), 

although this kind of inspired work, quotation, and/or parody is a valid artistic 

intervention, there are also laws about authorship and intellectual property to address the 

related capital implications. This blurry boundary of failed attribution is commonly 

known as plagiarism. 

 

5.8.3. Authorship: similarity, style replication and plagiarism 

In the sphere of pop music, there is a rise in legal battles over plagiarism, including audio 

samples and musical ideas. The method for demonstrating plagiarism in musical ideas are 

access and similarity (Stav, 2016), which opens the door for a variety of interpretations. 

To prove access, it is not enough to point to a previous release, but also to establish a 

plausible exposure of the material to the plagiarist prior to the alleged re-elaboration. This 

                                                 
56 In a famous case that came to trial in 1976, Georges Harrison’s “My Sweet Lord” was found guilty of 

“subconscious plagiarism” over the Chiffons “He’s so fine” https://performingsongwriter.com/george-

harrison-my-sweet-lord/. Accessed 4/5/2023.   

https://performingsongwriter.com/george-harrison-my-sweet-lord/
https://performingsongwriter.com/george-harrison-my-sweet-lord/
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means that a natural similarity between pieces that had no influence from one another is 

conceivable under the law. Hence, plagiarism is difficult to prove when there is no public 

release of the plagiarized material. Once access is deemed as probable, similarity comes 

into account. Although technical music constructions can objectively prove it, such as 

motivic replication by transposition or small modifications, actual cases have shown deep 

complexities. A quick search through filed claims reveals commonalities between pieces 

that go beyond conventional and measurable music design to include how they are 

perceived by regular listeners, i.e. non-experts. This widens the boundaries of similarity 

to overlap with the connotations of style, but style replication is not regarded as 

plagiarism by the law.  

 

An important case has set a precedent regarding court verdicts in which similarity is used 

in close relation to style. Gaye’s 1977 song “Got to give it up” won a disputed copyright 

protection against “Blurred lines” by Robin Thicke (2013), becoming an apparent 

example of music style copyrighting.  Many in the media industry were paying close 

attention because style replication, as explained before, is a common practice in 

production, and if such a case becomes normal, many lawsuits may fallow. However, 

experienced copyright lawyers argue that repercussions on other cases are less than the 

outcome implied because of trial particularities57. This suggests that trial arguments, 

lawyer skills, deferential testimonies, and evidence made this case unique rather than a 

                                                 
57 https://mcpherson-llp.com/articles/crushing-creativity-the-blurred-lines-case-and-its-aftermath/. 

Accessed 5/5/2023.  

https://mcpherson-llp.com/articles/crushing-creativity-the-blurred-lines-case-and-its-aftermath/
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template for future claims58. Nevertheless, there are similar cases in which productions 

using a referenced music style were disputed as plagiarism. 

 

Style replication, even if it is a tribute or a disclosed inspiration may be liable within the 

limits of the concept of similarity. As AI music necessarily accesses music material and 

outputs similarity, there are rising questions about how to apply current legal frameworks 

or create new ones. In fact, AI has been employed consistently to spot similarity59 and 

potential plagiarism60 in platforms like Spotify and YouTube. Especially, if a single piece 

or author has been the subject of reproduction with AI, the resulting music products may 

need a new legal framework and a licensing scheme. Copyright practitioners tend to say 

that the authors of music material used for AI training hardly can receive compensation 

for the commercialization of AI products but the law seems obscure about it61. Hence, in 

a number of cases, programmers have been claiming authorship of their models’ output 

with mixed results.  

 

Copyright law has assumed until now that computer methods to create works are tools 

that humans use. Hence, in many western countries, only human creations can be 

copyrighted (Ramalho, 2017). This implies that if the authorship is not attributed to the 

                                                 
58 https://www.americanbar.org/groups/intellectual_property_law/publications/landslide/2015-16/january-

february/blurring_lines_the_practical_implications_of_williams_v_bridgeport_music/#ref9. Accessed 

5/5/2023.   
59 https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=6333&context=wvlr. Accessed 5/5/2023.   
60 https://www.musicbusinessworldwide.com/files/2020/11/1_merged.pdf. Accessed 5/5/2023.   
61 https://www.theverge.com/2019/4/17/18299563/ai-algorithm-music-law-copyright-human. Accessed 

5/5/2023.   

https://www.americanbar.org/groups/intellectual_property_law/publications/landslide/2015-16/january-february/blurring_lines_the_practical_implications_of_williams_v_bridgeport_music/#ref9
https://www.americanbar.org/groups/intellectual_property_law/publications/landslide/2015-16/january-february/blurring_lines_the_practical_implications_of_williams_v_bridgeport_music/#ref9
https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=6333&context=wvlr
https://www.musicbusinessworldwide.com/files/2020/11/1_merged.pdf
https://www.theverge.com/2019/4/17/18299563/ai-algorithm-music-law-copyright-human
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creators of the algorithm, the piece would remain as public-domain. Andres 

Guadmuz62(2017) shows an example of a declaration from the United States’ Copyright 

Office in which it will “register an original work of authorship, provided that the work 

was created by a human being.” And also specifies that copyright law only protects “the 

fruits of intellectual labor” that “are founded in the creative powers of the mind.” (1991). 

The example continues with an assertion that links humans to creative processes in UK 

copyright law which states: “In the case of a literary, dramatic, musical or artistic work 

which is computer-generated, the author shall be taken to be the person by whom the 

arrangements necessary for the creation of the work are undertaken.” (Section 9(3) 

CDPA). This would justify assigning authorship to programmers. In the same article, 

other cases reveal the importance of labor and artistic decisions in authorship, like the 

case of Nova Productions v Mazooma Games [2007] EWCA Civ 219, in which the Court 

of Appeal had to decide on the authorship of a computer game, and declared that a 

player’s input “is not artistic in nature and they have contributed no skill or labor of an 

artistic kind”. In most of the law framework examples examined by Ramalho (2017), the 

foundation of authorship—and the corresponding copyright protections—seems to be 

framed in a ‘decision/choice’(agency), ‘an expression of personality’ (pointing to a 

human origin), and ‘an arrangement undertaking’ (production and work for hire 

framework). The main issue is the lack of recognition of an equivalency between AI 

training and human training. Clearly, going back in the direction of the source of 

                                                 
62 World Intellectual Property Organization WIPO Magazine 

https://www.wipo.int/wipo_magazine/en/2017/05/article_0003.html. Accessed 5/5/2023.   

https://www.wipo.int/wipo_magazine/en/2017/05/article_0003.html
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knowledge would put authorship in the terrain of Barthes’ “Death of the author”63 (1977) 

which complicates copyright as a concept. This is exemplified in Fig. 23.     

 

Fig. 29. Authorship. 

 

Humans are usually entitled to claim authorship. However, in current laws the role in 

creativity of training sets for human or AI works may fall in dispute. In the case of 

machine-made material, training sets—which are human ideas—are objectively the 

knowledge source, while in humans that source is subjective. Thus, a human whose idea 

was a ‘training set’ for another human idea only could claim a stake in authorship of the 

                                                 
63 In "The Death of the Author," Barthes argues that the meaning of a literary text cannot be solely 

determined by the author's intentions or biography, and that readers play an active role in interpreting a 

text. He also claims that writing is not the creation of a voice, but rather the destruction of every voice, and 

that literary texts are not original but rather a "tissue of quotations." While this view may seem extreme, 

Barthes emphasizes the importance of language and the way in which meaning is constructed through 

familiar words put together in new ways. 
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later through a plagiarism case. The same process arguably would work for machine-

made works. Programmers under some circumstances could claim authorship, although it 

is also subject of debate.  

 

Arguably, current AI models depart significantly from being a tool since creative 

decisions are taken by the program, albeit within a training set64. More recently, as AI 

creative works have been accruing significant commercial value, there are more cases to 

rule by the Copyright Office. In a recent decision, the federal agency refused to grant 

copyright to Stephen Thaler for an image created with his AI model at Creative 

Machines. The Copyright Board wrote in its Feb. 14, 2022 ruling: “Thaler must either 

provide evidence that the work is the product of human authorship or convince the Office 

to depart from a century of copyright [legal theory]… he has done neither.”65  

Summarizing, the boundaries of authorship in the case of AI in music currently are 

blurry. Taken from current U.S. copyright law, the point of origin should be a human—

considered the author—in which case AI music would not be granted copyright. On the 

other hand, as in U.K. law, it is possible to argue that the programmers provided labor to 

create the algorithm that ultimately created the piece, which gives them authorship. A 

third possible case would be to adjudicate copyright to the author(s) of the original pieces 

                                                 
64 In fact, scholars have written to frame AI decision making as a tool within copyright: J. Bing and T. 

Harvold, Legal Decisions and Information Systems (Universitetsforlaget; Henley on Thames 

1977); G. Sartor, Artificial Intelligence and Law: Legal Philosophy and Legal Theory (Tano 1993); P. 

Leith, Formalism in Al and Computer Science (Ellis Horwood 1990); and D. Bourcier, L. Bochereau and P. 

Bourgine, Extracting legal knowledge by means of multilayer neural network: Application to municipal 

jurisprudence, in Proceedings of the 3rd ICAIL, Oxford (ACM 1991), 288.  
65 https://dot.la/creative-machines-ai-art-2656764050.html. Accessed 5/6/2023.  

https://dot.la/creative-machines-ai-art-2656764050.html
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that constitute the training set—since the algorithm not only had access to them 

objectively but also sought similarity either through a musical or text prompt. This case 

may be a fertile ground for research since the model can provide a rate of similarity 

between its output and the training set entries. With these questions, it is not only 

authorship laws but also commercial music models that need updating. As can be 

envisioned, models used as music services would take over both the auditory spectrum 

and the money stream claimed by human musicians today to make a living, which seems 

ethically flawed. An explosion of music material will rapidly become comparable in size 

with human music, to the point in which utility or functional music (elevator, waiting 

room, airport music, etc)—characterized by being artificially generated—may distinguish 

itself from the human counterpart and require separate regulations. In the meantime, the 

legal battles are starting. The first appearances of replication have been using timbre 

emulation: individuals make a song, sing it and then replace the voice by an AI-generated 

voice of a prominent author. These AI works in most cases currently are made with a 

combination of AI solutions such as, for example, ChatGPT for lyrics and AIVA for 

music material66. Artists are complaining and have convinced platforms to block AI 

materials and some others are claiming a portion of the royalties. AI-music creators may 

                                                 
66 In the spectrum of AI-music generation there is a growing body of resources: 

https://theresanaiforthat.com/s/music/. Accessed 5/9/2023.  

https://theresanaiforthat.com/s/music/
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argue that parody is legal67 but debates will follow arguing a breach in purpose and fair 

use of identifiable material as it applies currently to face pictures or audio recordings for 

publications. This copyright conflict will be ensued by fund assignment and embracement 

of AI-replicating technologies by music producers and publishers—those that took the 

artist side in the first round. In this case, their contracts will include assignment of rights 

for AI training in the resulting recordings, allowing them to capitalize not only on 

replication volume consumed, but also on emerging technologies such as artist-generated 

radio stations and software. 

 

It is possible to describe the intention of an AI user/programmer as style replication or 

interpolation of existing material. In case of art, an aesthetic decision of an AI user is 

closer to an editor/curator than an author, as it is seen in current generative text models. 

In music, there are many algorithms whose creative methods do not use pre-made music 

material as an input and instead use rules and stochastic principles. In them, the 

discussion of authorship is closer to current human origin definitions, since aesthetic 

decisions are taken by the user when choosing the variables and parameters. That is the 

case with PAMG. 

 

                                                 
67 “The fair use exception is governed by the factors enumerated in section 107 of the Copyright Act: (1) 

the purpose and character of the use; (2) the nature of the original work; (3) the amount and substantiality 

of the original work used; and (4) the effect on the market value of the original work. Generally, courts are 

more likely to find that a parody qualifies as fair use if its purpose is to serve as a social commentary and 

not for purely commercial gain.” 

https://www.law.cornell.edu/wex/parody#:~:text=In%20the%20United%20States%2C%20parody%20is%2

0protected%20by,use%20exception%20to%20combat%20claims%20of%20copyright%20infringement. 

Accessed 5/9/2023. 

https://www.law.cornell.edu/wex/parody#:~:text=In%20the%20United%20States%2C%20parody%20is%20protected%20by,use%20exception%20to%20combat%20claims%20of%20copyright%20infringement
https://www.law.cornell.edu/wex/parody#:~:text=In%20the%20United%20States%2C%20parody%20is%20protected%20by,use%20exception%20to%20combat%20claims%20of%20copyright%20infringement
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Appendix A: Algorithm description  

 

1. Clock 

It is the time generator that produces the time grid for the events in general, and it is 

the start of the playback algorithm. It produces a loop of indexed pulses (Count Loop) 

sent to agents and other algorithms to react synchronously, which constitute the 

minimum onset or grain. The loop size in pulses is the result of the chosen number of 

beats multiplied by the chosen grain (pulse subdivision). Its parameters are Tempo, 

Size and Grain (minimum subdivision of the pulse). All the Agents act in relation to 

the loop size in pulses (loop-based index). 

2. Melody Agent (MA) 

2.1. Melody Rhythm generation  

2.1.1. Beat and Moved Lists  

It creates a list of onsets based on the beat (size / grain) using the loop-based 

indexes (e.g., 0, 4, 8, 12, in a 16-size loop). Then, it moves or shifts a 

random seeded amount of the resulting indexes to produce syncopation 

proportional to the parameters move even, move odd (even beats are 0, 2, 4, 

6, etc., and odd are beats number 1, 3, 5, etc.), and the value of motion either 

a 16th or an 8th note. Also, it is possible to set a pattern of motion (forward-

backward). Returns the Moved List and Beat List in loop-based index value. 

2.1.2. Additive and Subtractive Filling  

It subtracts from Moved List or adds onsets progressively through a seeded 

random generator, using incremental subdivisions of the pulse. Its parameter 

is Melody +/- onsets. Returns a list of loop-based index values that are used 

as onsets, and assigns a duration value  

2.1.3. Staccato/Legato Duration   

It produces a seeded random sequence of binary staccato/legato Boolean 

values applied to currently available onsets. Then, it calculates the duration 

of an onset that is either a staccato or legato. The duration value uses the 

minimum loop unit (e.g., 1 in a 16-size loop would be a 16th note), and the 

legato duration is the difference between current onset index and the next 

one. Its parameter is Staccato-Legato value (lower for mostly legato, higher 

for mostly staccato). Returns a collection of onset values and their durations 

(a non-zero value for legato, 1 for staccato, 0 for not-onset).  

2.2. Velocity Generation MA  

Using a random-walk sequence, assigns a scaled value for velocity (amplitude in 

MIDI) using as input the melody velocity parameter value. It gives accent —

higher value— to onsets from the Moved List, and expands/contracts the range in 

direct proportion to the amount of onsets (+/- onsets parameter value). Returns a 

MIDI velocity value for every onset. 

2.3. Melody Pitches Generation 

2.3.1. Note Stream Generation  
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To assign pitches in real time, drunk and drunk-contour modes are triggered 

for every onset. Its parameters are step for maximum interval, range for a 

total range of action, and a non-repeat Boolean.  

2.3.1.1. Drunk mode uses a note-by-note random-walk sequence and 

receives the seed to restart the sequence. Returns a pitch value. 

2.3.1.2. Drunk-contour mode applies the random-walk sequence to the 

Moved List onsets and interpolates between them to create a contour 

with the duration of one loop. The #nodes parameter allows to choose 

the amount of nodes in the contour whit a maximum of moved list—the 

same as beats present in the loop. Reacts to the invert Boolean 

parameter to apply a melody inversion based on the mean pitch value. 

Returns a pitch value. 

2.3.2. Transposition 

Its parameter value adds or subtracts to the pitch value. It also receives 

transposition offsets from other algorithms to react to phrasing, melody 

shape, and lack of change in the register. 

2.3.3. Harmony Filter 

It receives the Pitch Class List for Melody to elaborate a whole range grid 

where individual pitch values are re-pitch using current harmony. Returns 

the harmonized pitch value. 

2.4. Shape Melody  

Using a 2D table, assigns modification values for transposition in the melody 

in time. Its parameters are depth as a value of influence, length as a value of 

loops that it takes to complete, and invert as a Boolean (this parameter also 

affects Drunk-Contour shape).  

2.5. Melody Change   

2.5.1. Transposition Change 

It stores a window of previous pitches and their duration to analyze the 

range, register and amount of pitches. Then, after a finite number of phrases, 

it produces a transposition offset. 

2.5.2. Phrase Change 

Using the chord denomination generated by the Harmony Agent (e.g., I, ii, 

IV, V, etc.) alters the Melody +/- onsets preset to reflect tonal phrase 

resolutions in rhythm. 

2.6. MIDI Event Construction MA  

Using the length (staccato will be 1/64, legato the duration value in loop units), 

velocity and pitch, produces melody MIDI event stream.   

Operation 

The Count (a loop-based index coming from the Clock) queries the value stored at the 

rhythm onset collection to check for non-zero values. If and when found, MA 

produces a harmonized pitch. Then, the duration (either staccato or legato) and 

velocity values join the obtained pitch to conform to a MIDI event sent to the 

Orchestration agent. 
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3. Harmony Agent (HA) 

3.1. Harmony Rhythm Generation  

3.1.1. Accent/Beat Follower  

It uses the Moved List and the Beat list to create an interpolated list of loop-

indexed values and uses a seeded random generator to progressively adhere 

to the Moved list producing syncopation or to the beat list for each onset. Its 

parameter is Accent/Beat value. Returns an interpolated list of loop-indexed 

values for rhythmic accents.  

3.1.2. Additive and Subtractive Filling algorithm (same as in Melody Rhythm 

generation)  

It uses the Accent/beat follower list to add or subtract onsets. Its parameter is 

Harmony +/- onsets, and seed rhy for harmony.  

3.1.3. Staccato-Legato Duration (same as in Melody Staccato-legato):  

It produces a seeded random sequence of binary staccato/legato values 

applied to currently available onsets. It calculates staccato or legato 

duration. Returns a collection of loop-indexed values where 0 means not-

onset, 1 staccato, and a duration value means legato. Its parameter is 

Harmony Staccato-Legato value. Returns a collection of onset values and 

their durations (a non-zero value for legato, 1 for staccato, 0 for not-onset).  

3.2. Velocity Generation HA 

It uses as input the harmony velocity parameter value. It gives accent —higher 

value— to onsets from the Moved List. Returns a MIDI velocity value for every 

chord onset or every arpeggio pitch. 

3.3. Harmony Sequence Generation 

3.3.1. Switch Harmony  

It selects from the currently available harmony onsets (chords) an 

incremental amount of chord changes with a maximum of four changes per 

loop. It also prevents changes in the last beat to I and from I in the first beat 

to allow longer resolutions.  Its parameter is Harmonic Rhythm Speed, 

currently independent from the interpolator. Returns a collection of loop-

indexed Booleans wherein true values trigger a chord switch in the 

Harmonic Progression selector. 

3.3.2. Harmonic Progression Selector  

3.3.2.1. Chord Pools manager 

Stores and manages harmonic content and progression in a phrase. 

Using the Complexity parameter value, it establishes the number of 

chord pools (collections of chord possibilities) and selects harmonic 

content available for each complexity level. The amount of chord-pools 

and their content changes progressively with the complexity level (e.g., 

at Complexity value 3, there are 3 ordered chord pools from which 

chords available belong to level 3). Also, for the first four chord pools 

levels, the Boolean Major/Minor parameter enables chords form the 

selected category. Each chord pool has a timely place in the progression 

(i.e., ordered), which means that chord pool # 1 can only be followed by 
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chord pool # 2, or by # 1 again.  This means that more pools are present 

on higher complexity levels. Also, first pools are present in more levels 

so they have more level possibilities than the higher pools. The Chord 

Pool # is used as a reference for other processes to do phrase 

quantization (allow changes only at the end/beginning of a phrase). The 

chords in a chord pool are designed to connect to those found in 

contiguous chord pools, following usual western progression sequences. 

Currently, the algorithm holds a maximum of eight chord pools per 

phrase and nine complexity levels. This enables longer and increasingly 

complex progressions and also responsive level-change reaction in the 

middle of a phrase. The input is a trigger that executes a chord selection 

from the following pool using a seeded random generator. It returns a 

symbol—I, ii, V, etc.—that pairs with the tension parameter to query the 

Chord Dictionary, whose output is the Pitch Class List for harmony and 

melody that feeds their respective filters. The melody list adds 3-1 

levels (i.e., pitches) on lower tensions to provide interpolation 

possibilities. As a feature, a random generator uses a normal distribution 

to decide if the progression modulates in next round, when there are 

dominant chords. The progression may continue with the next box if no 

modulation is decided or change the root (tonic pitch class value) and 

select Chord Pool #1 for next round.   

3.3.2.2. Bass Selector 

It provides possibilities for the lowest pitch used in the chord builder 

(see below) according to the complexity level and the chord pool 

number. The unit is an index of the chord list #5 for each chord found 

in the Chord Dictionary. This particular list has five pitch classes (e.g., 

I: 0, 4, 7, 11, 2). For example, if a I is followed by 1, the chord is going 

to use as bass the first pitch class of the list #5 which is the root. The 

number 2 would be the major third (4), and the 3 the fifth (7) in a 

similar way inversions are classified in the western canon.  

3.3.3. Chord Dictionary Query  

The Chord Dictionary holds a series of pitch-class lists for every chord, 

organized in the western tonal music classification (e.g., I, IV, V, vi, viiº, 

etc.) Every chord key holds a series of lists that incrementally add pitch-

classes based on the relative dissonance with the root, using the Tension 

parameter value (1-12).  A query based on the tension value outputs a list of 

pitch classes normalized to C. The tonic pitch class value transposes the list 

to the current tonality (mod 12).  

3.3.3.1. Post Filter 

The resulting pitch class list passes through a filter that shifts the numbers to 

match a pitch class set that belongs to non-diatonic collections to introduce a 

level of dissonance if the Dim toggle is activated. The result is a similar 

pitch class set whose dissonance is instantaneously higher than the original.  
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3.3.4. Chord builder  

Using the pitch class list for harmony that comes from Chord Dictionary 

(key is the chord and list number for tension), it builds a whole-range list of 

possible pitch classes. Then, using the Voices, Range, Register, and the bass 

pitch class selected, it builds a list of pitches used for playback either as a 

vertical chord triggered by the onset stored on the Harmony Rhythm 

collection, or as arpeggio. Its algorithm organizes interval classes from 

larger in the bass to shorter in the higher register to emulate orchestration. 

Using the movement parameter, it shifts the chords in the register going 

up/down for every onset restarting with the loop. The maximum range 

depends on the onsets per loop and the range established by the movement 

parameter. 

3.3.5. Arpeggiator  

3.3.5.1. Arpeggio Selector/activator/enabler  

Using the orchestration configuration (see orchestrator flags), the Melody 

and Harmony +/- onsets parameter values, the Complexity parameter value, 

and the Size value, it chooses the rate (1/4, 1/8, 1/8 triplet, 1/16, and 1/32 

note), the shape (up, down, and up&down) of the arpeggiator, and also 

triggers a flip switch (on/off). It conditions the arpeggiator speed 

possibilities to avoid faster melodies and/or chord onsets, turns it off if brass 

is solo, and turns brass off if it flips on.   

3.3.5.2. Arpeggio Generator  

It assigns an arpeggio to the current chord voices, calculates and updates the 

arpeggio rate using current tempo, and sends the pitches for playback. Its 

parameters are switch on/off, arpeggio rate value (1/4, 1/8, 1/8 triplet, 1/16, 

and 1/32 note), and arpeggio shape (up, down, and up&down). 

3.4. Harmony Change Algorithm  

Using the current chords, it prepares and sends an offset to Register and 

Harmony +/- onsets parameter values. The variations are classified in default and 

dominant. The execution is allowed when there has not been any change in those 

parameters for a selected number of phrases. It uses a random generator.  

3.5. MIDI Event Construction HA  

Using the length, velocity and pitch, produces the harmony MIDI event stream.   

Operation 

Like in the MA, the Loop Count pulls non-zero values from the rhythm onset 

collection. If and when found, HA produces a chord or an arpeggio. Then, 

duration (either staccato or legato) and velocity values join the obtained chord 

pitches to conform the MIDI events sent to the Orchestration agent. 

 

4. Percussion Agent (PA) 

4.1. Percussion Rhythm Generation  

4.1.1. Accent/Beat Follower (same as in Harmony Rhythm generation)  
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It uses the Moved List and the Beat list to interpolate and add syncopation 

for all percussion instruments. Its parameter is Accent/Beat value. Returns an 

interpolated list of onset loop indexes.  

4.1.2. Additive and Subtractive Filling algorithm (same as in Melody/Harmony 

Rhythm generation) 

For each percussion instrument, it uses the interpolated list from Accent/beat 

follower. Its parameter is Kick/Snare, Toms, Cymbals +/- onsets. Returns a 

collection of loop-indexed values of 0 for not-onset (no duration calculated.  

4.1.2.1. Add/Sub for Kick/Snare: It distributes the onsets between the Kick 

drum and snare drum timbres. It receives a consecutive value that sets 

how many snare drums are consecutive before a kick drum appears. It 

also receives an offset value that shifts the pattern.  

4.2. Velocity Generation PA 

For each percussion instrument, it uses as input the velocity parameter value of 

the Percussion Agent. It gives accent —higher value— to onsets from the Moved 

List. Returns a MIDI velocity. 

4.3. Ratchet  

It decides when and how to do a ratchet for each instrument except the kick drum 

using a random generator. The decision depends on the +/- onsets value for each 

instrument, allowing execution only on lower values (under 31% for each 

instrument). It uses a random generator to decide the type of ratchet (64th, triplet 

32nd , 32nd, and triplet 16th, note values in four or two 8th note lenghts). It also 

calculates the velocity line for the ratchet with a random generator added to an 

ascending value. 

4.4. Percussion Change 

Using the current chords, it sends a trigger to the percussion instruments to offset 

their parameters. The variations are classified in tonic, dominant, and default. It 

shifts the consecutive value in the Kick/Snare and +/- onsets value on all 

instruments using a random generator to support phrasing, with a specific bipolar 

range per instrument. 

4.5. MIDI event construction PA  

It manages the range for each percussion instrument in MIDI pitch values using 

from and range (from is the lower MIDI pitch for the instrument and range is the 

interval of pitches that can be used to alternate the timbre in the sampler 

configuration). Using velocity, pitch, and an arbitrary constant length (in this 

case 300 ms), produces a real-time sequence of MIDI events sent to a MIDI 

channel and port.   

Operation 

Like in the MA and HA, the Count pulls non-zero values from the rhythm onset 

collection in each percussion instrument. If and when found, a trigger to produce an 

onset is sent. Then, duration (a constant) and velocity values join the obtained 

percussion pitches to conform and dispatch the MIDI events. 
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5. Orchestration Agent (OA) 

Using a seeded random generator, it manages the instrument family assigned to the 

Melody/Harmony agents.  

5.1. Instrument adds/subtract: 

Adds/subtract for each agent using the Orch +/- parameter for each agent. It 

distributes the instrument families among the HA stream voices using HA 

velocity (intensity acquired with overlapping), voices and range parameters.   

5.2. Instrument switch: 

Switches after two phrases with no orchestration changes.  

5.3. Pitch range set the among instrument voices for MA:  

Operates using the Orch Range parameter and the Pitch Class List for Melody.  

5.4. Flags send/receive:  

To the arpeggiator algorithm brass solo and piano solo, and receives arpeggiator 

on/off.  

5.5. Instrument-family range management:  

Uses pitch range in MIDI pitch values (non-real-time parameter).  

5.6. MIDI event submission: 

It sends the final MIDI events to the MIDI channels and ports specified.  

 

6. Multi-Parameter Preset Interpolator and Manager (MPIC) 

Stores and manages most of the agent parameters (I/O) and the multi-parameter 

presets, and assigns them to the interpolator slots for each agent independently. A 

group of multi-parameter presets can be understood as a theme and each preset as a 

style. The interpolation among preset slots (styles) provides seamless musical 

transitions among them within a theme. In the example provided, there are four 

presets per theme, and the interpolation is executed by three XY pads for each of the 

agents —the preset positions are in the four corners. The cursors’ coordinates on the 

XY pads are used to calculate interpolation. The presets can be elaborated as 

progressive developments that branch from an original mood. In addition, individual 

parameters can be offset during playback and will keep their relative position during 

interpolation, or return to the interpolated value using the reset interpolator trigger.  

In the example, it is possible to save a multi-parameter preset that includes all the 

agents’ parameters in each of the four theme’s slots. Then, to assign the theme to the 

interpolator, the user clicks in the preset row header, populating the four corners of 

the XY pads with the presets (1st: lower-left, 2nd: lower-right, 3rd: upper-left, 4th: 

upper-right.)  

 

7. Seeded phrase generator 

It takes the seed values for rhythm and pitch and adds a seeded random value for 

every new Chord pool, restarting the sequence at Chord pool #1 (phrase start), to 

provide a sequence of seeds whose length can change the behavior of the music 

content for every chord, or provide a level of recurrence by phrase. The length of this 

sequence is set by the Seeded Phrase Length parameter, which is the number of 

values to be added to the first seed. If the current seed is 0, the random generators 
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produce non-seeded values (the seed taken is date and time), which is ideal for 

‘improvisational’ passages. 

 

Algorithm Graph:  
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Appendix B: Chord Pools 

 

The level of complexity is managed by the Harmonic Complexity value (L1-L9) and 

produces a different amount of possible boxes per harmonic cycle. The number (1, 2, or 

3) after the chord symbol is the bass employed, and can be tied to the inversion number 

(1 = root, 2 = third, and 3 = fifth). 
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Appendix C: Harmony dictionary

 
{ 

 "I" :  { 

  "1" : [ 0 ], 

  "2" : [ 0, 7 ], 

  "3" : [ 0, 4, 7 ], 

  "4" : [ 0, 4, 7, 11 ], 

  "5" : [ 0, 4, 7, 11, 2 ], 

  "6" : [ 0, 4, 7, 11, 2, 5 ], 

  "7" : [ 0, 4, 7, 11, 2, 5, 9 ], 

  "8" : [ 0, 4, 7, 11, 2, 5, 9, 3 ], 

  "9" : [ 0, 4, 7, 11, 2, 5, 9, 3, 10 ], 

  "10" : [ 0, 4, 7, 11, 2, 5, 9, 3, 10, 8 ], 

  "11" : [ 0, 4, 7, 11, 2, 5, 9, 3, 10, 8, 6 ], 

  "12" : [ 0, 4, 7, 11, 2, 5, 9, 3, 10, 8, 6, 1 ] 

 } 

, 

 

 "ii" :  { 

  "1" : [ 2 ], 

  "2" : [ 2, 9 ], 

  "3" : [ 2, 5, 9 ], 

  "4" : [ 2, 5, 9, 0 ], 

  "5" : [ 2, 5, 9, 0, 4 ], 

  "6" : [ 2, 5, 9, 0, 4, 7 ], 

  "7" : [ 2, 5, 9, 0, 4, 7, 11 ], 

  "8" : [ 2, 5, 9, 0, 4, 7, 11, 6 ], 

  "9" : [ 2, 5, 9, 0, 4, 7, 11, 6, 10 ], 

  "10" : [ 2, 5, 9, 0, 4, 7, 11, 6, 10, 8 ], 

  "11" : [ 2, 5, 9, 0, 4, 7, 11, 6, 10, 8, 1 ], 

  "12" : [ 2, 5, 9, 0, 4, 7, 11, 6, 10, 8, 1, 3 ] 

 } 

, 

 "iii" :  { 

  "1" : [ 4 ], 

  "2" : [ 4, 11 ], 

  "3" : [ 4, 7, 11 ], 

  "4" : [ 4, 7, 11, 2 ], 

  "5" : [ 4, 7, 11, 2, 0 ], 

  "6" : [ 4, 7, 11, 2, 0, 9 ], 

  "7" : [ 4, 7, 11, 2, 0, 9, 5 ], 

  "8" : [ 4, 7, 11, 2, 0, 9, 5, 6 ], 

  "9" : [ 4, 7, 11, 2, 0, 9, 5, 6, 1 ], 

  "10" : [ 4, 7, 11, 2, 0, 9, 5, 6, 1, 8 ], 

  "11" : [ 4, 7, 11, 2, 0, 9, 5, 6, 1, 8, 10 ], 

  "12" : [ 4, 7, 11, 2, 0, 9, 5, 6, 1, 8, 10, 3 ] 

 } 

, 

 "IV" :  { 

  "1" : [ 5 ], 

  "2" : [ 5, 0 ], 

  "3" : [ 5, 9, 0 ], 

  "4" : [ 5, 9, 0, 4 ], 

  "5" : [ 5, 9, 0, 4, 2 ], 

  "6" : [ 5, 9, 0, 4, 2, 7 ], 

  "7" : [ 5, 9, 0, 4, 2, 7, 10 ], 

  "8" : [ 5, 9, 0, 4, 2, 7, 10, 8 ], 

  "9" : [ 5, 9, 0, 4, 2, 7, 10, 8, 3 ], 

  "10" : [ 5, 9, 0, 4, 2, 7, 10, 8, 3, 1 ], 

  "11" : [ 5, 9, 0, 4, 2, 7, 10, 8, 3, 1, 11 ], 

  "12" : [ 5, 9, 0, 4, 2, 7, 10, 8, 3, 1, 11, 6 ] 

 } 

, 

 "V" :  { 

  "1" : [ 7 ], 

  "2" : [ 7, 2 ], 

  "3" : [ 7, 11, 2 ], 

  "4" : [ 7, 11, 2, 5 ], 

  "5" : [ 7, 11, 2, 5, 9 ], 

  "6" : [ 7, 11, 2, 5, 9, 4 ], 

  "7" : [ 7, 11, 2, 5, 9, 4, 0 ], 

  "8" : [ 7, 11, 2, 5, 9, 4, 0, 10 ], 

  "9" : [ 7, 11, 2, 5, 9, 4, 0, 10, 3 ], 

  "10" : [ 7, 11, 2, 5, 9, 4, 0, 10, 3, 1 ], 

  "11" : [ 7, 11, 2, 5, 9, 4, 0, 10, 3, 1, 8 ], 

  "12" : [ 7, 11, 2, 5, 9, 4, 0, 10, 3, 1, 8, 6 ] 

 } 

, 

 "vi" :  { 

  "1" : [ 9 ], 

  "2" : [ 9, 4 ], 

  "3" : [ 9, 0, 4 ], 

  "4" : [ 9, 0, 4, 7 ], 

  "5" : [ 9, 0, 4, 7, 5 ], 

  "6" : [ 9, 0, 4, 7, 5, 2 ], 

  "7" : [ 9, 0, 4, 7, 5, 2, 11 ], 

  "8" : [ 9, 0, 4, 7, 5, 2, 11, 3 ], 

  "9" : [ 9, 0, 4, 7, 5, 2, 11, 3, 1 ], 

  "10" : [ 9, 0, 4, 7, 5, 2, 11, 3, 1, 6 ], 

  "11" : [ 9, 0, 4, 7, 5, 2, 11, 3, 1, 6, 8 ], 

  "12" : [ 9, 0, 4, 7, 5, 2, 11, 3, 1, 6, 8, 10 ] 

 } 

, 

 

 

 

 

 

 

 

 

 "viiº" :  { 

  "1" : [ 11 ], 

  "2" : [ 11, 5 ], 

  "3" : [ 11, 2, 5 ], 

  "4" : [ 11, 2, 5, 9 ], 

  "5" : [ 11, 2, 5, 9, 7 ], 

  "6" : [ 11, 2, 5, 9, 7, 4 ], 

  "7" : [ 11, 2, 5, 9, 7, 4, 1 ], 

  "8" : [ 11, 2, 5, 9, 7, 4, 1, 6 ], 

  "9" : [ 11, 2, 5, 9, 7, 4, 1, 6, 8 ], 

  "10" : [ 11, 2, 5, 9, 7, 4, 1, 6, 8, 3 ], 

  "11" : [ 11, 2, 5, 9, 7, 4, 1, 6, 8, 3, 10 ], 

  "12" : [ 11, 2, 5, 9, 7, 4, 1, 6, 8, 3, 10, 0 ] 

 } 

, 

 

 

 "V7/IV" :  { 

  "1" : [ 0 ], 

  "2" : [ 0, 7 ], 

  "3" : [ 0, 4, 7 ], 

  "4" : [ 0, 4, 7, 10 ], 

  "5" : [ 0, 4, 7, 10, 2 ], 

  "6" : [ 0, 4, 7, 10, 2, 5 ], 

  "7" : [ 0, 4, 7, 10, 2, 5, 9 ], 

  "8" : [ 0, 4, 7, 10, 2, 5, 9, 3 ], 

  "9" : [ 0, 4, 7, 10, 2, 5, 9, 3, 11 ], 

  "10" : [ 0, 4, 7, 10, 2, 5, 9, 3, 11, 8 ], 

  "11" : [ 0, 4, 7, 10, 2, 5, 9, 3, 11, 8, 6 ], 

  "12" : [ 0, 4, 7, 10, 2, 5, 9, 3, 11, 8, 6, 1 ] 

 } 

, 

 "V7/V" :  { 

  "1" : [ 2 ], 

  "2" : [ 2, 9 ], 

  "3" : [ 2, 6, 9 ], 

  "4" : [ 2, 6, 9, 0 ], 

  "5" : [ 2, 6, 9, 0, 4 ], 

  "6" : [ 2, 6, 9, 0, 4, 7 ], 

  "7" : [ 2, 6, 9, 0, 4, 7, 11 ], 

  "8" : [ 2, 6, 9, 0, 4, 7, 11, 5 ], 

  "9" : [ 2, 6, 9, 0, 4, 7, 11, 5, 10 ], 

  "10" : [ 2, 6, 9, 0, 4, 7, 11, 5, 10, 8 ], 

  "11" : [ 2, 6, 9, 0, 4, 7, 11, 5, 10, 8, 1 ], 

  "12" : [ 2, 6, 9, 0, 4, 7, 11, 5, 10, 8, 1, 3 ] 

 } 

, 

 "V7/vi" :  { 

  "1" : [ 4 ], 

  "2" : [ 4, 11 ], 

  "3" : [ 4, 8, 11 ], 

  "4" : [ 4, 8, 11, 2 ], 

  "5" : [ 4, 8, 11, 2, 0 ], 

  "6" : [ 4, 8, 11, 2, 0, 9 ], 

  "7" : [ 4, 8, 11, 2, 0, 9, 5 ], 

  "8" : [ 4, 8, 11, 2, 0, 9, 5, 6 ], 

  "9" : [ 4, 8, 11, 2, 0, 9, 5, 6, 1 ], 

  "10" : [ 4, 8, 11, 2, 0, 9, 5, 6, 1, 7 ], 

  "11" : [ 4, 8, 11, 2, 0, 9, 5, 6, 1, 7, 10 ], 

  "12" : [ 4, 8, 11, 2, 0, 9, 5, 6, 1, 7, 10, 3 ] 

 } 

, 

 "V7/ii" :  { 

  "1" : [ 9 ], 

  "2" : [ 9, 4 ], 

  "3" : [ 9, 1, 4 ], 

  "4" : [ 9, 1, 4, 7 ], 

  "5" : [ 9, 1, 4, 7, 5 ], 

  "6" : [ 9, 1, 4, 7, 5, 2 ], 

  "7" : [ 9, 1, 4, 7, 5, 2, 11 ], 

  "8" : [ 9, 1, 4, 7, 5, 2, 11, 3 ], 

  "9" : [ 9, 1, 4, 7, 5, 2, 11, 3, 0 ], 

  "10" : [ 9, 1, 4, 7, 5, 2, 11, 3, 0, 6 ], 

  "11" : [ 9, 1, 4, 7, 5, 2, 11, 3, 0, 6, 8 ], 

  "12" : [ 9, 1, 4, 7, 5, 2, 11, 3, 0, 6, 8, 10 ] 

 } 

, 

 "V7/bVI" :  { 

  "1" : [ 3 ], 

  "2" : [ 3, 10 ], 

  "3" : [ 3, 7, 10 ], 

  "4" : [ 3, 7, 10, 1 ], 

  "5" : [ 3, 7, 10, 1, 0 ], 

  "6" : [ 3, 7, 10, 1, 0, 8 ], 

  "7" : [ 3, 7, 10, 1, 0, 8, 5 ], 

  "8" : [ 3, 7, 10, 1, 0, 8, 5, 6 ], 

  "9" : [ 3, 7, 10, 1, 0, 8, 5, 6, 4 ], 

  "10" : [ 3, 7, 10, 1, 0, 8, 5, 6, 4, 1 ], 

  "11" : [ 3, 7, 10, 1, 0, 8, 5, 6, 4, 1, 9 ], 

  "12" : [ 3, 7, 10, 1, 0, 8, 5, 6, 4, 1, 9, 11 ] 

 } 

, 
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"V7/bVII" : { 

  "1" : [ 5 ], 

  "2" : [ 5, 0 ], 

  "3" : [ 5, 9, 0 ], 

  "4" : [ 5, 9, 0, 3 ], 

  "5" : [ 5, 9, 0, 3, 7 ], 

  "6" : [ 5, 9, 0, 3, 7, 2 ], 

  "7" : [ 5, 9, 0, 3, 7, 2, 10 ], 

  "8" : [ 5, 9, 0, 3, 7, 2, 10, 8 ], 

  "9" : [ 5, 9, 0, 3, 7, 2, 10, 8, 1 ], 

  "10" : [ 5, 9, 0, 3, 7, 2, 10, 8, 1, 4 ], 

  "11" : [ 5, 9, 0, 3, 7, 2, 10, 8, 1, 4, 11 ], 

  "12" : [ 5, 9, 0, 3, 7, 2, 10, 8, 1, 4, 11, 6 ] 

 } 

, 

 "i" :  { 

  "1" : [ 0 ], 

  "2" : [ 0, 7 ], 

  "3" : [ 0, 3, 7 ], 

  "4" : [ 0, 3, 7, 10 ], 

  "5" : [ 0, 3, 7, 10, 8 ], 

  "6" : [ 0, 3, 7, 10, 8, 5 ], 

  "7" : [ 0, 3, 7, 10, 8, 5, 2 ], 

  "8" : [ 0, 3, 7, 10, 8, 5, 2, 4 ], 

  "9" : [ 0, 3, 7, 10, 8, 5, 2, 4, 9 ], 

  "10" : [ 0, 3, 7, 10, 8, 5, 2, 4, 9, 1 ], 

  "11" : [ 0, 3, 7, 10, 8, 5, 2, 4, 9, 1, 6 ], 

  "12" : [ 0, 3, 7, 10, 8, 5, 2, 4, 9, 1, 6, 11 ] 

 } 

, 

 

 "iiº" :  { 

  "1" : [ 2 ], 

  "2" : [ 2, 8 ], 

  "3" : [ 2, 5, 8 ], 

  "4" : [ 2, 5, 8, 0 ], 

  "5" : [ 2, 5, 8, 0, 7 ], 

  "6" : [ 2, 5, 8, 0, 7, 3 ], 

  "7" : [ 2, 5, 8, 0, 7, 3, 10 ], 

  "8" : [ 2, 5, 8, 0, 7, 3, 10, 4 ], 

  "9" : [ 2, 5, 8, 0, 7, 3, 10, 4, 6 ], 

  "10" : [ 2, 5, 8, 0, 7, 3, 10, 4, 6, 9 ], 

  "11" : [ 2, 5, 8, 0, 7, 3, 10, 4, 6, 9, 11 ], 

  "12" : [ 2, 5, 8, 0, 7, 3, 10, 4, 6, 9, 11, 1 ] 

 } 

, 

 "bIII" :  { 

  "1" : [ 3 ], 

  "2" : [ 3, 10 ], 

  "3" : [ 3, 7, 10 ], 

  "4" : [ 3, 7, 10, 2 ], 

  "5" : [ 3, 7, 10, 2, 0 ], 

  "6" : [ 3, 7, 10, 2, 0, 8 ], 

  "7" : [ 3, 7, 10, 2, 0, 8, 5 ], 

  "8" : [ 3, 7, 10, 2, 0, 8, 5, 6 ], 

  "9" : [ 3, 7, 10, 2, 0, 8, 5, 6, 4 ], 

  "10" : [ 3, 7, 10, 2, 0, 8, 5, 6, 4, 2 ], 

  "11" : [ 3, 7, 10, 2, 0, 8, 5, 6, 4, 2, 9 ], 

  "12" : [ 3, 7, 10, 2, 0, 8, 5, 6, 4, 2, 9, 11 ] 

 } 

, 

 "iv" :  { 

  "1" : [ 5 ], 

  "2" : [ 5, 0 ], 

  "3" : [ 5, 8, 0 ], 

  "4" : [ 5, 8, 0, 3 ], 

  "5" : [ 5, 8, 0, 3, 7 ], 

  "6" : [ 5, 8, 0, 3, 7, 2 ], 

  "7" : [ 5, 8, 0, 3, 7, 2, 10 ], 

  "8" : [ 5, 8, 0, 3, 7, 2, 10, 9 ], 

  "9" : [ 5, 8, 0, 3, 7, 2, 10, 9, 1 ], 

  "10" : [ 5, 8, 0, 3, 7, 2, 10, 9, 1, 4 ], 

  "11" : [ 5, 8, 0, 3, 7, 2, 10, 9, 1, 4, 11 ], 

  "12" : [ 5, 8, 0, 3, 7, 2, 10, 9, 1, 4, 11, 6 ] 

 } 

, 

 "v" :  { 

  "1" : [ 7 ], 

  "2" : [ 7, 2 ], 

  "3" : [ 7, 10, 2 ], 

  "4" : [ 7, 10, 2, 5 ], 

  "5" : [ 7, 10, 2, 5, 3 ], 

  "6" : [ 7, 10, 2, 5, 3, 11 ], 

  "7" : [ 7, 10, 2, 5, 3, 11, 9 ], 

  "8" : [ 7, 10, 2, 5, 3, 11, 9, 0 ], 

  "9" : [ 7, 10, 2, 5, 3, 11, 9, 0, 4 ], 

  "10" : [ 7, 10, 2, 5, 3, 11, 9, 0, 4, 8 ], 

  "11" : [ 7, 10, 2, 5, 3, 11, 9, 0, 4, 8, 1 ], 

  "12" : [ 7, 10, 2, 5, 3, 11, 9, 0, 4, 8, 1, 6 ] 

 } 

, 

 "bVI" :  { 

  "1" : [ 8 ], 

  "2" : [ 8, 3 ], 

  "3" : [ 8, 0, 3 ], 

  "4" : [ 8, 0, 3, 7 ], 

  "5" : [ 8, 0, 3, 7, 5 ], 

  "6" : [ 8, 0, 3, 7, 5, 10 ], 

  "7" : [ 8, 0, 3, 7, 5, 10, 1 ], 

  "8" : [ 8, 0, 3, 7, 5, 10, 1, 11 ], 

  "9" : [ 8, 0, 3, 7, 5, 10, 1, 11, 6 ], 

  "10" : [ 8, 0, 3, 7, 5, 10, 1, 11, 6, 4 ], 

  "11" : [ 8, 0, 3, 7, 5, 10, 1, 11, 6, 4, 2 ], 

  "12" : [ 8, 0, 3, 7, 5, 10, 1, 11, 6, 4, 2, 9 ] 

 } 

, 

 

 

 "bVII" :  { 

  "1" : [ 10 ], 

  "2" : [ 10, 5 ], 

  "3" : [ 10, 2, 5 ], 

  "4" : [ 10, 2, 5, 8 ], 

  "5" : [ 10, 2, 5, 8, 0 ], 

  "6" : [ 10, 2, 5, 8, 0, 7 ], 

  "7" : [ 10, 2, 5, 8, 0, 7, 3 ], 

  "8" : [ 10, 2, 5, 8, 0, 7, 3, 1 ], 

  "9" : [ 10, 2, 5, 8, 0, 7, 3, 1, 6 ], 

  "10" : [ 10, 2, 5, 8, 0, 7, 3, 1, 6, 4 ], 

  "11" : [ 10, 2, 5, 8, 0, 7, 3, 1, 6, 4, 11 ], 

  "12" : [ 10, 2, 5, 8, 0, 7, 3, 1, 6, 4, 11, 9 ] 

 } 

, 

 "ii/bII" :  { 

  "1" : [ 3 ], 

  "2" : [ 3, 10 ], 

  "3" : [ 3, 6, 10 ], 

  "4" : [ 3, 6, 10, 1 ], 

  "5" : [ 3, 6, 10, 1, 0 ], 

  "6" : [ 3, 6, 10, 1, 0, 8 ], 

  "7" : [ 3, 6, 10, 1, 0, 8, 5 ], 

  "8" : [ 3, 6, 10, 1, 0, 8, 5, 7 ], 

  "9" : [ 3, 6, 10, 1, 0, 8, 5, 7, 4 ], 

  "10" : [ 3, 6, 10, 1, 0, 8, 5, 7, 4, 2 ], 

  "11" : [ 3, 6, 10, 1, 0, 8, 5, 7, 4, 2, 9 ], 

  "12" : [ 3, 6, 10, 1, 0, 8, 5, 7, 4, 2, 9, 11 ] 

 } 

, 

 

 "iiºm7/biii" :  { 

  "1" : [ 5 ], 

  "2" : [ 5, 11 ], 

  "3" : [ 5, 8, 11 ], 

  "4" : [ 5, 8, 11, 3 ], 

  "5" : [ 5, 8, 11, 3, 7 ], 

  "6" : [ 5, 8, 11, 3, 7, 2 ], 

  "7" : [ 5, 8, 11, 3, 7, 2, 10 ], 

  "8" : [ 5, 8, 11, 3, 7, 2, 10, 9 ], 

  "9" : [ 5, 8, 11, 3, 7, 2, 10, 9, 1 ], 

  "10" : [ 5, 8, 11, 3, 7, 2, 10, 9, 1, 4 ], 

  "11" : [ 5, 8, 11, 3, 7, 2, 10, 9, 1, 4, 0 ], 

  "12" : [ 5, 8, 11, 3, 7, 2, 10, 9, 1, 4, 0, 6 ] 

 } 

, 

 "iiºm7/iv" :  { 

  "1" : [ 7 ], 

  "2" : [ 7, 1 ], 

  "3" : [ 7, 10, 1 ], 

  "4" : [ 7, 10, 1, 5 ], 

  "5" : [ 7, 10, 1, 5, 3 ], 

  "6" : [ 7, 10, 1, 5, 3, 11 ], 

  "7" : [ 7, 10, 1, 5, 3, 11, 9 ], 

  "8" : [ 7, 10, 1, 5, 3, 11, 9, 0 ], 

  "9" : [ 7, 10, 1, 5, 3, 11, 9, 0, 4 ], 

  "10" : [ 7, 10, 1, 5, 3, 11, 9, 0, 4, 8 ], 

  "11" : [ 7, 10, 1, 5, 3, 11, 9, 0, 4, 8, 2 ], 

  "12" : [ 7, 10, 1, 5, 3, 11, 9, 0, 4, 8, 2, 6 ] 

 } 

, 

 "ii/bV" :  { 

  "1" : [ 8 ], 

  "2" : [ 8, 3 ], 

  "3" : [ 8, 11, 3 ], 

  "4" : [ 8, 11, 3, 6 ], 

  "5" : [ 8, 11, 3, 6, 5 ], 

  "6" : [ 8, 11, 3, 6, 5, 10 ], 

  "7" : [ 8, 11, 3, 6, 5, 10, 2 ], 

  "8" : [ 8, 11, 3, 6, 5, 10, 2, 0 ], 

  "9" : [ 8, 11, 3, 6, 5, 10, 2, 0, 7 ], 

  "10" : [ 8, 11, 3, 6, 5, 10, 2, 0, 7, 4 ], 

  "11" : [ 8, 11, 3, 6, 5, 10, 2, 0, 7, 4, 1 ], 

  "12" : [ 8, 11, 3, 6, 5, 10, 2, 0, 7, 4, 1, 9 ] 

 } 

, 

 "ii/bVI" :  { 

  "1" : [ 10 ], 

  "2" : [ 10, 5 ], 

  "3" : [ 10, 1, 5 ], 

  "4" : [ 10, 1, 5, 8 ], 

  "5" : [ 10, 1, 5, 8, 0 ], 

  "6" : [ 10, 1, 5, 8, 0, 7 ], 

  "7" : [ 10, 1, 5, 8, 0, 7, 3 ], 

  "8" : [ 10, 1, 5, 8, 0, 7, 3, 2 ], 

  "9" : [ 10, 1, 5, 8, 0, 7, 3, 2, 6 ], 

  "10" : [ 10, 1, 5, 8, 0, 7, 3, 2, 6, 4 ], 

  "11" : [ 10, 1, 5, 8, 0, 7, 3, 2, 6, 4, 11 ], 

  "12" : [ 10, 1, 5, 8, 0, 7, 3, 2, 6, 4, 11, 9 ] 

 } 

, 

 "iiºm7/bv" :  { 

  "1" : [ 8 ], 

  "2" : [ 8, 2 ], 

  "3" : [ 8, 11, 2 ], 

  "4" : [ 8, 11, 2, 6 ], 

  "5" : [ 8, 11, 2, 6, 1 ], 

  "6" : [ 8, 11, 2, 6, 1, 10 ], 

  "7" : [ 8, 11, 2, 6, 1, 10, 3 ], 

  "8" : [ 8, 11, 2, 6, 1, 10, 3, 0 ], 

  "9" : [ 8, 11, 2, 6, 1, 10, 3, 0, 7 ], 

  "10" : [ 8, 11, 2, 6, 1, 10, 3, 0, 7, 4 ], 

  "11" : [ 8, 11, 2, 6, 1, 10, 3, 0, 7, 4, 5 ], 

  "12" : [ 8, 11, 2, 6, 1, 10, 3, 0, 7, 4, 5, 9 ] 

 } 

, 
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 "bII7-N7" :  { 

  "1" : [ 1 ], 

  "2" : [ 1, 8 ], 

  "3" : [ 1, 5, 8 ], 

  "4" : [ 1, 5, 8, 11 ], 

  "5" : [ 1, 5, 8, 11, 3 ], 

  "6" : [ 1, 5, 8, 11, 3, 10 ], 

  "7" : [ 1, 5, 8, 11, 3, 10, 6 ], 

  "8" : [ 1, 5, 8, 11, 3, 10, 6, 4 ], 

  "9" : [ 1, 5, 8, 11, 3, 10, 6, 4, 9 ], 

  "10" : [ 1, 5, 8, 11, 3, 10, 6, 4, 9, 7 ], 

  "11" : [ 1, 5, 8, 11, 3, 10, 6, 4, 9, 7, 2 ], 

  "12" : [ 1, 5, 8, 11, 3, 10, 6, 4, 9, 7, 2, 0 ] 

 } 

, 

 "bVI7(no5)-It+" :  { 

  "1" : [ 8 ], 

  "2" : [ 8, 6 ], 

  "3" : [ 8, 0, 6 ], 

  "4" : [ 8, 0, 6, 1 ], 

  "5" : [ 8, 0, 6, 1, 5 ], 

  "6" : [ 8, 0, 6, 1, 5, 10 ], 

  "7" : [ 8, 0, 6, 1, 5, 10, 3 ], 

  "8" : [ 8, 0, 6, 1, 5, 10, 3, 11 ], 

  "9" : [ 8, 0, 6, 1, 5, 10, 3, 11, 7 ], 

  "10" : [ 8, 0, 6, 1, 5, 10, 3, 11, 7, 4 ], 

  "11" : [ 8, 0, 6, 1, 5, 10, 3, 11, 7, 4, 2 ], 

  "12" : [ 8, 0, 6, 1, 5, 10, 3, 11, 7, 4, 2, 9 ] 

 } 

, 

 

 "bVI7(b5)-Fr+" :  { 

  "1" : [ 8 ], 

  "2" : [ 8, 2 ], 

  "3" : [ 8, 0, 2 ], 

  "4" : [ 8, 0, 2, 6 ], 

  "5" : [ 8, 0, 2, 6, 5 ], 

  "6" : [ 8, 0, 2, 6, 5, 10 ], 

  "7" : [ 8, 0, 2, 6, 5, 10, 1 ], 

  "8" : [ 8, 0, 2, 6, 5, 10, 1, 11 ], 

  "9" : [ 8, 0, 2, 6, 5, 10, 1, 11, 3 ], 

  "10" : [ 8, 0, 2, 6, 5, 10, 1, 11, 3, 4 ], 

  "11" : [ 8, 0, 2, 6, 5, 10, 1, 11, 3, 4, 7 ], 

  "12" : [ 8, 0, 2, 6, 5, 10, 1, 11, 3, 4, 7, 9 ] 

 } 

, 

 

 "V7/bii-Ger+" :  { 

  "1" : [ 8 ], 

  "2" : [ 8, 3 ], 

  "3" : [ 8, 0, 3 ], 

  "4" : [ 8, 0, 3, 6 ], 

  "5" : [ 8, 0, 3, 6, 5 ], 

  "6" : [ 8, 0, 3, 6, 5, 10 ], 

  "7" : [ 8, 0, 3, 6, 5, 10, 1 ], 

  "8" : [ 8, 0, 3, 6, 5, 10, 1, 11 ], 

  "9" : [ 8, 0, 3, 6, 5, 10, 1, 11, 7 ], 

  "10" : [ 8, 0, 3, 6, 5, 10, 1, 11, 7, 4 ], 

  "11" : [ 8, 0, 3, 6, 5, 10, 1, 11, 7, 4, 2 ], 

  "12" : [ 8, 0, 3, 6, 5, 10, 1, 11, 7, 4, 2, 9 ] 

 } 

, 

 "iiºm7/v" :  { 

  "1" : [ 9 ], 

  "2" : [ 9, 3 ], 

  "3" : [ 9, 0, 3 ], 

  "4" : [ 9, 0, 3, 7 ], 

  "5" : [ 9, 0, 3, 7, 5 ], 

  "6" : [ 9, 0, 3, 7, 5, 2 ], 

  "7" : [ 9, 0, 3, 7, 5, 2, 11 ], 

  "8" : [ 9, 0, 3, 7, 5, 2, 11, 4 ], 

  "9" : [ 9, 0, 3, 7, 5, 2, 11, 4, 1 ], 

  "10" : [ 9, 0, 3, 7, 5, 2, 11, 4, 1, 6 ], 

  "11" : [ 9, 0, 3, 7, 5, 2, 11, 4, 1, 6, 8 ], 

  "12" : [ 9, 0, 3, 7, 5, 2, 11, 4, 1, 6, 8, 10 ] 

 } 

, 

 

 "iiºm7/ii" :  { 

  "1" : [ 4 ], 

  "2" : [ 4, 10 ], 

  "3" : [ 4, 7, 10 ], 

  "4" : [ 4, 7, 10, 2 ], 

  "5" : [ 4, 7, 10, 2, 0 ], 

  "6" : [ 4, 7, 10, 2, 0, 9 ], 

  "7" : [ 4, 7, 10, 2, 0, 9, 5 ], 

  "8" : [ 4, 7, 10, 2, 0, 9, 5, 6 ], 

  "9" : [ 4, 7, 10, 2, 0, 9, 5, 6, 1 ], 

  "10" : [ 4, 7, 10, 2, 0, 9, 5, 6, 1, 8 ], 

  "11" : [ 4, 7, 10, 2, 0, 9, 5, 6, 1, 8, 11 ], 

  "12" : [ 4, 7, 10, 2, 0, 9, 5, 6, 1, 8, 11, 3 ] 

 } 

 

} 
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Appendix D: MIDI controllers 

By column, it shows: index, name, control change controller (cc), channel, and port. 
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Appendix E: Questionnaires 

 

Demographics Questionnaire 

Thank you for participating in this study and taking the time to answer these questions. Please, fill 

out this form prior to your scheduled game experience. If you use a phone, please use landscape 

mode for convenience. 

 

1. Please select your age group 

18-21 

22-30 

31-55 

55 + 

 

 2.a Please choose the gender with whom you mostly identify: 

Woman 

Man 

Transgender 

Non-binary/non-conforming 

Prefer not to respond 

 

2.b Please select your sex: 

Male 

Female 

Intersex 

Prefer not to respond 

 

3. On average, how much time do you play videogames in a week? 

20+ hours 

16 to 20 hours 

11 to 15 hours 

6 to 10 hours 

1 to 5 hours 

Less than 1 hour 

Don’t play videogames 

 

4. What is your musical experience? Select any true statement (one or more). 

I like to hear music but it is not important in my life. 

I listen regularly to one or more selected music styles. 

I played a musical instrument in the past 

I am a music enthusiast. 

I have been getting informal music lessons (any instrument or voice) for LESS than 3 

years 
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I have been getting informal music lessons (any instrument or voice) for MORE than 3 

years 

I play a fiddle instrument (violin, viola, cello, contrabass) 

I am a self-taught musician 

I play piano or any keyboard instrument 

I sing (choir, group, soloist) 

I play a wind instrument (any wood, brass, or non-orchestral) 

I play drums or other percussion instrument 

I play a plucked string instrument (guitar, bass, harp, mandolin, ukulele, etc) 

I play an instrument not shown here 

I have been playing a musical instrument for MORE than 3 years 

I spend significant time and resources in getting the best sound quality (equipment, 

techniques, etc) 

I have written music for a game 

I majored or will major in music 

I majored or will major in audio engineering 

I majored or will major in music composition 

I am a music/sound professional 

 

5. What are the sources of your music consumption? place sliders accordingly for each category: 

Rock and/or Metal (Heavy, Dead/Speed/Black Metal, Punk, Glam, and Progressive, 

Alternative, Indie rock, and others) 

    min     = 0 

    max     = 4 

    default = 2 

    names = I avoid  it, I don't mind it , I sporadically find playlists,  it is an important  

section in my collection/playlists, I invest time and resources on it   

 

Hip hop (Alternative, Boom bap, British, Chopper, Hardcore, Freestyle, Turntablism, 

Trap music, Rap, and others) 

 

Pop (Blues, Soul, 70-80-90s House/Dance/Disco pop, Pop rock/jazz, R&B, Rock'n roll, 

Country, Ballad, Romantica, Electropop, Bubblegum, and others)  

 

Jazz (Acid, Afro-Cuban, Bebop, Cool, Dixieland, Swing, European free, Free jazz, Jazz 

blues/funk/fusion, Soul jazz, Gypsy, Big band, and others) 

 

Classical (Renascence/Baroque/Classical/Romantic/Twentieth century  orchestral music)  

 

Folkloric or ethnic music (Local/regional traditional from any country or geopolitical 

location) 

 

Tropical/Caribbean (Cumbia, Salsa, Merengue, Reggaeton, Calypso, Bachata, and others) 

 

Electronic (Ambient, Drum'n bass, EDM, Breakbeat, Techno, Electro, Dub, Electro 

fusion, House, Deep, Tribal, Industrial, Electroacoustic, Trance, Chill out, Rave, and 

others) 
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Film soundtracks (any format originated on a film/TV soundtrack) 

 

Videogame music (any format originated in a videogame) 

 

If the major source of music you usually consume is not listed, please write it below 

 

6. What is your experience with 'Shooter' games (First Person, Third Person) 

I have never played that kind of games 

I have played them, but is not my favorite 

I play them regularly, first and/or third person shooter 

The shooter is my favorite game category 

 

7. What is more important in videogame music? Rank the following music scoring features in 

your opinion by dragging the boxes up or down 

Support to gameplay mood and rhythm 

Stylistic appropriateness and consistency 

Transmission of emotional content 

Responsiveness to game events and conditions 

Diversity (more musical themes) 

Motivic variety (less repetition) 

Sound quality 

Contribution to immersion (non-distracting) 

 

8. Fill in your three (3) favorite videogames of all time. Characterize each videogame combining 

the two drop-down features. Then, select the usability you find most accurate in your experience, 

and select how significant its music is. If there's no game, please fill N/A in the first game. 

Videogame Name : text 

Videogame Feature 1: dropdown : Action, Shooter, Role-Playing, Sport, Adventure, 

Fighting, Racing, Strategy, Puzzle, Simulation, Platform: Please Select 

 

Videogame Feature 2: dropdown : Action, Shooter, Role-Playing, Sport, Adventure, 

Fighting, Racing, Strategy, Simulation, Puzzle, Maze, Side scrolling, Platform, Beat/slash 

'em up, Multiplayer online, Battle royale, Music, Tower Defense, Sandbox, Survival: 

Please Select 

 

Videogame usability: dropdown: It helps me to relax, I use it to kill time, It stimulates my 

imagination, I like adrenaline, I train my logic, I train coordination, I develop problem-

solving skills, I learn to manage resources, It's good for socializing, I like artistic 

expressions:Please select 

 

Music Importance: dropdown: I like it BECAUSE of its music, Its music is better than 

average, Its music is good, Its music is secondary , Its music can be turned off with no 

consequence: Please select 

  

Describe what you like most about the music: text  
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Gameplay Questionnaire 

 
Game music order 

A then B (Music A = g1, Music B = g2) 

B then A (Music B = g1, Music A = g2) 

 

1.a What made you stop playing the FIRST Game (g1)? (e.g., run out of time, got bored, got 

dizzy, passed the game, etc.) 

 

1.b What made you stop playing the SECOND Game (g2)? (e.g., run out of time, got bored, got 

dizzy, passed the game, etc.) 

 

2. Please, write down in your own words what is your perception of the music in the FIRST game 

(g1): 

3. Please, write down in your own words what is your perception of the music in the SECOND 

game (g2): 

 

4. In which game did you feel that the music... (++ far more, + more, g1~g2 equivalent) 

    min     = 0 

    max     = 4 

    default = 2 

    names = g1++, g1+, g1~g2, g2+, g2++ 

Provoked emotions in you  

Helped you to get more immersed    

Got you more curious about the game possibilities 

 

5. Compare the music stylistic appropriateness in the following game conditions (++ clearly more 

appropriate, + slightly more appropriate, g1~g2 equivalent) 

    min     = 0 

    max     = 4 

    default = 2 

    names = g1++, g1+, g1~g2, g2+, g2++ 

Action-danger 

Mystery-suspense 

Adventure-curiosity 

Tension-suspense, eager, edgy, uneasy 

Epic, triumphal. 

 

6.a Compare the music support to game situations. In which game did the music ADAPT using a 

deeper range of possibilities for the following situations (++clearly more possibilities , + slightly 

more possibilities, g1~g2 equivalent): 

    min     = 0 

    max     = 4 

    default = 2 

    names = g1++, g1+, g1~g2, g2+, g2++ 

Action-danger 

Mystery-suspense 

Adventure-curiosity 
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Tension-suspense, eager, edgy, uneasy 

Epic, triumphal. 

 

6.b In which game did the selected musical aspect (melody, harmony-chords, percussion) support 

better any game circumstance in general? (++ clearly superior, + slightly better, g1~g2 

equivalent) 

    min     = 0 

    max     = 4 

    default = 2 

    names = g1++, g1+, g1~g2, g2+, g2++ 

Melody 

Harmony-chords 

Percussion 

 

7. In which game the following music features performed better? (++ clearly superior, + slightly 

better, g1~g2 equivalent) 

    min     = 0 

    max     = 4 

    default = 2 

    names = g1++, g1+, g1~g2, g2+, g2++ 

Responsiveness to game events and conditions  

Smoothness in music transitions    

Variety (non-repetitive) 

Ability to transmit emotional information 

Influenced positively your gameplay performance  

Engagement (the music made you want to play longer) 

 

8. In your opinion, which game had BETTER MUSIC overall? 

Game 1 (g1) had SLIGHTLY better music 

Game 2 (g2) had SLIGHTLY better music 

Game 1 (g1) had CONSIDERABLY better music 

Game 2 (g2) had CONSIDERABLY better music 
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Appendix F: Tables of results 

Table 1. Significant within-subject effects 

Within Subjects Effects  

Cases Sum of Squares df Mean Square F p            η²p  

Emotions  1.778  1  1.778  5.447  0.033   0.254 

Residuals  5.222  16  0.326         

Performance Emotional Transmission  1.778  1  1.778  6.919  0.018   0.302 

Residuals  4.111  16  0.257         

Note.  Type III Sum of Squares 

Table 2. Significant between-subject effects 

Between Subjects Effects  

Support (general) 

Cases Sum of Squares df Mean Square F p          η²p  

group  1.000  1  1.000  4.500  0.050   0.220 

Residuals  3.556  16  0.222         

Between Subjects Effects  

Support Harmony 
             

group  0.444  1  1.000  6.400  0.022   0.286 

Residuals  1.111  16  0.069        

Note.  Type III Sum of Squares 

Table 3. Significant group interactions 

Within Subjects Effects  

Cases Sum of Squares df Mean Square F p η²p  

Curiosity  0.250  1  0.250  1.385  0.257  0.080  

Curiosity ✻ group  3.361  1  3.361  18.615  < .001  0.538  

Residuals  2.889  16  0.181         

Appropriateness Curiosity  0.028  1  0.028  0.108  0.747  0.007  

Appropriateness Curiosity ✻ group  3.361  1  3.361  13.081  0.002  0.450  

Residuals  4.111  16  0.257         

Adapt Adventure-Curiosity  0.444  1  0.444  1.882  0.189  0.105  

Adapt Adventure-Curiosity ✻ group  1.778  1  1.778  7.529  0.014  0.320  

Residuals  3.778  16  0.236        

Adapt Mystery-Suspense  0.111  1  0.111  0.348  0.564  0.021  

Adapt Mystery-Suspense ✻ group  2.778  1  2.778  8.696  0.009  0.352  

Residuals  5.111  16  0.319         

Adapt (general)  1.000  1  1.000  0.762  0.396  0.045  

Adapt (general) ✻ group  9.000  1  9.000  6.857  0.019  0.300  

Residuals  21.000  16  1.313         

Note.  Type III Sum of Squares 
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Appendix G: Media 

 

Please find the accompanying media in this Google Folder link. 

1. The Audio folder contains: 

- PAMG&AL_Studio_IIIc_Numb (5/2021): 

This piece was recorded using an old version of PAMG. Arpeggio algorithm, 

percussion ratchet, harmony speed, small interlude, and variable change for 

percussion where not implemented yet. 

- PAMG&AL_Studio VIII_In_the_Distance (2/2022): 

This piece had the Arpeggio but not the percussion ratchet, harmony speed, small 

interlude, and variable change for percussion.  

- PAMG&AL_Studio_IX_Pickaboo (2/2022): 

Same as In the Distance. 

- PAMG&AL_Studio_XII_Need_Air (4/2023): 

All current algorithms implemented. 

- PAMG&AL_Studio_XIII_Have_a_Hand (4/2023): 

Same as Have a Hand. 

2. PAMG_Recordings_Gameplay: 

A selection of several PAMG (music B) recordings from gameplay participants. The 

place in the sequence for the participant is shown by the letters A and B (if A-B the 

recording is from the second game and vice versa).  

3. The Video folder contains: 

- PAMG sample 1: 

A series of transitions recorded from The Trial game using PAMG. 

- Transitions Comparative CBI-PAMG: 

A video comparing CBI and PAMG in the same game segments. 

- PAMG UI Demo: 

A walk-through of the game and PAMG UI showing real-time interaction. 

4. The_Trial_Game_CBI_Wwise.exe: 

A Windows compiled version of The Trial game as an executable using Wwise to 

design CBI. 

5. PAMGcomp.exe: 

A Windows compiled standalone application of PAMG. To use it, request the 

activation code upon the password prompt is provided. 

 

https://drive.google.com/drive/folders/1-7XE3j7pRfcdnGP_G8zc1dKo7MSKFfDA?usp=sharing



