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Quotient Maps and Configuration Spaces of Hard Disks

O. B. Eriçok∗ and J. K. Mason†

Materials Science and Engineering, University of California, Davis, CA, 95616, USA.

Hard disks systems are often considered as prototypes for simple fluids. In a statistical mechanics
context, the hard disk configuration space is generally quotiented by the action of various symmetry
groups. The changes in the topological and geometric properties of the configuration spaces effected
by such quotient maps are studied for small numbers of disks on a square and hexagonal torus.
A metric is defined on the configuration space and the various quotient spaces that respects the
desired symmetries. This is used to construct explicit triangulations of the configuration spaces as
α-complexes. Critical points in a configuration space are associated with changes in the topology as a
function of disk radius, are conjectured to be related to the configurational entropy of glassy systems,
and could reveal the origins of phase transitions in other systems. The number and topological and
geometric properties of the critical points are found to depend on the symmetries by which the
configuration space is quotiented.

PACS numbers:

I. INTRODUCTION

The glass transition is a subject of ongoing study in
condensed matter physics. Since it is related to a slow-
ing down of the dynamics and is not accompanied by a
change in any obvious structural order parameter, it is
usually not considered to be a true thermodynamic phase
transition. Recent computer simulations [1] suggest that
the main difference between a glass and a liquid is the
volume of configuration space that is available to both
systems. The volume of configuration space relevant to a
glassy system is often supposed to be proportional to the
number of local minima of the potential energy surface.
An accurate count of these minima would then allow the
configurational entropy to be used as an order parameter
[1], and a popular strategy to enumerate potential energy
minima was proposed by Goldstein [2] and formalized by
Stillinger and Weber [3, 4]. The assumption underlying
this view of the glass transition is that each local min-
imum of the potential energy surface corresponds to a
different glassy state.

Local minima are specific examples of a larger class
of points known as critical points, roughly defined as lo-
cations where the topology of a manifold changes. The
number and distribution of critical points of the poten-
tial energy surface has also been implicated in the onset
of phase transitions, an idea known as the Topological
Hypothesis [5, 6]. Consider a system of particles with
positions q̄i and potential energy V (q̄1, . . . , q̄N ). Pre-
viously, Franzosi et al. [7–9] claimed that a change in
the topology of the equipotential energy submanifolds
Σν = V −1(−∞, ν] of the configuration space as a func-
tion of the energy ν is a necessary condition for a phase
transition to occur in systems with smooth, stable, con-
fining, and short-range interactions. Kastner and Mehta
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[10] eventually found a counterexample satisfying all the
stated conditions, but for which a phase transition occurs
without a change in topology. They then proposed new
criteria stating that a phase transition requires either (i)
the number of critical points in a narrow potential en-
ergy band to grow exponentially faster than the number
of particles, or (ii) the determinant of the Hessian matrix
to vanish for a significant fraction of the critical points.
It is significant that the Topological Hypothesis, either
the original or the revised one, has so far only been eval-
uated for systems simple enough to be treated at least
partially analytically; there appears to not yet even be
the machinery available to test the hypothesis for, e.g., a
simple fluid.

The Topological Hypothesis effectively associates the
topological changes indicated by critical points with ge-
ometric changes in the accessible region of the configura-
tion space. The specific relationship of the topology to
the geometry depends on how the configuration space is
constructed though. Initially consider fixing a coordinate
system to identify points in a spatial region X, assign-
ing labels to each of n particles, and representing every

FIG. 1: The critical points of the translation invariant config-
uration spaces of two hard disks on a hexagonal torus (labeled
on the left, unlabeled on the right). The configurations where
the disks have three connections are local minima, and those
with two connections are saddle points.
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possible configuration of this system by a point in the
product space Xn. This is not ideal from the standpoint
of physically-distinguishable configurations though, e.g.,
a single configuration of identical particles with two dis-
tinct labelings corresponds to two distinct points in this
configuration space. For specificity, consider the case of
two hard disks in the hexagonal torus, with critical points
as shown in Fig. 1. For a disk radius ρ, the accessible re-
gion of configuration space is the connected component
of configurations where every pair of disk centers is sep-
arated by at least 2ρ. The geometry of the accessible re-
gion can therefore be considered as a function of ρ, with
the configuration space being empty in the large radius
limit and the configuration space of points in the zero
radius limit. As the disk radius decreases in the labeled
configuration space on the left, two disconnected compo-
nents initially appear. A system beginning in one of these
sub-spaces cannot cross into the other unless the disk ra-
dius is further decreased, allowing the configuration to
pass through one of the three saddle points. That is, the
volume of the accessible region increases discontinuously
at this disk radius. However, there is only ever one con-
nected component in the unlabeled space on the right,
making the volume of the accessible region a continuous
function of disk radius. This has significant implications
if the configurational entropy is defined as a function of
the volume of the accessible region, since the configura-
tional entropy would then be discontinuous on the left
but not on the right.

The canonical approach is to quotient the configura-
tion space by all possible symmetries. For example, the
homogeneity of space encourages the use of center of mass
coordinates in classical mechanics [11]. When construct-
ing regression functions for the potential energy of local
atomic environments, it has been reported [12, 13] that
using a configuration space that is invariant to transla-
tions, permutations and rotations decreases the number
of training points required and increases the accuracy
of the regression. However, the example in Fig. 1 sug-
gests that quotienting by such symmetries could affect
the geometry and topology of the configuration space in
unexpected ways.

The hard disk system is often considered as a proto-
type for simple fluids [14]. It is governed by the hard disk
potential, defined to be infinite if any pair of disk cen-
ters is separated by less than the sum of their radii and
zero otherwise, and was first studied by Alder and Wain-
wright [15] almost sixty years ago. A number of studies
suggest that the hard disk system undergoes at least one
phase transition with varying packing fraction η of the
disks, with the solid and liquid phases perhaps separated
by an intermediate hexatic phase. A solid characterized
by long-range translational and orientational order is ob-
served when η > 0.72, whereas a liquid characterized
by the absence of any long-range order is observed when
η < 0.70 [16, 17]. The behavior in the 0.70 < η < 0.72
interval is a subject of ongoing controversy. This was ini-
tially believed to be a two-phase region exhibiting large

fluctuations in density, generally considered as a sign of
a first-order phase transition. Halperin, Nelson [18] and
Young [19] instead suggested that the transition could
be of Kosterlitz–Thouless type, implying the existence
of a hexatic phase in this interval. Conflicting results
continue to be reported in the literature about the order
of the transition and the phases involved. Marx et al.
[16, 17] reported a single step first order phase transi-
tion, whereas Bernard and Krauth [20] and Engel et al.
[21] reported a two step phase transition with a first order
liquid-hexatic transition and a second order solid-hexatic
transition. Given this controversy, an approach that
could identify the onset of a phase transition from more
fundamental considerations than a discontinuous change
in the value of a thermodynamic quantity could resolve
the question of what happens in the 0.70 < η < 0.72
interval, and would likely be useful in a broader ther-
modynamic context as well. While we do not claim to
complete such an undertaking here, the necessary ma-
chinery is developed and a case study suggests that such
an approach is in principle possible.

Configuration spaces of hard disks have been studied
previously [22, 23]. Ritchey [24] specifically studied the
configuration spaces of hard disks on the hexagonal torus.
They provided appropriate definitions of critical points
and critical index, and examined the equivalence classes
that critical points form under the action of translation,
permutation and discrete lattice symmetries. A high den-
sity of critical points around the packing fraction of the
solid-liquid transition indicated rapidly-changing config-
uration space topology there. This is suggestive of idea
underlying the Topological Hypothesis, i.e., that a signa-
ture of two-dimensional hard disk melting should be vis-
ible in the distribution of critical points of the potential
energy surface in the corresponding configuration space.
One area not comprehensively addressed by this earlier
work is the effect that quotienting out by the action of
symmetry groups has on the number and distribution of
the critical points.

Roughly speaking, a quotient map sends a set of points
in the base configuration space differing only by the ac-
tion of a symmetry group to a single point in the quo-
tient space. That is, the quotient map collects config-
urations with identical physical properties into equiva-
lence classes, and the quotient space describes how the
equivalence classes should be related to one another to
preserve sensible notions of similarity. The equivalence
classes studied by Ritchey [24] effectively define a set of
quotient maps and quotient spaces that are studied in
more detail here.

As far as the authors know, explicit triangulation of the
configuration spaces of hard disks, quotiented by sym-
metry groups or otherwise, has never been done before.
Our purpose here is to establish that this can be accom-
plished using topological data analysis techniques, and to
show that the resulting triangulation allows study of the
topological and geometric properties of the configuration
spaces. The approach is demonstrated for the compara-
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tively simple but nontrivial cases of two hard disks on the
square and hexagonal toruses. While these should not be
expected to resolve what happens in the 0.70 < η < 0.72
interval of the hard disk system in the thermodynamic
limit, the insights gained from these simpler systems are
envisioned as part of a larger effort to develop a more
precise formulation of the Topological Hypothesis, and
eventually to evaluate whether such a hypothesis holds
in practice.

More specifically, this article is concerned with us-
ing explicit triangulations of the configuration space to
study the action of quotient maps induced by symmetry
groups on the number and distribution of critical points.
Constructing explicit triangulations of the configuration
space and the various quotient spaces is not trivial even
for two disks, and is sufficient to demonstrate many of the
same concerns that will likely arise for more complicated
systems. Three quotient spaces of the base configura-
tion space are considered. The first quotients out only
the translational symmetry. The second adds the per-
mutation symmetry of the disk labels and the inversion.
The third adds the discrete symmetries of the lattice im-
plied by the boundary conditions. Distance functions
that respect the topology of the spaces and appropriately
identify symmetry-related points are proposed, and are
essential to the study of these spaces. Explicit triangula-
tions are constructed using the α-complex [25], and the
isometric feature mapping (ISOMAP) algorithm [26] is
used for dimensionality reduction.

Section II defines the configuration spaces of n disks
of radius ρ using the tautological function. Section III
briefly introduces concepts from classical Morse theory
that are relevant to the discussion of critical points. Sec-
tion IV provides unambiguous definition of the symmetry
groups considered here, and proposes closely-related dis-
tance functions on the base configuration space and all
of the quotient spaces. Section V defines a procedure to
map a hard disk configuration into a space with coordi-
nates that are invariant to the desired symmetry groups.
Finally, Sec. VI presents and discusses the explicit tri-
angulations of the quotient spaces as a function of disk
radius.

II. TAUTOLOGICAL FUNCTION

The configuration space of n points on a torus T 2 is
the product space of n toruses, or

Λ(n) = {x = (x̄1, . . . , x̄n) | x̄i ∈ T 2}.

Figure 2 shows the square and hexagonal toruses used
in this study; periodic boundary conditions are imposed
by identifying opposite edges of both domains. Two do-
mains are studied to help separate the specific and gen-
eral phenomena that can occur when quotienting a con-
figuration space by the action of a symmetry group. More
generally, any numerical study of the Topological Hy-
pothesis for the hard disk system will require a choice of

FIG. 2: A torus is obtained by identifying the opposite edges
of a square (left) or a hexagon (right). These can be lifted to
tilings of the plane, with the fundamental cells containing the
origin and the periodic images shown in faint outline. The
center to center distance of neighboring cells is always one.

domain, and it will be necessary to distinguish what are
consequences of that choice and what are nascent features
of the thermodynamic system.

The tautological function τ : Λ(n)→ R is defined as

τ = min
1≤i<j≤n

rij

where rij is half the geodesic distance between the centers
of disks i and j. Intuitively, τ is the maximum radius
that the disks could have without any pair overlapping
given the positions of the disk centers. Observe that the
configuration space

Γ(n, ρ) = τ−1[ρ,∞) (1)

of n hard disks of radius ρ is the superlevel set of τ , or the
set of all configurations that could accommodate disks of
radius at least ρ.

III. MORSE THEORY

Equation 1 represents the configuration space of hard
disks by means of the superlevel sets of τ . This should
allow a Morse-type theory to be used with the the crit-
ical points of τ to identify changes in the configuration
space topology. Classical Morse theory [27, 28] relates
the topology of a manifold M to the critical points of a
generic smooth function f defined on that manifold. A
critical point is defined as a point where the gradient ∇f
of the function vanishes, and has a critical index equal
to the number of negative eigenvalues of the Hessian ma-
trix there. Intuitively, the critical index is the number of
independent ways that one could move to decrease the
value of f to second order.

Let Ma = {x ∈ M | f(x) < a} denote a sublevel set
of M . The fundamental theorem of Morse theory states
that the topology of Ma and Mb are the same if the in-
terval [a, b] doesn’t contain a critical point. If it instead
contains an index-p critical point, then the topology of
Ma and Mb differ in a way that is equivalent to attaching
a p-handle to Ma; an n-dimensional p-handle is defined as
a contractible smooth manifold Dp ×Dn−p where Dp is
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FIG. 3: Representatives of the equivalence classes of critical
points for two disks on the square and hexagonal toruses. The
bottom (top) row corresponds to index-0 (index-1) critical
points. The disk radius is reported below each configuration.

the p-dimensional disk. For example, a 0-handle and a 2-
handle in two dimensions are both two dimensional disks
D0 ×D2 and D2 ×D0 (though they are attached in dif-
ferent ways), whereas a 1-handle is a rectangle D1 ×D1.
The difficulty with this approach is that τ is not a smooth
function, and in fact is not differentiable wherever the
minimum disk separation is realized by more than one
pair of disks. Our approach to handling this is explained
elsewhere [24], but briefly, τ is replaced by a smooth func-
tion E =

∑
i<j exp[−w(rij − ρ)] that converges to the

hard disk potential in the w →∞ limit. Moreover, there
is a strictly monotone transformation of E that converges
to τ in the same limit, suggesting that the critical points
of τ be identified with the limiting critical points of E.

Practically, the critical points of E for any finite w
can be found by searching for the minima of the scalar
function |∇E|2 using, e.g., the conjugate gradient algo-
rithm. Initializing the algorithm with random configura-
tions samples critical points with a weight that depends
on the construction of E. The sampled critical points
are grouped into equivalence classes containing configu-
rations related by symmetry operations. Representatives
of the equivalence classes found after millions of initializa-
tions for n = 2 are shown in Fig. 3. Ritchey [24] suggests
that every critical configuration is reproduced infinitely
many times by rigid translations (usually handled by fix-
ing one of the disks at the origin), n! times by permuting
the disk labels, and some number of times related to the
order of the plane tiling’s symmetry group.

IV. DISTANCE

The study of the configuration space geometry requires
the definition of a suitable distance function. Depending
on whether the space considered is the base configuration
space or a quotient space, the distance could be defined
between hard disk configurations or equivalence classes of
configurations for given symmetry groups. For instance,

the distance between two configurations that differ only
by a translation should be nonzero in the base configu-
ration space, but zero in the configuration space modulo
translations where they belong to the same equivalence
class.

One natural notion of distance assigns to two config-
urations p,q ∈ Λ(n) a distance equal to the sum of the
disk displacements required to transform one into the
other, or

dΛ(p,q) =

n∑
i=1

‖p̄i − q̄i‖ (2)

where ‖p̄i − q̄i‖ is the geodesic distance between the two
positions of the ith disk. Figure 4 shows these displace-
ments for two configurations sampled uniformly at ran-
dom on the base configuration spaces for the square and
hexagonal toruses. Here, dΛ is the sum of the lengths
of the vectors pointing from one disk to the other. Ob-
serve that dΛ is sensitive to symmetry operations in the
sense that applying translations, permutations or lattice
symmetries to one of the configurations changes dΛ. That
said, dΛ satisfies the requirements of a metric on the base
configuration space (identity of indiscernibles, symmetry,
and the triangle inequality) with proofs provided in Ap-
pendix A.

The configuration space Λ equipped with a metric dΛ

constitutes a metric space (Λ, dΛ). Given a metric space
and an equivalence relation ∼, there is a natural induced
metric dΛ/∼ on the quotient space Λ/∼ [29]. When the
equivalence relation additionally derives from a group of
isometries S, then the metric dΛ/S on the quotient space
Λ/S can be written as

dΛ/S(p,q) = inf
S∈S
{dΛ[p, S(q)]}. (3)

Along with Eq. 2, this provides metrics on all the quotient
spaces considered below.

Let T , P, I and L respectively be the sets of rigid
translations, permutations of the disk labels, inversion
about the origin, and symmetries of the tiling of the
plane. Formally, a configuration q is a translation of
p by t̄ if q̄i = p̄i + t̄ for all disk indices i. Given a permu-
tation π ∈ P, q is a permutation of p if q̄i = π(p̄i) for all
i. A configuration q is the inversion of p if q̄i = −p̄i for
all i. Finally, for any symmetry element L ∈ L with rep-

resentation ¯̄L, a configuration q is a symmetric copy of p

if q̄i = ¯̄Lp̄i for all i. Observe that the operations belong-
ing to all of these groups are isometric as required to use
Eq. 3. Table I shows the different symmetry groups by
which the configuration space is quotiented in this work,
and the corresponding distances between the configura-
tions in Fig. 4. The dΛ/S are computed by fixing the first
configuration and generating all copies of the second con-
figuration that only differ by the action of S/T , i.e., the
discrete symmetry elements. Finding the rigid transla-
tion T ∈ T that minimizes dΛ{p, T [S(q)]} for S ∈ S/T
is a global optimization problem that is handled by the
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FIG. 4: Distances between two configurations in the square
and hexagonal toruses. The two configurations are indicated
by filled and empty circles, and colors indicate the labelling of
the disks. Table I lists the symmetry groups used to construct
the quotient spaces.

Space Symmetries dSquare
Λ/S dHexagon

Λ/S

Λ - 0.9048 0.5376

Λ/S1 T 0.4396 0.4739

Λ/S2 T
⋃
P
⋃
I 0.2780 0.2048

Λ/S3 T
⋃
P
⋃
I
⋃
L 0.1687 0.0704

TABLE I: Isometric symmetry groups applied to the config-
uration space, and the corresponding distances between the
configurations in Fig. 4. T , P, I and L are the groups of
translations, permutations, inversions, and symmetries of the
tiling.

Tabu search algorithm [30, 31]. Finally, dΛ/S is reported
as the minimum of these distances for all S ∈ S/T .

The left column of Fig. 4 and the first row of Tab.
I show the distance between configurations in the base
configuration space Λ. The distance in Λ/S1 where
S1 = T is the infimum of dΛ over all rigid transla-
tions of one configuration with respect to the other, in-
cluding those that translate the disks across the edge
of the fundamental cell. The distance in Λ/S2 where
S2 = T

⋃
P
⋃
I is additionally minimized over permu-

tations of the disk labels (indicated by the uniform disk
color) and inversion about the origin. The distance in
Λ/S3 where S3 = T

⋃
P
⋃
I
⋃
L is additionally mini-

mized over the symmetries of the tiling, i.e., the sym-
metries of the square and hexagon. Observe that the
distance between two configuration cannot increase (and
generally decreases) as more symmetries are included.

V. DESCRIPTORS

As stated previously, the configuration space in Eq.
1 contains redundant information. Specifically, every
configuration is equivalent to multiple other configura-
tions related by the symmetry operations discussed by
Ritchey [24]. As mentioned in the Introduction, quoti-
enting the configuration space by the translation group is
so widespread that this operation is often not explicitly
mentioned. The motivation to do so is that the resulting

configuration space is much smaller than the base con-
figuration space. That said, the quotient maps are such
that it is often not clear how to explicitly parameterize
the quotient spaces, though this would certainly facili-
tate the construction of an explicit triangulation. This
section describes our procedure to do so.

Recall that the base configuration space for two disks
is the product space T 2 × T 2. Fixing the first disk at
the origin effectively quotients the space by the transla-
tion group, making Λ/S1 equivalent to T 2. This is ex-
plicitly parameterized starting with a rectangular region
with edge lengths a and b centered at the origin in the
plane. The torus formed by identifying opposite edges
of the rectangle has major radius R = a/2π and minor
radius r = b/2π. The coordinates of this torus in R3 are
given by

x′ = (R+ r cos θ) cosφ

y′ = (R+ r cos θ) sinφ

z′ = r sin θ

where φ = (a/2−x)/R and θ = (b/2−y)/r. This is used
for the visualizations of Λ/S1 below.

All other quotient spaces are initially embedded in an
infinite-dimensional descriptor space, and a numerical
approach is used to estimate the minimum number of
descriptors necessary to maintain the embedding. Given
a configuration space of n disks, the distribution f is de-
fined as a sum of Dirac-delta distributions δ(āj) located
at the disk centers āj in the a1a2-coordinate system in
Fig. 2, or

f(ā) =

n∑
j=1

δ(āj) =
∑
k̄

ck̄e
2πik̄·ā (4)

where ck̄ are the complex coefficients of the reciprocal
lattice expansion and k̄ = [p, q] for integers p and q. The
infinite set of ck̄ can be calculated using the orthogonality
of the complex exponentials as

ck̄ =

n∑
j=1

e−2πik̄·āj . (5)

ck̄ respects the periodicity of the lattice and is invariant
to permutations of the disk labels due to the commutative
property of the summation in Eq. 4. It can be shown
that translating a configuration (by adding an offset to
the āj) only changes the phase of the coefficients. This
means that the moduli of the coefficients, or

zk̄ =
√
c∗
k̄
ck̄ (6)

where ∗ denotes the complex conjugate, are a set of real-
valued descriptors that are invariant to disk label per-
mutations and rigid translations. Observe that the de-
scriptors zk̄ also respect inversion symmetry. Numerical
experiments indicate that the rank of the Jacobian of the
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map from the āj to the zk̄ is generically 2(n − 1), sug-
gesting that some number of these descriptors could be
sufficient to construct an embedding of Λ/S2.

Constructing an embedding of Λ/S3 further requires
the descriptors to be invariant to the symmetries of the
plane tiling. This is done explicitly as

ẑk̄ =
1

O(L)

∑
L∈L

zLk̄ (7)

where zL
k̄

are the descriptors zk̄ of the configuration Lx,
i.e., a copy of x acted upon by the symmetry operation
L ∈ L, and O(·) is the order of a group.

Appendix B provides a proof that not all of these de-
scriptors are independent. The invariance of the descrip-
tors zk̄ to the inversion implies that the descriptors for
indices k̄ and −k̄ of a given configuration are the same for
both the square and the hexagonal domains. The invari-
ance of the descriptors ẑk̄ to the symmetries of the plane
tiling results in more complicated relationships that are
fully described in Appendix B. The set of independent
descriptors closest to the origin in reciprocal space is al-
ways used in the analysis below.

The maps into the infinite-dimensional spaces of de-
scriptors are conjectured to be injective, i.e., to contain
all information about the original configuration up to the
desired symmetries. Since the number of disks is finite, it
is likely that a finite number of dimensions (descriptors)
is sufficient for this purpose though. The challenge then
is to find the minimum number of descriptors necessary
to maintain a proper embedding. The strategy proposed
here is to order the descriptors by distance from the origin
in reciprocal space, sequentially remove any dependent
descriptors, and numerically search for self-intersections
of the image space as a function of the number of de-
scriptors retained after truncation.

Figure 5 illustrates the idea underlying the search for
self-intersections. The full circle on the left represents the
base configuration space, with points related by a sym-
metry operation in the same color. Quotienting by the
symmetry group (folding the top half of the circle onto
the bottom half) gives the quotient space represented by
the half circle in the middle. On the right are possible im-
ages of the map of the quotient space into the truncated
descriptor space. The number of descriptors could be suf-
ficient for the image to be an embedding, as represented
on the top right. The image could be self-intersecting
if the number of descriptors is not sufficient though, as
indicated by the region in the red dashed circle. The
search for self intersections therefore involves sampling
neighborhoods of radius rd in the descriptor space and
examining the preimages of these neighborhoods. If the
radius rc of the preimage scales with rd for all such neigh-
borhoods, then the map into the descriptor space is likely
an embedding. If rc appears to be independent of rd for
any neighborhood, then this is likely due to rc measur-
ing the distance between distinct neighborhoods in the
preimage.

FIG. 5: An illustration of the self-intersection search. The full
circle on the left represents the base configuration space, with
points related by a symmetry operation in the same color.
The middle half-circle represents the space quotiented by the
symmetry group, and on the right are possible images of the
map into a truncated descriptor space. One of these preserves
the embedding, but the one that self-intersects (indicated by
the red dotted circle) does not. The self-intersection is iden-
tified by considering the diameter of the preimage of a neigh-
borhood around the intersection.

Practically, the procedure begins by sampling N con-
figurations uniformly at random in the base configura-
tion space. For each of these configurations, the first nd
descriptors that are invariant to the desired symmetries
are computed. Small neighborhoods of radius rd are then
defined about the images of each configuration in the de-
scriptor space; suppose that Nn images of other config-
urations lie within a particular neighborhood. The dis-
tances as defined in Sec. IV are computed between these
Nn configurations and the central configuration, and are
used to estimate the radius rc of the preimage in the quo-
tient space. If rc goes to zero as rd goes to zero for every
neighborhood in the image, then the quotient space is
likely embedded in the descriptor space. If not, then the
image of the quotient space is likely self-intersecting as
shown in Fig. 5, nd is increased by one, and the process
is repeated. Figure 6 shows the results of this analysis
for the quotient space Λ/S2 and nd = 2 . . . 6. It clearly
shows that the mean and standard deviations of rc go to
zero as rd goes to zero for nd ≥ 4, but not for nd ≤ 3.
We conclude that four descriptors are sufficient to embed
the quotient space Λ/S2.

VI. CONFIGURATION SPACES

The map of the quotient space into the descriptor space
can be viewed as a coordinate transformation, and the Ja-
cobian matrix of the transformation can be found. The
rank of this matrix gives the dimension of the resultant
manifold at the point of evaluation [32]. Repeated sam-
pling of the Jacobian matrix for the quotient space Λ/S2

and n = 2 disks suggests that the rank is generically
two and that the image in the descriptor space is lo-
cally a 2-manifold. However, Fig. 6 suggests that at least
four descriptors are required for the image in the descrip-
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FIG. 6: The inverse analysis for nd = 2 . . . 6 with different rd
values. The mean and standard deviation of rc approach zero
as rd decreases for nd ≥ 4, suggesting that nd = 4 is sufficient
to embed the quotient space Λ/S2.

tor space to be an embedding. Various dimensionality-
reduction techniques can be used to try to reduce this
further, enough to be able to visualize the space; the
ISOMAP algorithm [26] is used here. Intuitively, this
algorithm attempts to find a lower-dimensional embed-
ding that preserves the geodesic distances of the points
in k-nearest neighbor graphs.

Sampling hard disk configurations uniformly at ran-
dom in the base configuration space and then computing
the appropriate descriptors gives a point cloud embedded
in the truncated descriptor space. The study of the topo-
logical and geometric properties of the quotient space
would be significantly simpler with a simplicial complex
instead of a point cloud though. While there are a variety
of simplicial complexes used in the literature on statisti-
cal topology (e.g., the Vietoris–Rips [33] and Cech [34]
complexes), this work uses the α-complex [25] which is
a subcomplex of the Delaunay triangulation [35]. For-
mally, let P be a set of points in Rd and ∆k be a k-
simplex where 0 ≤ k ≤ d. Let r and c be the radius
and the center of the circumsphere of ∆k, respectively.
Given the Delaunay triangulation DT (P ) of P ⊂ Rd,
the α-complex Cα(P ) of P is a simplicial subcomplex of
DT (P ) such that a simplex ∆k ∈ DT (P ) is in Cα(P ) if
(i) r < α and the r-ball located at c is empty, or (ii) ∆k

is a face of another simplex in Cα(P ).

A persistent question with α-complexes is the appro-
priate value of α. Our intention is to find a value such
that the α-complex in the truncated descriptor space is
a reasonable approximation of the quotient space. The
heuristic used here involves a length scale analysis of the
edges in the complex as a function of α. Let µ and σ
respectively be the mean and standard deviation of the
edge lengths. For very small α values, the α-complex con-
tains only 0-simplices and a few 1-simplices and µ and
σ are very small. For large α values, the α-complex ap-
proaches the full Delaunay triangulation, simplices that
connect distant points are included, and µ and σ are
large. For intermediate α values, there is presumably a
plateau with intermediate values of µ and σ where the
geometry of the complex is relatively stable (though this

FIG. 7: The length scale analysis for Λ/S1 for the square
torus. µ and σ denote the mean and standard deviation of the
edge lengths of the α-complex. The black-dotted line shows
the lower bound estimate αe, whereas the red-dashed line
shows the α value actually used to construct the α-complex.
α-complexes for increasing α values {0.0001, 0.025, 0.5} are
shown at the bottom.

depends on the density of the sampled points). Any α
within this plateau should be a reasonable value. An al-
ternative would be to calculate the persistent homology
as a function of α [36], but this would probably not pro-
vide significantly different values from the simpler length
scale analysis used here. Figure 7 shows the result of
this length scale analysis for the quotient space Λ/S1,
and suggests that α = 0.025 is a reasonable value.

A lower bound on α is estimated as follows. Given np
points in d dimensions, the Delaunay triangulation con-

tains O(n
d/2
p ) simplices [37]. This study always samples

np = 104 points, giving nt ≈ 106 tetrahedra in the full
Delaunay triangulation of a 2-manifold embedded in R3.
Assuming that the volume of the convex hull of Λ/S1

for two disks is covered by uniform equilateral tetrahe-
dra would give αe = 21/6 × (6V/nt)

1/3 for the tetra-
hedral edge length where V is the manifold’s volume.
Since the space for Λ/S1 is constructed using the rectan-
gle [0, 1]× [0, 2], the lower bound is αe = 0.0111. As seen
in Fig. 7, this estimate is conservative.

A. Adding translation invariance

The base configuration space Λ with the function τ is
not amenable to Morse theory since the critical points of
τ are not isolated; in fact, every critical point is related
by a rigid translation to an entire critical submanifold.
Partly for this reason the usual practice is to quotient
out the rigid translations by, e.g., fixing the position of
the first disk. This apparently innocuous operation can
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FIG. 8: Critical points can be related by both translational
and permutation symmetries. This happens for both critical
points of the square, but only for the index-1 critical point of
the hexagon.

have the unexpected effect of identifying points related
by a permutation of the disk labels though. For exam-
ple, consider the index-0 critical point in the top row of
Fig. 8. Translating the disks diagonally by the transla-
tion vector t̄ = [0.5, 0.5] is equivalent to exchanging the
disk labels, but is identified with the critical point on
the left in the quotient space Λ/S1. Likewise, translat-
ing the index-1 critical point in the middle row to the
right by t̄ = [0.5, 0] is equivalent to exchanging the disk
labels. That is, the submanifold that is identified when
quotienting out by rigid translations can contain multiple
points related by permutation symmetries. This implies
that not all the equivalence classes of points related by
permutation symmetries in Λ/S1 contain n! elements, de-
spite this being widely assumed (perhaps because each of
these equivalence classes does contain n! elements in Λ).
Moreover, changing the domain of an integral from Λ/S1

to Λ/S2 is not generally as simple as dividing by a factor
of 2n! (the factor of 2 for the inversion and n! for the
permutation group), despite this being standard practice
in statistical mechanics [38, 39].

Figure 9 shows the translation-invariant configuration
space Γ(2, ρ)/S1 of two disks as a function of ρ for the
square torus (top) and hexagonal torus (bottom) as ob-
tained from the α-complex of 10 000 points. Note that
the square torus is constructed by extending the square to
a rectangle and identifying opposite edges, but this does
not affect the topological properties of the space. When
ρ > 0.25, the space Γ(2, ρ)/S1 is comprised of a single 0-
handle whereas that of the hexagonal torus is comprised
of two 0-handles. This difference should be expected on
the basis of Fig. 8 since the two index-0 critical points of
the hexagonal torus are not related by a rigid translation.
When ρ = 0.25, two and three 1-handles are connected

for the square and the hexagonal toruses, respectively.
Observe that the 1-handles provide connections between
previously distant regions of the space. For ρ < 0.25,
the space continues to grow and eventually closes in the
ρ → 0 limit. That is, the configuration with ρ = 0 acts
like an index-2 critical point, even though it is not strictly
within the space.

Figure 9 further confirms that some critical points are
related by both translation and permutation symmetries,
since the numbers of index-0 and index-1 critical points
are, e.g., 1 and 2 instead of the 2 and 4 expected for the
square torus on the basis of the symmetry group orders.
Finally, the topology of Λ/S1 is that of a torus for both
the square and the hexagon, as expected.

B. Adding permutation and inversion invariance

The descriptors zk̄ defined in Sec. V are by construc-
tion invariant to rigid translations, inversions about the
origin, and permutations of disk labels. One way to con-
struct the quotient space Λ/S2 is then to use the zk̄ as
coordinates for the descriptor space. Figure 6 suggests
that four of these are sufficient for a proper embedding
of Λ/S2. The ISOMAP algorithm is used to reduce the
dimension further by one, allowing visualization of the
quotient space, but requires a distance function to do so.
The top rows of Fig. 10 and Fig. 11 use the Euclidean dis-
tance in the descriptor space, whereas the bottom rows
use the distance defined in Eq. 3. This allows two ver-
sions of Γ(2, ρ)/S2 to be constructed for both the square
and hexagonal toruses; it is significant that the two ver-
sions are topologically identical, though the one using
Eq. 3 better preserves the expected quotient space sym-
metries; analogous to the truncation of a Fourier series,
the use of a distance based on a finite number of descrip-
tors likely introduces distortions. Regardless, Γ(2, ρ)/S2

starts with the index-0 critical points and grows without
topological change until ρ = 0.25 when the index-1 crit-
ical points appear. Unlike for Γ(2, ρ)/S1, these critical
points don’t appear as handles, but as singular points.

That critical points of the base configuration space
do not behave in the same way in the quotient spaces
should be emphasized; the index-1 critical points in Fig.
3 do appear in the Γ(2, ρ)/S2, but without any change in
the topology. Instead, the critical points correspond to
the appearance of sharp corners such that Γ(2, 0.25)/S2

cannot be described as a smooth manifold with bound-
ary, but rather is a Whitney stratified space. Finally,
that the critical points do not connect distant regions of
the space significantly affects certain geometric proper-
ties, e.g., the diameter of the space as measured by the
diffusion distance [40]. As ρ is further decreased, the
spaces continue to grow and eventually close up, indicat-
ing that the topology of the quotient space Λ/S2 is that
of a sphere rather than a torus. That all of these changes
occurred when merely quotienting out by permutations
of the disk labels suggests that the ideas motivating the
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FIG. 9: The evolution of the translation invariant configuration space Γ(2, ρ)/S1 for the square torus (top) and for the hexagonal
torus (bottom) with ρ = {0.28, 0.26, 0.25, 0.21, 0.17, 0.12}. The locations of the critical points in this space are indicated by
arrows.

Topological Hypothesis need to be explored with great
care.

C. Adding lattice invariance

The descriptors ẑk̄ defined in Sec. V are additionally in-
variant to the symmetries of the plane tiling, and are used
as coordinates for the embedding of the quotient space
Λ/S3. As before, dimensionality reduction is performed
with the ISOMAP algorithm. The top rows of Fig. 12
and Fig. 13 use the Euclidean distance in the descriptor
space, whereas the bottom rows use the distance defined
in Eq. 3. The two versions of Γ(2, ρ)/S3 are topologi-
cally identical as before. That said, the one using Eq.
3 better preserves the expected quotient space symme-
tries, with the geometric distortions introduced by using
the Euclidean distance in the descriptor space much more
pronounced than those in Fig. 10 and Fig. 11. Specifi-
cally, the version of Γ(2, ρ)/S3 constructed with the Eu-
clidean distance incorrectly collapses the region for small
ρ to a 1-manifold. Further examination suggests that the
quotient spaces constructed with Eq. 3 are the smallest
symmetric regions of their corresponding domains; the
bottom row of Fig. 12 is 1/8 of the square torus, whereas
that of Fig. 13 is 1/12 of the hexagonal torus. The corre-
sponding fundamental cells can be obtained by reflecting
the quotient spaces along an edge passing through the
ρ = 0 point and applying the appropriate rotations.

Observe that the topology of the quotient space is com-
pletely changed by quotienting out the symmetries of the
plane tiling. The index-0 critical point doesn’t corre-
spond to a 0-handle anymore, but to a single point, and
the index-1 critical points are all identified by the symme-
try operations. The ρ = 0 point appears as a single point
as well, rather than as a 2-handle as in the other quotient
spaces considered here. Finally, Λ/S3 has a boundary
and is topologically equivalent to a disk, in contrast to
Λ/S2 having the topology of a sphere and Λ/S1 that of
a torus.

VII. CONCLUSION

The configuration space is essential to the statisti-
cal mechanics of glass transitions and phase transitions,
and a more thorough understanding of the configuration
space could shed light on these phenomena. Specifically,
the distribution of critical points of the potential energy
surface could constrain the differentiability of the con-
figurational entropy, and therefore regulate the onset of
a phase transition. In an effort to simplify the analysis,
the base configuration space is often quotiented by vari-
ous symmetries, e.g., rigid translations and permutations
of particle labels. An approach to explicitly triangulate
these quotient spaces is established in this work, using
techniques from topological data analysis. Descriptors
invariant to the desired symmetry groups are proposed,
allowing the various quotient spaces to be parameterized.
Two distance functions are provided, one induced by the
quotient map and the other the Euclidean distance in the
descriptor space. These allow the construction of explicit
triangulations of the quotient spaces as α-complexes, and
thereby offer new approaches to studying the hard disk
system. Specifically, the topological and geometric prop-
erties of the spaces can be directly evaluated as functions
of disk radius. Some of the machinery developed is ex-
pected to be useful in other contexts as well, e.g., the
proposed distance functions could be used to analyze the
similarity of hard disk configurations generated by Monte
Carlo simulations.

The procedure to triangulate the configuration space is
developed and applied to the simple but nontrivial cases
of two hard disks in the square and hexagonal toruses.
The first finding is that the use of a square or hexago-
nal torus does not substantially affect the topology of the
quotient spaces except for the number of critical points of
the tautological function τ ; the overall properties of the
spaces are otherwise similar. The second finding is that
the number and behavior of the critical points depends
on the construction of the quotient space. For example,
some of the index-1 critical points are identified with one
another when the base configuration space is quotiented
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FIG. 10: The evolution of the translation, permutation and inversion invariant configuration space Γ(2, ρ)/S2 for the
square torus constructed with the standard Euclidean distance (top) and the distance in Eq. 3 (bottom) with ρ =
{0.28, 0.26, 0.25, 0.21, 0.17, 0.12}. The locations of the critical points are indicated by arrows.

FIG. 11: The evolution of the translation, permutation and inversion invariant configuration space Γ(2, ρ)/S2 for the
hexagonal torus constructed with the standard Euclidean distance (top) and the distance in Eq. 3 (bottom) with ρ =
{0.28, 0.26, 0.25, 0.21, 0.17, 0.12}. The locations of the critical points are indicated by arrows.

by rigid translations. The third finding is that the topol-
ogy and the geometry of the quotient spaces change dra-
matically as additional symmetries are quotiented out.
For example, the superlevel sets of τ can no longer be de-
scribed as manifolds with boundaries, and instead need
to be described as stratified spaces. The ρ = 0 config-
uration, which is not identified as a critical point in the
context of classical Morse theory, consistently behaves as
an index-2 critical point that closes the space.

Even though this work considers only a pair of hard
disks, extending and applying the techniques to the con-
figuration spaces of more hard disks should be concep-
tually straightforward. The main obstacle is likely to be
that the computational complexity of the distance de-
fined in Eq. 3 grows as n! (the order of the permutation
group). Another future direction could be to use the
stratified Morse theory of Goresky and MacPherson [41]
to more thoroughly analyze the effects of the quotients
maps on the topology of the spaces.
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Appendix A: Proof that dΛ is a metric

This section proves that the distance function in Eq.

2 is a metric. Let x̄ be a column vector in R2 and ¯̄P
be a projection matrix whose rows contain the unit vec-
tors of the square or hexagonal domain as in Fig. 2. By
convention, the fundamental cell is defined as the set of

points x̄ such that wj ∈ [−0.5, 0.5) for all j and w̄ = ¯̄Px̄.
Let p,q, r ∈ Λ(n) be three distinct configurations in the
following.

First, the proposed distance function satisfies the iden-
tity of indiscernibles, or dΛ(p,q) = 0 ⇐⇒ p = q.

Proof. That p = q =⇒ dΛ(p,q) = 0 is true by inspec-
tion. For the other direction, observe that dΛ(p,q) = 0
implies that ‖p̄i− q̄i‖ = 0 for all i. Consider the ith disk,
and drop the index in the following.

For the square torus in Fig. 2, the geodesic distance
reduces to

‖p̄− q̄‖ =
√
a2 + b2

a = min (|px − qx|, 1− |px − qx|)
b = min (|py − qy|, 1− |py − qy|).

That ‖p̄ − q̄‖ = 0 implies that a = 0 and b = 0. Since p̄
and q̄ are assumed to be in the fundamental cell, px, qx ∈
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FIG. 12: The evolution of the translation, permutation, inversion and lattice symmetry invariant configuration space Γ(2, ρ)/S3

for the square torus constructed with the standard Euclidean distance (top) and with the distance in Eq. 3 (bottom) with
ρ = {0.28, 0.26, 0.25, 0.21, 0.17, 0.12}. The locations of the critical points are indicated by arrows.

FIG. 13: The evolution of the translation, permutation, inversion and lattice symmetry invariant configuration space Γ(2, ρ)/S3

for the hexagonal torus constructed with the standard Euclidean distance (top) and with the distance in Eq. 3 (bottom) with
ρ = {0.28, 0.26, 0.25, 0.21, 0.17, 0.12}. The locations of the critical points are indicated by arrows.

[−0.5, 0.5) and |px − qx| < 1. Then a = 0 requires that
|px− qx| = 0, or that px = qx. b = 0 implies that py = qy
by a similar argument, or that ‖p̄i − q̄i‖ = 0 if and only
if p̄i = q̄i. Then dΛ(p,q) = 0 =⇒ p = q.

For the hexagonal torus in Fig. 2, ¯̄Ph =
[1, 0; 1/2,

√
3/2;−1/2,

√
3/2] and the geodesic distance

reduces to

‖p̄− q̄‖ = {min[a2 + b2, (1− a)2 + b2,

(a− 0.5)2 + (b−
√

3/2)2]}1/2

a = |px − qx|
b = |py − qy|.

Let ¯̄Php̄ = t̄ and ¯̄Phq̄ = w̄. Since p̄ and q̄ are assumed
to be in the fundamental cell, tj , wj ∈ [−0.5, 0.5) for all
j. The seven possible ways for ‖p̄− q̄‖ = 0 are shown in
Table II. Observe that only the first satisfies the assump-
tion that wj ∈ [−0.5, 0.5) for all j, and therefore t̄ = w̄.
This implies that ‖p̄i − q̄i‖ = 0 if and only if p̄i = q̄i.
Then dΛ(p,q) = 0 =⇒ p = q.

Second, the proposed distance function is symmetric,
or dΛ(p,q) = dΛ(q,p), by the symmetry of ‖p̄i − q̄i‖.

Third, the proposed distance function satisfies the tri-
angle inequality, or dΛ(p, r) ≤ dΛ(p,q) + dΛ(q, r).

i qx qy w1 w2 w3

1 px py t1 t2 t3

2 px − 1 py t1 − 1 t2 − 1/2 t3 + 1/2

3 px + 1 py t1 + 1 t2 + 1/2 t3 − 1/2

4 px − 1/2 py −
√

3/2 t1 − 1/2 t2 − 1 t3 − 1/2

5 px − 1/2 py +
√

3/2 t1 − 1/2 t2 + 1/2 t3 + 1

6 px + 1/2 py −
√

3/2 t1 + 1/2 t2 − 1/2 t3 − 1

7 px + 1/2 py +
√

3/2 t1 + 1/2 t2 + 1 t3 + 1/2

TABLE II: The seven possibilities that might have zero
distance for the hexagonal torus. Recall that t1, t2, t3 ∈
(−0.5, 0.5). Then, only the first one can be in the funda-
mental cell.

Proof. The triangle inequality can be explicitly rewrit-
ten as

∑n
i=1‖p̄i − r̄i‖ ≤

∑n
i=1‖p̄i − q̄i‖+

∑n
i=1‖q̄i − r̄i‖.

Observe that the equation is true if the inequality holds
separately for the ith term in each of the sums, and that
this is true since ‖·‖ is the geodesic distance.
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Appendix B: Relations between the zk̄

The descriptors zk̄ in Eq. 6 are invariant under trans-
lation.

Proof. Let p and q be two configurations that differ by
a translation ∆̄ such that p̄i = q̄i + ∆̄ for all i. Then

zk̄(p) =

∥∥∥∥ n∑
j=1

e−2πik̄·p̄j
∥∥∥∥

=

∥∥∥∥ n∑
j=1

e−2πik̄·(q̄j+∆̄)

∥∥∥∥
=

∥∥∥∥e−2πik̄·∆̄
n∑
j=1

e−2πik̄·q̄j
∥∥∥∥

=

∥∥∥∥e−2πik̄·∆̄
∥∥∥∥︸ ︷︷ ︸

1

∥∥∥∥ n∑
j=1

e−2πik̄·q̄j
∥∥∥∥

zk̄(p) = zk̄(q)

The descriptors zk̄ in Eq. 6 are invariant under inver-
sion.

Proof. Let p and q be two configurations that differ by
an inversion symmetry such that p̄i = −q̄i for all i. Then

ck̄(p) =

n∑
j=1

e−2πik̄·p̄j =

n∑
j=1

e2πik̄·q̄j = c∗k̄(q)

zk̄(p) =
√
ck̄(p)c∗

k̄
(p) =

√
c∗
k̄
(q)ck̄(q) = zk̄(q)

Finally, the descriptors ẑk̄ in Eq. 7 are not all indepen-
dent. Let x̄ and ā respectively be the coordinates of a
vector in the xy-coordinate system and a1a2-coordinate

system. Let ¯̄T be the forward transformation matrix such

that ā = ¯̄T x̄ and x̄ = ¯̄T−1ā.

Let L be the set of symmetries of the tiling of the plane,

and ¯̄L be one of the corresponding matrices written using
the xy-coordinate system. Let x̄ be the position of a disk

and x̄′ = ¯̄Lx̄ the position of the disk under the action of
L ∈ L. Then

ā′ = ¯̄T x̄′ = ¯̄T ¯̄Lx̄ = ¯̄T ¯̄L ¯̄T−1ā = ¯̄Uā

where ¯̄U = ¯̄T ¯̄L ¯̄T−1. ¯̄U is equivalent to ¯̄L, but is written
using the a1a2-coordinate system.

For the square torus, ¯̄T = [1, 0; 0, 1] and L is the di-
hedral symmetry group of order eight (D4). Equation 7
is

ẑk̄ =
1

8

8∑
j=1

z
Lj

k̄

where z
Lj

k̄
are the descriptors zk̄ of the configuration Ljx

with Lj ∈ L. The z
Lj

k̄
can instead be written as

z
Lj

k̄
=

∥∥∥∥ n∑
l=1

e−2πik̄· ¯̄Uj āl

∥∥∥∥ =

∥∥∥∥ n∑
l=1

e−2πik̄′·āl
∥∥∥∥

where k̄′ = ¯̄UTj k̄. Computing k̄′ for the elements in L for
the square torus yields

[p, q] ∼ [−p, q] ∼ [q,−p] ∼ [−q,−p] ∼ [−p,−q]
∼ [p,−q] ∼ [−q, p] ∼ [q, p].

For the hexagonal torus, ¯̄T = [1,−1/
√

3; 0, 2/
√

3] and
L is the dihedral symmetry group of order twelve (D6).
Repeating the procedure above yields

[p, q] ∼ [q, q − p] ∼ [q − p,−p] ∼ [−p,−q] ∼ [−q, p− q]
∼ [p− q, p] ∼ [−p, q − p] ∼ [−q,−p] ∼ [p− q,−q]
∼ [p, p− q] ∼ [q, p] ∼ [q − p, q].
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