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Abstract
Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the
developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric
deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB
production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity
associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-
dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures
synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a
paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the
serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosedwith
a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mecha-
nisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs.
This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans.

Keywords Axonal outgrowth . Calcium signaling . CREB . Dendritic arborization . Neuronal morphogenesis .

Neurodevelopmental disorders . Persistent organic pollutants . Ryanodine receptor

Introduction

Polychlorinated biphenyls (PCBs) are a class of 209 structur-
ally related chemicals, or congeners, comprised of a biphenyl
with a variable number of chlorine substitutions in varying
positions on the benzene rings. PCBs are broadly categorized
as dioxin-like (DL) or non-dioxin-like (NDL) congeners
based on their three-dimensional structure and affinity for
the aryl hydrocarbon receptor (AhR). DL congeners are co-
planar and bind to the AhR with moderate to high affinity,
whereas the NDL congeners are non-coplanar with negligible
to no binding affinity for the AhR (Pessah et al. 2010) (Fig. 1).

During the twentieth century, PCBs were synthesized and
sold globally as commercial mixtures (Aroclor®, Clophen®,
Phenclor®, or Kanechlor®) that varied by the percentage of
chlorine by mass. While these mixtures contained both DL and
NDL congeners, the specific congener profile varied between
Aroclor mixtures. The chemical stability of the higher-
chlorinated PCBs that predominated in these commercial mix-
tures made them desirable for numerous industrial and commer-
cial applications, and also conferred resistance to environmental
degradation. This environmental persistence combined with their
lipophilic nature resulted in significant bioaccumulation of PCBs
in food webs, including human food supplies (McIntyre and
Beauchamp 2007). The realization in the 1960s that PCBs were
pervasive pollutants (Jensen 1972), coupled with growing con-
cern regarding human cancer risks associated with PCB expo-
sure, led the United States Congress to ban PCB production in
the USA in 1979. The Stockholm Convention on Persistent
Organic Pollutants (POPs) instituted a more global ban on PCB
production in 2001 (Carpenter 2006; White and Birnbaum
2009). Following these regulatory efforts, environmental levels
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of these “legacy” PCBs present in commercial mixtures steadily
decreased. However, these higher-chlorinated legacy PCBs re-
main a risk to human health due to continued use of old equip-
ment containing PCBs, leaching of PCBs from hazard waste
sites, and off-gassing of PCBs from aging construction materials
(Consonni et al. 2012; Hopf et al. 2009; Koh et al. 2015).

Emerging evidence indicates that a significant component of
contemporary human PCB exposures includes PCB congeners
not present in Aroclors and other “legacy” commercial mix-
tures. Data collected over the last decade have documented
increasing levels of “non-legacy” or “contemporary” PCB con-
geners in various environmental media (Hornbuckle and
Robertson 2010; Hu and Hornbuckle 2010; Koh et al. 2015),
including indoor and outdoor air (Hu et al. 2008) and human
foods (Chen et al. 2017). These contemporary PCB congeners,
many of which are more lightly chlorinated than the legacy
congeners, are inadvertent byproducts of current pigment
manufacturing processes. For example, PCB 11, a lightly chlo-
rinated congener not found in Aroclors or other commercial
mixtures, is generated during the synthesis of paint pigments,
particularly azo/diarylide (yellow) and phthalocyanine (blue,
green) pigments (Guo et al. 2014; Hu and Hornbuckle 2010;
Shang et al. 2014). While congeners associated with the legacy
PCB mixtures are also detected in various pigments produced
using contemporary manufacturing processes, including the
DL PCBs 77, 114, and 123, and the NDL PCB 95, the conge-
ners detected with the greatest frequency in many pigments are
PCB 11 and other lightly chlorinated congeners (Hu and

Hornbuckle 2010). These pigments are used extensively to
not only color paint, but also inks, paper, textiles, leather, plas-
tics, and even cosmetics and food products (Gregory 2000;
Stolz 2001). Of concern, studies in the USA have documented
exposure to these lightly chlorinated PCBs in children and their
mothers living in urban and rural areas of the Midwest (Koh
et al. 2015, 2016;Marek et al. 2013). These contemporary PCB
congeners have also been detected in the serum of pregnant
women living in Northern California who are at increased risk
of having a child diagnosed with a NDD (Granillo et al. 2019;
Sethi et al. 2017a).

Here, we review the data associating PCBs with adverse
neurodevelopmental outcomes, which is a primary endpoint of
human health concern for these POPs (Berghuis et al. 2015;
Pessah et al. 2019). This review primarily summarizeswork from
our laboratory that was presented at the 10th International PCB
Workshop in Krakow, Poland. We examine the experimental
evidence demonstrating that NDL legacy PCBs and the contem-
porary pollutant, PCB 11, disrupt neuronal morphogenesis via
divergent and convergent mechanisms. We also discuss the rele-
vance of these findings to humanNDDs, and identify critical data
gaps in the PCB developmental neurotoxicity literature.

PCB developmental neurotoxicity

PCBs first gained attention as developmental neurotoxicants
following two accidental human poisonings with cooking oil

Fig. 1 Examples of non-dioxin-
like (NDL) and dioxin-like (DL)
PCB congeners. The higher chlo-
rinated, legacy NDL PCBs have >
1 ortho-substituted chlorine,
which creates steric hindrance,
thereby preventing these conge-
ners from assuming a coplanar
configuration. NDL congeners
have negligible or no activity at
the AhR. Lightly chlorinated,
non-Aroclor or “contemporary”
PCBs like PCB 11 also have no
activity at the AhR. In contrast,
DL PCB congeners typically have
≤ 1 chlorine at the ortho positions
of the biphenyl and are at their
lowest energy state when lying in
a coplanar configuration, like
dioxin. Similar to dioxin, these
congeners also have activity at the
arylhydrocarbon receptor (AhR)
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contaminated with PCBs: the Yusho incident in Japan in 1968
(Mitoma et al. 2015) and the Yu-Cheng incident in Taiwan in
1979 (Hsu et al. 1985). Infants born to women who ingested
PCB-contaminated cooking oil while pregnant had a signifi-
cantly increased incidence and severity of cognitive and psy-
chomotor deficits. While these incidents involved high-level
PCB exposures, subsequent epidemiological studies of infants
and children exposed to lower, environmentally relevant
levels of PCBs during development further suggested that
PCBs are developmental neurotoxicants (Pessah et al. 2019).
Multiple reviews have concluded that the epidemiological lit-
erature generally supports the hypothesis that exposure to
PCBs during critical developmental periods increases the risk
of adverse neuropsychological function in children, evidenced
as impairments in executive function, psychomotor function,
attention, learning, and memory (Berghuis et al. 2015; Pessah
et al. 2019; Schantz et al. 2003). More recently, in utero ex-
posure to PCBs has been positively associated with increased
risk of NDDs, including attention-deficit/hyperactivity disor-
der (ADHD) and autism spectrum disorder (ASD) (Cheslack-
Postava et al. 2013; Eubig et al. 2010; Granillo et al. 2019;
Lyall et al. 2017; Pessah et al. 2019; Rosenquist et al. 2017;
Sagiv et al. 2010).

A question of critical importance to assessing the risks of
developmental PCB exposure is whether developmental neu-
rotoxicity is generalizable to all PCB congeners. Exposure
studies suggest that NDL PCB congeners predominate in hu-
man samples, including umbilical cord blood, breast milk, and
post-mortem brain (Pessah et al. 2019). However, because a
variety of analytical techniques are used for detection of PCBs
in human tissues and often differing PCB congener profiles
are analyzed across cohorts, it has been difficult to discern
whether adverse neurodevelopmental outcomes are predomi-
nantly associated with specific subsets of PCB congeners.
Nonclinical studies, which have largely focused on the legacy
PCB congeners, suggest that NDL congeners mediate much
of the developmental neurotoxicity associated with the legacy
Aroclors and other industrial mixtures (Pessah et al. 2010;
Pessah et al. 2019; Sable and Schantz 2006; Schantz et al.
2003; Winneke 2011). The question of whether DL congeners
are directly neurotoxic to the developing brain remains con-
troversial (Pessah et al. 2019), although data from animal
models indicates that deficits in cognitive function do not
appear to be directly driven by DL PCBs (Sable and Schantz
2006). However, other nonclinical studies suggest that DL
PCBs can influence neurotoxic outcomes of NDL PCBs by
inducing expression of cytochrome P450 enzymes that subse-
quently metabolize NDL PCBs (Curran et al. 2012; Giera
et al. 2011; Klinefelter et al. 2018).

It is widely posited that PCBs alter the normal trajectory of
neurodevelopment by potentially several different mecha-
nisms, including thyroid hormone (TH) disruption, altered
γ-aminobutyric acid (GABA) signaling, or interference with

intracellular Ca2+ dynamics (Pessah et al. 2010; Pessah et al.
2019; Winneke 2011). Below, we briefly summarize the evi-
dence of PCB action on TH and GABA signaling before pro-
viding a more extensive review of the data causally linking
PCB effects on Ca2+-dependent signaling to endpoints of di-
rect relevance to human NDDS, specifically altered neuronal
morphogenesis.

PCB effects on TH and GABA signaling

The scientific premise underlying the TH hypothesis of PCB
developmental neurotoxicity is based on epidemiological ev-
idence demonstrating that marked TH deficiency interferes
with normal neurodevelopment (Rovet 2014) and data indi-
cating that developmental exposures to PCBs can decrease
serum TH levels in both human and animal models (Hagmar
2003; Martin and Klaassen 2010; Zoeller et al. 2002). There is
nonclinical evidence linking the effects of PCBs on circulating
TH levels to developmental neurotoxicity. For example, TH
supplementation was found to prevent motor and auditory
deficits induced by developmental exposure to Aroclor 1254
(Goldey and Crofton 1998). Additionally, in vitro data support
a key role for TH disruption in mediating PCB effects on
oligodendrocyte maturation and myelination (Nave and
Werner 2014).

However, recent epidemiologic studies suggest that devel-
opmental PCB exposure in humans is not consistently associ-
ated with decreased serum TH levels (Itoh et al. 2018; Li et al.
2018), and nonclinical studies suggest that the cognitive def-
icits associated with developmental PCB exposure occur in-
dependent of decreased TH levels. For example, developmen-
tal exposures to Aroclor 1254 at 8 mg/kg/day significantly
reduced serum T4 levels, but were not associated with learn-
ing and memory deficits in rats assessed using the Morris
water maze or T-maze (Zahalka et al. 2001). Conversely, de-
velopmental exposure to Aroclor 1254 at 1 mg/kg/day caused
performance deficits in the Morris water maze in the absence
of significantly decreased serum T3 or T4 levels (Yang et al.
2009). Studies examining hippocampal neurogenesis follow-
ing developmental exposure to Aroclor 1254 at 6 mg/kg/day
in the maternal diet observed no effect on neuronal progenitor
cell proliferation and survival despite a significant reduction in
maternal serum TH (Naveau et al. 2014; Parent et al. 2016).
The relevance of the doses of A1254 used in these nonclinical
studies to human exposures is suggested by data indicating
that total brain PCB levels in weanling rats exposed to
Aroclor 1254 in at 1.0 mg/kg/day in the maternal diet ranged
from 0.5 to 3.0 ng/g wet weight (Yang et al. 2009). This is well
within the range of total PCB levels measured in human post-
mortem brain, which range from approximately 66 ng/g wet
weight in samples from Greenland (Dewailly et al. 1999) to
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1.5 ng/g wet weight (range < LOD to 18.5 ng/g ww) in post-
mortem samples from the USA (Mitchell et al. 2012).

These observations do not rule out thyroid hormone–
dependent mechanisms other than PCB-induced hypothyroidism
(Pinson et al. 2016; Wadzinski et al. 2014; Zoeller 2007). For
example, gestational exposure of rats to Aroclor 1254 at 1 or 4
mg/kg/day in the maternal diet increased expression of TH-
responsive genes in the fetal cortex despite significantly reducing
maternal levels of serum TH, suggesting direct effects of PCBs
on TH receptors in the fetal brain (Bansal et al. 2005; Gauger
et al. 2004). However, others observed no effect of developmen-
tal exposure to Aroclor 1254 at 6 mg/kg/day on brain TH gene
expression or genes related to TH function (Royland and
Kodavanti 2008). Consistent with the latter observation, recent
in vitro studies of PCBs abundant in the serum of pregnant wom-
en found no significant agonistic or antagonistic interactions with
canonical TH receptors expressed in a TH reporter cell line when
exposed to these PCBs singly or in combination over a wide
range of concentrations (Sethi et al. 2019). This same study also
saw no effect of the hydroxylated or sulfated metabolites of PCB
11 and PCB 52 on TH receptor activity. These observations are
consistent with an earlier study that failed to detect a direct inter-
action between Aroclor 1254 and the THR (Gauger et al. 2004),
and screening studies of different PCBs than those tested by Sethi
et al. that used reporter cell lines expressing only the THR alpha
isoform (Pencikova et al. 2018; Takeuchi et al. 2017). In contrast,
other in vitro studies using TH reporter cell lines that expressed
only the TH receptor β1 isoform observed agonistic activity of
micromolar concentrations of hydroxylated PCB metabolites
(Iwasaki et al. 2002;Miyazaki et al. 2008). There is also evidence
that PCBs may affect TH signaling via mechanisms upstream of
the TH receptor, such as disruption of the hypothalamic-
pituitary-adrenal (HPA) axis (Zimmer et al. 2009) or modulation
of crosstalk between TH and other endocrine hormones and
nuclear receptors (Kouidhi and Clerget-Froidevaux 2018).
However, to date, there are no experimental data directly linking
PCB effect on TH signaling to effects of developmental PCB
exposure on cognitive function or on neurodevelopmental pro-
cesses of direct relevance to NDDs.

Experimental evidence suggests that lightly chlorinated NDL
PCBs may also cause developmental neurotoxicity via allosteric
modulation of the GABAA receptor. An in vitro study using
Xenopus oocytes discovered that PCB 28 and PCB 52 interact
with the GABAA receptor to potentiate GABA-induced ion cur-
rent in a concentration-dependent manner at concentrations ≥
0.3 μM or 10 μM, respectively (Antunes Fernandes et al.
2010b). PCBs 101, 138, 153, or 180 had no effect on GABA-
mediated currents, suggesting this mechanism may be unique to
lightly chlorinated PCBs. Interestingly, PCB 153 partially atten-
uated the effect of PCB 28 onGABAA receptor activity, suggest-
ing potential mixture effects. This same group also found that the
PCBs 19, 47, 51, and 100 are able to directly activate the
GABAA receptor in the absence of GABA, with modulation of

ion current depending on the chlorination pattern of the conge-
ners tested (Antunes Fernandes et al. 2010a; Hendriks et al.
2010). In vivo studies demonstrated that while developmental
exposure to PCB 52, 138, or 180 at 1 mg/kg/d during gestation
and lactation via the maternal diet caused learning and motor
deficits in rats, only PCB 52 exposure significantly increased
extracellular GABA levels in the cerebellum (Boix et al. 2010).

Collectively, the experimental data identify TH and
GABAergic signaling as potential targets of PCBs, but under-
score the importance of congener-specific effects and potential
interactions between congeners. However, TH and
GABAergic signaling may not be the most sensitive mecha-
nisms by which PCBs cause developmental neurotoxicity, as
discussed below.

NDL PCBs alter synaptic connectivity via
Ca2+-dependent mechanisms

The spatiotemporal patterning of cytoplasmic Ca2+ is tightly
regulated during normal neurodevelopment (Berridge 2006;
Brini et al. 2014). Structure-activity relationship (SAR) stud-
ies have demonstrated that NDL PCBs (Kodavanti and Tilson
2000; Yang and Kodavanti 2001), but not DL PCBs (Do and
Lee 2012), increase intracellular Ca2+ levels and alter Ca2+

signaling in primary neuronal cell cultures. As demonstrated
using pharmacologic tools that block specific Ca2+ channels,
NDL PCBs can increase levels of intracellular Ca2+ in neurons
by activating NMDA receptors or L-type voltage-sensitive
Ca2+ channels in the plasma membrane (Inglefield and
Shafer 2000;Mundy et al. 1999), and by sensitizing ryanodine
receptors (RyR) (Pessah et al. 2010) and inositol 1,4,5-tris-
phosphate receptors (Inglefield et al. 2001) in the endoplasmic
reticulum. Of these various mechanisms, the most sensitive is
RyR sensitization. Thus, long-term exposure (10–13 days) of
primary cerebellar neurons to NDL PCB 52 at μM concentra-
tions or to NDL PCBs 138, 153, or 180 at high nanomolar
(nM) concentrations disrupted the glutamate-nitric oxide-
cGMP pathway via activation of NMDA receptors (Llansola
et al. 2010; Llansola et al. 2009). In contrast, NDL PCBs
interact directly with RyRs to stabilize these channels in the
open configuration over concentrations ranging from
picomolar (pM) to nM to μM, depending on the RyR potency
of the PCB congener (Holland et al. 2017; Samso et al. 2009).
As determined using electrophysiological, biochemical, and
cellular approaches, the interaction of NDL PCBs with RyRs
exhibits a stringent SAR, including stereoselectivity (Feng
et al. 2017; Fritsch and Pessah 2013; Holland et al. 2017;
Yang et al. 2014).

Sensitization of the RyR by NDL PCBs increases the fre-
quency and amplitude of Ca2+ oscillations in the
somatodendritic domain of primary rat hippocampal neurons
in dissociated culture (Wayman et al. 2012a), and alters the
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plasticity of hippocampal CA1 neurons in acute slice culture
(Wong et al. 1997). In primary mouse cortical neurons, the
hydroxylated metabolite of the higher chlorinated NDL PCB
106 increases intracellular Ca2+ oscillations at μM concentra-
tions, and pharmacological blockade of the RyR prevents this
effect (Londono et al. 2010). In vitro studies using primary rat
hippocampal neurons demonstrate that RyR sensitization by
pM to nM concentrations of PCB 95, a NDL congener with
potent RyR activity, activates two Ca2+-dependent signaling
pathways that mediate activity-dependent dendritic arboriza-
tion and synapse formation during normal neurodevelopment
(Wayman et al. 2008; Wayman et al. 2006) (Fig. 2). In the first
signaling pathway, PCB 95 sensitization of RyRs sequentially
activates CaMKK, CaMKIα/γ, MEK/ERK, and CREB to in-
crease transcription of Wnt2, which acts as an autocrine factor
to promote dendritic growth (Wayman et al. 2012a). In the
second pathway, PCB 95 activates CREB to upregulate tran-
scription of miR132, which then suppresses translation of
p250GAP mRNA. The resulting decrease in p250GAP pro-
motes synaptogenesis, evident as increased density of dendrit-
ic spines and increased frequency of miniature excitatory post-
synaptic currents (Lesiak et al. 2014).

Several lines of evidence support a causal link between NDL
PCB effects on RyR sensitization and promotion of dendritic
growth. First, RyR-active PCBs 95 and 136 promote dendritic
arborization and synaptogenesis in primary neurons; in contrast,
PCB 66, which has physicochemical properties similar to that of
PCB 95, but lacks RyR activity, has no significant effect on
dendritic morphology (Wayman et al. 2012b; Yang et al. 2014).

Second, siRNA knockdown or pharmacological blockade of
RyRs inhibits the dendrite- and spine-enhancing activity of
PCBs 95 and 136 (Lesiak et al. 2014; Wayman et al. 2012b;
Yang et al. 2014). Third, several RyR-active PCBs are chiral,
including PCB 136. PCB 136 atropselectively sensitizes RyRs
(Pessah et al. 2009) and demonstrates the same atropselectivity
with respect to its effects on dendritic arborization in vitro (Yang
et al. 2014). RyR-active NDL PCBs promote dendritic growth in
not only rat hippocampal neurons but also mouse hippocampal
neurons, and cortical neurons derived from mice or rats (Keil
et al. 2019;Wayman et al. 2012b). Furthermore, the morphogen-
ic effects of NDL PCBs are dendrite-selective and they have not
been observed to alter axonal growth (Yang et al. 2014). In vitro
studies of PCB-induced dendritic growth have consistently re-
vealed a non-monotonic or inverted U-shaped concentration-ef-
fect relationship, with dendrite-promoting activity observed in
the pM to nM range but not at femtomolar (fM) or μM con-
centrations (Wayman et al. 2012b; Yang et al. 2014). The
biological mechanism(s) contributing to this non-linear concen-
tration-effect relationship are unknown, but are not due to cy-
totoxicity at the higher concentrations (Wayman et al. 2012b;
Yang et al. 2014).

Changes in dendritic growth in response to neural activity
(aka “experience”), are considered the biological substrate of
associative learning (Pittenger and Kandel 2003). Altered pat-
terns of dendritic arborization during development are associated
with neurobehavioral deficits in animalmodels (Berger-Sweeney
and Hohmann 1997) and in humans (Copf 2016; Penzes et al.
2011; Supekar et al. 2013). Thus, it is biologically plausible that

Fig. 2 Schematic illustrating
PCB effects on dendritic
arborization. Data available in the
peer-reviewed literature indicate
that developmental exposure to
higher chlorinated NDL PCB
congeners, exemplified by PCB
95, or the lightly chlorinated
contemporary congener, PCB 11,
enhances dendritic arborization in
pyramidal neurons of the
hippocampus and cortex. PCB 95
and 11 act on different proximal
molecular targets, but converge
on the CREB signaling pathway.
Ca2+, calcium; CREB, cAMP
response element binding protein;
RyR, ryanodine receptor; VDCC,
voltage-dependent calcium
channel
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PCB effects on dendritic arborization contribute to PCB devel-
opmental neurotoxicity. In support of this hypothesis, learning
and memory are impaired in rats exposed to Aroclor 1254 at 1,
but not 6, mg/kg in the maternal diet (Yang et al. 2009). These
behavioral deficits coincided with increased RyR activity, in-
creased basal dendritic arborization, and altered dendritic plastic-
ity in brain regions known to be important for performance in the
Morris water maze (Yang et al. 2009). This study also demon-
strated similar non-monotonic dose-response relationships for the
behavioral effects, dendritic effects and RyR sensitization of de-
velopmental Aroclor exposure. However, Aroclor effects on se-
rum levels of TH or sex steroids exhibited distinctly different
dose-response relationships (Yang et al. 2009). In a separate
study, developmental exposure to PCB 95 in the maternal diet
similarly enhanced the dendritic arborization of hippocampal
CA1 pyramidal neurons in a non-monotonic dose-related man-
ner (Wayman et al. 2012b).

PCB 11 modulates neuronal morphogenesis
via CREB-dependent mechanism(s)

In contrast to legacy NDL PCBs, there is a paucity of data
regarding the potential developmental neurotoxicity of the
contemporary lightly chlorinated NDL PCBs. This gap is sig-
nificant in light of data from recent studies indicating that
mothers who are at increased risk of having a child diagnosed
with a NDD (Hertz-Picciotto et al. 2018) had elevated levels
of lightly chlorinated PCBs in their serum (Granillo et al.
2019; Sethi et al. 2018). In one of these studies, the lightly
chlorinated contemporary congener, PCB 11, was detected in
all 241 women enrolled in the study at concentrations ranging
from 0.005 to 1.717 ng/mL. It ranked as second in abundance
to PCB 28, another lower chlorinated PCB, and together, PCB
11 and PCB 28 constituted more than 50% of the total PCB
mass in these samples (Sethi et al. 2019).

In vitro studies of primary hippocampal and cortical neu-
rons revealed that PCB 11 and its hydroxylated and sulfated
metabolites, which are found in human serum (Grimm et al.
2015; Grimm et al. 2017), significantly alter neuronal mor-
phogenesis in a species-, sex-, and brain region–specific man-
ner (Sethi et al. 2017b; Sethi et al. 2018). Similar to the legacy
NDL PCBs, PCB 11 enhanced dendritic arborization; howev-
er, in contrast to the legacyNDLPCBs, PCB 11 also promoted
axonal growth. PCB 11 elicited these morphogenic effects at
concentrations as low as 1 fM (approximately 0.22 ng/mL),
which is within the range of PCB 11 concentrations observed
in the serum of pregnant women. The data from the Sethi et al.
(2018) study suggested PCB 11 is more potent than the higher
chlorinated legacy congeners PCB 95 or PCB 136 in promot-
ing dendritic arborization, since the lowest concentrations at
which these legacy congeners significantly enhanced dendritic
arborization (low pM range) were an order of magnitude

above the lowest observed effect level for PCB 11. These
studies also suggested that the sensitivity to the morphogenic
effects of PCB 11 and its metabolites varied between neuronal
cell types. For example, the axon-promoting activity of OH-
PCB 11 and the dendrite-promoting activity of PCB 11 were
significant at lower concentrations in cortical than hippocam-
pal neurons, whereas PCB 11–induced axonal growth was
significant at lower concentrations in hippocampal neurons
relative to cortical neurons. In general, the PCB 11 sulfate
metabolite was more potent than either PCB 11 or hydroxyl-
ated PCB 11, suggesting that PCB 11metabolism is as much a
toxifying as detoxifying mechanism.

Mechanistic studies of PCB 11–induced dendritic growth re-
vealed that PCB 11 does not modulate dendritic arborization via
interaction with canonical molecular targets of legacy DL or
NDL PCBs. Specifically, PCB 11 did not activate the AhR
(Sethi et al. 2018), the TH receptor (Sethi et al. 2019), or the
RyR (Holland et al. 2017). Moreover, pharmacologic blockade
of AhR, THR, or RyR did not inhibit the dendrite-promoting
effects of PCB 11 (Sethi et al. 2018). Pharmacologic block of
L-type Ca2+ channels or the IP3 receptor also had no significant
effect on dendritic growth in primary neurons exposed to PCB 11
(Sethi et al. 2018). While PCBs have been shown to increase
intracellular levels of reactive oxygen species (ROS) (Winneke
2011), and ROS is known to modulate dendritic arborization
(Chandrasekaran et al. 2015), antioxidants did not inhibit PCB
11–induced dendritic growth in vitro (Sethi et al. 2018).
However, siRNA knockdown or pharmacologic inhibition of
CREB significantly decreased PCB 11–induced dendritic arbor-
ization (Sethi et al. 2018) (Fig. 2). The molecular initiating
event(s) of PCB 11–induced dendritic growth upstream of
CREB activation remain to be determined.

While it is yet unknown whether developmental exposures
to PCB 11 similarly modulate dendritic arborization in vivo,
these findings suggest that the higher chlorinated legacy NDL
PCBs and the lightly chlorinated contemporary PCB conge-
ners, at least as exemplified by PCB 11, have shared (dendrite-
promoting) and unique (axon-promoting) effects on neuronal
morphogenesis (Table 1). Interestingly, while the mecha-
nism(s) mediating the dendrite-promoting activity of legacy
NDL PCBs and contemporary lower chlorinated PCBs con-
verge on CREB signaling, the upstream signaling events that
link PCBs to CREB activation are divergent with legacy NDL
PCBs triggering CREB-dependent signaling via RyR-
dependent mechanisms and PCB 11 activating CREB via
RyR-independent mechanisms (Fig. 2 and Table 1).

The relevance of PCB effects on neuronal
morphogenesis to human NDDs

The organizational patterning of synaptic connections that occurs
during development is a critical determinant of cognitive function
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later in life (Copf 2016). Synaptic connectivity is determined in
part by the rate and extent of dendritic and axonal growth
(Libersat and Duch 2004; Scott and Luo 2001), and disruptions
in the timing or magnitude of axonal and dendritic growth can
perturb the pattern of connections formed between neurons
(Berger-Sweeney and Hohmann 1997). Moreover, altered den-
dritic and axonalmorphology are consistent pathologic correlates
of the clinical symptoms associated with diverse NDDs (Copf
2016; Engle 2010; Penzes et al. 2011; Supekar et al. 2013). Thus,
synaptic connectivity likely represents a convergence point in
pathogenic mechanisms that confer NDD risk (Stamou et al.
2013) (Fig. 3).

The convergence of legacy and contemporary NDL-PCBs on
CREB signaling has important implications in the context of
PCB developmental neurotoxicity (Fig. 2). CREB is a key tran-
scriptional regulator of dendritic growth in response to diverse
stimuli, including activity (Redmond et al. 2002; Wayman et al.
2006). Therefore, the inappropriate activation of this transcrip-
tional pathway as a result of PCB exposure may have significant
functional consequences in the developing brain, including cor-
tical overgrowth and hyperconnectivity, which are phenotypes
observed in ASD and other neurodevelopmental disorders
(Stamou et al. 2013). Consistent with this suggestion, mutations
in CREB and/or CREB signaling are implicated in the pathogen-
esis of numerous NDDs (Bu et al. 2017; D’Andrea et al. 2015;
NgounouWetie et al. 2015; Todd andMack 2001). These obser-
vations, together with clinical evidence indicating that altered
dendritic complexity is a common pathologic feature of diverse
NDDs (Alaerts et al. 2016; Copf 2016; Supekar et al. 2013),
suggest the human relevance of experimental evidence that de-
velopmental PCB exposure alters the dendritic complexity of
developing neurons.

Data gaps and directions for future study

A critical data gap is the paucity of data regarding the develop-
mental neurotoxicity of the contemporary non-Aroclor PCB
congeners. Evidence of increasing human exposure to these
congeners (Hornbuckle and Robertson 2010; Hu and
Hornbuckle 2010; Koh et al. 2015; Sethi et al. 2019) under-
scores the need to address this data gap. There is also a need to
determine which of the persistent legacy NDL PCBs to which

humans are exposed constitute the greatest risk to the develop-
ing human brain, and to identify genetic polymorphisms that
modify individual susceptibility to PCB developmental

Fig. 3 Factors that influence the risk and/or severity of NDDs.
Accumulating evidence indicates that individual risk for NDDs is
determined by a complex interplay of genetic risk factors that confer
susceptibility, exposure to environmental stressors, including neurotoxic
chemicals, and the timing of environmental exposures. Exposures that
occur during critical neurodevelopmental windows pose a greater risk
to the developing brain

Table 1 Comparison between
legacy and contemporary PCB
effects and mechanisms

Parameter PCB 95 PCB 11

Present in serum of women at risk for having a child with a NDD ✓ ✓

Effects on dendritic arborization in primary neurons of the developing brain ↑ ↑

Effects on axonal outgrowth in primary neurons of the developing brain No effect ↑

Ryanodine receptor activity +++ Negligible activity

CREB-dependent effects on dendritic growth ✓ ✓

CREB, cAMP response element-binding protein
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neurotoxicity. Given recent data indicating that hydroxylated
and sulfated PCB metabolites are also potent drivers of neuro-
toxic effects, further research into PCB metabolic fate and the
actions of PCB metabolites is also warranted. In light of data
documenting significantly elevated levels of airborne PCBs,
including PCBs 11 and 95, in schools (Thomas et al. 2012)
and outdoor environments (Hu et al. 2008), another critical data
gap is the lack of information regarding the relative neurotoxic
impact of diet vs. inhalation as routes of PCB exposure
(Ampleman et al. 2015; Lehmann et al. 2015). Addressing
these data gaps will be critical for rigorously assessing the risks
that PCBs pose to the developing human brain.

To address these data gaps, it will be important to imple-
ment a number of experimental approaches. First is an urgent
need for comprehensive analyses of the PCB congener profile
that comprises current human exposures. Epidemiological
studies need to move away from the typical practice of mea-
suring a single or small subset of PCB congeners as indicators
of cumulative PCB exposure (Longnecker et al. 2003).
Further, many human studies have focused on DL congeners,
despite evidence from animal studies suggesting that DL
PCBs are likely not responsible for many of the cognitive
and behavioral abnormalities observed in humans (Bernhoft
et al. 1994; Bushnell and Rice 1999; Schantz et al. 1996).
Future human studies should endeavor to quantify all 209
PCB congeners or at least include an increased number and
wider variety of PCB congeners in exposure assessments to
gain a more comprehensive understanding of contemporary
human exposures. Human studies should also leverage emerg-
ing mechanistic data from experimental studies to stratify co-
horts by relevant genetic factors that may modify risk of PCB
developmental neurotoxicity (Granillo et al. 2019).

Nonclinical studies need to move away from using indus-
trial Aroclor PCB mixtures because these do not model con-
gener profiles relevant to current human exposures (Frame
et al. 1996; Koh et al. 2015; Longnecker et al. 2003; Sethi
et al. 2018; Sethi et al. 2019). Rather, researchers should use
PCB congeners and mixtures that mimic the contemporary
congener compositions and levels observed in human sera,
placenta, and/or cord blood to better model PCB exposures
in the gestational environment. There is also need for nonclin-
ical studies that establish causal relationships between molec-
ular, cellular, and behavioral endpoints. Behavioral assess-
ments should focus on specific domains previously identified
as targets of PCB exposure in epidemiological studies, which
are primarily executive function and cognitive flexibility.
In vitro and alternative models should be developed to more
rapidly screen legacy and contemporary PCB congeners, both
individually and as mixtures, to establish relative potencies
and mechanistic convergence and divergence. Results from
such screens will be useful for prioritizing PCB congeners to
test in animal models and will inform interpretation of results
generated using PCB mixtures in vivo.

Conclusions

PCBs remain a continuing environmental health concern, al-
though recent data suggest that the profile of PCB congeners of
concern may have shifted over the past several decades.
Contemporary human exposures are increasingly predominated
by legacyNDLPCBs and lightly chlorinated non-Aroclor PCBs.
Mechanistic data indicate that NDL PCBs alter normal trajecto-
ries of neurodevelopment by modulating dendritic arborization,
while recent in vitro data suggest lightly chlorinated contempo-
rary PCBs influence neurodevelopment bymodulating both den-
dritic and axonal growth. Interestingly, while the proximal sig-
naling events mediating the dendritic effects of these two groups
of PCBs are divergent, with NDL PCBs enhancing dendritic
growth via RyR-dependent mechanisms, and PCB 11 influenc-
ing dendritic growth via RyR-independent mechanisms, both
converge on CREB signaling. These observations suggest that
CREB signaling may be a relevant target for stratifying epidemi-
ological studies of PCB developmental neurotoxicity, and for
setting up high throughput screens using CREB signaling as
the relevant outcome to identify those PCBs that pose the greatest
risk to the developing human brain.
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