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ABSTRACT OF THE DISSERTATION

Generalized Span Categories in Classical Mechanics and the Functoriality of the Legendre
Transformation

by
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Dr. David Weisbart, Co-Chairperson

Span categories provide an abstract framework for formalizing mathematical models of certain
physical systems. The categories appearing in classical mechanics do not have pullbacks and this
limits the utility of span categories in describing such systems. We introduce the notion of span
tightness of a functor ¥ from categories € to ¥’ as well as the notion of an # -pullback of a
cospan in ¥. If F is span tight, then we can form a generalized span category Span(%, ¥ ) and
circumvent the technical difficulty of ¢ failing to have pullbacks. Composition in Span(%’, ¥ ) uses
¥ -pullbacks rather than pullbacks. We introduce the augmented generalized span categories LagSy
and HamSy that respectively provide a categorical framework for the Lagrangian and Hamiltonian
descriptions of certain classical mechanical systems. The morphisms of LagSy and HamSy contain
all kinematical and dynamical information about these systems and composition of morphisms
models the construction of systems from subsystems. A functor from LagSy to HamSy translates
from the Lagrangian to the Hamiltonian perspective and is a categorical analog of the Legendre

transformation.



Contents

List of Kigures

(I__Introduction|

2 Background|
2.1 Differential GEOMEIIY| ....c.uuueeti et e
2.2 Classical MechaniCS |........ueueeiiii i e
2.3 Category Theory|.......cooouuiii i e

(3 Pullbacks and Span Categories|
BT Span Cat@@OTICS|. . . ...ttt ettt ettt e e et et
[3.2  Examples of Categories that have Pullbacks| .........................l L.
3.3 Some Categories that do not have Pullbacks| .................o
|3| I Di I dszc:i llgzt lla!c I ullbag]s:il ---------------------------------------------------------------

[4 ¥ -Pullbacks, Span Tightness, and Generalized Span Categories|
4.1  Composition by ¥ -Pullbacks and Span Tightness|...............oooviiiiiiiiiieniiin..
4.2 The Generalized Span Category| ........oovtiuuiinetiiii i
| I.:E :itl ugtul Q:s S!ll t]lQ I itzcl Qd [ lszdugu .........................................................
1 4 0

[ Lagrangian and Hamiltonian Systems|
[5.1  Systems as Isomorphism Classes of Augmented Spans|..................................
5.2 Paths of MOGON| .....cooiiiiiii e
[5.3 ¥ -Pullbacks of SympSurj and RiemSurjin Diff| ...............ccoiiiiiiiiii i,
[6 Physical Systems as Morphisms|
[6.1 The Categories HamSy and LagSy|................oooi
6.2 The Legendre Functor] ...
[6.3  Motivating Example| . ... ...

Xi

xii

20
22

25
25
27
29
33

41
41
43
49
66

68
68
70
71



List of Figures

L1 Three MasSes|. . ...ooeeiiiiit ittt 2
[1.2° Many Masses|.....ooiiiiiiiittt ittt ettt 2
(1.3 Three Point Masses|.......ooviiitiiiiiii e 3
[1.4  Three Mass Phase Space|...........c.ooiiiiiiiiiii i e i 4
BT The Span S| .....cooiii e e 26
[3.2° The Cospan C|.......ooiiiiiiiiiit et e et eeeaeeaans 26
3.3 The Pairing of Swith C| .........o i 26
[3.4 A Span Morphism from S t0 Q. ........ovuuuiiii 26
[3.5 Pullback Diagraml....... ... i 27
3.6 Two Point Manifold Contradiction|.............oooiiiiiiiiiiiiii 33
3.7 Transverse and Nontransverse CUIVeS| ..........oovuuiiiiiiiieaiiiiiiiiiiiieeeeeaaaans 34
3.8 Transverse and Nontransverse Surfaces|. ..., 35
3.9 DisaBijection].........oooiiiiiiiiti e 39
d.1  Composing S and Q along Pl......couuuuniinuii e 42
4.2 The Composite S op O ..ooiiiiiiiitiii e 42
4.3 Isomorphic Compositions of Isomorphic Spans|..............ccoooiiiiiiiiii ... 45
4.4 The Composite (S 0p1 O) 0p2 T|.eeennriieiiit ettt e eaaas 46
.S ComPArator SPAN| .. ...ttt ettt ittt 47
.6 Composing S with Idg, | ..o 48
.7 The Composite S og Idg,|.......coooi 48
4.8 Table Of CategOries] . ... couuunte it e 49
[6.1  Associativity of Augmented Span COMPOSItION]. ......vuuureieeinnineeeeinineeeeennnnn.. 78
[6.2  Composition of d f with the Musical Isomorphisms]|............................oooit 81
|6.3  Configuration Spaces for Three Point Masses|...........oovvveiiiiiiiiiiiiiiiiiiiinnn 89

xii



Chapter 1

Introduction

Category theory provides a formalism for unifying ideas across a wide spectrum of disciplines.
The last few decades have seen rapid growth in the application of category theory to the study of
systems and the emergence of applied category theory as a field of study. The recent book [31] is an
introductory text for the general scientific community in which Spivak discusses some applications of
category theory. Baez and Dolan apply category theory to study topological quantum field theory in
[S]. Fuchs, Runkel, and Schweigert discuss categorification in the context of conformal field theory
in [20] and give many references to work in this direction. Brunetti, Fredenhagen and Verch use
category theory in [14] to study model-independent descriptions of quantum field theories. Thaule
discusses open and closed strings in [32]], building on the earlier work [4] of Baas, Cohen and Ramirez.
Recently, Baez, Fritz, and Leinster gave a categorical interpretation of entropy in [[7], demonstrating
a connection between category theory and information theory.

A prominent program in applied category theory is to describe systems as the morphisms of
an appropriate category, where the composition of morphisms describes the way in which systems
compose to form more complicated systems. Category theory has found applications in the study
of quantum theory and information theory, but there is a striking absence in the literature of its
application in the study of classical mechanics. We introduce an abstract framework for classical
mechanics that makes precise some physical heuristics and permits the Legendre transformation to

be viewed as a functor from a category of Lagrangian systems to a category of Hamiltonian systems.



Since the study of classical systems involves solving differential equations that describe paths on
general Riemannian and symplectic manifolds, it is in some ways more complicated than the study
of the quantum counterparts, at least in the setting of flat spacetimes. This thesis investigates some
previously unidentified structures that appear critical to the study of classical mechanics in an abstract
setting and that promise more generally to significantly enlarge the scope of application of categories

to the study of complicated systems.

SUTIT0IITIIiuInITe

Figure 1.1: Three Masses

Figure [I.1] represents a system with three point masses attached by springs, where all motion
is along the same line. Figure [I.2]represents the more complicated system formed by attaching
additional point masses and springs in series. View a pair of point masses attached by a spring as a
fundamental component, or subsystem, of one of these more complicated systems. The spring-mass
subsystems are open systems in the sense that both forces internal to the subsystem and external forces
of the larger system govern the dynamics of the subsystems. A study of the combined spring-mass
system of Figure[I.2] motivates our current investigation. The system has a state space that is either
the tangent space to a Riemannian manifold in the Lagrangian description or is a symplectic manifold

in the Hamiltonian description [2].

Figure 1.2: Many Masses

A path in the state space models the path of motion of each of the masses. Mappings from the
state space of the combined spring mass system to the state spaces of the subsystems should permit
the state spaces of the subsystems to be viewed locally as embedded Riemannian or symplectic
submanifolds of the state space of the combined system, where the Riemannian or symplectic
structures are consistent with that of the larger manifold. This restriction on the admissible mappings

between the state spaces implies that a Lagrangian description involves objects and morphisms in a



category of Riemannian manifolds with surjective Riemannian submersions and that a Hamiltonian
description involves objects and morphisms in a category of symplectic manifolds with surjective
Poisson maps.

Figure[I.3]depicts a linking of subsystems to form a larger system, where two spring-mass systems
combine by identification of a center mass given by the right mass of the spring-mass system on the
left and the left mass of the spring-mass system on the right. Figure[I.4]depicts the state spaces of the
systems in Figure [1.3|from a Hamiltonian perspective. Each of the maps that Figure|1.4|depicts is a
canonical projection. At the lowest level in Figure[I.3]are the three distinct masses. View each mass
as moving along a line where the forces acting on each mass are external to the system. Each system
has T*R, the cotangent bundle to IR, as its state space. At the middle level, view the system as two
spring-mass systems, each with a state space given by 7*IR? and with an external force acting on one
of the masses. The total system is a system with three masses interacting in series, where connecting
springs mediate the interaction of the masses. The state space for this system is a fibered product of

two copies of the symplectic manifold 7*R? over the manifold 7*RR.

&§0080000e LD
° ° °
Figure 1.3: Three Point Masses

The fibered product is a six dimensional symplectic manifold, whereas the cartesian product
of the state spaces is an eight dimensional symplectic manifold. While the fibered product is an
embedded submanifold of the product, it will not be a symplectic submanifold when endowed with
the symplectic structure that it requires to be the state space of the given physical system. The
Lagrangian setting is similar, but uses tangent bundles rather than cotangent bundles as the state

spaces. The fibered product together with its canonical projections appear to encapsulate the physical
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T*IR/ \T*]R/ \T*R

Figure 1.4: Three Mass Phase Space

meaning of identifying the right mass of the left spring-mass system with the left mass of the right
spring-mass system. Both Dazord in [[17] and Marle in [27] had similar insights with respect to
studying constrained systems, which are similar to the systems given above in the sense that the
masses that connect our systems can be thought of as a geometric constraint. In fact, Dazord explicitly
uses fibered products to construct the configuration and state spaces for certain constrained systems.

Suppose that X, Y, and Z are sets and f and g are functions that respectively map X and Y to the

set Z. Denote by px and py the respective canonical projections
px: XXY > X and py: X XY Y.

Denote by mx and my the respective restrictions of px and py to the fibered product X X Y, the
subset of X X Y consisting of all elements on which f is equal to g. Maintain this notation henceforth.
The fibered product in the category Set, whose objects are sets and whose morphisms are functions,
has certain universal properties to be studied in Section[3.2] The connection between these universal
properties and the construction of span categories for modeling classical mechanical systems is a
central theme of the current investigation.

A span in the category Set is a pair of functions with the same source. The fibered product
together with the span (7, y) gives a prescription for composing certain spans in Set. Bénabou
proved in [[12] that if ¥ is a category with pullbacks then there is a bicategory, Span(%’), whose
objects, morphisms, and 2-morphisms are the respective objects, spans, and maps of spans in €. To

avoid unnecessary complications, view this bicategory as a category, a span category, by ignoring



the bicategory structure and taking isomorphism classes of spans in %, to be defined in Section
as the morphisms. Fibered products define a composition of isomorphism classes of certain spans in
Set that seems strikingly similar to the way in which classical mechanical systems appear to compose.
Earlier works have used span and cospan categories to study the composition of physical systems.
For example, Baez and Pollard used cospans in [9]] to study reaction networks. Haugseng used spans
to study classical topological field theories in [22]]. In [19]], Fong developed the notion of a decorated
cospan, broadening the potential use of cospan categories in the modeling of physical systems.

Professor John Baez initiated the current line of research by proposing that the study of classical
mechanics might have a foundation in category theory, in particular, that classical systems could
be morphisms in an appropriate span category, where composition of morphisms using fibered
products would describe the composition of physical systems. An abstract formalization of classical
mechanics should deepen our understanding of the foundations of classical mechanics and may
also offer a way to automate the modeling of classical mechanical systems. It also promises to
provide model independent descriptions of classical mechanical systems. The current study requires
substantial extensions of known tools in category theory. Modeling classical mechanical systems
necessitates working with spans in categories other than Set, where the fibered product lacks the
universal properties that it has in Set.

Chapter [5| defines an augmented span, a physical system, and an isomorphism class of augmented
spans. The language and approach it employs is arguably nonstandard from a category theorist’s
perspective but we have found it both helpful for presenting the results to non-specialists in category
theory and for use in practical applications. An isomorphism class of augmented spans that can
describe a physical system from either a Lagrangian or Hamiltonian perspective encodes all observable
information in a physical system. It is natural to view a physical system as an isomorphism class
of spans in the category of Riemannian manifolds with surjective Riemannian submersions in the
Lagrangian setting or as an isomorphism class of spans in the category of symplectic manifolds
with surjective Poisson maps in the Hamiltonian setting. Section[5.3|makes use of Example [3.3.4]
to demonstrate that neither of these categories has pullbacks, and so the work of Bénabou does not

apply. For this same reason, it does not appear that the work of Fong can be modified from its cospan



setting to a span setting that is useful to the present discussion. Denote by Diff the category whose
objects are smooth manifolds and whose morphisms are smooth functions. Since two submanifolds
of a given manifold may not intersect transversally, the fibered product of manifolds is not necessarily
a manifold and so Diff does not have pullbacks. This technical difficulty that Spivak encounters in
[30] parallels a central technical difficulty of the thesis. Spivak uses a homotopy pullback rather than
a pullback because the fibered product in his setting is not necessarily a smooth manifold. The fibered
products appearing in the thesis will necessarily be smooth manifolds, but the universality condition
of a pullback fails. Spivak’s approach does not seem applicable to the current setting because the
categories that appear in classical mechanics have more structure than Diff and the study of classical
mechanical systems requires some preservation of the additional structure.

Section defines an 7 -pullback of a cospan in 4 and the span tightness of the functor ¥,
as well as the composite of two spans along an ¥ -pullback. While the notion of an ¥ -pullback
generalizes the notion of a pullback in a way that is sufficient for the current setting, without an
additional condition on ¥ it is not enough to provide a method for composing isomorphism classes of
spans. Section 4.2| proves that if the functor # is span tight, then there exists a category Span(%’, ¥ )
whose objects are the objects of ¥ and whose morphisms are isomorphism classes of spans in
%¢. Composition in this generalized span category is defined using ¥ -pullbacks and appears to
depend on the functor 7. Generalized span categories determine the kinematical properties of a
physical system in the Hamiltonian setting and the free systems in the Lagrangian setting. We use the
notion of an augmentation of a span in order to construct, in Chapter 6] the augmented generalized
span categories HamSy and LagSy. In the Hamiltonian setting, the augmentations determine the
dynamical evolution of the system. In the Lagrangian setting, the augmentations determine the
potentials of the physical systems, hence their dynamics as well. The categories LagSy and HamSy
provide a framework for studying physical systems respectively from the Lagrangian and Hamiltonian
perspectives. Section introduces a functor . from LagSy to HamSy that translates from the
Lagrangian to the Hamiltonian perspective, an analog of the Legendre transformation in a category
theoretic setting. The augmentations we introduce greatly generalize certain aspects of Fong’s work

in [[19]. Further generalization of augmentations should more completely generalize the decorations



of [[19]. These categories provide a precise framework for describing certain complicated physical
systems as composite physical systems with open constituent parts that are each easier to model than
the original system. While this section works out a basic example, future work will more thoroughly
address applications to more complicated systems.

This thesis is based on and heavily borrows from [[10]] and [33]].



Chapter 2

Background

2.1 Differential Geometry

Smooth Manifolds

Refer to [8] and [23]] as standard references for smooth manifold theory. We present some well known

definitions in order to explicitly establish language and notational conventions.
Definition 2.1.1. An m-dimensional manifold is a triple (M, Tas, Apr) such that
(1) M is a set;
(2) Ty is a topology for M that is Hausdorft and second countable;

(3) Apy is an atlas, a collection of homeomorphisms such that the domain of each element of A,
is an open subset of M, the collection of domains of the elements of A, form an open cover

for M, and the range of each element of Ay, is an open subset of R™.

If Ay is maximal with respect to the property that for any ¢ and ¢ in Ay, that have intersecting
domains, the transition function ¢ o ' and its inverse are of class C" (r-times continuously
differentiable), then M is a C"—manifold. Only the smooth case, when r is infinity, is relevant to the

present work. Refer to the elements of Ay as coordinates and refer to their domains as charts.



It is customary to denote by M a manifold (M, Tps, Apr) and we generally follow this convention,
except when it is important to explicitly distinguish between the manifold, the topological space
associated to the manifold, and the underlying set. Reference to the manifold M, the topological
space M, and the underlying set M, will respectively be a reference to the triple (M, Tps, Apr), the
pair (M, Tas), and the set M. Unless stated otherwise, all manifolds in this thesis are smooth. Denote

the set of smooth real-valued functions on M by C*(M).

Definition 2.1.2. A derivation D at the point x in M is a linear function from C*(M) to C*(M)

that has the Leibniz property, meaning for all f and g in C*(M),

D(fg)(x) = (Df)g(x) + f(x)(Dg).
Definition 2.1.3. Let M be a manifold and p be in M. Define T,, M, the tangent space of M at p, to
be the set of all derivations at the point p.

Definition 2.1.4. A bundle is a pair of manifolds £ and B together with a map 7: £ — B, a triple
(E, B, ). The manifold B is the base space. The manifold E is the total space. The map r is called

a projection. For any point x in B the set 77! (x) is the fiber over x.

Definition 2.1.5. A bundle with total space E, base space B and projection 7« is locally trivializable
if there is a manifold F, the standard fiber, such that for any x in B there is an open subset U of B

containing x and a homeomorhism ¢ : 71 (U) — U x F such that for each z in 77" (U),

n(z) = proj; (¢(z)),

where proj; is the projection onto the first coordinate.

Definition 2.1.6. A fibre bundle is a locally trivializable bundle (E, B, r) where the map x is a

continuous surjection. A smooth fibre bundle is a fibre bundle in the category of smooth manifolds.



Definition 2.1.7. The tangent bundle of a manifold M is the triple (TM, M, ppr) where TM is the
disjoint union

™ = |_| T.M and py(v)=x YveTM.
xeM

Definition 2.1.8. Let M be a smooth manifold and suppose x is in M. The set 7; M of all linear

maps from 7, M to R is the cotangent space of M at x.

Definition 2.1.9. The cotangent bundle is the triple (T*M, M, 7tp;) where T*M is the disjoint union

T"M=| |T;M and 7n(0)=x YOETM.
xeM

As is customary, refer respectively to TM and T*M as the tangent and cotangent bundles rather
than the appropriate triple. If M is manifold of dimension m, then for each x in M, TxM and T; M

are m-dimensional vector spaces and both TM and T*M are 2m-dimensional smooth manifolds.
Definition 2.1.10. A section of abundle (E, B, 7) isamap o : B — E such that for any x in B, 0 (x)
is in 771 (x).

Definition 2.1.11. A smooth vector field (henceforth just a vector field) on a manifold M is a smooth
section of TM. A smooth covector field (henceforth just a vector field) or 1-form on a manifold M is

a smooth section of 7" M.

Definition 2.1.12. Suppose that v is a vector field on M. An integral curve of v is a differentiable

curve y: [0, 1] — M such that for any differentiable function f on M,

d
=%

V] (f o).

¥(0) =0

Poisson Geometry

For further background and discussion on Poisson geometry refer to [25] and [[15]. We provide some

common definitions for the reader’s convenience.
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Definition 2.1.13. A Poisson bracket on a smooth manifold M is a bilinear function

{,.}: C¥(M)xC*(M) - C*(M)

that satisfies the following:
(1) Antisymmetry: {f,g} = —{g, f}
(2) Bilinearity: {f,ag + bh} = alf, g} + b{f, h)
(3) Jacobi Identity: {f,{g, h}} + {{g, h}, f} + {h{f,g}} =0
(4) Leibniz Law: {fg, h} = {f, h}g + flg h}.

Definition 2.1.14. A Poisson manifold is the pair consisting of a smooth manifold M and a Poisson

bracket on M.

Definition 2.1.15. Suppose that (M, {-,-}5s) and (N, {-, -}n) are Poisson manifolds. For each f in

C* (M), the Poisson vector field associated to f is the derivation vy given by

ve() =1 flm.

Note that the fact that the Poisson bracket satisfies the Leibniz law implies that the Poisson vector
field v¢ associated to a function f is, indeed, a derivation. The fact that the Poisson bracket satisfies
the Jacobi identity implies that v is a derivation on the Lie algebra C*(M), where the Poisson

bracket gives C* (M) the structure of a Lie algebra.

Definition 2.1.16. A smooth map ® from M to N is a Poisson map if for any f and g in C*(N),

{f’g}NO(D = {fO(D’gO(D}M

The above equality can be alternatively written as

11



Symplectic Geometry

Symplectic manifolds are the primary objects of study in Hamiltonian mechanics. For further

background in symplectic geometry see [2]], [23]] and [28]].

Definition 2.1.17. A symplectic vector space is a pair (V, wy) where V is a vector space and wy is
a symplectic form on V, a function on V X V that for each u, v, and w in V and each @ and b in R

satisfies
(1) (Linearity): wy (au + bv, w) = awy (u, w) + bwy (v, w);
(2) (Skew-symmetry): wy (v, w) = —wy (W, v);
(3) (Nondegeneracy): if wy (v,y) = 0 for all y in V, then v is the zero vector.

Definition 2.1.18. Let (V, wy) be a symplectic vector space and W be a linear subspace of V. Define

the symplectic complement of W to be the set
W ={veV: wyl,w)=0 forall weW}.
Definition 2.1.19. A linear subspace W of a vector space V is symplectic if
W nwe ={0}.

Definition 2.1.20. A linear subspace W of a vector space V is Lagrangian it W = W<,

Definition 2.1.21. A symplectic manifold is a pair (M, wys), where M is an even dimensional smooth

manifold and wj, is a 2-form on M that is a symplectic form on each fiber of TM.

Example 2.1.22. The smooth even dimensional manifold R?>" paired with w is a symplectic manifold,

where (g;, pi)’, are coordinate functions on R** and
i=1

w = dg; A dp;.

n
i=1
The pair (R?>", w) is a symplectic manifold.

12



Example 2.1.23. The projection 7 maps 7*M to M and so dx is a map from 7'(T*M) to TM. Define
a 1-form A in the following way. If v is in T(T* M), then there is an £ in T*M so that v is in T, (T* M),

and so dz, maps v to a tangent vector of M. Take
A(v) = £(dn(v)).

The form A is the tautological 1-form on the cotangent bundle. If (xy, xo, .. ., x,,) are smooth local

coordinates on M and (x1, X2, ..., Xm, €1, €2, . . ., €m) are smooth local coordinates on 7" M, then

m
A= Z fidxl-.
i=1

The 2-form, —w7= )y, is the exterior derivative of the tautological 1-form and is a symplectic form on
T"M, |2, p. 202]. Since wr=yy is exact, it will be closed. Write wr+)s in the above local coordinates
to see that it is the standard symplectic form on R?™, implying that wr-y, is nondegenerate. The pair

(T*M, wr+pr) is a symplectic manifold and wr-+yy is the canonical symplectic form on T* M.

Definition 2.1.24. Suppose that (X, wx) is a symplectic manifold with an embedded submanifold
N and suppose that p is a point in N. The submanifold N is symplectic (Lagrangian) if the linear

subspace T, N of T), X is symplectic (Lagrangian) .

Definition 2.1.25. Let (X, wx) and (Y, wy) be symplectic manifolds. A smooth map @ from X to ¥
is symplectic if

E
d)w)/:a)M.

Definition 2.1.26. A diffeomorphism ® from a symplectic manifold (X, wx) to a symplectic manifold

(Y, wy) that is symplectic is a symplectomorphism.

A basic argument shows that any symplectic vector space is necessarily even dimensional. If
M is a symplectic manifold, then for any point x in M, the vector space T, M is a symplectic vector
space and so even dimensional, implying that M is even dimensional. The requirement that every
symplectic manifold be even dimensional is discussed in [28, p.38-40]. The following theorem

shows that symplectic manifolds have no local invariants and we refer the reader to the proof by

13



V.I. Arnol’d in [2| p.230-232]. The symplectic 2-form also naturally distinguishes position and

momentum coordinates on M.

Theorem 2.1.27 (Darboux). Suppose that the dimension of M is 2m. For each x in M, there is a
chart U containing x such that the symplectic 2-form gives rise to Darboux coordinates (gi, pi);~, on

U, coordinates such that

m
wp = quz' A dp;.
i1

Proposition 2.1.28. Let (X, wx) and (Y, wy) be symplectic manifolds. Suppose that px: X XY — X
and py: X XY — Y are the standard projection maps. Then (X XY, wxxy) is a symplectic manifold

with wxxy = pxwx + pywy.

Proof. Let X and Y be symplectic manifolds of respective dimensions 2m and 2n. Since X and Y
are smooth manifolds, X X Y is a smooth manifold of dimension 2m + 2n. To show that the even
dimensional manifold X X Y is symplectic, it suffices to show that the 2—form wxxy given in the
statement of the lemma is closed and nondegenerate.

Since d commutes with p} and p; and since wy and wy are closed,

dwxxy = d(pywx + pywy) = d(pywx) + d(pywy) = pydwx + pydwy =0,

implying that wxxy is a closed 2—form.
Since X is symplectic, Darboux’s theorem implies that for any x in X there exists an open

neighborhood U of x and local coordinates (x;, p; l’z , on U such that

m
wx = dx; Adp;.
i=1

Similarly, for any y in Y there exists an open neighborhood V of y and local coordinates (y;, 6]1')7:1
on V such that

wy = dy; Adg;.

n

j=1
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Let (X1,..., %P1+« P> V1 - - 5 Y 415 - - -, Gn) be local coordinates on U X V with

X =xiopx,pi =pi°opx,yj=y;jopy and {;=gqjopy

so that

Px(dx;) = d(x; o px) = dX;.

Analogous equalities hold for the other coordinates, implying that wxxy can be written in local
coordinates on U X V as

m n
wxxy = dx; A dp~i + Z dyj A dq}.
i=1 7=

For wxxy to be nondegenerate means that for any @ in X X Y and any nonzero v in T, (X X Y)
there exists u in T, (X X Y) such that wxxy (v, u) is nonzero. Suppose v is in T, (X X Y) and for any u

in T, (X XY), wxxy(v,u) is 0. There exists coefficients a’, b, ¢/, e/ such that
v=d'0% +b'op; + Ay + e dg;.
If u is equal to 0%; then
—wxxy (v, 1) = —wxxy (a'0%; — b'dp; — I 0¥, — €/ dq;, 0%;) = b' = 0.
By assumption,
wxxy (v, 0%;) = wxxy (v, 0pi) = wxxy (v,0Y;) = wxxy(v,0G;) = 0.

Follow the above calculation to obtain the equalities

By contraposition, wxxy is nondegenerate. O
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Every symplectic manifold has a Poisson structure that it inherits from its symplectic structure in
the following way. The symplectic 2-form induces an isomorphism Q,, between the tangent and
cotangent bundles. Given tangent vectors v and w in the same fiber of TM, define by Qp,(v) the
covector

Quv) =wp(v):w i wpy(w,v).
Since wyy is nondegenerate, the map Q,, is invertible. For each function f in C* (M), denote by Dy
the symplectic gradient of f, which is defined by

Dy = Qy(df).

Definition 2.1.29. For any symplectic manifold (M, wys), define a Poisson bracket {-, -} on pairs
(f,g)in C¥(M) X C*(M) by

(f.8)m = wa (Dy. D).

The symplectic gradient Dy is the Poisson vector field vy associated to f, implying that

{f.8tm = wM(Vf, Vg) .
Definition 2.1.30. An almost symplectic manifold is a pair (M, wpr), where wys is a nondegenerate
2-form that satisfies the Leibniz law, but may or may not satisfy the Jacobi identity.

An almost symplectic manifold has a bracket that is induced by its nondegenerate 2-form in the
same way that the symplectic form on a symplectic manifold gives rise to a bracket. The statement of

Theorem [2.1.31|can be found in [15 p.21].

Theorem 2.1.31. The bracket {-, -} on an almost symplectic manifold (M, wyy) satisfies the Jacobi

identity if and only if dwys = 0.

The real valued function I1,; defined by

My (df,dg) = {f. glm
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is a section of (T*M AT*M)*.

Definition 2.1.32. The Poisson bivector of (M, {-, -}»r) is the image of the function I1; under the
canonical isomorphism that takes (T*M A T*M)* to A>T M. To simplify notation, denote henceforth

by I1,, the Poisson bivector of (M, {-, -}ar).
Clairaut’s theorem implies the following proposition.

Proposition 2.1.33. The manifold R*" with coordinate functions (g, pi)iL, is a Poisson manifold

with the bracket

_\"0fdg 9f dg
{f’g}_;aqi opi  Opi 0g;’

Refer to [15] p. 30] for Proposition [2.1.34]and [15} p. 44] for Proposition [2.1.35]

Proposition 2.1.34. A smooth map ® from (M, {-, -}pr) to (N, {-,-}n) is a Poisson map if and only if
dO(IIy) = Iy.

Proof. Suppose @ is a Poisson map. For any functions f and g in C*(N) and and point x be a point
in M,

(AP, TTpr)(df, dg) = Tyg| (@°df, °dg) = (®"f, D" g)ps (x).

The map @ is Poisson and so

{O°f, D" ghp(x) = {f o D, g 0 Dlps(x)

= {f.g}n 0 ®(x) =TIy, (df.dg).

D(x)

If d®(I1,y) is equal to I1, then

({f.8ln 0 ®)(x) =TIy|, (df.dg)

D(x)
= dd, Iy (df,dg)

= My | (d(f o ®).d(g © ®)) = {0 B, g 0 Dl

17



Therefore,

{f.8INo®={fo®dgod}y,
and so @ is a Poisson map. O
The following proposition is stated and proved in [15} p. 44].
Proposition 2.1.35. Suppose that (M, {-, -}ar) is a Poisson manifold and (N, wy ) symplectic manifold.
Every Poisson map from M to N is a submersion.
Icthyomorphisms and Symplectomorphisms

Definition 2.1.36. A diffeomorphism @ from (M, {-, -}5s) to (N, {-, -} ») that is a Poisson map is an

icthyomorphism.

Proposition 2.1.37. If (M, {-,-}ss) and (N, {-, -} N ) are Poisson manifolds and ® is an icthyomorphism

from M to N, then ®~': N — M is an icthyomorphism.
Proof. Since @ is a diffeomorphism, ®~! is a smooth bijection. It suffices to show that ®~! is a

Poisson map. Suppose that 4 and k are in C*(M). Since ® is Poisson,

O (D) h, (O )k} = {D*(ho @), 0" (ko @ 1)}y

={ho® ' o® ko® ' od}y = {hk}ny.

Therefore,
O (@) h, (DY k}n = {h k}m
and so
(@ 0 @ (@), () kn = (@) {h k),
hence,

(@D ks = (@7 R, (@) k).
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We now discuss the difference between an icthyomorphism and symplectomorphism. In general,
symplectic maps between symplectic manifolds are immersions whereas Poisson maps between
symplectic manifolds are submersions. An example in [15} p. 37] explains the difference, which we

now present.

Example 2.1.38. Let R? and R* be symplectic manifolds and let ¢ be the inclusion map from R? to
R* defined by mapping the coordinates (g1, p1) + (g1, p1,0,0). The map ¢ will be symplectic but
not Poisson because {g2, p2}r+ = 1, whereas the bracket on R? of their pull-backs is zero. Now let 7
be the projection map from R* to R? defined by (g1, p1, g2, p2) — (g1, p1). Then 7 is a Poisson map

but not symplectic. This is because 7wy = dgq; A dp; # WRs.

The next proposition provides conditions that guarantee the equivalence of icthyomorphisms and

symplectomorphism. The proof can be found in []1, p.195]

Proposition 2.1.39. Let (X, wx) and (Y, wy) be symplectic manifolds and let ® be a diffeomorphism

from X to Y. The diffeomorphism ® is a symplectomorphism if and only if ® is an icthyomorphism.

Riemannian Geometry

We present here some basic ideas in Riemannian geometry. For further background see [24].

Definition 2.1.40. A Riemannian manifold is a pair (M, gpr) where gy is a smooth (0, 2)-tensor

field that is symmetric and positive definite, that is:

(1) (Symmetric) for all p in M and all (v,w) in T, M,

em,w) =gp(w,v);

(2) (Positive-Definite) for all non-zero v in TM,

&M (V’ V) > 0.
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Example 2.1.41. Take g to be the standard inner product on R". The pair (R", g) is a Riemannian

manifold.

Riemannian manifolds are the primary objects of study in Lagrangian mechanics. The metric on
the tangent bundle of a Riemannian manifold gives a kinetic energy associated to a particle moving

in the base manifold which is the configuration space for the system, [2, p.83-84].

Definition 2.1.42. A Riemannian submersion ® from a Riemannian manifold (M, gss) to a Rieman-
nian manifold (N, gn) is a smooth submersion with the property that if v and w are vector fields

tangent to the horizontal space (ker(d®))*, then

gm(v,w) = gn(dD(v),dDd(w)) .

Definition 2.1.43. Let (M, gas) and (N, gn ) be Riemannian manifolds and let ® be a diffeomorphism

from M to N. If ® is a Riemannian submersion, then @ is an isometry.

2.2 Classical Mechanics

Refer to [2] and [11]] as sources for further background material in classical mechanics.

Definition 2.2.1. Take M to be a symplectic manifold of dimension 2m. The Hamiltonian is a smooth

real valued function, H, on M.

The Hamiltonian vector field is the vector field vy where

va (f) ={f, H}.

Equivalently, this is the vector field with

w(vy,) =dH.
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Darboux’s theorem implies that every point of M lies in a chart U with coordinates (qy, . . ., Gm, P1, - - - Pm)

so that

m
wy = qui A dp;.
i=1

A curve vy is an integral curve of vy if and only if

d(ql Y) d(pl Y)

0H
— (0 = 3 —@®) and —— (@)= (y(t)).
Di qi

These equations are known as Hamilton’s equations. For any such curve v,

d
T - v(@) = vu(y(t))

and so the hamiltonian function is constant along the integral curves of the hamiltonian vector field.

The hamiltonian will describe the energy of the system, the integral curves of the hamiltonian vector

fields will be paths of motion of the system, and the energy is conserved along the paths of motion.
For any smooth function

F: M- R,

Hamilton’s equations for a path of motion imply that if vy is a path of motion, then

a i d(p
< Fom) Z( I 0+ o ) ”(r))

25

i=1

o0H
3 ) ={H, F}(y(@®)).
qi

Euler-Lagrange Equations on a Riemannian Manifold

Suppose that M is a Riemannian manifold, g, is the Riemannian metric on M, and Vj, is a potential

associated to M. Define the Lagrangian of M on T M to be the function Lj,, where

1
Ly (V) =58m V) =V (pu(v)) with v eTM.
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Definition 2.2.2. A path in the Riemannian manifold (M, gys) is a path of motion of M if it is

extremal for the action integral of £, under smooth variations with fixed endpoints.

Define on each v in TM the function bys by

bm (v) = gm (v, ).

The non-degeneracy of the metric gy, implies that the map by, is an invertible function from 7M to

T*M. Define by #,, the inverse of by, with
By:T°"M - TM by O+ v, where 0=gy(v,) and (0,v) eT"M XTM.
Denote by grad,, (Vas) the vector field
grady, (Var) = (V).

Denote by VM the Levi-Civita connection on the Riemannian manifold (M, gp;). A standard

calculation shows that y is a path of motion of the Riemannian manifold M if and only if it satisfies
VMY’ + grady, (Van)l, = 0, (EL)

the Euler—Lagrange equations. See [16] for further details.

2.3 Category Theory

We introduce the notion of a category here. For further background, see [26].
Definition 2.3.1. A category € consists of:

(1) aclass Ob(%) of objects in € and a class Hom(%) of morphisms in €;

(2) for each morphism f in Hom(%), a pair (A, B) of objects, respectively called the source and

target of f;

22



(3) for each triple of objects A, B, and C, a mapping called composition,

Hom(A, B) x Hom(B, C) — Hom(A, C),

written as (f, g) — g o f. Composition satisfies the following axioms:

(i) Associativity: (fog)oh = fo(goh);
(ii) Existence of ldentity Morphisms: for any objects A and B, there exists identity morphisms 1d 4
and /dp of Hom(A, A) such that for every morphism f in Hom(A, B),

Idpo f=f=folda.

Example 2.3.2. The class Set, whose objects are sets, morphisms are functions, and where

composition of functions defines composition is a category.

Example 2.3.3. The class Top, whose objects are topological spaces, morphisms are continuous

functions, and where composition of continuous functions defines composition is a category.

Example 2.3.4. The class Diff, whose objects are smooth manifolds, morphisms are smooth functions,

and where composition of smooth functions defines composition is a category.
Definition 2.3.5. A functor ¥ between two categories 4 and ¢ is a mapping that
(1) associates every object A in € to an object F (A) in €”;

(2) associates every morphism f: A — B in % to a morphism 7 (f): ¥ (A) — F (B) in €’ such

that

(i) FUda) = 1dF(ay;

(ii) for all morphisms f, g in €,

Fgof)=F(g)oF (f).

23



Example 2.3.6. The forgetful functor from Diff to Top maps (M, Ty, Apr) to (M, Tpr) and maps the

smooth functions to the same functions on the underlying topological space.

Example 2.3.7. The forgetful functor from Diff to Set which maps (M, Tz, Apr) to M and maps the

smooth functions to the same functions on the underlying set.
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Chapter 3

Pullbacks and Span Categories

3.1 Span Categories

Spans and their Isomorphism Classes

Definition 3.1.1. A span in a category % is a pair of morphisms in ¢ with the same source and a

cospan in € is a pair of morphisms in ¢ with the same target. For any span S in €, write
S = (s, SR),
where Sy, Sg, and S4 are objects in €,
S Sa—> 8., and sg: S4 — Sk.

Utilize the same notation if S is a cospan, but where sy and sg respectively map S and Sg to S4.
For any span or cospan S of &, refer respectively to the objects S4, Sz, and Sk in € as the apex, left

foot, and right foot of S.

Spans and cospans have respective diagrammatical realizations given by Figure[3.1)and Figure[3.2]
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Figure 3.1: The Span S Figure 3.2: The Cospan C

Definition 3.1.2. A span S in %’ is paired with a cospan C in ¢ if

CLZSL, CR ZSR, and Cr, ©S7, =CROSR.

SA SA
CrL=3S5L Cr = Sr S.=0rL @ Sr = Or
Ca Oa

Figure 3.3: The Pairing of S with C Figure 3.4: A Span Morphism from § to Q

View the pairing of a span S with a cospan C as a commutative square (Figure[3.3]). Suppose that

S and Q are spans in € with Sy equal to QO and Sg equal to Og.

Definition 3.1.3. A span morphism in € from S to Q is a morphism ® (Figure in ¢ from S4 to
04 with

sp=qro® and sgr=qro®.
A span isomorphism in € from S to Q is a span morphism that is additionally an isomorphism.

Proposition 3.1.4. For any span isomorphism ®, the inverse ®' is also a span isomorphism.

Furthermore, a composite of span morphisms is a span morphism.
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Pullbacks in a Category %

Composing isomorphism classes of spans in a span category requires the existence of a pullback.

This subsection introduces the notion of a pullback of a cospan.

qdr
0Oa

\3!,4(1) SR

Sa —— Cr

SL‘ BCR
qL

CL——Ca
cL

Figure 3.5: Pullback Diagram

Definition 3.1.5. A span S in % is a pullback of a cospan C in € if it is paired with C and if for any

other span Q in ¥ that is also paired with C there exists a unique span morphism ® in % from Q to S
(Figure[3.5)).

Definition 3.1.6. A category € has pullbacks if for any cospan C in ¢ there is a span S in € that is

a pullback of C and S is unique up to a span isomorphism in €.

The pairing of a pullback S of a cospan C with C is a pullback square. We have found it useful to

separately define the parts of a pullback square.

3.2 Examples of Categories that have Pullbacks

Denote by Top the category whose objects are topological spaces and whose morphisms are continuous
functions. The categories Set and Top are examples of categories that have pullbacks, as S. MacLane
discusses in [26] and S. Awodey discusses more specifically for Set in [3]. We provide a proof here
for the convenience of the reader.

Let C be a cospan in Set and let p;, and pg be the canonical projections

PL: CLXCR—>CL and PR CLXCR—>CR.
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Denote by S4 the fibered product

CrL Xcy, Cr:={(x,y) € CL XCR: (cLopr)(x,y) = (cr o pr)(X, y)}.

Take Sp and Sg to be respectively equal to Cy, and Cg, and let 57, and sg be the respective restrictions

of py. and pg to the set S4. Suppose that P is a span that is paired with C. Denote by ® the function

®: Pp—> CLXCgr by aw (pL(a),pr(a)) (Vae€ Py),

the unique function from P4 to Cr X Cg such that

pr=prLo® and pr=pro®. (3.1

The image of @ is S4 and so @ is a span morphism from P to S. Since any other span morphism
from P to S defines a function from P to C;, X Cg with the property given by (3.1)), the function @ is
the unique span morphism from P to S. Since P was arbitrarily chosen, the span S is a pullback of
the cospan C.

Suppose that C is a cospan in Top and let p; and pgr again be the canonical projections on
Cr X Cr. The product Cr, X Cg with the product topology is a topological space. The fibered product
S4 given above is a subset of Cy X Cg and is a topological space with the subspace topology. The
projections sy, and sg are continuous maps and so (sz, sg) is a pullback of C. The proof of this fact
is nearly the same as the proof in the setting of Set, with the straightforward check that the mappings

involved are continuous as the only modification of the proof.

The Category Span(%)

Suppose that € is a category with pullbacks. Suppose that [S] and [Q] are isomorphism classes of
spans with respective representatives S and Q, and Sg is equal to Q.. Since ¥ has pullbacks, there
is a span P that is a pullback of the cospan (sg, gr.). Define by [(sz o pr, gr © pr)] the composite

[S] o [Q]. Take the objects in € to be the objects in Span(%’), the isomorphism classes of spans in €
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to be the morphisms in Span(%’), and Sk and S, to respectively be the source and target of the span
[S]. Given an object X in 4" and the identity morphism / taking X to X, define by [(/, [)] the identity
morphism in Span(%’) with X as both source and target. It is well known that Span(%) is a category,
[12]. Our treatment in Section[4.T] of generalized span categories specializes in the case when ¢ has
pullbacks to give a proof that Span(%) is a category. If € does not have pullbacks, then the existence
of P is not guaranteed. The next section will demonstrate that some categories important in classical

mechanics, and more generally in differential geometry, do not have pullbacks.

3.3 Some Categories that do not have Pullbacks

Some Functors that preserve Pullbacks

Denote by Diff the category whose objects are smooth manifolds and whose morphisms are smooth
maps between smooth manifolds.
Suppose that € is a locally small category and that X is an object in ¢". Denote by Hom(X, —)

the hom functor that maps an object Y in % to the set Hom(X, Y). A functor ¥ with

F . € — Set

is said to be representable if there is an object B in € so that ¥ is naturally isomorphic to Hom(B, —).
The categories Diff, Top, and Set are locally small and there are forgetful functors, each to be

ambiguously denoted by 7, from Diff to Top and from Top to Set given by

F M, Trg, Apr) = (M, Tag) and  F (M, Tpr) = M.

The morphisms in Diff and Top are entirely determined by their action on the underlying sets and
so the forgetful functor in each case maps a given source category to a subcategory of the target
category. The functor obtained by composing the above forgetful functors is the forgetful functor,

denoted again by ¥, from Diff to Set.
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We say that a functor ¥ from a category % to a category ¢’ preserves pullbacks if for any
cospan C in ¢, if § is a pullback of C, then 7 (S) is a pullback of ¥ (C). The following lemma is a
special case of a more general result that guarantees that representable functors preserve pullbacks
[13, p. 64]. The proof of Lemma(3.3.1|is presented here for the convenience of the reader because we

use a slightly different language in our definition of a pullback than does Borceux.

Lemma 3.3.1. Suppose that € is a locally small category and B is an object in €. The functor

Hom(B, —) preserves pullbacks, where

Hom(B,-): € — Set.

Proof. Suppose that X and Y are objects in €. For any morphism f in € from X to Y, denote by f

the morphism Hom(B, f), that is defined to act on any S in Hom(B, X) by

f(B)=fop.

Suppose that C is a cospan in % and that S is a pullback of C. Since % is locally small, the functor
Hom(B, —) maps the cospan C to a cospan Hom(B, C) in Set, taking the pair (cr, cr) to the pair
(€L, €r). It similarly maps the span S to the span Hom(B, §). For any  in Hom(B, S4), the fact that

S is a pullback of C implies that

(cLos)() =cLosp oy =crosgoy = (crosrR)(Y).

The span Hom(B, §) is therefore paired with the cospan Hom(B, C).
Denote respectively by pr and pg the canonical projections from Hom(B, Cy) X Hom(B, Cr) to

Hom(B, C1) and Hom(B, Cr), and by O 4 the set

Hom(B, C1.) XHom(B,c,) Hom(B, Cr)

= {a € Hom(B, C;,) Xx Hom(B,Cr): (¢, onp)(a@) = (cgR o mg) (@)} .
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Let g1, and gg be the respective restrictions of py and pr to Q4. Denote by Q the span (g1, gr) in
Set, a pullback of the cospan Hom(B, C).
Suppose that « is in Q 4. In this case, there are morphisms @y and ag in % that map B to Cy,

where « is equal to (@, @g). Furthermore,

croap =cr(ar) = (cLoqr)(a) = (cr o qr)(@) = CR(aR) = CR © aR.

The pair (@, ag) is therefore a span in € that is paired with C and, since S is a pullback of C, there
is a unique span morphism ¢, in € from (@, @r) to S4 that maps B to S4. Let @ be the function

from Q to Hom(B, §) that is defined for each @ in Q4 by

Q(@) = ¢a-

The morphism ¢, is a span morphism, implying that

Spo¢e =ar and sgo ¢y = ag.

These equalities further imply that

(SLo®)(@) =sL0¢a, arp=qr(a), (sSgo®)(@)=s5go¢,, and ar = qr(a),
and so
(5L o®)(a) =qr(a) and (sg o D)(@) = gr(a).

The morphism @ in Set is, therefore, a span morphism and is unique since ¢, is uniquely determined.
Since Q is a pullback of Hom(B, C), the span Hom(B, S) is as well and so Hom(B, —) maps pullbacks

in € to pullbacks in Set. O

Suppose the 1 is the one point manifold in Diff. Lemma|3.3.1|and the fact that the forgetful functor

F from Diff to Set is naturally isomorphic to the functor Hom(1, —) together imply Propostion[3.3.2]

31



Proposition 3.3.2. The forgetful functor & from Diff to Set preserves pullbacks.

SurjSub does not have Pullbacks

Theorem 3.3.3. SurjSub whose objects are smooth manifolds and morphisms are surjective submer-

sions and composition of surjective submersions defines composition is a category.

Proof. Let M, M’, N, N’ be smooth manifolds and f: M — M’,g: M’ - Nand h: N — N’ be
surjective submersions. It suffices to show that the compositon of surjective submersions is again a

surjective submersion. For any x in M

d(g Of)x = dgf(x) o dfx

by the chain rule. If f and g are smooth surjective submersions then dg and df are surjective. The
composition of smooth maps is smooth and the composition of surjective maps is surjective, therefore
the composition of smooth surjective maps is smooth surjective. If the composition of smooth

submersions is a smooth submersion, then

d((hog)o f)x =d(hog)rx)odfx = dhgor(x)© dgfx) © dfx.

This is a smooth submersion and doing a similar computation we get

d((hog)o f)x =d(ho(go f)x

which verifies associativity. For the right unit law, let 1, be the identity map on the point x. By the

chain rule we have

d(foly)x =dfxodly =dfyolpm = dfx.
Similarly, the left unit law holds. Hence, SurjSub is a category. 0

This category is important in the study of classical mechanical systems because a map that takes

the configuration space of a classical mechanical system to the configuration space of a subsystem
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should be a surjective submersion. The category SurjSub is an example of a category that does not

have pullbacks.

Id

2)(124’2

o]

2 1
f

Figure 3.6: Two Point Manifold Contradiction

Example 3.3.4. Let 1 and 2 respectively denote the one and two point manifolds (Figure[3.6). Let f
be the unique map from 2 to 1 and C be the cospan (f, f). Denote by Id the identity map from 2 to 2.
The span (Id, Id) is paired with C.

Suppose that 77, and nr are the canonical projections from 2 Xy 2 to 2. Suppose that § is a
pullback of the cospan C in SurjSub. Proposition [3.3.2]together with the discussion immediately
following Definition [3.1.6]imply that the image of S under the forgetful functor from Diff to Set is the
span (g, mg). Since 2 X; 2 is isomorphic to 2 X 2, a set with four elements, there cannot be a span
morphism in SurjSub from 2 to 2 Xy 2, as such a map would necessarily be surjective and 2 has only
two elements. Therefore, the cospan C does not have a pullback in SurjSub and so SurjSub does not

have pullbacks.

3.4 Diff does not have Pullbacks

Suppose throughout this section that f and g are morphisms in Diff that have mutual target
(Z,9z, Az) and respective sources (X, 7x, Ax) and (Y, Ty, Ay). Recall that 7x and 7y are the
respective projections from the set X Xz Y to X and Y. Let Txx,y be the subspace topology on
X Xz Y that X Xz Y inherits from the product topology on X X Y and with respect to which mx and

my are both continuous. View the functions f and g as functions in Top that have the topological
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space (Z, 7z) as their mutual target and the topological spaces (X, 7x) and (Y, 7y) as their respective
sources. Suppose that (W, 7w, Aw ) is an embedded submanifold of (Z, 7z, Az). Refer to [23} p.

143-144] for further discussion of transversality and, in particular, for the proof of Proposition[3.4.3]

Definition 3.4.1. The smooth function f is transverse to W if for every x in f~!(W), the spaces
Ty(x)W and df (T X) together span Tr(x)Z. The smooth functions f and g are transverse if for every

point x in X and y in Y with f(x) and g(y) both equal to z,

df (TeX) + dg(TyY) = T, Z.

Transverse in R? Nontransverse in R?

Figure 3.7: Transverse and Nontransverse Curves

Proposition 3.4.2. If f is a surjective submersion from X to Z and g is a smooth map fromY to Z

then f and g are transverse.

Proof. If f is a surjective submersion then df is surjective. For any point z in Z and any tangent
vector v in T, Z choose x in f~!(z), which is possible by surjectivity. But since f is a submersion,

then there exists a tangent vector w in Tr1hX such that df (w) = v. Therefore, Im(df) = T,Z and
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Transverse in R3

Nontransverse in R3

Figure 3.8: Transverse and Nontransverse Surfaces

hence

df (TeX) + dg(T,Y) = T, Z.

Proposition 3.4.3. Suppose that X and Z are smooth manifolds and W is an embedded submanifold

of Z. If f is a smooth map from X to Z that is transverse to W, then f~'(W) is an embedded

submanifold of X whose codimension is equal to the codimension of W in Z.

Proposition 3.4.4. If f and g are transverse, then the fibered product X Xz Y is a smooth embedded

submanifold of codimension equal to the dimension of Z. Furthermore, the span (nx, ny) in Diff is a

pullback of (f, g).

Proof. Denote by Az the diagonal {(z,z) : z € Z} of Z X Z, an embedded submanifold of Z x Z.

The function f X g, with

fXg: XXY > ZXZ by
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is smooth and (f X g)~'(Az) is equal to X Xz Y. Since f and g are transverse, the function f X g
is transverse to Az. Proposition [3.4.3]implies that X Xz Y is a smooth manifold of codimension
in X X Y equal to the dimension of Az. The dimension of Az is equal to that of Z, implying that
X Xz Y has codimension in X X Y equal to the dimension of Z.

To show that (rrx, ry) is a pullback of (f, g), suppose that S is a span in Diff that is paired with

(f, g). Define for each s in S4 the span morphism ® from S to (7x, 1y) by

D (s) = (s£(5), sr(5)).

Suppose that @ is another span morphism from S to (7x, 7y). For any s in S4,
mx(D'(s)) = s.(s) and 7y (Q'(s)) = sr(s),
implying that ®’(S) is equal to ®(s). Since s was arbitrarily chosen, the morphism ®’ is equal to ®

and so @ is unique, hence (7y, 7y) is a pullback. O

If f and g are in SurjSub with mutual target Z, then they are transverse and so Proposition 3.4.4

implies the following.
Proposition 3.4.5. If (f, g) is a cospan in SurjSub, then the fibered product X Xz Y is a smooth
embedded submanifold of X X Y of dimension dim(X Xz Y), where
dim(X Xz ¥Y) = dim(X) + dim(Y) — dim(Z) .
For the following proposition, take (f, g) to be a cospan in Diff but where the maps f and g are
not assumed to be transverse.

Proposition 3.4.6. If S is a span in Diff that is a pullback of (f, g), and if (nx, ny) and (sr, SR) are

span isomorphic as spans in Top, then X Xz Y has a manifold structure.

Proof. Let ® be the unique span morphism in Top from § to (wx, my). The homeomorphism ©®

transports the manifold structure of S4 to X Xz Y, giving it a manifold structure as well. O
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If S is a span in Diff that is paired with (f, g), then the map @, that is defined for each s in S4 by

O(s) = (sL(s), sr(s)),

is a smooth map from S4 to X X Y. If X Xz Y is an embedded submanifold of X X Y, then @ is a

smooth map from S4 to X Xz Y and is the unique such map, implying the following proposition.

Proposition 3.4.7. If X Xz Y is an embedded submanifold of X X Y, then (nx, my) is a span in Diff
and a pullback of (f, g).

Propositions [3.4.4]and together imply the following proposition.

Proposition 3.4.8. If (f, g) is a cospan in Diff and f and g are transverse, then (rx, ny) is a pullback

of (f, g) in Diff.

The following example demonstrates that X Xz ¥ may be a manifold and the projections
and 7y may be continuous, but X Xz Y is not an embedded submanifold of X x Y. In light of

Proposition [3.4.4] such an example requires the functions f and g to be non-transverse.

Example 3.4.9. Let X and Z be R and Y be the one point manifold 1. Suppose that f is smooth,
that (a,) is a sequence in R that converges to a point ay that is not equal to a, for any natural number
n, and that the zero set of f is the set {ag} U {a,,: n € IN}. Suppose further that the range of g is {0}.
The set X Xz Y is the subset {ag} U {a,,: n € IN} of R.

In Top, if (nx, my) is a pullback, then X Xz Y must be endowed with the subspace topology 7s
that makes each set {a,} an open set, where n varies over IN. Any open set containing ag contains
infinitely many points.

If X Xz Y has a manifold structure, then each point must contain a neighborhood that is
homeomorphic to a point, and so as a manifold X Xz ¥ must be endowed with the discrete topology
Ip. In this case, the manifold X Xz Y is not an embedded submanifold of X X Y since its topology is

not the subspace topology. The span (rrx, my) is, nevertheless in this case, a pullback of (f, g) in Diff.

The above example demonstrates that f and g may be non-transverse, but (f, g) nevertheless

has a pullback that is a span in Diff. The forgetful functor ¥ from Diff to Set preserves pullbacks
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and so if S is a span in Diff and a pullback of (f, g), then ¥ (S) is a span in Set that is a pullback of
(f, g) as a cospan in Set. Since Set has pullbacks, there is a span isomorphism in Set from ¥ (5)
to (mx, my). This span isomorphism is only a bijection and there should be no expectation that it
preserves topological structure.

The category Top also has pullbacks and so if f and g are continuous, then the pullback of (f, g)
will exist and, in fact, the span (7x, ry) in Top is a pullback of (f, g) where the maps mx and 7y
have (X xz Y, 7s) as their common source. Since the forgetful functor from Diff to Top does not
preserve pullbacks, there is no guarantee that S being a pullback of (f, g) implies that it is a pullback
when mapped by a forgetful functor to Top. The topology on the image of the manifold X Xz Y
under the forgetful functor from Diff to Top is 7p, which is a finer topology than 7s. The identity map
taking (X Xz Y,9p) to (X Xz Y, Ts) is a continuous span morphism from (rx, my) to (7x, y), but
the inverse is not continuous. So the forgetful functor ¥ from Diff to Top maps the pullback (7x, 7y),
where maps mx and ny have the manifold X Xz Y as their common source, to the span (rx, 7y),
where the maps have (X Xz Y, 7p) as their common source. This demonstrates that the forgetful
functor from Diff to Top does not preserve pullbacks.

The former discussion demonstrates that there is some subtlety involved in determining that
Diff does not have pullbacks and such a determination requires a carefully selected counterexample.
The proof of Proposition [3.4.T1| presents such an example that is fortunately quite basic. Refer to

Figure [3.9]to visualize the various mapping involved in the proof of Lemma[3.4.10}]

Lemma 3.4.10. If (f, g) is a cospan in Diff and S is a span in Diff that is a pullback of (f, g), then
there is a bijective span morphism in Top from F (S) to (nx, ny), where F is the forgetful functor

from Diff to Top and X Xz Y is endowed with the topology Ts.

Proof. Suppose that S is a span in Diff that is a pullback of (f, g). Define for each a in S4 the function
® by

®(a) = (sp(a), sr(a)).

The map ® from S4 to X X Y is smooth because the functions s;, and sr are smooth. The span § is

paired with (f, g), implying that the range of ® is X Xz ¥, and so @ is a continuous function from S4
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Figure 3.9: @ is a Bijection

to X Xz Y. Proposition implies that the forgetful functor ¥ from Diff to Set preserves pullbacks,
therefore F (®) is a span morphism in Set from 7 (S) to (mx, 7y), where the pair of projections
is viewed only as a pair of maps in Set. The span S is a pullback in Diff, hence ¥ (S) is a span in
Set that is a pullback of (f, g), and so the map ¥ (®) is a bijection. Maps between manifolds are

determined by their behavior on the underlying sets, hence @ is a continuous bijection. O

Although the fact that Diff does not have pullbacks is commonly cited in the literature, we found it

difficult to locate a detailed proof of this fact and so present it here for the convenience of the reader.
Proposition 3.4.11. The category Diff does not have pullbacks.

Proof. Define f and g to be the functions from R to R given for each x in R by mapping x to x.

Suppose that S is a span in Diff that is a pullback of (f, g). The fibered product X X Y is the set
XxzY ={(v,w): |v|]=|wl}.

The restrictions of f and g to the open sets (—oo0,0) and (0, co0) are surjective submersions onto
(0, 00). If the sets 57! (—00,0) N 55! (=0,0), 57'(0,00) N 55! (—00,0), 57! (=0,0) N 53 (0, 00), and
szl (0,00) N Sl_el (0, o0) are all empty, then the underlying set S4 is a single point. However, there is a
bijection between the underlying set S4 and X Xz Y since they are isomorphic in Set as the apices of
pullbacks of the same cospan. Therefore, at least one of the above intersections is not empty.

Let U be of one of the four intersections given above that is not empty. The set U is an open

subset of S4 as a non-empty intersection of open sets, hence a manifold. Proposition [3.4.5]implies
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that the dimension of U is equal to 1. The dimension of the manifold S4 is also 1 since S4 contains
U as an open subset and is therefore homeomorphic to either a line, an open interval, a half-open

interval, or a circle, [21]]. The map ® which maps S4 to X X Y, defined for each a in S4 by

®(a) = (sp(a), sr(a)),

is a smooth map that is a span morphism and maps S4 onto the subspace X Xz Y. Since S4 is
a pullback and the forgetful functor from Diff to Set preserves pullbacks, the underlying set Sy4 is
the apex of a span in Set that is a pullback of ( f, g) and so there is a span isomorphism from S to
(mx, my) in Set, a bijection between the set S4 and the set X Xz Y. Since the span morphism in Diff
from S to (7x, my) that maps S4 onto X Xz Y is also a morphism in Set of the underlying sets and
is unique, the map @ is a bijection. Therefore, the preimage O (X xz Y \ {(0,0)}) is the set Sy
with one point removed and so has either one or two connected components. However, the subspace
X Xz Y\ {(0,0)} of X XY has four components and this contradicts the continuity of ®, which must

map connected components to connected components. O
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Chapter 4

¥ -Pullbacks, Span Tightness, and

Generalized Span Categories

4.1 Composition by 7 -Pullbacks and Span Tightness

Assume henceforth that 4" and % are categories and that ¥ is a functor from & to ¢”. For any span
S in ¥, denote by ¥ (S) the span (¥ (s.), F (sg)). For any cospan C in %, denote by F (C) the

cospan (7 (cp), F (cr)) in €”.

¥ -Pullbacks and Span Tightness

Definition 4.1.1. The category ¢ has ¥ -pullbacks in ¢ if for any cospan C in ¢, there is a span S
in ¢ that is paired with C and the span 7 (S) is a pullback of the cospan 7 (C) in 4”. In this case,
the span S is an F -pullback of C.

Note that if ¢ is equal to ¥ and F is the identity functor, then an # -pullback is simply a

pullback.
Definition 4.1.2. Suppose that S and Q are spans in ¢ such that:
(1) Sg =0r;
(2) there is a span P in € that is a pullback of the cospan (sg, qr.).
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The composite of S and Q along P is the span in € given by

Sop Q= (5L°pL,qR © PR)-

If P is an ¥ -pullback, then the span S op Q is an ¥ -pullback composite of S and Q along P.

Py Py
N\
Sa 0 SLopL 4R © PR
VA
St Sk =0 Or St Or

Figure 4.1: Composing S and Q along P Figure 4.2: The Composite S op O

Diagram[4.2]is a diagrammatical realization of the composite of S and Q along P and Diagram[4.1]

depicts the construction of this composite by the ¥ -pullback P.

Definition 4.1.3. Suppose that ¢ has ¥ -pullbacks in ¢”. The functor F is span tight if for any
¥ -pullbacks S and Q of the same cospan, the unique span isomorphism @ from 7 (S) to ¥ (Q) is

F () for some span isomorphism ¥ from S to Q.

¥ -Pullbacks of SurjSub

Suppose that X, Y, and Z are smooth manifolds. Suppose further that f is a smooth map from X to Z
and that g is a smooth map from Y to Z. Again denote by px and py the respective projections from
X XY to X and Y and let mx and 7y be their respective restrictions to the embedded submanifold

X xz7Y.
Proposition 4.1.4. The span (rx, y) is a pullback in Diff of the cospan (f, g).
Proof. Suppose that Q is a span in Diff that is paired with the cospan ( f, g). Define the map ¥ from

Q4 to X XY as the product of g, and gg, so that ¥(a) is equal to (gz(a),gr(a)). This map is

42



smooth as a product of smooth maps and unique since Diff has categorical products. Furthermore, for

any a in Q4,
(fopxo¥)(a)=f(qr(a)) and (go pyo'¥)(a)=_g(gr(a)).

Since Q is paired with (f, g), f(gr(a)) is equal to g(gr(a)), and so ¥(a) is in X Xz Y. Since Q

was an arbitrarily chosen span paired with (f, g), the span (;rx, my) is a pullback in Diff. O

Note that while SurjSub is a subcategory of Diff, the category SurjSub does not have pullbacks.
Let ¥ be the inclusion functor from SurjSub to Diff. Suppose that (f, g) is a cospan in SurjSub, where
f and g have respective sources X and ¥ and both maps have target Z. In this case, Proposition[4.1.4]
implies that the span (rx, wy) is an ¥ -pullback of the cospan (f, g) and this, together with the fact

that every diffeomorphism is a surjective submersion, implies Theorem[4.1.5]

Theorem 4.1.5. The inclusion functor from SurjSub to Diff is span tight.

4.2 The Generalized Span Category

Identify the objects in Span(%’, ) to be the objects in % and the isomorphism classes of spans in ¢
to be the morphisms in Span(%’, ). If [S] is an isomorphism class of spans in Span(%, ¥ ), then
identify Sg and Sy, respectively to be the source and target of [S]. Define composition of isomorphism

classes of spans by

[s'] o [s] = [8" or 57].

where S! op §? is an F -pullback composite of S' and 2. Theorem is the main result of the

section and the lemmata that follow simplify the proof of the theorem.
Theorem 4.2.1. If F is a span tight functor from € to €', then Span(%, F ) is a category.

If the functor ¥ from % to €’ is span tight and S and Q are spans in ¢ with Sk equal to Oy,
then there is an ¥ -pullback P of the cospan (sg, gr.) and so there is an ¥ -pullback composite of

S and Q along P. The ¥ -pullback P is, however, only defined up to a span isomorphism ®. The
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following lemma shows that changing P up to an isomorphism changes the resulting composite span

only up to a span isomorphism in .

Lemma 4.2.2. Suppose that F is span tight, that S and Q are spans in €, and that S opi Q is an

F -pullback composite, with i equal to 1 or 2. There is a span isomorphism © in € from S opi Q to

SOPZ Q

Proof. Since P! and P? are both ¥ -pullbacks of the cospan (sg, g1 ), there is a span isomorphism ®
in ¢’ from T(Pl) to ?'(Pz). Since ¥ is span tight, there is a span isomorphism ¥ in €’ from P! to

P? with ¥ (¥) equal to @, and so
pp=pio¥ and pp=pgo¥.
These equalities imply that
scopy=spopyo¥ and ggropp=qroppoV,

establishing that ¥ is a span isomorphism from S op1 Q to S op2 Q. O

Lemma 4.2.3. Suppose that ¥ is span tight, that S and Q' are spans in €, and that S* opi Q' is
an F -pullback composite, with i equal to 1 or 2. Suppose that S' and Q' are respectively span

isomorphic to S* and Q. There is a span isomorphism in € between spans S' op1 Q' and S? o p> Q.

Lemmam generalizes Lemma and reduces to Lemma when S' is equal to $?, when
C! is equal to C?, and when P' and P? are pullbacks that are not necessarily equal to each other.

Refer to Diagram [.3to visualize the mappings involved in the proof of Lemma.2.3]

Proof. Let & and 8 be span isomorphisms respectively from S' to % and from Q' to Q2. The span
P! is an ¥ -pullback of (S}e, qll‘) Since @ and S are span morphisms, the span (a/ o plL, Bo p}e) is
paired with (s%e, qi) Since T(Pz) is a pullback of (7:(.5%) ,F (qi)), there is a span morphism,
@y, in €’ from (T(a oplL),T(ﬁ op}z)) to T(Pz).
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Figure 4.3: Isomorphic Compositions of Isomorphic Spans

If T is a span in € paired with the 7 ( Sk qL) then there is a span morphism ®; in ¢’ from
T to T(Pl). The composite ©; o ®, maps T to T(a‘l ° pi, B lo pi), which is also paired with
T(s}e, qi) Uniqueness of the pullback of 7:(.5‘}{, q}_) up to a span isomorphism implies that there is
a span isomorphism @3 in %’ from T(cx‘] o p%, B lo pé) to 97"(P1 ) Since ¥ is span tight, there
is a span isomorphism ¥ in € such that ¥ (V) is ®3. Use the fact that ¥ is a span isomorphism to

obtain the equalities

a_lop%=plLo‘P and ﬁ_lopé=p}eo‘l’.

The equalities
- - 2 _ 1 -1
sp=spoa and g =qgrop

imply that

202 — o onlon? = o gl
spopp=spoa opp=spoppo¥

and similarly that

dr © PR = dr © Pr ° Y-

Therefore, the isomorphism W is a span isomorphism from S? 0p> Q? to S' op1 Q. O
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Lemma 4.2.4. Suppose that F is span tight and that S, Q, and T are spans in € with Sg equal to
Q1 and Qg equal to Ty.. Suppose that S op1 Q and Q ops T are F -pullback composites and that
(Sopi Q)op2 T and S ops (Q ops T) are also F -pullback composites. There is a span isomorphism

@ in € from (Sop1 Q) op2 T 1o Sops (Qops T).

Refer to Diagram .4 and Diagram [4.5|below to visualize the mappings involved in the proof of
Lemma

14
p% Y}e
FAYA VA

Sk =0L Or =T

Figure 4.4: The Composite (S opi Q) op2 T

Proof. Suppose that P! is an 7 -pullback of the cospan (sg, gz ), that P3 is an ¥ -pullback of the

cospan (gr, 1), and that P is an ¥ -pullback of the cospan (Plle’ pz) where
Pp =P, and Pg=P}.

Suppose further that P? is an ¥ -pullback of the cospan (gg © pk. 1) and that P* is an F -pullback
of the cospan (sg, g1 © pi).

Since P? is an ¥ -pullback of the cospan (gg o leQ, tr), the span (p;(, o p%, p%e) is paired with
the cospan (gg,tr) and so ¥ (p,le ° p%, pi) is paired with the cospan F (gg,t1). The span P is
an ¥ -pullback, which implies the existence of a span morphism @, in ¢” from F (pk o p3, p%) to
F (P?). The span (¥ (p3 ), @) is paired with F (p, p3 ) and so there is a span morphism @, in ¢

from T(pi, @) to F(P). If U is a span paired with (gg o p}e, tr), then there is a span morphism
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/\
/%/YR
/\“/Y“/\

Sr=0L Or =T,

Figure 4.5: Comparator Span

@3 in €’ from ¥ (U) to F (P?). The composite ®, o @3 is a span morphism in €’ from F (U) to
F (pr, Py © pr) and so F (pr, py, © pr) is a pullback in €” of the cospan F (gg © py. ). There is,
therefore, a span isomorphism in ¢” from ¥ (pr, py, © pr) to F (P*). Span tightness of # implies

that there is a span isomorphism \P; in ¢ from (pz, pj, © pr) to P* with
pro¥i=propr andso fgopyoW| =tgopyopr.
The equality
pi oW, =pr impliesthat s o plL Op% oW, =s10 plL o pr.
The isomorphism ¥, in € is, therefore, a span isomorphism with
Wi(sL 0 pp, © PL. R © Pk © PR) = (SL.° Py © I 1R © PR); 4.1

where the second span is that given in Diagram

A similar argument shows that there is a span isomorphism ¥, in € with

W (51 0 pp o PrLtr O proPpr) = Sops (Qop T), 4.2)
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where P* is an F -pullback of the cospan (s R qL © pi) Together with the Proposition and its
corollary, (4.1)) and (@.2) imply Lemma{.2.4] o

Proof of Theorem To prove the theorem, it suffices to show that the composition of morphisms
in Span(¥’, ¥ ) is well defined, satisfies the left and right unit laws, and is associative.

If [S'] and [S?] are isomorphism classes of spans and the source of [Sl] is the target of [Sz],
then for any representatives S' and S? respectively of [S 1] and [Sz], span tightness of F implies
that there is an ¥ -pullback P of (s}e, szL), hence there exists a composite S! op S?. Lemma
implies that the equivalence class [Sl op Sz] is independent of P. Lemmaadditiona]ly implies
that [S lop S 2] is independent of choice of representatives S! and S2. Furthermore, the objects SIZQ

and S i are the respective source and target of [S 1] o [SZ] , implying that the composition o is well

defined.
Sa
Idy \
S SR
FA VA
St SR
Figure 4.6: Composing S with Idg, Figure 4.7: The Composite S og Idg,

Suppose that [S] is an isomorphism class of spans in %" and that [Ls, | is the isomorphism class

of spans containing (Ids,, Ids, ), where

IdSRZ SR — SR

is the identity map from Sg to Sk.

Let P be the span (Ids,, sg). For any span Q in ¢” that is paired with (¥ (sg), F (Ids,)).

F(sg)oqr =F (Ids,) o gr = qr
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and so the map ¢y, is a span morphism in ¢’ from Q to ¥ (P). Given any other span morphism ® in
&’ from Q to F (P),

qrL. = ?(IdSA) od = IdT(SA) ocd=0

and so the span morphism in %’ from Q to ¥ (P) is unique. Since Q was arbitrarily chosen, the
span ¥ (P) is a pullback in €” of the cospan (7 (sg), ¥ (Ids.)), and so P is an ¥ -pullback of the
cospan (sg,Ids, ). Since composition is well defined and S op I, is span isomorphic in € to S, the
composite [S] o [Is, ] is equal to [S]. Similar arguments will show that [Ig, | o [S] is equal to [S],
and so Span(%’, ) has both a right and left unit law.

Lemma[.2.4]implies that o is associative. O

4.3 Structures on the Fibered Product

Given Riemannian manifolds X, Y, and Z, we construct a metric tensor on X Xz Y that makes X XY
a Riemannian manifold and makes the projections from the fibered product surjective Riemannian
submersions. Similarly, when X, Y, and Z are symplectic manifolds we construct a symplectic form
on X Xz Y that makes X Xz Y a symplectic manifold and makes the projections from the fibered
product surjective Poisson maps.

Figure specifies the categories to be henceforth denoted by Diff, SurjSub, RiemSurj, and

SympSurj.
Category Name Objects Morphisms
Diff Smooth manifolds Smooth maps
SurjSub Smooth manifolds Surjective submersions
RiemSurj Riemannian manifolds Surjective Riemannian submersions
SympSurj Symplectic manifolds Surjective Poisson maps

Figure 4.8: Table of Categories
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Denote by 7z the map

nz = fonx =gony,

where mx and 7y are the projections from X Xz Y to Z. More generally, for any span Q that is paired

with a cospan (f, g), define by gas the map

qm = foqL =g°qr.

Suppose X is a symplectic manifold. The Poisson bivector I1x of X induces a map Iy from

T*X to TX that takes any 1 in 7% X to the vector field ﬁx(n) with the property that for any v in 7% X,

y(Tx (1)) = Hx (1, v).

Since X is symplectic, the map Iy is an isomorphism [[15, p. 17]. This isomorphism gives a way
to pull back vector fields by surjective Poisson maps, a fact that, along with Proposition [2.1.35] is
critical to the proof of Theorem [4.3.1] Theorem [4.3.T]establishes the existence of a local splitting
of the tangent space of a symplectic manifold by a local foliation given by the inverse image of a

surjective Poisson map.

Theorem 4.3.1. Suppose that X and Z are symplectic manifolds with respective dimensions 2€ and
2n and that f is a surjective Poisson map from X to Z. Given any z in Z and a choice of Darboux
coordinates (ql.Z, pL.Z )i, ona chart U containing z, and given any x in X with f(x) equal to z, there

exist Darboux coordinates (in, plX)f:l on a chart V containing x such that for any i in {1, ..., n},

g¥=q“of and pf=pfof.

.. . .- 7 _7Z\n
Proof. Suppose that xo is in X, that U is a chart containing f (xo), and that (¢, p{)" | is a Darboux
coordinate system on U. Proposition [2.1.35|guarantees that f is a surjective submersion, hence it is
an open map and so there is a chart V' containing x( with a Darboux coordinate system (qix , plX )le

such that f(V’) is an open subset of U. Denote by H the set of all vector fields v on f(V”) for which
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there is some @ in C*(f(V’)) such that for any g in C*(f(V’)),

v(B) ={B.ajz.

Denote such a vector field by v,. Denote by f*(H) the set of all vector fields w on V’ for which

there is an a in C*(f(V’)) such that for any /4 in C*(V"’),

w={hao flx.

Denote such a vector field by w,. For any x in V’ and any z in f(V’), denote respectively by
T (H)(x) and H (z) the set of all vector fields in f*(HH) evaluated at x and the set of all vector fields
in H evaluated at z. The bilinearity of the bracket implies that H (z) and f*(H)(x) are vectors
spaces. Since

—6 and —
V_,z = v,z = ,
qi aplZ pi aqu

for any z in f(V’), the vector space H (z) spans T, (U).
Let F be the function

F:H — f"(H) by F(g)=wg.
The fact that f is Poisson implies that
df(wa)(B) = wa(B o f)

={Bof.ao fix
={B.alz = va(PB),

and so

df(F(vw)) =Va-

Similarly, for any w, in f*(H),

Fdf(wa)) = F(vg) = wq.
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The maps F and df|4 are therefore inverses of each other and so for each x in V', the vector spaces
H(f(x)) and f*(H)(x) are isomorphic. Both of these vector spaces are of the same dimension as Z.

For any w, and wy in f*(H), the Jacobi identity implies that

[Wa W Irx = Wa(War (B)) = War (Wa (B))
={wa(B)@o fix —{wa(B), @’ o fix
={Bof.a’ o fix,ao flx —{{Bofiao flx,a o fix
={B.{a’ o f,ao flx}x = wia,ar}(B):

and so the space of vector fields f*(H) is closed under the bracket [-,-]rx on TX. Frobenius’
Theorem for involutive distributions implies that for any x in V"’ there is a submanifold W of V” such

that f*(H)(x) is the tangent space T, W. Since

JH(H)(x) Nker(df],) = {0},

the rank-nullity theorem implies that

T,V = f*(H)(x) @ ker(df],).

Define the function g from W to Z to be the restriction of f to the submanifold W. The form
g (wz) is a closed 2-form on W as the pullback of the closed 2-form wz restricted to f(V’). Suppose

that there is a v in TW such that for all w in TW, g*(wz) (v, w) is equal to zero. In this case,

0 =g (wz)(v,w) = wz(dg(v),dg(w)),

and so

wz(dg(v),") =0
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since dg|, is surjective at each point x of W. Nondegeneracy of w  implies that dg(v) is equal to
zero and the injectivity of dg further implies that v is equal to zero. The form g*(wz) is, therefore, a
symplectic form on W.

For any (n, ) in C* (V') x C*(V'),

(f(wz| Nwy,we) = wz(df(wy), df W) |rx)
= wz(vy, V§)|f(x)
={n, év}Zlf(x)

={nof.lo flxly = wx(wywo)l, (4.3)

where the assumption that f is Poisson implies the penultimate equality. The pullback f*(wz) is
therefore the restriction of wy to TW x TW. The manifold W is an embedded symplectic submanifold
of V’ and so [28], p.124, Exercise 3.38] implies that there is an open set V of V' that contains x( and a

Darboux coordinate system (qu , plX )le on V such that for any x in V and i strictly larger than n,
g7 (x) = pi (x) = 0.

Define

n
wA =

¢
dql-X A dplX and wp = Z din A dplX,

i=1 i=n+1

so that in the open set V, wx is equal to the sum of w4 and wp. The form wp is the restriction of wx
to (TW XTW) N (TV xTV) and so (4.3) implies that wp is equal to f*(wx). Furthermore, for any
0in C*(U),

(f*(dg?)) (we)lx = dg? (df (we))|,
= dqiz(vﬂ)lf(x)
= Va(qiz)|f(x)

= {Q[Z,H}Zlf(x)
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={qf o f.00 fixl, = d(g{ o fHwal,.

Every element of TW is of the form wg for some 6 in C*(U), implying that

A (dg?) =d(g? o f) and f*(dp?) =d(p? o f). (4.4)

Use (@.4) together with the coordinate representation of w to obtain the equality

n

Frwz) =Y d(gF o f) Nd(pF o ),

i=1

that implies that in the chart V,
n l
wx =) dgf o fyad(pfo )+ > dg¥ adpX.
i=1 i=n+1

The coordinate system ¢ on V given by

¢= (qlzof,plzof,.,_,qfOf,pfOf,q§+1,p§+l,,,,,q§(,p§)

is, therefore, a Darboux coordinate system on V. ]

Despite having a local splitting of the tangent space by a local foliation given Poisson maps, it is
not always true that the image of a symplectic manifold under a Poisson map is symplectic as the
next example demonstrates.

The following example was inspired by a conversation with L. Polterovich [29]].

Example 4.3.2. Let ® be the Poisson map from R* to R? defined by (p1, g1, p2, ¢2) — (p1, q1). The
manifold R? is an embedded submanifold of R* with basis vectors e; and e; for its tangent space
and with wg4 (e, e2) > 0, hence R? is a symplectic submanifold of R*. Let e be the vector e; + e,
so that wy4 (ei, e>) > 0. Take A to be the Span(e’l, ez) such that e; is in ker(®|4) and ei is not in

ker(®|4). The submanifold A is a symplectic submanifold of R* and ®(A) is a line in R?, which is a
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Lagrangian submanifold. Therefore, the image of a symplectic submanifold under a Poisson map

need not be symplectic.

We now look at a particular manifold, the diagonal submanifold of the product of a symplectic
manifold with itself and see that changing the 2-form on the diagonal can make the diagonal symplectic
or Lagrangian. Let X be a symplectic manifold with symplectic form wy. Let m; and 7, be the

projections that map the product X X X onto X by

m(x,y)=x and m(x,y)=y with x,ye€ X.

Take c to be a non-zero real number. The form wxxx, given by

_ * *
WXxX = CT|W + CTHW,

is closed and nondegenerate. Therefore, the manifold X X X with this form is a symplectic manifold.

Denote by D the diagonal submanifold of X x X and by « the inclusion map

t:D—- X xX.

Denote by wp the form given by

* % * %
wWp = CUMTjwx + CU MHwx.

We will show that (D, wp) is a symplectic submanifold of (X X X, wxxx) and that the map ¢ with

p: X —>DcCXxX by xm (xx)

is a Poisson map onto its image.
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Suppose that V and W are sections of 7D that are defined at a point P in D. There are sections v

and w of TX and a point p in X such that
V=wv), W=Www), and P=(p,p)

and both v and w are defined at p. In Lemma4.3.3]and in Proposition 4.3.4]below, we will use the
notational convention that the uppercase letters V and W denote sections of 7'D that are respectively

the pairs (v, v) and (w, w) where v and w are sections of TX.

Lemma 4.3.3. IfV and W are sections of T D defined at the same point P in D, then
(¢miwxlp) (V. W) = (Cmiwx|p) (V.W) = wxl, (v, w).
Proof. The definition of the pull back functions on forms gives us the equalities

L*ﬂ'TQ)xlp (V,W) = L*ﬂwal(p’p) (v, v), (w,w))
= wx/, (1 (v, V), (W, w)))

= wx|, ((m1:(v, v), T (w, w))) = wx|, (v, w).
On replacing 7} with 7 in the above calculation, we obtain the equality
L*ﬂ;wxlp (V’ W) = (lep (V3 W),

hence,

Umiwx|p(V,W) = ‘mywx|p(V,W).

Proposition 4.3.4. The form wp is closed and nondegenerate on D. Therefore, D is a symplectic

submanifold of X x X.
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Proof. The form wy is closed, therefore

di'miwx = fridwyx =0,

and so
dwp = cdi* 7wy + cd'm;wx = 0.
Lemma[.3.3]implies that
wplp (V,W) = 20wx|p (v,w).
Therefore,

for any section W of T'D defined at P if and only if
wx|, v,w) =0

for any section w of TX defined at p. Since wyx is nondegenerate, v, is the zero vector and so Vp is

the zero vector as well. Therefore, wp is nondegenerate. O

We now set ¢ equal to % Let (g1,---54n, P1s- -, Pn) be Darboux coordinates in an open
neighborhood U of a point a in X and denote these coordinates by (g;, p;) to compress notation.
Since (g;, p;) are Darboux, Lemma implies (L*ﬂfql-, Uy p,-) is a Darboux coordinate system on
D in an open neighborhood of the point (a, a). For clarity, we rename the Darboux coordinates so

that

(L*”T%', L*ﬂTPi) = (a"gia"pi) .

Denote respectively by {-, -}p and {, -}x the Poisson brackets on (D, wp) and (X, wx).
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Lemma 4.3.5. Suppose that z; is equal to either q; or p;. If f and g are in C* (X X X), then

Of . 98f

(o] =
oa*z; 07;

Proof. We will assume that z; is equal to g; since the proofs for the other cases are all similar. Denote

by ¢ the homeomorphism

Y:U—>R™ by ues (q:u),piw).

Suppose that a is in U, then ¢(a) equals (a, a), an element D. Let vy the curve in ¢ (U) given by

y(@) = (q1(a) +t,q2(a), ..., qu(a), p(a))

where ¢ varies in an open interval containing zero that is small enough so that the curve remains in

¥ (U). We have the equalities

(agf;lo«p)(a): ()
dttof(t opoy (y(1))
dtlt NI CANTIEN)
dttof oW (x))
= 0w = 2L

Proposition 4.3.6. The map ¢ is a Poisson map onto its image D.

Proof. If f and g are in C* (X X X), then

B dg  df ) dg
¢"{f.8}p(a) = ¢ Z(aa *qi Ba*pi oa*p; 50*61i)(a)
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= Z (((9&*% o ¢) (a) (8a*pi o ¢) (a) - (8a*p[ o ¢) (a) (Ba*q,- o ¢)) )

4

Furthermore,

(¢° 0" ehx(@) = )

4

(a) - (a)

0¢*f(a) 0¢g g f ~ 0¢'g (@)
0qi opi Opi 0qi )

Therefore, Lemma [.3.5implies that

¢*{f’ g}D(a) = ¢*{f’ g}D(a),

hence ¢ is Poisson onto D. O

Notice that the symplectic form on X X X that is induced by the symplectic form on X and the
projections m; and 75 is in no way unique. In fact, so long as a and b are nonzero real numbers, the
form w on X X X given by

w = amjwx + bmywx

is symplectic. Different choices of a and b can profoundly affect the properties of D. In our setting,

D is a symplectic submanifold. However, if we take an w},, , defined as

*

’ _ *
a)XXX = ﬂlwx - ﬂ'zwx,

then D will no longer be a symplectic leaf but a Lagrangian submanifold.
Proposition 4.3.7. The diagonal submanifold D is a Lagrangian submanifold of (X X X, w}, ).

Proof. 1f (v,w) is an element of T4 4)(X X X), then

(Miwx — mwx) (v, w),") = Mjwx ((v,w), ) — Mwx ((v,w),")
= Wx (71'1*(\/, W), ) —wx (HZ*(V’ W)’ )
= Wwx (V’ ) —Wx (W7 )

=wx (v-w,-).
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Since w is nondegenerate, wx (v — w, -) is identically zero if and only if v — w is the zero vector.
Therefore w},, (v, w), -) is identically zero if and only if (v, w) is in T(4,4) D, which proves that D is

a Lagrangian submanifold of X x X. O

As we have seen with the diagonal, we can change the symplectic form and end up with different
symplectic structures. There are many symplectic forms possible on the fibered product, X Xz Y but
not all will make the projection maps from X Xz Y Poisson. For instance, one could pair X Xz Y
with the symplectic form induced by the product manifold X x Y. Example [4.3.8|shows that such
structure leads to a double-counting of coordinate functions when studying Hamiltonian systems on

the the fibered product.

Example 4.3.8. Consider three point masses attached by springs as shown in Figure [I.T| with the
left spring having a spring constant k; and the right spring having spring constant k. Let f be a
surjective Poisson map from X to Z, g be a surjective Poisson map from Y to Z, px be the projection
map from X X Y to X and py be the projection map from X X Y to Y. The phase space of the left
mass, myx, is X and has position and momentum coordinate (gx, px). The phase space of the middle
mass, myz, is Z with position and momentum coordinates (gz, pz). The phase space of the right

mass, my, is Y with position and momentum coordinates (qy, py). The Hamiltonian for the system is

1 1 1 1 1
H=—p%+—p>+—p>+—k —qgx)> + =k —qz)>.
mXpX mZPz mypy > 1(g9z — qx) > 2(qy — qz)

Hamilton’s equations are as follows:

. o0H . OH 1
px = —— =ki(qz — qx), gx = — = —px,
dqx opx mx
. oH . OH 1
Py =—5— = ko(qy —qz), Gy = — = —Dpy,
qy dpy my
and
. o0H 1 . OH
gz = — = —pz, Pz =—-7—=ki(qz—qx) + ka(qy — qz).
opz mgz 0qz
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We can view the system as two subsystems, namely the left mass, middle mass, left spring and the
middle mass, right mass and right spring. Each mass will have a symplectic manifold for its phase
space. We can compose the two subsystems by “gluing" along the middle mass to build the larger
system, which means taking a pullback along Z. The pullback X Xz Y will be the phase space for the
composite system. Now suppose the symplectic form on X Xz Y is the induced symplectic form on

X x Y. The symplectic form will be
W = wpg + Wx + Wy,
where
qzofopx=qz", pzofopx=pz. qzogepr=qz, pzogopy=pz
gx © Px =qx. PX°Px =PX. qv°pPy =qvs Py °py =Dy

B=p75+p7 and b=q/X+q;.

Rewrite the symplectic form as
w=dbAdB+dgx Apx +dqy Adpy.

This construction gives rise to the Poisson bracket

d¢ Ay B d¢ Ay , 99 v
NG +qz") 0 +pz")  A(pL  +pz) 0(qS +qz") 9ax Opx
_0¢ oy 99 oy 99 Oy

dpx 0qx  dqv Opy  dqy Ipy

{"'} : (¢7¢’) =

The Hamiltonian is

1 | ~ |
H=—px"+—@z  +p2) + —pr
2mX 2mZ 2””Y

1 ~ ~ ~ 1 ~ ~ ~
+ Ekl((qz" +qz") - qx)* + Ekz((CIzX +qz") - qv)*
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and the Hamiltonian vector field is

0 O0H
WHY = ————% ——v
d(qz” +qz )0(pz~ +pz)
0 o0H 0 OH

_ L 0 oH
APz~ +pz") 0qz* +qz")  9ax Opx
_ 0 0H 4 oH 9 oH

dpx 0qx  dqv dpy  Opy dqy

Denote by vy this vector field to obtain

1 ~X |, —Y ~X  —~Y —
va = —(pz" +pz ) ———— — (ki((gz" +q9z" ) — qx)
mz gz~ +qy")
0
+h(@Z" +3Z) - @) ———
d(pz~ +pz")
1 _ 0 ~ — 0 1 _ 0 ~ ~ 0
+—pPx= — kl((QZX + C]ZY) —gx)s—=+ —Dpys— — kz((QZX + C]ZY) - qy)—.
mx" " 0qx dpx my'  dqy dp

Hamilton’s equations for this system are

- o0H

— — _ - OH 1
Px=—m—=ki(@Z"+3Z) - qx), qx = =— = —Dx,
dqx opx mx
. OH o — .~ O0H 1 _
Yy =———==ko((@Z2° +32°) - q¥), qv = —= = — D>
dqy opy my
— —y.. OH ~ ~ — ~ — —
(pz* +pz") = T—x —y. " ~(b((@Zz* +qz") - qx) + k(@2 +q2") — )
0(qz” +qz )
and
— v OH
(@z5+qz") =~

I _x —y
—— = —(pz" +pz).
a7~ +pz")  mz

On the pullback we have p7~ = p7* and g7~ = g;*. Hence,

— 0H 0H 2
2q75) = ——r = = —(p2)
opz  +pz") 2007

mz
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or (g7%) = %([F)}X). Similarly,

0H

P25 +pz) = ———
gz~ +qz

=~k (@Z* +qZ") - @) + k(@ +qz") - )

= —(k12qZ" - qx) + k227" - ).

This shows illustrates the double counting due to the incorrect form on the fibered product.

Example [4.3.8|shows that we have chosen the incorrect form on the pullback and do not retrieve
from the calculation the paths of motion. In Theorem 3.9 we construct the correct symplectic form

on X Xz Y where the projection maps from X Xz Y will be Poisson.

Theorem 4.3.9. Suppose that (f, g) is a cospan in SympSurj with
f:X—>Z and g:Y — Z,

with 2, 2m, 2n the respective dimensions of X, Y, and Z, and suppose that wx, wy, and wz are the
respective symplectic forms on X, Y, and Z. Suppose that Q is a span in SympSurj that is paired

with (f, g) and suppose that Q 5 has dimension 2({ + m — n). The 2-form wg ,, given by
wo, = qr(wx) + qr(wy) — gy (Wz2),
is the symplectic form on Q o. Moreover, the 2-form w, given by
w = nx(wx) + ny(wy) — 17 (wz)

is the unique symplectic form on X Xz Y with the property that (nx, ny) is paired with (f, g).

Proof. Suppose that a is in Q4. Since Z is a symplectic manifold, there is on some chart Uz

containing ¢y (a) a Darboux coordinate system P# with
zZ_(,Z Z . 2n
v = (qk’pk )ke{l,...,n} Uz > R
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Since gy (a) is equal to f(gr(a)), Theorem implies that there is a chart Ux containing g (a)

and a Darboux coordinate system WX on Uy with
X (qu’sz>qu°fpk Of)ze } Ux—>R2f

Similarly, there is a chart Uy containing gg(a) and a Darboux coordinate system ¥¥ on Uy with

Y _ (Y ¥ 7 z 2
¥ (qj Pjsdi © 8 Pk og)je{l,...,m—n} : Uy - R™™.
kelln)

For each k in {1, . . ., n}, the equality of f o g1 and g o gg implies that
Giofoqu=qfogoqr=qf oqu and p{ofoqr=p;ogoqr=p;oqm.

Furthermore, there is a chart U containing a with the property that gz (U) and gg (U) are, respectively,
subsets of Ux and Uy. Denote respectively by qu , plX , qJY ﬁj qk pk the functions qu ogqr, PlX oqr,

qy ©qr, P} © qr, q{ © qm,and p{ o g acting on Q4. The map ‘¥ given by

Y= (ql ) P s pk) Ltom) 1 U — R

E{l ...,m—n}
ke{l cenn}

is a homeomorphism from U to an open subset of R>¢*™~") and hence a coordinate system on U

that is a Darboux coordinate system. The 2-form wg, is therefore the form

Zd A dp¥ +qu] A dpY +quk A dpg,

Jj= k=1

proving that if there is a span Q with the given properties, then the symplectic form on Q4 is
determined by the cospan (f, g). It does not, however, prove that there is such a span.
Proposition[3.4.4|implies that X XY is a smooth manifold of dimension 2(£+m—n). Suppose v is

inT,(X xz Y) and forany w in T, (X Xz Y), w(v, w) is zero. There are coefficients a’, b', ¢/, e/, sk ik
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such that, using Einstein summation convention,
v=d'0G" +b'opX + oG] + e op) +s*agl +1*opt.

For a fixed i,

~w(v,0§%) =b" =0.

A similar calculation shows that all of the given coefficients are zero, implying that v is equal to zero
and so w is nondegenerate. The form w is the sum of pullbacks of smooth closed forms, and so
smooth and closed itself, hence symplectic. The construction of w ensures that the smooth surjections

nmx and my are Poisson maps on the symplectic manifold (X Xz Y, w), hence (rx, wy) is paired with

(f9g) O

Theorem 4.3.10. Suppose that (f, g) is a cospan in RiemSurj with
f:X—>Z and g:Y > Z

and that gx, gy, and gz are the metric tensors on X, Y, and Z, respectively. The tensor gxx.y, given
by

8xx,v = Ty (gx) + my(gy) —m,(82),
is the unique metric tensor on X Xz Y such that the span (rtx, ny) is paired with (f, g).

Proof. Since every surjective Riemannian submersion is a surjective submersion, the fibered product
X xz Y is a smooth manifold. If gxx, y is positive definite, then (X Xz Y, gxx,y) is a Riemannian
manifold since gxx.y is a symmetric tensor as a sum of pullbacks of symmetric tensors. It suffices to
show that gx .,y is nondegenerate.

Follow the proof of Theorem |4.3.9] using the splitting of the tangent spaces

TX = (ker(df))* @ (ker(df)) and TY = (ker(dg))* @ (ker(dg))
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rather than the previous appeal to Theorem[#.3.T]to obtain an expression for gx, y in local coordinates.
Together with this local coordinate representation of gx. v, the fact that the maps nyx, ny and nz are
surjective Riemannian submersions imply that gx., y is nondegenerate. The proof is similar to the

proof of Theorem |4.3.9|and so the details are left to the reader to verify. O

Note that the symplectic form on X xz ¥ in Theorem[4.3.9]is not the pullback by the inclusion
map of the symplectic form on X X Y to the manifold X Xz Y. While the pullback form is symplectic,
the span (7, my) will no longer be a span in SympSurj when X Xz Y is endowed instead with the
pullback form. The analogous statements about the potential choices for the metric tensor are true in

the Riemannian setting.

4.4 Examples

Below are some first examples of generalized span categories. We will develop more examples in the

next chapter that involve looking at categories of Riemannian and symplectic manifolds.

Example 4.4.1. (Categories that have Pullbacks) Suppose that € is a category that has pullbacks
and let 7 be the identity functor from % to . The functor ¥ is span tight and so Span(%, F) is a
category. Since every ¥ -pullback of a cospan is a pullback of a cospan, the category Span(%, )
is the category Span(%’). In this way, the concept of a generalized span category Span(%, ¥ )
generalizes the notion of a span category and reduces to it when % has pullbacks and F is the identity

functor.

Example 4.4.2. (Smooth Manifolds and Surjective Submersions) Suppose that ¥ is the inclusion
functor from SurjSub to Diff. Theorems and together imply that Span(SurjSub, ) is a

category.

Example 4.4.3. (Classical Mechanics) We work in the categories RiemSurj, whose objects are
Riemannian manifolds and whose morphisms are surjective Riemannian submersions, and SympSurj,
whose objects are symplectic manifolds and whose morphisms are surjective Poisson maps. Unlike

SurjSub, these categories are not subcategories of Diff. However, the forgetful functors from these
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categories into Diff are still span tight and so it is possible to construct generalized span categories in

these settings which are critical to the study of classical mechanics.

In the next chapter, we will in a limited setting extend the work of Fong in [19]] by introducing the
notion of an augmented generalized span category. Such categories are critical to the categorification

of classical mechanics and the study of the functoriality of the Legendre transformation.
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Chapter 5

Lagrangian and Hamiltonian Systems

5.1 Systems as Isomorphism Classes of Augmented Spans

We now introduce the notion of an augmentation of a span and cospan in the restricted settings that
are significant to the current discussion. The description of a Lagrangian or Hamiltonian system
respectively requires not only the identification of a Riemannian or Poisson span, but the additional

information of a potential or a Hamiltonian, both of which are augmentations.

Definition 5.1.1. An augmented manifold is a pair (M, Fas), where M is a smooth manifold and
Fyy is a smooth real valued function defined on M. The pair given by (M, Fjy) is an augmented
Riemannian (symplectic) manifold if M is a Riemannian (symplectic) manifold. Refer to Fj; as
a potential (or Hamiltonian), denoting it by Vjs (or Hys) if M is respectively a Riemannian (or

symplectic) manifold.
For sake of concision, denote by 9t any of the categories listed in Figure

Definition 5.1.2. An augmented (co)span in M is a pair (S, Fs), where S is a (co) span in 9t and
Fs is a triple (Fs,, Fs, , Fs ) of smooth real valued functions defined respectively on S4, Sz, and
Sr. If M is RiemSurj (or SympSurj), then the given augmented span is an augmented Riemannian

(co)span (or augmented Poisson (co)span). A physical (co)span is an augmented (co)span that is
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either Riemannian or Poisson. If (S, Fg) is an augmented Riemannian (Poisson) span, then refer to

Fs as a potential (or Hamiltonian) and denote it by Vg (or Hs).

The apex of a Poisson span determines the kinematical properties of the system and the mapping
of the apex to its feet determines the way in which the span composes with other spans and, therefore,
how components of systems compose to form more complicated systems. The apex of a Riemannian
span determines a free system and the augmentation will be a potential that determines the interactions
in the system. The fundamental object of our study should be an isomorphism class of augmented
spans rather than an augmented span because composition using ¥ -pullbacks is only determined up

to isomorphism.
Definition 5.1.3. Suppose that physical spans (S, Fs) and (Q, FQ) are either both Riemannian or

both Poisson and that

(Se.Fs,) = (Qu.Fo,) and  (Sk. Fsg) = (Q. Fou) -

A span morphism ® from S4 to Q4 is compatible with Fs and Fg if Fs, is equal to Fp, o ® and
is, in this case, a morphism of physical spans. 1f ® is additionally an isomorphism, then @ is an

isomorphism of physical spans and (S, Fs) and (Q, FQ) are isomorphic physical spans.

The inverse of an isometry is again an isometry. The inverse of an icthyomorphism is again an

icthyomorphism, [18] p. 10]. Proposition [5.1.4]follows from these facts.

Proposition 5.1.4. The inverse of any Riemannian (or Poisson) span isomorphism from S to Q is a

Riemannian (or Poisson) span isomorphism from Q to S.

Denote by [S, Fs] the set of all physical spans that are isomorphic to a physical span (S, Fs).
Together with the fact that the composition of physical span isomorphisms is again a physical span
isomorphism, Proposition[5.1.4]implies that isomorphism of physical spans is an equivalence relation,

hence the set [S, Fs] is an equivalence class.

Definition 5.1.5. A Lagrangian (or Hamiltonian) system is an isomorphism class of Riemannian
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or Poisson) spans. If [S, Fs] is either a Hamiltonian system or a Lagrangian system, then [S, Fs]
is a physical system. Physical systems [S, Fs] and [Q, Fg] are of the same type if they are both

Hamiltonian systems or both Lagrangian systems.

5.2 Paths of Motion

Refer to Section [2.2] for review of the Euler-Lagrange equations on a Riemannian manifold.

Definition 5.2.1. Suppose that S is a Poisson span. Denote by {-, -}s, the Poisson bracket associated
to the symplectic form wg, on the symplectic manifold S4. A path y in S4 is a path of motion of S if

it is an integral curve of the the vector field v where

V= {.’ HSA}SA :

Proposition 5.2.2. Suppose that (S, Fs) and (Q, Fp) are physical spans of the same type and ® is
an isomorphism of physical spans taking (S, Fs) to (Q, Fp). If v is a path of motion of (S, Fs), then
® o y is a path of motion of (Q, Fg). Furthermore, every path of motion of (Q, Fp) is the image of a

path of motion of (S, Fys).

Proof. If S and Q are Riemannian spans and @ is an isomorphism from S to Q, then @ is an isometry
from S4 to Q4 and Vs, is equal to Vp, o ®. Denote by V54 and V4 the respective Levi-Civita
connections on S4 and Q4. Suppose that p is an element of S4 and that X and Y are tangent vector

fields on S4. The map @ is an isometry and so
Ao, (V) (2)) = Vo, dO(N)(@ (p))  and  dd(grads, (Vg, o @)) = grady, (Vo, ) -

If y is a path of motion of (S, Fs), then ® o vy is a curve in Q4 and

V(Q(I)/z)/)/(q) oy) + gradg , (VQA) |cDoy = VdQ‘I?()//) (do(y)) + gradg , (VQA) |‘D°)’
= d(VSA () + gradg, (Vs,) )

=d(0) =0,
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where the fact that y satisfies in S4 implies the penultimate equality. The path ® o vy is therefore
a path of motion of (Q, Fp).

If S and Q are Poisson spans and @ is an isomorphism from S to Q, then @ is an icthyomorphism
from S4 to Q4 and Hg, is equal to Hp, o @. The curve y is path of motion of (S, Fy) if and only if
it is an integral curve of the vector field {-, Hs, }. Suppose that & and 3 are smooth functions on Q4.

Since @ is Poisson,

dD({ @ 0 Dls, ) (B) = (a0 D5, (Bo®) = ({Bo D aodls,) =B algy,

and so

(®oy) =dol,({- Hs,)s,)

= dq)ly({”HQA °© q)}SA) = {"HQA}QA |(Doy'

The curve ® o vy is, therefore, a path of motion of (Q, Fp).
In both the Riemannian and Poisson settings, the map ®~! is also an isomorphism of physical

spans and so every path of motion of (Q, Fp) is the image of a path of motion of (S, Fs). O

5.3 ¥ -Pullbacks of SympSurj and RiemSurj in Diff

Recall Example which demonstrated that SurjSub does not have pullbacks. This same example
can be adopted in the Riemannian or symplectic setting because any discrete manifold can be endowed
with the trivial Riemannian metric or symplectic form. Therefore, RiemSurj and SympSurj do not
have pullbacks. Proposition[5.2.2]implies that an isomorphism class of physical spans determines the
dynamics of a physical system. Composing such isomorphism classes requires both the existence of
¥ -pullbacks in these categories, where ¥ is an appropriate forgetful functor into Diff, as well as the

span tightness of the functor 7.

Theorem 5.3.1. The forgetful functors from SympSurj to Diff and from RiemSurj to Diff are span

tight.
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Proof. Suppose that F is the forgetful functor from SympSurj to Diff. Since every morphism in
SympSurj is a surjective submersion, the functor ¥ maps SympSurj to the subcategory SurjSub of
Diff. If (f, g) is a cospan in SympSurj, and 7y and 7y are, as defined above, the respective projections
from X Xz Y to X and Y, then Propositionimplies that (¥ (mx), ¥ (7y)) is a span in Diff that is
a pullback of the cospan (¥ (f), ¥ (g)). Therefore, SympSurj has ¥ -pullbacks in Diff. Suppose now
that Q is a span in SympSurj that is also an ¥ -pullback of (f, g). In this case, the span ¥ (Q) is a
span in Diff that is a pullback of (¥ (f), ¥ (g)) and so there is a span diffeomorphism ® from ¥ (Q)

to F (X Xz Y). Since @ is a span morphism,
Fgr)o® ' = F(nx), Flgr)o®'=F(ay), and F(f)oF(qr)o® ' = F(nz). (5.1)

Denote respectively by w, wx, wy, and wz the symplectic forms on X Xz Y, X, Y, and Z. The

equalities of (5.1)) imply that

w =F (mx)" (wx) + F (ny) (wy) = F (12)"(wz)
= (F(qr) 0 @) (wx) + (F (qr) 0 @) (wy) - (F(f) 0 Fqr) 0 ®7") (wz)
= (@) (F(qn)" (@x) + F(gr)"y) = (F(f) 0 F(qr)) " (@z) )

- (07) (we).

where wg, is the unique 2-form on Q4 such that Q is paired with (f, g). Let ¥ be the map from
(Qa,wg,) to (X Xz Y,w) that acts as ® on the underlying manifolds. The map ¥ is, therefore,
a diffeomorphism and ¥~! is a symplectic map, hence ¥ is a symplectomorphism. Since every
symplectomorphism is an icthyomorphism, ¥ isomorphism in the category SympSurj with # (‘\¥)
equal to @, [1} p. 195].

A similar argument proves the theorem in the case of RiemSurj. O

Corollary. If ¥ is the forgetful functor from SympSurj to Diff (resp. RiemSurj to Diff ), then

Span(SympSurj, ) (resp. Span(RiemSurj, )) is a category.
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While Theorems and imply that Span(SympSurj, #) and Span(RiemSurj, ¥) are
categories, where 7 is the appropriate forgetful functor into Diff, to show that physical systems are
morphisms of a category requires additional verifications. The next section provides the necessary

verifications.
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Chapter 6

Physical Systems as Morphisms

6.1 The Categories HamSy and LagSy

This section constructs the categories LagSy and HamSy, whose objects are respectively augmented
Riemannian manifolds or augmented symplectic manifolds and whose morphisms are isomorphism

classes of the physical spans appropriate to the given category.
Definition 6.1.1. The physical system [S, Fs] is composable with the physical system [Q, Fp] if:

(1) both are physical systems of the same type;

(2) if (S, Fs) and (Q, FQ) are respective representatives of the equivalence classes [S, Fs] and
[O, Fo], then (Sg, Fs, ) is equal to (QL, FQL)‘

Assume below that the physical system [S, Fs] is composable with [Q, FQ], and (S, Fs) and

(Q, FQ) are, respectively, representatives of [S, Fs] and [Q, FQ]. To simplify notation, let
SA:X’ SL:Va SR:QL:Z’ QAZY’ andQR:W'

Again denote by X Xz Y the fibered product and by mx, ny, and 7z the respective projections to X,

Y, and Z. Define by [S, Fs] o [Q, Fp] the augmented span given by

[S, Fs10[Q, Fol = [(s1. 0 mx, qr © 7v) , Fseo]
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where

Fsop = (Fx onx + Fy oy — Fz o mz, Fy, Fw) .

Theorem 6.1.2. The Hamiltonian systems are the morphisms in a category, HamSy, whose objects
are augmented symplectic manifolds. The Lagrangian systems are the morphisms in a category,

LagSy, whose objects are augmented Riemannian manifolds.

Proof. To prove the theorem, it suffices to show that: (1) composition of morphisms in HamSy
and in LagSy is well defined; (2) both HamSy and LagSy have left and right unit laws; and (3)
composition of morphisms in HamSy and in LagSy is associative. Since Span(RiemSurj, ¥) and
Span(SympSurj, ) are categories, to show that HamSy and LagSy are categories, it suffices to show
that the augmentations are compatible with the various span isomorphisms that arise in defining the
categories Span(RiemSurj, ) and Span(SympSurj, ¥ ). Suppose that [S, Fs] and [Q, FQ] are both
morphisms in HamSy and denote by ¥ the forgetful functor from SympSurj to Diff.

(1) Suppose that [S’, Fs/] is equal to [S, Fs] and that « is an isomorphism of augmented spans
with

a: X =84 —> 8.

Suppose that [Q’, FQ/] is equal to [Q, FQ] and that # is an isomorphism of augmented spans with
B:Y =04 Q).
Since (Z, Fz) is the right foot of (S, Fs) and the left foot of (Q, FQ),
(S Fsy) = (01 Fo, ) = (Z.F2).
If P is an F -pullback of (S;e’ qi) then there is a span isomorphism ® in SympSurj with

D: X XzY — Py.
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The augmented span (S, Fs/) op (Q’, FQ/) is given by
(S, Fs) op (Q', FQ’) = ((S'L ° PL: 4R OPR) , FS’OPQ’) )

where

FS,OPQ, = (}’—‘S:4 OpL +FQTA OPR —FZ [¢] s;e OpL,FV’FW) .

Since a and B are isomorphisms of augmented spans,
FS;\ OCL’=FX and FQ;‘ Oﬂ=Fy.
The function © is a span isomorphism and so
pro®=aonxy and pgo® = fony,

hence

FS/AopLOQD:FS:AOa’OTrX=FXO7Tx.

Similar arguments show that
Fg,opro®=Fyony and Fzrospopro®=Fzomy,

and so

FSOQ = (FS’OPQ’) o®. (61)

Equality (6.1]) implies that @ is an augmented span isomorphism, hence the composition of [S, Fs]
and [Q, FQ] is independent of representative. The composite [S, Fs] o [Q, FQ] is, therefore, a well
defined morphism from (Qg, Fog) to (St, Fs, ).

(2) Let [S, Fs] be a morphism with source (Sg, Fs, ) and target (Sg, Fs, ). Let (Is,, FISR) be

a representative of the identity augmented span with source (Sg, Fs, ) and target (Sg, Fs,). The
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equality

[STo [Isg] = [S]

follows from the fact that Span(SympSurj, 7) is a category. Let the span P be an 7 -pullback of
(sr,Lsg ), where

PL =PA=SA, PR =SR, PL =Idx, andpR = SR.

The equalities

Fp, =Fs, opr+ Fsgosgr —Fsp 0o sropr

= Fg, oldx + Fs, o sg — Fs, o sg oldy = Fs,
imply that there is an augmented span isomorphism from (S, Fs) o (Isg, Fs,) to (S, Fs), and so
[S, Fs]o [Isg, Fsg] =[S, Fs].
A similar argument shows that
[Is,. Fs, ] o [S, Fs] =[S, Fs].

Therefore, HamSy has left and right unit laws.

(3) Refer to Figure [6.1] for the naming of the maps below, where all spans paired with a given
cospan are augmented 7 -pullbacks of the given cospan and the diagram is commutative. Let
(P3, Fps) be an F -pullback of (p}, p7 ) and let (P*, Fps) be an F -pullback of (qg © pj.t1).

To prove (3), show first that there is an augmented span isomorphism from the augmented span
((S, Fs) O(PLF ) (0, Fp)) O(P4 F ) (T, Fr) to the augmented span (P, Fp) that is given by the
composite ((S, Fs) O(PLE.) (0, Fp)) O(P3.F,3) (0, Fp) O(P2F ) (T, Fr)). A similar argument will
show that there is an augmented span isomorphism from the augmented span (S, Fs) o ((Q, Fp) ©
(T, Fr)) to (P, Fp) and the result follows by the fact that inverses and compositions of augmented

span isomorphisms are augmented span isomorphisms. Since Lemma[4.2.2] proves the existence of a
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Sr=0L Or=TL Tr
Figure 6.1: Associativity of Augmented Span Composition

span isomorphism between the non-augmented spans, it suffices to show that this span isomorphism

is compatible with the augmentations for the two composite spans.

The commutativity of the diagram in Figure[6.1]and the definition of the composition of augmented

spans together imply that

Fpy = Fpi 0 p] + Fr, o pg = Fop o m*
= Pl\opioCD+FTAopéopzo(l)—FQRomzop%od).
:(FPj‘°P3L+FTA°P%QOP13Q_FQRomzopz)oq)
(FP}‘OPL (FTAOpR FQRomz)OP?e)oq)
(Fp;‘ op; + (FQA o pf = Fo, © pf. + Fr, o pg — Fog © mz) OPi) °o®
=(F F, F F, ?) o py - F, 1opg|o®
= P}AOPL ( QAOPL+ TAOPR Rom)OpR 0aA°PL°PR)®

FP}AopL (FQAOPL+FTAOPR FRomz)op;%_FQAoms)oq)

78



Therefore, the span isomorphism @ is compatible with the augmentations Fps and Fps.
The above arguments are independent of the morphisms being in HamSy. Repeat the arguments

above in the setting of LagSy to complete the proof of the theorem. O

6.2 The Legendre Functor

This section constructs a functor .Z from LagSy to HamSy, the Legendre functor, that preserves the
paths of motion.

Suppose that (M, gas) is a Riemannian manifold of dimension m. Denote respectively by m)s and
pum the canonical projections from 7*M to M and from TM to M. Suppose a is a point of M. There
is a chart U of M containing a that is the domain of coordinates (x;);c(i,... ). The set of 1-forms
{dx;: i € {1,...,m}} trivializes the subbundle T*U. Define for each i the real valued functions le

on T*U with the property that for all § in T*M,

L 0
_ M
Q‘Z;”(mam

7ip (6)

The le are the momenta associated with the x; coordinates. For each i, the function le is the

evaluation map ev that is defined by the equality
Ox;

g (6)

EVy

ax;

7TM(9)>

0
w>=e(am
(0)

For each i, define g™ by
qll\l =X;OTMp.

The function given by (qlM , pf‘/’ ) on 71;/} (U) is a Darboux coordinate system, that is

iefl,...,m}

m

M M

wWrepm = dg;” ANdp;”.
i=1

79



Define for each i the real valued function quM on 7'M with the property that if v is in p;} (U), then

Note that c}lM is the function defined for each v in TU by
g (v) = dxilpy, ) V).
Denote ambiguously by qlM the function

M
g =Xiopm

on TU. The coordinate system (qlM Nk ) is a coordinate system on p;} (mar (U)).

The Riemannian metric gp; on TM induces a Riemannian metric on the cotangent bundle 7* M,

to be denoted g3, and for each a in U defined on the pair (61, 6,) in T,M X T, M by

8h1(01,02) = ga (s (01, (02)) = > g (@)p (01)pM (62),
i,j=1

where gj\{l denotes the (i, j) entry of the inverse of the matrix given by g, in the (qlM , quM ) coordinates.

For all vin TM and 6 in T* M, denote respectively by gps(-) and g}, (-) the quadratic forms
gm(v) =gm(v,v) and gy, (6) = g,(6,0). (6.2)
Define .# as a map from Riemannian manifolds to symplectic manifolds by
H (M, gm) = (T"M, wr+m) -
For any surjective Riemannian submersion f from M to N, define (see Figure[6.2) ¢ (f) by
H(f)=byodfolin.
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To simplify the notation, denote by F the function 2 (f).

Suppose that M and N are smooth manifolds of respective dimensions m and n and suppose
further that f is a surjective Riemannian submersion from M to N. For any point p in M there is a
coordinate system (xi, . . ., X, ) of Ay on a chart containing p and a coordinate system (yy, . .., Yn)

of Ap on a chart containing f(p) such that for all i in {1,...,n} and kin{n + 1,...,m},
0
x;=yiof and — €ker(df).
8xk

Let j be an index varying in the set {1, ..., n}. For each i and each j, denote respectively by ‘LM and
qj.v the functions x; o mys and y; o my and denote by le and pj’.v the momenta associated with the

coordinate functions x; and y;. Use the above notation for the following lemma, as well as for the

rest of the section.

f
M N
PM PN
df
™ ™ TN N
A | 1ba dn 1|y
"M T*N
F=J%(f)

Figure 6.2: Composition of d f with the Musical Isomorphisms

Lemma 6.2.1. For all pj.” , pjy , and F defined as above,

pi' =p} oF.

Proof. Forall jin {1,...,n},

df(i

8xj

0 0
= d _— = —-— .
a) f(a(yj Of) a) ayj f(a)
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For all 8 in T*U, there is an element X of TU with 8 equal to g/ (X, -). In this case, the form

a )
Xj lrns ()

(0) = gm (X, o,

F(0) is equal to g (df(X), ), and so

py@) =ev,
[)Xj

7tpg (0)

The function f is Riemannian, implying that

0
= gn |dfo0, dff —2—
nM(H)) gN( 1) f(a()’jof)

o)

0
X, ———
gM( a(yjo /)

and so

0
M _
pM0) = gn (df(X), 3,

f (mm (9)))

0
=8N (df(X), 8_
Yj

”N(F(g))>

0
=FO)| —
()(Byj

N (F(H)))

=ev, (F(0)) = (nn o F)(0),

dy

Jlxpg(60)

which proves the desired equality. O

Proposition 6.2.2. For any surjective Riemannian submersion f from a Riemannian manifold M to

a Riemannian manifold N, the function ¢ (f) is a surjective Poisson map.

Proof. Suppose M and N have respective dimensions m and n. The map .# maps Riemannian
manifolds to symplectic manifolds. Once again denote by F the map # (). Suppose that 17+, and
[I7«n respectively denote the Poisson bivectors for 7*M and T*N. For any @ and 8 in C*(N) and

any a in M,

dFu(Trm) (@, B) = Ty (@ o F, Bo F)|

 [#@oF)d(BoF) d(BoF)d(aoF)
— g™ opM g™ opM

L 1

i=1 i a
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Z”: d(@oF)d(BoF) d(BoF)daoF)
; ogM opM ogM opM

1

i=1 i i

l a

S

(6.3)

1

(a(aoF) d(BoF)  d(BoF) a(aoF))
d\a(gN o F)d(pN o F)  0(q) o F) d(p) o F)

d(a@) d(B) 9(B) d(a)
aqN opN  aq" opY

a

s

= Tr-n (o, B)|
F(a)

F(a)

i=1

where Lemma implies the equality in (6.3). Therefore, dF (Il-ys) is equal to [Tz x, which
implies that F is a Poisson map. The map f is a surjective submersion, therefore df is surjective.
The nondegeneracy of g implies that F is also surjective and so .# maps the morphisms in RiemSurj

to morphisms in SympSurj. O

Lemma 6.2.3. For any Riemannian spans S and Q and any span isomorphism ® from S to Q, the

function & (D) is a span isomorphism from & (S) to K (Q).

Proof. Suppose that ® is a span isomorphism from S and Q. In this case, .7 (®) is Poisson. Since
J (®) is an icthyomorphism, it is an isomorphism in the category SympSurj. Recall that the
isomorphisms in SympSurj are icthyomorphisms, which are symplectomorphisms since the objects

in SympSurj are symplectic manifolds, [1, p. 195]. Since ® is a span morphism,
sp=qLo® and sg=qro®,
implying that

H (sL) = A (qL o D)
=bg, od(grL o @) o fs,
= bg, odgs oddofs,
b9, o401 (i, 2b,) 240 o s,

= (bo,dgr o tio,) © (bo, ©dP o fis,) = H (q1) 0 H (®).
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A similar argument shows that

H (sr) = A (qr) o H (D),

proving that .7 (®) is a span morphism. Therefore, for any spans S and Q in RiemSurj that are span

isomorphic, the spans .Z (S) and .Z (Q) are also span isomorphic. O

Lemma 6.2.4. For any Riemannian submersion f that is compatible with a Riemannian augmentation,
the function J¢ (f) is a Poisson map that is compatible with the Hamiltonian augmentation that is

the image under % of the Riemannian augmentation.

Proof. For any span isomorphism ® from S to Q that is compatible with Fs and Fp,
Vs, = Vg, o®.
The isomorphism @ is Riemannian, hence an isometry. Therefore,
85, =80, °© X (D),
and so

L,
Hg, = EgsA + Vs, oms,

1 sk
= 580, © H (D) + Vo, 0o, 0 H (D) = Ho,y 0 A (D).

Suppose that S is a Riemannian span and let x denote either of the letters A, L, or R. Define
H (Sw, Vi) by
%(S*, Vi) = (%(S*),H*)

where for all 77 in Sy,

1
Hs,(n) = Egg* () + (Vx o ms, ) ().
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Each object of LagSy is an augmented Riemannian manifold and so .#" maps the objects of LagSy to
the objects of HamSy. Define . to be .# on the objects of LagSy and for each morphism [S] in
LagSy, define .Z([S]) by

Z(ASD = [ (S)].

Theorem 6.2.5. The map £ is a functor from LagSy to HamSy. Suppose that nts, is the canonical
projection from T* S to Sa. Suppose that the Lagrangian system [S] has a path of motion y on the
manifold S4 that is specified by the representative S of [S] and suppose that vy intersects a point
x of Sa at time zero. In this case, the path J oy is a path determined by £ ([S)), valued in the

symplectic manifold ¢ (Sa), and nts,, o & oy also intersects x at time zero.

Proof. The map . maps Riemannian manifolds to symplectic manifolds and potentials to Hamiltoni-
ans, and therefore maps the objects of LagSy to the objects of HamSy. Proposition [6.2.2]implies that
- maps surjective Riemannian submersions to surjective Poisson maps, and so if S is a Riemannian
span, then # (S) is a Poisson span. Lemmaimplies that if (S, Fs) and (Q, F) are isomorphic
as augmented Riemannian spans, then JZ (S, Fs) and %2 (Q, Fp) are also isomorphic as augmented
Poisson spans and so .Z is well defined on Lagrangian systems, mapping them to Hamiltonian
systems.

Suppose that M is a Riemannian manifold. Denote by £, the Lagrangian on T M, where for
eachvinTM,

1
Ly ) =Z8m(v:v) = Va (pm (v)) -

Denote by Hp, the Hamiltonian associated to Vi, and by {, -}7+s the Poisson bracket as given above
in the construction of .Z. It is a standard result in classical mechanics that a path y on M is a solution
to if and only if it is an integral curve of {-, Hys}ps, [[16}, p.25, Theorem 3.13]. This proves the
last two statements of the theorem. To prove that .Z is a functor, it suffices to show further that: (1)
Z commutes with composition and (2) . maps identity morphisms to identity morphisms.

To show (1), suppose that [S, Fs] and [Q, Fp] are augmented Riemannian spans and that [S, Fg]
is composable with [Q, Fp]. Suppose that P is an ¥ -pullback of (sg, g1.), where Py is the fibered

product S4 Xs, Q4 and pg and py, are the respective restrictions of the projections on S4 X Q4 to Sa
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and Q4. The map .7 maps Sa Xs, Qa4 to its cotangent bundle 7% (Sa Xs, Qa), which is isomorphic
in SympSurj to the manifold (7%Sa) X(r+sg) (T*Qa). The symplectic form on 77 (S Xs, Qa) is

given by the canonical 2-form and the symplectic form w on (T*Sa) X(r+sg) (T*Q4) is given by
w =2 (pr) (wr+s,) + X (Pr) (wr:0,) — H (pr) (K (sR)* (Wr*sk))-

The symplectomorphism @ from 7*(Sa Xs, Qa) to (T*Sa) X(r+sg) (T*Qa) is consistent with the

augmentations. Lemma [6.2.4]implies that

Z([S, Fs] o [Q, Fgl) = Z([(S, Fs) op (O, Fp))
= [ ((S, Fs) op (Q, Fp))]
= [ (S, Fs) o p) X (0, Fo)l

= [ (S, Fs)] o [ (Q, Fo)l = Z([S, Fs]) o Z (10, Fol),

where the penultimate equality holds because % (P) is an ¥ -pullback.

To show (2), suppose that (X, Vx) is an augmented Riemannian manifold and that Idyx is
the identity map from X to X. Denote by Ix the span (Idy,Idx). The span . (Ix) is the pair
(A (1dx), # (Idx)) where % (Idx) is the identity map Idy-x from T*X to T*X. Furthermore, %
maps the augmentation Vx to the augmentation Hy-x where

1.
Hprx = EgX + Vx omyx.

Suppose that S is an augmented Hamiltonian span with (S, Hs, ) equal to (T*X, Hr-x). Let Q be
the ¥ -pullback of the cospan (% (Idx), sz.) with the property that Q 4 is the symplectic manifold
T*X X7+x Sa. The maps g;, and gr are the respective restrictions to the manifold 7% X Xp+«x S4 of
the canonical projections of the manifold 7*X X S4 to T*X and S4 and are symplectomorphisms.
The definition of the augmentation on a pullback implies that

1, 1,
HQAz(ng+VonrX)oqL+(EgSA+VSAO7TSA o gR
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1
- (Eg;} +Vx o 7TX) ogqr oldrx

1, 1, 1,
:(58X+VX°7TX)OQL+(§g5A+VSA OﬂSA)OQR_(ng"‘VXOﬂX)OC]L

1 *
(EgSA +Vs, 0 7TSA) ogr = Hs, o qr,

hence

Hp, = Hs, © qr.
The map g is, therefore, compatible with the augmentations. Since Q is paired with (2 (Idx), sr.),
spoqr =1Idx oqr =q,

and so g is a span isomorphism mapping the composite (% (Ix) o gz, Sr © gr) to the span S that is

compatible with the augmentations. This compatibility implies that
ZL([Ix, ik D) o [S, Hs] = [F (Ix, Vx) o (S, Hs)] =[S, Hs].

Similar arguments show that for any augmented Hamiltonian span (S’, Hs’) such that (S5, H. 57, ) 18
equal to (T*X, Hr+x),

[, Hs'l o Z([Ix, Vx ) = [S', Hy'],

and so .Z([Ix, Vx]) is the identity map with source and target (T*X, Hr-x).

Refer to the functor £ from LagSy to HamSy as the Legendre functor. It is an analog of the
Legendre transformation and translates from Lagrangian to Hamiltonian descriptions of a physical

system.
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6.3 Motivating Example

Suppose that the spring-mass system with three masses given in Figure[I.3|has masses m, my, and
m3 respectively as the left, middle, and right masses of the system. Suppose further that the spring
constants of the left and right springs are respectively k; and k,. The spring-mass system with three
masses is a composite of two spring-mass systems with two masses each. We now discuss a category
theoretic construction of a model for the composite system with its subsystems.

Let [S, Vs] be a Lagrangian system describing the left-spring mass system and [Q, Vp] be a
Lagrangian systems describing the right spring-mass system. Denote both Sg and Q. by Z, since Sg
is equal to Oy, and by V; the augmentation on Z. Take a representative (S, Vs) of the Langrangian
system [S, V5] to be the augmented Riemannian span with the manifold S4 equal to R? and the
manifolds Sy, and Z equal to R. Let g; be the standard Riemannian metric on R. Let py and pg be

the canonical projections on R? with

pL(q,q2) = q1 and  pr(q1,q2) = q2.

Denote by g; the standard Riemannian metric on R?. Endow S;, with the Riemannian metric 8s;

and Z with the Riemannian metric gz, where gs, and gz are given by
gs, =mig and gz =mgi.
Define by gs, the metric on R? given for all v and w in T(4, 4, R? by
gsa (v, w) = gs; (dpr(v),dpr(w)) + gz(dpr(v), dpr(W)).

Denote respectively by 57, and sg the functions from S4 to Sy and from S4 to Z that act on underlying

manifolds as the projections py and pgr. The augmentation Vg is the triple of maps

) k
Vs = (Vs,, Vs, Vz) with Vs, (q1,q) = 71(611 — )% Vs, =0, and V, = 0.
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Define similarly the Riemannian span (Q, V), but with the Riemannian metric g, on Qr and the

augmentations Vo, and Vp, given by

ko
gor = m3gi, Vo, (92,43) = 5 (q2 = 3)%, and Vg, =0.

Define by gg, the metric on R? given for all v and w in T(4, 4 R? by

go.(v,w) = gz(dpL(v),dpL(W)) + gor (dpr(v),dpr(W)).

N
N SN

Figure 6.3: Configuration Spaces for Three Point Masses

Denote by nr;, and ng the respective projections from Sg Xz Q4 to S4 and to Q4 and by 7y
the map sg o mrz, which is also the map gg o mg. Denote by gs,x,0, the Riemannian metric on
Sa Xz Q4 given by

gSAXZQA = HZ(gSA) + n;(QA) - ﬂ;(gZ)

The augmentation Vs, 0, is then given by

Vsaxz0a = ”Z(VSA) + ”Z(VQA) - 71'7\/[(‘/2)-

Let @ be the diffeomorphism from S4 Xz Q4 to R3 given by

DO(q1, 92, ¢, 43, 41, 42, G2, 3) = (q1, G2, @3, G15 G2, G3) -

&9



Denote by P4 the Riemannian manifold R?, and by p;, and pg the maps
pL = sLonLod)‘1 and pr = SR o R o !,
Denote similarly by Vp, the potential
Vey = Vsaxz04 007"
Define a Riemannian metric gp, on P4 by

gPA = (q)_l)*(gSAXZQA )a

making @ an isometry. The Lagrangian for the composite system is Lp, where for every v in TPy,

1

Lp,(v) = EgPA(v, v) = Vp,(pp, (V).

The Lagrangian £ of the system with configuration space given by R? is given with respect to

coordinate system (g1, g2, g3) by

LG5 D @3 G162 43) = = (@)% + = (62)” + = (62) + = (§3)° — = ()’
2 2 2 2 2
k k .
- gl(ql =)’ = 5 (g2~ 43)° +0 (since Vz = 0)

S M Mo ke ks
= 2(611) + 2(92) +2(613) 2(611 Q) 2(612 q3)°.

The Riemannian span (P, Fp) is a representative of the Lagrangian system [S, Fs] o [Q, Fp]. The
Lagrangian £ on P, is the Lagrangian for the given system of three masses and two springs with
configuration space equal to R?. We leave the determination of the Hamiltonian system to the reader
as it is a straightforward exercise given the previous discussion and the result of the next section.

In general, a description of a composite system requires a prior description of the subsystems.

The subsystems need not themselves have descriptions as composite systems and it remains an open
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problem to determine the simplest subsystems that are required to construct from them any other
system as a composite. If two subsystems that share a common component form a complicated
system, and if we know how to map the subsystems into two pieces, one of which is the common

component, then we can view the complicated system as a composite system in our formalism.
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