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Chromatic matching in a plasma undulator
B.Z. Djordjević,1, 2 C. Benedetti,2 C.B. Schroeder,2, 3 and E. Esarey2
1)Department of Physics, University of California, Berkeley, CA, 94720, USA
2)BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720,
USA
3)Department of Nuclear Engineering, University of California, Berkeley, CA, 94720,
USA

The principle of chromatic matching, i.e., using two laser modes of different geometric modes numbers and
of different colors such that they copropagate at the same group velocity, is proposed in order to realize the
plasma undulator concept. Chromatic matching allows one to overcome group velocity slippage, whereby
lower-order modes outrun higher-order ones, allowing for extended interaction lengths. The dephasing limit
can be mitigated by using a special tapering of the plasma channel such that the electron bunch propagates in
phase with the laser mode as well as maintain constant undulator frequency. In addition, controlled dephasing
is proposed as a means to induce chirp in the generated x-ray spectrum.

I. INTRODUCTION

High energy radiation sources are an important techno-
logical tool for studying fundamental physical processes.1
Modern light sources such as those at LCLS2 and DESY3

are able to resolve matter up to the molecular level at
near real-time with high repetition rates.4 Key enabling
technologies are synchrotrons and more specifically the
Free Electron Laser (FEL),5 which amplifies synchrotron
radiation from an oscillating, relativistic charged elec-
tron bunch. The wavelength of the synchrotron radiation
emitted by a particle or bunch oscillating in an undulator
is λs = λu(1 + K2/2)/(2γ2

0), where γ0 is the relativistic
Lorentz factor of the electron, λu = 2π/ku = 2πc/ωu is
the undulator wavelength, and K is the strength parame-
ter of the undulator. In traditional systems, these oscilla-
tions are driven by conventional magnets with undulator
length scales on the order of a millimeter at the small-
est, requiring very energetic electron bunches to generate
hard X-rays, i.e., γ0 ∼ 10, 000.6 Synchrotron radiation
can be produced by both circular as well as linear accel-
erators, but in both cases the scales and costs involved
are problematic and cannot keep up with user demand.
One possible way to reduce the size of synchrotron struc-
tures is to use a plasma-based system.

The earliest plasma-based light sources utilized radia-
tion from betatron oscillations.7 This approach has been
tested in experiment and applied to high-density plasma
observations as a backlight prober.8 Another plasma-
based approach is to use a laser to induce the desired
oscillations in the trailing electron bunch.9,10 This ap-
proach involves injecting a laser pulse off-axis into a
parabolic plasma channel so that the wake creates an
undulator-like structure for the trailing electron bunch.
Yet another approach is to use the superposition of
two laser pulses of different mode numbers and to use
the beating between the modes to create the undula-
tor structure.11 Higher-order mode content at several
Watts of power can be readily generated using off-axis
pumping.12–14 This provides greater flexibility in control-
ling the frequency of the output radiation as the undu-
lator frequency is a function of the difference between

the mode numbers. One noticeable limitation of this
concept is that laser pulses of different mode numbers
propagate at different group velocities, extinguishing the
effect after several tens of oscillations.15 One solution to
this problem is chromatic matching, i.e., color tuning,
where two modes of slightly different frequencies propa-
gate at the same group velocity.16 These plasma-based
approaches are typically envisioned as being coupled to
a Laser-Plasma Accelerator (LPA), yielding a radiation
source with an extremely compact footprint.

In an LPA, a short but intense laser pulse (I & 1018

W/cm2) propagates through a plasma and generates a
plasma wave.17–19 To maximize the wake amplitude, the
length of the laser pulse, L, is chosen to be approximately
equal to the plasma wavelength, λp = 2π/kp = 2πc/ωp,
where c is the speed of light, ω2

p = 4πn0q
2
e/me is the

plasma frequency, n0 is the on-axis plasma density, and
qe and me are the fundamental electron charge and mass.
The wake is created and driven by the ponderomotive
force, F ' −mec

2∇a2, where a = qeA/(mec
2) is the

normalized laser vector potential, and A is the vector
potential of the laser field. Diffraction of a laser pulse in
vacuum is described by the Rayleigh length, ZR = πr2

0/λ,
where r0 is the initial laser spot-size at 1/e2 the intensity
and λ = 2π/k = 2πc/ω is the laser wavelength.

There are several important limitations to the LPA
concept which can be defined by relevant length scales.
In the weakly relativistic limit, a2 � 1, they are the
diffraction limit, which scales according to Ldiff ∼ ZR,
dephasing, Ldeph ∼ λ3

p/λ
2, and energy depletion, Ldepl ∼

λ3
p/(λa)2, i.e., redshifting in the drive laser. In addition,

if multiple laser modes are employed, another limitation
is mode slippage, Lslip ∼ L(kr0)2/(2|m1 − m2|), where
modes, Hermite-Gaussian in this case, of different geo-
metric mode numbers, e.g., m1 and m2, slip apart. The
standard approach to addressing diffraction is to use a
parabolic plasma channel where the transverse density
profile is matched to the laser spot-size rs. For dephas-
ing, where the electron bunch outruns the laser, βbunch ≈
1 > βlaser ' 1− k2

p/(2k2)[1 + 4(m1,2 + 1)/(kpr0)2], where
β = v/c, one uses a longitudinal density taper that com-
presses the plasma wavelength in phase with the electron.
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Energy depletion can be addressed by using a staged LPA
system. Mode slippage can be addressed by chromatic
matching of the different modes.16

In this paper we propose the use of chromatic match-
ing in a plasma undulator, following similar analysis as
carried out in Ref. 16. Higher-order modes, in either
the Laguerre or Hermite-Gaussian bases, propagate at
lower velocities, such that βm = 1− k2

p/(2k2
m)[1 + 4(m+

1)/(kpr0)2], where km is the wave number of the m-th
mode. Chromatic matching is the principle of choosing
different colors for different laser pulses of different ge-
ometric mode numbers such that they copropagate, i.e.,
k1 6= k2 and m1 6= m2 but β1 = β2. This eliminates mode
slippage between the modes and allows for an interaction
length much larger than Lslip, enabling for a much more
intense X-ray source. Likewise, this source is tunable in
that we can vary the synchrotron frequency by choosing
different mode number combinations. This is valid for
both low energy and high energy bunches, with the later
requiring a special density tapering to guide the bunch
over longer distances with constant ωu. Lastly, we can
adjust the tapering of the density profiles to induce a
chirp in the emitted spectrum.

This paper is organized as follows. In Sec. II of this pa-
per we present the general solution of the paraxial wave
equation in a parabolic plasma channel as well as the ef-
fects of mode beating and color tuning. In Sec. III we
present the wakefields in the Hermite-Gaussian basis for
color-tuned modes. In Sec. IV we provide preliminary re-
sults for the propagation of a low-energy electron bunch
with a velocity matched to the group velocity of the laser
and the emitted radiation. In Sec. V we present results
for a highly relativistic electron bunch in a color-tuned
plasma undulator by considering a density taper in the
background plasma channel. In Sec. VI we explore the
possibility of using modified tapering to induce a con-
trolled chirp in the synchrotron radiation. In Sec. VII,
we present a summary of our theory and results and pro-
pose potential experimental implementations and future
prospects.

II. HIGHER-ORDER LASER MODE PROPAGATION

A standard approach to describing laser propagation
through a plasma is to use the paraxial approximation,
such that |k∂za| � |∂2

za|, where z is the propagation vari-
able, as well as assuming a low-power and low-intensity
limit of |a|2 � 1:

∇2
⊥a+ 2ik∂za = k2

p(n/n0)a, (1)

where we have the Laplacian ∇2
⊥ = ∂2

x + ∂2
y in Cartesian

coordinates. For a parabolic channel, the plasma density
can be characterized by radius R:

n(x, y) = n0
[
1 + (x2 + y2)/R2] , (2)

where x, y are the transverse coordinates.

In both Eqs. (1) and (2) we neglect the effects of rela-
tivistic self-focusing and ponderomotive self-channeling.
A low-intensity Gaussian pulse injected into a parabolic
channel which propagates with constant spot size rs = r0
and peak intensity a2

0 if R = kpr
2
0/2 is said to be

matched.19 This also holds true for all individual higher-
order modes in the Hermite-Gaussian basis. All sub-
sequent analysis can also be done in cylindrical coor-
dinates, for which the basis is the Laguerre-Gaussian
modes. However, only the Cartesian formulation will be
used in this paper.

A. Copropagation of Hermite-Gaussian modes

In the Cartesian basis we can express the transverse
envelope profile of individual laser modes as

am,n(x, y) = Cm,n

(m!n!2m+n) 1
2
Hm

(√
2x
r0

)
Hn

(√
2y
r0

)
× e
− (x2+y2)

r2
0 ei(φmn+φ0),

(3)
where Cm,n is the amplitude contribution of mode (m,n)
to the radiation field, Hm(·) is the Hermite polynomial
of order m, the phase contribution from the dispersion
relation is given by φm,n = (−k2

p/2k)[1 + 4(m + n +
1)/(kpr0)2]z, and the initial phase is φ0. From this we
derive the phase velocity of the mode:20

vp,mn
c

= 1 +
k2
p

2k2

[
1 + 4(m+ n+ 1)

(kpr0)2

]
. (4)

As noted previously, an individual laser mode with a
matched spot size will propagate without variation in
intensity down a plasma channel. However, two overlap-
ping matched modes will interfere and induce beating.
For two modes, a1 and a2, of arbitrary mode numbers,
the intensity takes the following form:

|a|2 = |a1 + a2|2 = |a1|2 + |a2|2 + a1a
∗
2 + a∗1a2, (5)

where for linearly polarized, Hermite-Gaussian modes of
the same color k we have:

kbeat = [(m1 + n1)− (m2 + n2)]/ZR. (6)

If the sum of the mode numbers for each mode is not
equal, there will be a beating term with a characteristic
wavelength of λbeat = 2π/kbeat. For certain applications
one can choose mode numbers such that they cancel out,
i.e., m1 +n1 = m2 +n2, and in this case there will be no
beating.16

B. Color tuning for copropagation

As mentioned before, laser pulses of different mode
numbers propagate at different group velocities and
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thereby slip apart, lower-order modes moving faster than
higher-order ones. The group velocity of an individual
laser mode can be derived from the following relation,
vg/c = ∂ω/∂k. For a Hermite-Gaussian mode the group
velocity is:

vg,mn
c

= 1−
k2
p

2k2
m,n

[
1 + 4(m+ n+ 1)

(kpr0)2

]
, (7)

where km,n is the wavenumber of a mode am,n. The
characteristic slippage length between two higher-order
modes is:

Ls,mn ≈ L(kr0)2/(2|(m1 + n1)− (m2 + n2)|). (8)

By setting the group velocities of two different modes
equal to one another, we can derive a simple relation for
the frequencies, i.e., the colors, of two modes:

k2 = k1

√
1 + κ2(m2 + n2 + 1)
1 + κ2(m1 + n1 + 1) , (9)

where κ = 2/(kpr0). This is equivalent to Eq. (24) in
Ref. 16. As we can deduce from this equation, in order
for a higher-order mode to propagate at the same group
velocity as a lower-order mode, it will need to have a
slightly higher frequency, assuming that κ < 1. Using
two colors modifies Eq. (6), giving us instead,

kbeat = |k2[κ2(m1 + n1) + 1]− k1[κ2(m2 + n2) + 1]|
× 2/(κ2k1k2r

2
0).
(10)

However, it is important to note that color-tuning is sen-
sitive and so one only has a margin of error of a few per-
cent ∆k/km before significant slipping occurs, where we
have simplified Eq. (9) to consider just one higher-order
mode m

km = k0
√

[1 + κ2(m+ 1)](1 + κ2). (11)

This is visualized in Fig. 1, where we have plotted
e−[vg,00−vg,m0(k̃)]2L2

s,m0/(2L
2), which tells us the relative

copropagation, i.e., the intensity of the beating term be-
tween a Gaussian mode and a mode m over the char-
acteristic slippage length, if the color k̃ of mode m is
off relative to its color-tuned value km. The higher the
mode the less sensitive it is to tuning errors with respect
to slippage.

III. WAKEFIELD CALCULATIONS OF COLOR TUNED
MODES

In the linear regime, the response of the wake can be
determined from the normalized electrostatic potential,

φ = qeΦ/mec
2, where Φ is the scalar potential, and the

density perturbation to the wake, δn/n0, are governed

k̃/km

FIG. 1. Plot of the relative copropagation factor between a
Gaussian mode and a mode m = 1 (red), m = 3 (blue), and
m = 5 (green) as a function of relative wavenumber k̃/km.

by the equations19

(
∂2

∂ζ2 + k2
p

)
φ = k2

p

a2

2 , (12)(
∂2

∂ζ2 + k2
p

)
δn

n0
= ∇

2a2

2 , (13)

where ζ = z − vg,00t is the comoving variable, vg0 corre-
sponds to the group velocity of the lowest order mode,
and we assume a broad channel, i.e., kpR� 1. From Eq.
(12) we can write the Green’s function solution:

φ = kp
4

∫ ζ

∞
dζ ′ sin[kp(ζ − ζ ′)]|â(x, y, τ, ζ ′)|2, (14)

where τ = ct is the propagation variable, â(x, y, τ, ζ) =
a(x, y, τ)g(ζ), g(ζ) = exp[−(ζ − ζ0)2/L2] is the longitu-
dinal profile of the laser pulse (assumed Gaussian) and
ζ0 is the laser centroid position. The transverse electric
field is given by

E⊥/E0 = −k−1
p ∇⊥φ. (15)

For a general superposition of a Gaussian pulse with a
higher-order mode of arbitrary mode number m but n =
0, and to each mode a specific wavelength, we have the
following for the intensity profile and the odd harmonics
of the electric fields, i.e., m = 1, 3, 5, ...,
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|a|2 =
[
C2

0e
2(ζ−δβτ)2

L2 + 21−m2
√
m!

C0CmHm(x̃)e
ζ2+(ζ−δβτ)2

L2 cos(ku,mτ) + 2−m

m! C
2
mHm(x̃)2e

2(ζ−δβτ)2

L2

]
e−(x̃2+ỹ2), (16)

Ex
E0

= 4√
2
Ce−(x̃2+ỹ2)

{
C2

0 x̃ sin(kpζ) + 2−m

m! C
2
mHm(x̃)

[
2mHm−1(x̃)− x̃Hm(x̃)

]
sin[kp(δβτ − ζ)]

+ 2−m/2√
m!

C0Cme
− δβ

2τ2

2L2

[
2mHm−1(x̃)− 2x̃Hm(x̃)

]
cos(ku,mτ) sin[kp(δβτ − 2ζ)/2]

}
,

(17)

Ey
E0

= Ce−(x̃2+ỹ2)ỹ

{
C2

0 sin(kpζ)− 2−m

m! C
2
mH

2
m(x̃) sin[kp(δβτ − ζ)]

− 21−m2
√
m!

C0Cme
− δβ

2τ2

2L2 Hm(x̃) cos(ωknt) sin[kp(δβτ − 2ζ)/2]
}
,

(18)

Ez
E0

= −Ce−(x̃2+ỹ2)kpr0

{
C2

0 cos(kpζ) + 2−m

m! C
2
mH

2
m(x̃) cos[kp(δβτ − ζ)]

+ 21−m/2
√
m!

C0CmHm(x̃)e−
δβ2τ2

2L2 cos(ku,mτ) cos[kp(δβτ − 2ζ)/2]
}
,

(19)

C1/C0 = 0

C1/C0 = 1/10

C1/C0 = 1/   2  @ ku1τ=0 

C1/C0 = 1/   2  @ ku1τ=π/2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

x/r0

E
x
/
E

0

FIG. 2. Lineouts of the transverse electric field Ex/E0 for
the superposition of m = 0 and m = 1 modes with C0 = 0.1
and ζ = −π/2. Only Gaussian field m = 0 (red), two modes
m = 0 and m = 1 with coefficient ratio C1/C0 = 1/10 (blue),
m = 0 and m = 1 with coefficient ratio C1/C0 = 1/

√
2 at

ku,1τ = 0 (solid green), and m = 0 and m = 1 with coefficient
ratio C1/C0 = 1/

√
2 at ku,1τ = π/2 (dashed green).

where x̃ =
√

2x/r0, ỹ =
√

2y/r0, δβ = βg0 − βgm, C =
1
4e
−k2

pL
2/8(kpL)

√
π/2/(kpr0), and

ku,m =
∣∣km(κ2 + 1)− k0[κ2(m+ 1) + 1]

∣∣ /(kmZR),
(20)

is the undulator frequency. The Rayleigh range is de-
fined with respect to the color, i.e., the wave number

k0, of the Gaussian mode, i.e., ZR = k0r
2
0/2, and km

is the wavenumber of m-th higher-order mode defined
by Eq. (11). If two modes are mistuned such that
km 6= k0 there will be slippage. An example of the trans-
verse fields can be seen in Figs. 2 and 3. In Fig. 2
we have plotted Ex/E0 for four differenct circumstances
of the superposition of the m = 0 and m = 1 modes
with C0 = 0.1 and ζ = −π/2, when C1 = 0 (red),
C1/C0 = 1/10 (blue), C1/C0 = 1/

√
2 at ku,1τ = 0

(solid green), and C1/C0 = 1/
√

2 at ku,1τ = π/2 (dashed
green). C1/C0 = 1/10 corresponds to a modest pertur-
bation of the transverse field while C1/C0 = 1/

√
2 corre-

sponds to when the electric field gradient is zero on-axis,
i.e., kβx = 0, where kβx is the betatron wave number
in the x-direction. In Fig. 3 are plotted the intensity
(color) and direction (vectors) of the m = 1 case when
C1/C2 = 1/

√
2 at six instances in the modes’ evolution:

(a) ku,1τ = 0, (b) ku,1τ = π/4, (c) ku,1τ = 3π/8, (d)
ku,1τ = π/2, (e) ku,1τ = 5π/8, and (f) ku,1τ = 3π/4.

The field equations can be linearized for particles near
the axis of propagation of the laser. For example, for
the superposition of a first-order mode (m = 1) and a
Gaussian pulse (m = 0), the wakefields is,

Ex
E0
≈ 4√

2
C

{
x̃

[
C2

0 sin(kpζ)− g(m)2C2
1 sin[kp(δβτ − ζ)]

]
+

√
2C0C1e

− δβ
2τ2

2L2 cos(ku,mτ) sin[kp(δβτ − 2ζ)/2]
}
,

(21)
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y
/
r 0

y
/
r 0

x/r0

y
/
r 0

x/r0

FIG. 3. The transverse electric fields E⊥/E0, where the color
corresponds to the intensity of the field and the vectors to
the direction, at several instances of their time evolution: (a)
ku,1τ = 0, (b) ku,1τ = π/4, (c) ku,1τ = 3π/8, (d) ku,1τ = π/2,
(e) ku,1τ = 5π/8, and (f) ku,1τ = 3π/4.

Ey
E0
≈ 4√

2
CC2

0 ỹ sin(kpζ), (22)

Ez
E0
≈ −4CC2

0 (kpr0) cos(kpζ), (23)

where g(m) =
√

π
m!

2m/2m
Γ(m/2)

π
sin(πm/2) , e.g., g(1) =

√
2, where Euler’s reflection formula Γ(z)Γ(1 − z) =

π/ sin(πz) has been used. Analogous expressions can be
generated for the m = 2, 4, 6, ... modes but such modes
will not contribute to the longitudinal, accelerating field
and so are of less interest.

From the linear equations we can derive approximate
values for the betatron frequencies of the trailing bunch
as well as the characteristic undulator betatron and
strength parameters, aβ and au. The betatron wave num-
bers for mode number m are

k2
βx ≈ 2

√
2C[C2

0 − g(m)2C2
1 sin(kp(ζ − δβτ)]k2

p/γ0,
(24)

k2
βy ≈ 2

√
2CC2

0k
2
p/γ0, (25)

and the betatron wave number gives the betatron
strength parameters aβx = γ0kβxxb and aβy = γ0kβyyb
for an electron or bunch of energy γ0, where xb and yb
are the betatron oscillation amplitudes. The undulator
strength parameter for arbitrary mode m can be written
as,

au(km) ≈
√

8
π

kpku,m
k2
βx − k2

u,m

CC0C1g(m)e−δβ
2τ2/(2L2)

× kpr0 cos(ku,mτ) sin
[

1
2kp(δβτ − 2ζ)

]
,

(26)
where au is a function of km. The undulator and betatron
strength parameters modify the emission frequency:

ωs = 2γ0ωu,m/(1 + a2
u/2 + a2

β/2), (27)

where ωu,m = ku,mc. For simplicity, we will neglect
motion in the y-plane in the following analysis, i.e.,
aβ = aβx.

As we can see in Eqs. (24) and (25), we can control not
only the strength of the undulation but also the betatron
oscillations. For example, setting C0 =

√
2C1 would min-

imize betatron oscillations in the x-plane for the m = 1
mode. A similar approach can be taken in the y-plane
by including a second n = 1 Hermite-Gaussian mode
(or by using cylindrical, Laguerre-Gaussian modes). The
ability to control kβ independently of ku would best be
utilized as a means to match the undulator channel to
the injected beam. However, we can see in both Eqs.
(24) and (26) a time dependence that decays on a length
scale

√
2L/δβ, which corresponds to the slippage length

Ls,mn. Once the modes slip apart the bunch will oscil-
late between frequencies of

√
2
√

2C(C2
0 − 2C2

1 )/γ0ωp and√
2
√

2C(C2
0 + 2C2

1 )/γ0ωp and undulator radiation at the
resonant frequency will be suppressed.

IV. LOW-ENERGY, COLOR-TUNED SYNCHROTRON
SOURCE

As a proof-of-concept, we examine a low-energy case
for a single electron in which γ0 = 1/

√
1− β2

g,00, i.e., the
energy of the electron bunch corresponding to the veloc-
ity of the lowest-order, fastest, mode in consideration. In
this example we are not limited by dephasing between
the guided electron and the laser mode. Using the fields
described in Eqs. (17) - (19), we can determine the tra-
jectory of a test electron and the emitted radiation.

Plotted in Fig. 4 are three cases of electron motion,
one for which the modes are the same color and thereby
propagate at different velocities with the electron initial-
ized at x0 = 0 (dashed red), a similar case but initial-
ized at x0 = au(k0)/(γ0ku,0) (solid red), and a final case
in which the modes are color-tuned and initialized at
x1 = au(k1)/(γ0ku,1) (solid blue). In this example the
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on-axis density is n0 = 1018 cm−3, laser mode ampli-
tudes are C0 = 0.003 and C1 = C0/

√
2, laser spot-size is

kpr0 = 5, centroid position kpζ0 = −π/2, and γ0 = 37.83.
In Fig. 4 we can see how the non-tuned, x0 = 0, electron
initially oscillates at the undulator frequency but even-
tually this behavior decays into simple betatron motion
as the wakes of the two modes slip apart. For the color-
tuned case the modes never separate and we have simple
oscillatory motion. At τ = 81ZR we have demarcated the
slippage length scale Ls,1. The trajectories have different
amplitudes but the laser energy is the same in all three
cases. We initialized the non-tuned modes at x(0) = x0,
since for them to have the same amplitude as the color-
tuned case would require four times as much power.

Of primary interest is the radiation spectrum emitted
by such trajectories. Considering the oscillations first
only up to the slippage length, we calculate the radi-
ation emitted by solving the far-field approximation of
the Liénard-Wiechart potentials:

d2I

dωdΩ = q2
eω

2

4π2c

∣∣∣∣∣
N∑
n=1

∫ ∞
−∞

[s× (s× βn)] e−iω(t−s·xn/c)dt

∣∣∣∣∣
2

,

(28)
where d2I/dωdΩ is the energy radiated per frequency ω
per solid angle Ω, N is the number of electrons in consid-
eration, s = [0, sin(θ), cos(θ)], θ is the polar angle with
respect to the axis (we will only be considering radiation
emitted in a single plane), βn = (βx, βy, βz) are the veloc-
ity components of particle n and relate to the momentum
via p = γ0mecβ, and xn = (x, y, z) is the position of par-
ticle n. We solve for the radiation field numerically by
discretizing the time integral accordingly.

The emitted radiation of a single electron can be fur-
ther characterized, assuming constant strength parame-
ter au, linear polarization, and considering only the fun-
damental emission line near axis. r ≈ 0. The natural
bandwidth is ∆ω/ω = 1/Nu, where Nu = τend/λβ is the
number of betatron periods over the total propagation
distance. The total number of photons emitted by a sin-
gle electron propagating through an undulator is10

Np = παf
a2
u

1 + a2
u/2
|J0(χ)− J1(χ)|2, (29)

where α = q2
e/(~c) is the fine structure constant, J0 and

J1 are the zeroth and first-order Bessel functions, and
χ = a2

u/[4(1+a2
u/2)]. The collimation angle for achieving

natural bandwidth of emitted radiation is given by

θn = 1
γ0

√
1 + a2

u/2
Nu

. (30)

In addition to the trajectories depicted in Fig. 4 for
mode m = 1 we also consider the trajectories for m = 3.
The wavelengths in consideration are λ0 = 815 nm for
the Gaussian and non-tuned modes, λ1 = 764 nm and
λ3 = 685 nm for the color-tuned modes. The spec-
tra, normalized to I0 = q2

e/(4π2c), are integrated up to

τ/ZR

x
/
r 0

FIG. 4. Plot of the trajectories of an electron propagating in
the wake of an m = 0 and m = 1 laser driver. Trajectory
in the wake of non-tuned modes (dashed red) initialized at
x0 = 0, in the wake of non-tuned modes (solid red) initialized
at x0 = au(k0)/(γ0ku,0), and in the wake of color-tuned modes
(blue) that are properly initialized at x1 = au(k1)/(γ0ku,1).

Ls,1 ≈ 81ZR for the m = 1 trajectories and Ls,3 ≈ 27ZR
for m = 3, all initialized at x0 = au(km)/(γ0ku,m), are
plotted in Fig. 5a versus ω/2γ2

0ω1. For the same prop-
agation distance radiation, the spectrum is more intense
though at a lower frequency for a color-tuned pulse (blue)
as opposed to one that is not (red). However, the lower
frequency for an m = 1 color-tuned pulse can be over-
come by increasing the mode number, e.g., m = 3. If
integrated to the same propagation distance, a color-
tuned m = 3 pulse (green) has the same intensity as
an m = 1 pulse (blue) while gaining in frequency, while
the decreasing slippage length of non-tuned modes leads
to decreasing intensities (purple). The primary benefit of
the color-tuned schema is that there is no restriction with
respect to slippage. This is visualized in Fig. 5b, where
we have integrated the spectrum up to 200ZR = 53 cm
and the color-tuned modes greatly increase in intensity.

In these cases the energy of the emitted radiation is of
relatively long wavelength. For m = 1 we have 5.9 µm for
non-tuned and 12.2 µm for color-tuned modes and then
for m = 3 we have 1.97 µm for non-tuned and 2.5 µm for
color-tuned, owing to the low energy electron. Shorter
wavelengths can be achieved by using higher energy elec-
trons.

V. HIGH-ENERGY, COLOR-TUNED SYNCHROTRON
SOURCE

In order to achieve higher frequencies we will consider
a higher energy electron bunch with γ0 = 1000. The chal-
lenge with higher energy electron bunches is that dephas-
ing between the bunch and the laser becomes an issue.
In general, the dephasing length for a Hermite-Gaussian
mode,

Ld ≈
1
2
λ3
p

λ2

[
1 + κ2(m+ n+ 1)

]−1
, (31)

is on the order of the slippage length when operating at
the plasma resonance, i.e., L ≈ r0 ≈ λp/π, such that
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ω/(2γ2
0ωu,1)
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I
/
(d
ω
d
Ω

)/
I 0

(b)

FIG. 5. The spectra corresponding to the trajectories in Fig.
4. Panel (a) corresponds to an integration of the energy up
to slippage lengths Ls = 81ZR for m = 1 and Ls = 27ZR
for m = 3 while panel (b) to an integration up to 200ZR for
both. The red spectrum corresponds to non-tuned m = 1
wakefield, blue to color-tuned m = 1 wake, purple to non-
tuned m = 3 wake, and the green to m = 3 color-tuned wake.
The dashed black line demarcates the slippage length at 81ZR
for a non-tuned m = 1 mode.

Ls/Ld ≈ (kpL)(kpr0)2/[2π|(m1 + n1) − (m2 + n2)|] =
4/[π|(m1 + n1) − (m2 + n2)|], and so cannot be ig-
nored for even a moderate energy electron bunch, i.e.,
γ0 = 1/

√
1− β2

bunch . 100. From this we can deduce
that higher-order modes will be less impacted by de-
phasing than lower-order modes, which is desirable since
higher-order modes will also generate higher undulator
frequencies.

Dephasing for a high-energy bunch can be addressed
by using Eqs. (A1) and (A5) to taper the plasma chan-
nel with respect to density and curvature. Using this
channel profile we model an electron bunch of 1000 par-
ticles injected into the wake of a color-tuned, multimode
pulse. Likewise, since the spotsize is changing we must
also modify the modal contributions so that energy is
conserved, i.e., C0 → C0/r̂ and Cm → Cm/r̂. In this
case we will use m = 0 and m = 7 modes, where
λ7 = 581 nm, and a bunch of initial energy γ0 = 1000,
zero energy spread ∆E/E = 0, and average spot size
σx = 〈x〉 = 0.1 µm and corresponding average mo-
mentum σpx = γ0kβx〈x〉, giving a normalized transverse
emittance of εx = 1

mec

√
〈x2〉〈p2

x〉 − 〈xpx〉2 = 0.32 µm.
Similar numerical parameters as before are used except
now the modes are initialized to C0 = 0.1 and C7 =
0.9C0/

√
35/8, where we allow for explicit betatron oscil-

lations for a more realistic bunch. The bunch is initial-
ized at kpζ0 = −21π/2 and x0 = au(k7)/(γ0ku,7). The
undulator strength parameter for this setup is au = 0.34

τ/ZR

x
/
r 0

x
/
r 0

x
/
r 0

x
/
r 0

FIG. 6. The trajectories of a bunch of 1000 test electrons in
the wake of an m = 0 and m = 7 laser driver with various
channel taperings: (a) no channel tapering, (b) only density
tapering, (c) tapering of the channel density and radius so
that the bunch is fixed with respect to the phase of both the
transverse and longitudinal fields, and (d) tapering of density
and radius such that the bunch is fixed with respect to the
transverse fields but also so that the undulator frequency ωu
remains constant.

and there will be a small contribution due to betatron
motion, aβ = γ0kβxxbx = 0.02, where xbx is the average
oscillation amplitude of the electron trajectory (we are
neglecting oscillations in the y plane).

The resulting trajectories can be seen in Fig. 6 for
four different conditions, where the average orbits per
bunch are plotted in black. For a longitudinally uniform
parabolic channel the bunch will pass through different
phases of the wake and beat between two different fre-
quencies (red) until expelled from the wake by the defo-
cusing force of the wake. Simple tapering of the density
in Fig. 6(a), using Eq. (A1) with constant channel ra-
dius rs = r0, is not sufficient to have a properly radiating
bunch, resulting in an increasing undulator wavelength
until eventual particle loss (green) in Fig. 6(b). The use
of density tapering and matched channel radius varia-
tion in order to fix the fields with respect to the electron,
Eqs. (A1) and (A4), will initially guide the particle at
the proper frequency but eventually the wavelength will
begin to decrease until the particle is lost again (purple),
Fig. 6(c). The use of density tapering in Fig. 6(d), Eq.
(A1), but with proper variation of the channel radius, Eq.
(A5), results in guided propagation with constant undu-
lation frequency ωu. This particle will propagate until it
reaches the dephasing limit zs and is subsequently lost.
The spectra for these trajectories can be seen in Fig. 7.
Using proper tapering allows for a clean and intense peak
at a wavelength of λu,7 = 3.12 nm (solid blue line) over
the course of Nu = 18 betatron periods. The total emit-
ted photons per electron per undulator period in this case
is Np = 0.0024 and the collimation angle is θn = 0.24
mrad.
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FIG. 7. The spectra corresponding to the trajectories in Fig.
6

VI. CHIRPED SYNCHROTRON PULSES

Typically in a synchrotron one requires a constant un-
dulator frequency to maximize the emitted radiation.
However, a tapered plasma channel can also use dephas-
ing to slowly modify the undulator frequency and intro-
duce a controlled chirp to the generated synchrotron ra-
diation. This is accomplished using Eqs. (A6) and (A7)
which have been modified so that one may arbitrarily
tune the slope of k̂p and r̂ by introducing tuning param-
eters αkp and αr via ε → αkpε and Km → (αr/αkp)Km.
For this problem, m = 0 and m = 11 modes will be
used, with λ11 = 513 nm, and again an electron of ini-
tial energy γ0 = 1000. The bunch will be initialized at
kpζ0 = −41π/2, x0 = au(k11)/(γ0ku,11), and σβ = 0.1µm
and the modes to C0 = 0.1 and C11 = 0.9C0/

√
693/128.

The initial undulator strength parameter for this case is
au = 0.207 but varies as the plasma density changes.

The results for this numerical setup can be seen in
Fig. 8, where the average orbit per bunch is plotted in
black. In Fig. 8(a) is plotted the full numerical solution
of Eqs. (A1) and (A5) (blue) and in Fig. 8(b) we have
the linear taper for Eqs. (A6) and (A7) (orange) with
αkp = αr = 1. Note that Fig. 8(b) demonstrates that a
linear taper is an acceptable approximation to Fig. 8(a).
In Fig. 8(c) we have αkp = 1 and αr = 5 for the linear
taper (pink), causing the wavelength of the undulator to
rapidly decrease. In Fig. 8(d) we have αkp = 1.1 and
αr = 0 (turquoise), causing the undulator wavelength to
increase. Fig. 9 shows the energy spectra for the four tra-
jectories, and in Fig. 10 shows the time-frequency spec-
tra. There is a peak at ωs = 2γ2

0ωu,11/(1 +a2
u/2 +a2

β/2).
The αr = 5 case yields a negatively chirped spectrum
while αr = 0 yields a positive chirp. The slope and width
of the chirp can also be tuned by varying the initial val-
ues of ψ0 and κ. The peak wavelength in all three cases
is λu,11 = 2.25 nm.

VII. SUMMARY AND CONCLUSIONS

In this paper we propose using color tuning to opti-
mize the plasma undulator concept as an alternative to

τ/ZR

x
/
r 0

x
/
r 0

x
/
r 0

x
/
r 0

FIG. 8. The trajectories of a bunch with N=1000 test parti-
cles in a channel linearly tapered with respect to density and
radius: (a) a nonlinearly tapered channel Eqs. (A1) and (A5),
(b) a linear taper with αkp = 1 and αr = 1, (c) αkp = 1 and
αr = 5, and (d) αkp = 1.1 and αr = 0.

ω/(2γ2
0ωu,11) ω/(2γ2

0ωu,11) ω/(2γ2
0ωu,11)

d
2
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/
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ω
d
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)/
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FIG. 9. The energy spectra corresponding to the trajectories
in Fig. 8. In (a) we compare the spectra from an optimal,
numerically-determined, density taper (blue) versus a linear
taper (orange). The energy spectrum in (b) corresponds to a
positive chirp in frequency while (c) corresponds to a negative
chirp.

traditional, magnetic-undulator based synchrotron sys-
tems. Using the fact that two modes of different geomet-
ric mode numbers can copropagate at the same group ve-
locity, if their respective wavenumbers are appropriately
chosen, we are able to overcome the limitation of mode
slippage. This analysis is done in the Hermite-Gaussian
basis, but a similar formulation can be made also in cylin-
drical coordinates. Initially using single particle motion
for a low energy electron, so that its group velocity is
the same as that of the laser in a plasma, we compared
the radiation spectrum from non-tuned and color-tuned
orbits for m = 1 and m = 3 modes. In order to generate
soft X-rays, we provided another example for a higher-
energy bunch of γ0 = 1000 propagating through the wake
of an m = 7 mode. In order to overcome dephasing, we
tapered the plasma density longitudinally and did so such
that the undulator frequency would not be modified by
the changing plasma wavelength. Lastly, we provided an
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FIG. 10. The time-frequency spectra corresponding the tra-
jectories in Fig. 8: (a) the trajectory from the linear tapering,
(b) positive chirp, (c) negative chirp.

example of how linear tapering can be used to generate
chirped X-ray pulses. In both high energy cases nanome-
ter scale radiation was produced.

Experimental implementation of a color-tuned undu-
lator depends on several factors. First, it is necessary to
have advanced control over the phase and polarization
of individual laser modes. Furthermore, there must be
an accessible way to create specific higher-order modes
at high intensities, although this can be relaxed if addi-
tional radiation from betatron oscillations is not a con-
cern. Likewise, one must select modes that correspond
to laser frequencies that can be readily generated us-
ing modern laser technology. Ti:Sapphire lasers typically
have a wide wavelength range from 650 nm - 1150 nm,
allowing for a single system to generate the necessary
mode content. Once these criteria are met it will be im-
portant to take into consideration how different modes
will be aligned and combined, possibly by means of fiber
optics. Lastly, if one were to use high energy electron
bunches, greater control over the plasma channel profile
both transversely and longitudinally will be necessary.

Advanced light source technology is one of the most
promising applications of LPA research and can be
achieved by coupling an LPA to either a traditional mag-
netic undulator or to a plasma-based undulator as pro-
posed in this manuscript. While magnetic based sys-
tems are currently well understood, a plasma-based sys-
tem will be far more compact and manageable, allowing
for advanced X-ray spectroscopy in a university labora-
tory as well as potential biomedical applications. An ad-
ditional potential application would be to XUV lithog-
raphy, as a plasma-based light source would provide a
cheap and compact means of precision optical etching.21

Future work could include further exploring a more rigor-
ous formulation, without assumptions on the transverse
scale lengths. This may be important since higher-order
modes have much steeper gradients that may be con-
tributing nonlinearly to the evolution of the wakefields
and the particle trajectories. Likewise, a more rigorous
description of redshifting could be incorporated as well
as the three-wave interactions between two modes of dif-
ferent colors and the plasma and how that might affect
this approach to a plasma undulator.
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Appendix A: Dephasing in the color-tuned regime

In order to compensate for dephasing we need to use a
longitudinally tapered density profile. There are several
approaches one can consider, but in all cases we need
to identify a solution which preserves the relative phase
of the electron with respect to the wakefields,22 in our
case prioritizing the transverse fields over the longitudi-
nal fields. In order to do this we use the following differ-
ential equation to govern the taper of the density profile
of the plasma:

dk̂p
d(τ/ZR) = εk̂2

p

(
k̂2
p −

1
2
κ2

r̂2

)
, (A1)

where k̂p = kp(τ)/kp0, ε = k3
p0ZR/(2|ψ0|k2), and note

that kp is a function of propagation distance τ , ψ0 =
kp0ζ0, r̂ = rs(τ)/r0 = R(τ)/R(0), κ = 2/(kp0r0), where
the laser spot size rs varies with the channel radius R.
Higher-order, color-tuned modes dephase at the same
rate as the Gaussian mode of wave number k. When
assuming a constant or slowly varying spot size r̂, we
can approximate the general solution as

zs(k̂p) = ZR

ε
√

2

{
1
k̂p
− 1+

√
2
κ

[
atanh

(√
2
κ

)
− atanh

(√
2k̂p
κ

)]}
,

(A2)

and the point at which the density becomes singular,

zs = ZR
εκ2

{√
2
κ

log
[(

1 +
√

2
κ

)/∣∣∣∣1− √2
κ

∣∣∣∣]} . (A3)

Transverse field phase locking can be extended to the lon-
gitudinal fields as well by coupling the density profile to a
differential equation for the spot size (and corresponding
channel radius):

d2r̂

d(τ/ZR)2 = 1
r̂3 (1− k̂2

p r̂
2). (A4)

However, we will be sacrificing longitudinal phasing in
our case, as the distortion of the fields would in turn
vary the undulator wavelength. In order to preserve the
undulator frequency we differentiate Eq. (20) with re-
spect to the propagation variable τ , allowing for rs and
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τ/ZR

k̂
p
,r̂

FIG. 11. Plot of the normalized plasma wavenumber k̂p
and channel radius r̂ for various longitudinal tapering pro-
file. Density tapering of Eq. (A1) with r̂ = 1 (red). Tapering
of density (dashed purple) and radius (solid purple) such that
the bunch is fixed in phase with both the transverse and lon-
gitudinal fields, coupled system of Eqs. (A1) and (A4). Ta-
pering of density (dashed blue) and radius (solid blue) such
that bunch is fixed with respect to the transverse fields and
the undulation frequency ωu remains constant, Eqs. (A1) and
(A5).

kp to vary, and solve for rs, yielding:

dr̂

d(τ/ZR) = εκmk̂
3
p r̂

3
(
k̂2
p −

1
2
κ2

r̂2

)
, (A5)

where κm = (km− k)/κ2/[km− k(m+ 1)]. Solving these
coupled differential equations (A1) and (A5) will generate
a longitudinal density taper and spot-size variation to
allow for constant ωu. This in shown in Fig. 11, where
the spotsize decreases as the density increases. Eqs. (A1)
and (A5) can be linearized when z � zs with respect to
the small parameter ε and by making the substitutions
k̂p = 1 + εk̂p1 and r̂ = 1 + εr̂1, yielding:

k̂p(τ) = 1 + ε(1 + κ2)(τ/ZR), (A6)
r̂(τ) = 1 + εKm(1 + κ2)(τ/ZR). (A7)

These equations are valid on the length scales in consid-
eration and allow for ready implementation and tuning
of a tapered plasma channel.

Appendix B: Red-shifting of higher-order modes

For an arbitrary higher-order mode the mean laser
number can be expressed as a function of the normalized
energy and the wave action as 〈km/k〉 = E/A, where A
is the action.23 The initial rate of change in energy can
be approximated as

∂E
∂τ

∣∣∣
τ=0
' −

k5
p

2k2
m

∫
dζ

∫
drr

∂ρ

∂ζ
|a|2, (B1)

where ρ = n/γ0n0 = (1+φ)−1. Normalizing with respect
to the Gaussian energy,

E0 '
√
π

2 kpLa
2
0

(kpr0)2

4 , (B2)

mode number m

(∂
k
m
/
∂
τ
)(
Z
R
/
k
m

)

FIG. 12. A plot of ∂τkm/km as a function of mode number
m over a distance ZR for kp/k = 0.025 and r0 = 25 µm.

the effective change in wave number is,

1
km

∂km
∂τ

= E−1
0

k4
p

2k2
m

∫ ∫ 1
4

(
a2 − 1

k2
p

∇⊥a2
)
a2Fdxdy.

(B3)
Here

F = k2
p

∫ ∞
−∞

dζ

∫ ∞
ζ

dζ ′ cos[kp(ζ − ζ ′)]g2(ζ)g2(ζ ′)

≈ π

4 k
2
pL

2e−L
2/4, (B4)

and g(ζ) = exp[−(ζ − ζ0)2/L2] is the longitudinal profile
of the laser mode. The variation of ∂km/∂τ as a function
of mode number is shown in Fig. 12 for k/kp = 0.025.
For typical parameters very little energy is depleted over
a Rayleigh range and laser red-shifting is not a major
concern in a plasma undulator.
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