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A spatial genome aligner for resolving 
chromatin architectures from multiplexed 
DNA FISH

Bojing Blair Jia1,2, Adam Jussila1, Colin Kern3, Quan Zhu3 & Bing Ren    3,4,5 

Multiplexed fluorescence in situ hybridization (FISH) is a widely used 
approach for analyzing three-dimensional genome organization, but it is 
challenging to derive chromosomal conformations from noisy fluorescence 
signals, and tracing chromatin is not straightforward. Here we report 
a spatial genome aligner that parses true chromatin signal from noise 
by aligning signals to a DNA polymer model. Using genomic distances 
separating imaged loci, our aligner estimates spatial distances expected 
to separate loci on a polymer in three-dimensional space. Our aligner then 
evaluates the physical probability observed signals belonging to these loci 
are connected, thereby tracing chromatin structures. We demonstrate that 
this spatial genome aligner can efficiently model chromosome architectures 
from DNA FISH data across multiple scales and be used to predict 
chromosome ploidies de novo in interphase cells. Reprocessing of previous 
whole-genome chromosome tracing data with this method indicates the 
spatial aggregation of sister chromatids in S/G2 phase cells in asynchronous 
mouse embryonic stem cells and provides evidence for extranumerary 
chromosomes that remain tightly paired in postmitotic neurons of the  
adult mouse cortex.

Eukaryotic chromosomes undergo dramatic compaction and decom-
paction in the life cycle of a cell, and the dynamic chromosomal struc-
ture plays an integral role in a range of nuclear processes such as 
DNA replication, recombination, repair and gene transcription1–5. In 
interphase nuclei, different chromosomes generally occupy separate 
territories with limited intermingling6. Within each chromosomal ter-
ritory, the chromatin fibers are organized into compartments and 
domains7–11 driven in part by the ATP-dependent motor protein complex 
and loop extruder cohesin12–16. The complex chromatin structures 
enable juxtaposition of remote DNA in space and subsequent tran-
scriptional activation of genes by distal enhancers5,17–19. Disruption of 
chromatin structures underlies a score of pathologies ranging from 

limb malformations, oncogenesis, to heart disease20–23. Delineating 
how chromatin fibers are folded in the nucleus is therefore of funda-
mental importance for the study of gene regulation and other nuclear 
processes in health and disease.

Multiplexed DNA fluorescence in situ hybridization (M-DNA-FISH) 
is a widely used imaging technique for the study of chromatin struc-
ture in eukaryotic cells24–43. These technologies can identify tens to 
thousands of genomic loci in the nucleus, permitting potential folding 
patterns of chromosomes to be detected. They achieve this through 
the use of barcodes that, when decoded via serial hybridization of fluo-
rescent probes, enable sequence-specific identification and, thus dis-
tinction, of genomic loci; in diffraction-limited imaging the chromatin 
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cumulative signals of multiple oligos. Image smoothing may inadvert-
ently fuse signals belonging to separate chromatin fibers; conversely, 
sample prep and large genomic footprint may potentially fragment one 
signal. We further note that extrapolation of persistence length of DNA 
to chromatin scale remain challenging. Therefore, we removed one free 
variable by fixing the persistence length (lp = 150 bp) and fitting a vari-
able genomic-to-spatial distance scale (τ). We find our spatial genome 
aligner uncovers more chromatin fibers than previously reported in 
published datasets, and infer that these extra fibers may in fact be 
sister chromatids. We show that each pair of putative sister chromatids 
usually resides in a spatially separate chromosome territory, but in 
roughly 2% of replicating cells both pairs of sister chromatids coalesce 
to interact in one convergent territory. We go on to apply our spatial 
genome alignment to previous chromatin tracing data generated from 
mouse cortical excitatory neurons, where we uncover patterns of spa-
tial organization of extranumerary chromosomes inside the nucleus.

Results
Spatial genome alignment
Chromosomes are linear, flexible polymers that take on convoluted 
structures inside the nucleus. One simple but robust model for the 
spatial configuration of flexible polymers is a Gaussian chain44. In this 
model, the polymer is represented as a chain of successive monomers, 
linked by bonds of approximately constant length b. Each successive 
monomer is allowed to freely rotate with respect to each other. Tran-
sitioning from one monomer to another along the polymer chain is to 
take one step in a three-dimensional (3D) random walk. For any two 
monomers i and j on this chain, the probability they are separated  
by a vector distance Rij follows a Gaussian distribution (hence,  
Gaussian chain)44:
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1

( 2π
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where n is the number of bonds, each of length b, separating two mono-
mers i and j.

For a chain with N bonds, the likelihood of the entire chain (also 
known as the conformational distribution function, CDF) is the product 
of all bond probabilities on the chain44:
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In multiplexed DNA FISH experiments, we recognize entire chro-
mosomes are labeled at discrete positions, analogous to discrete 
monomers on a Gaussian chain. Furthermore, these discrete loci are 
interspaced at regular genomic intervals (for example, 1 Mb), akin to the 
constant bond length b that separate monomers on the model chain. 
We hypothesized that at large genomic length scales, we can model 
DNA conformation with a Gaussian chain in which the bond length b 
can be estimated from the genomic distance separating two loci44,45:

nb2 = 2lpτL (3)

where lp is the persistence length of DNA, τ is genomic-to-spatial dis-
tance conversion factor (nanometers per basepair) and L is the genomic 
distance separating two loci, for lp ≪ τL. τL together represents the 
contour length along the DNA polymer separating two loci. τ is fit 
separately for each chromosome, as previous studies show their length 
scales differ31.

In a setting where multiple signals are detected for each of two 
genomic loci, it is ambiguous which pair of signals lies on the same 

fiber connecting them is not visualized and must be inferred. The 
inference of physical connection between two discrete signals is the 
most salient problem facing chromatin imaging so far. Early efforts to 
multiplex DNA FISH often found one, three or four fluorescent signals 
emanating from one genomic region in a diploid cell line expected to 
produce two signals35,36. Biological copy number variation, chromo-
somal intermingling as well as poor probe hybridization have been 
acknowledged to explain missing signals31,32,35, sister chromatids and 
aneuploidy as well as imaging noise have been acknowledged to explain 
extra signals31,34,35. If both noise and biological variation can explain 
any observed scenario, chromatin fibers cannot be naïvely traced by 
connecting the first immediate spot. In fact, this uncertainty around 
imaging has led some to forgo tracing altogether and instead tabulate 
proximal pairs of imaged loci for bulk analysis31. When noise appears 
indistinguishable from true imaged genomic loci, and biological vari-
ation at the single-cell level confounds expectation, reconstruction 
of chromatin fibers remains an intractable computational problem.

In the current benchmark for chromatin tracing, the tracing 
problem is simplified with assumptions about copy number and with 
emphasis on the optical quality of detected signals. An expectation–
maximization algorithm (E–M) is first tasked to find k chromatin fibers 
corresponding to a k-ploid cell28,30. Repeated k-times per cell, can-
didate fluorescence spots corresponding to a genomic region are 
scored based on signal intensity and proximity to a moving average 
of downstream selected spots, as well as upstream selected spots and 
proximity to a chromosome center (that is, the aggregate of many 
fluorescent loci) determined by k-means clustering28,30. Implicit in this 
approach are two strong assumptions: that the brightness is a measure 
of detection confidence and that the copy number of a DNA segment 
is fixed and known beforehand. However, background fluorescence, 
nonspecific probe binding and even hot pixels can frequently emit 
similarly intense focal signals indistinguishable from the true signal. 
Additionally, looking for a fixed number of chromosomes may fail to 
capture true biological copy number variations and aneuploidy. To 
disambiguate these scenarios, we need a new framework for chroma-
tin tracing that leverages yet unused information, improving on the 
above heuristics.

Here we present a spatial genome aligner that considers the 
above challenges. We reason that while the shape of chromatin fiber 
is highly variable, it is subject to spatial constraints dictated by poly-
mer physics44,45. In addition to considering optical quality of signals, 
our algorithm aims to select true fluorescence spots corresponding 
to a DNA locus from a number of candidates by picking the one that 
best conforms to a reference polymer model of chromatin. Briefly, 
these restrictions are the genomic distances between two discrete 
sequence-specific labeled loci, which should be proportional to the 
square of its spatial separation. We use the Gaussian chain polymer 
model to estimate an expected spatial distance given a genomic dis-
tance, and compare the observed spatial distance in imaging to this esti-
mated spatial distance as a test of physical likelihood44. We attempted 
to evaluate the accuracy of the spatial genome aligner by comparing 
pairwise distances discovered by tracing against pairwise contact fre-
quencies discovered by Hi-C. We find that our spatial genome aligner 
can recapitulate patterns of chromatin organization found in Hi-C at 
multiple genomic length scales (5 kilobase (kb), 25 kb and 1 megabase 
(Mb)). We note circumstances where chromatin folding may not com-
pletely adhere to this Gaussian chain model, and chromatin structure 
may be influenced by factors including but not limited to chromatin 
remodelers, gene expression, proximity to nuclear structures and 
certain chromatin loops that in part or in sum evade prediction by the 
Gaussian chain, despite our model’s best effort to permit flexibility. 
The genomic footprint of the oligos tiling at a target site, as well as tran-
scriptional state of the target site, may also influence measurement. We 
also acknowledge that diffraction-limited imaging currently lacks the 
sensitivity to resolve individual DNA oligos and needs to ‘merge’ the 
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chromatin fiber. This Gaussian chain model allows us to express 
the probability two discrete loci imaged are physically connected 
as a function of both its observed spatial distance and its expected 
spatial distance. Here, the expected spatial distance is derived 
from the known genomic distance separating two loci on a refer-
ence genome. In taking one step along the chromatin fiber, we can 
select or omit a fluorescence signal by identifying (if any) a pair of 
signals with unique sequence identities whose observed spatial sepa-
ration is ideally congruent with its expected spatial separation. In 
tracing the entire chromatin fiber, the most likely polymer among 
imaged loci is one where the collective segment lengths along the 
chromatin fiber best aligns with its expected segment lengths. Our 
optimization objective is therefore to find the sequence of spatially 
resolved genomic loci that maximizes the likelihood, or CDF, of the  
polymer traced.

Algorithmically, we first abstract imaged chromatin fluorescent 
signals as nodes in a directed acyclic graph. The topological order 
of nodes is determined by the order of loci on the reference genome 
(Fig. 1). We connect each node to the adjacent nodes on the linear 
genome, with each directed edge emulating a polymer segment. For 
each directed edge, we leverage the known genomic distance separat-
ing the two imaged loci to estimate an expected spatial distance. We 
use both the expected spatial distance and observed spatial distance 
between the two imaged loci to calculate a bond probability, assigned 
as the edge weight. Traversing the graph from beginning to end is to 
find a potential chromatin fiber. Keeping track and multiplying the 
edge weights traversed, the score of one path reflects its physical 
likelihood (CDF).

Operationally, we transform the edge probabilities with a negative 
logarithm function into positive edge weights, such that the additive 
sum of edge weights reflects the polymer CDF. With this transforma-
tion, our optimization objective of maximizing likelihood is reframed 
as minimizing the sum of negative logarithm transformation of edge 
probabilities: in other words, we wish to find the shortest path through 

our graph representation of the polymer. Using dynamic programming, 
we find the shortest path through the adjacency matrix of our polymer 
graph not unlike traditional sequence alignment46,47. To account for false 
positives and false negative imaged spots, all valid paths are explored 
with the option to ‘skip’ a node permitted by a gap penalty. Since DNA 
loci from a chromosome must lie on the same chromatin fiber that 
cannot branch, finding the shortest path is to find the most probable 
polymer without physical discontinuity discoverable from data48.

We first benchmark our spatial genome aligner against the chro-
matin tracing strategy that connects adjacent genomic loci by con-
verting tabulated distances into an ensemble contact frequency. We 
analyzed previously published DNA seqFISH+ genome-wide chromatin 
tracing on mouse embryonic stem cells (mESCs), tracing every mouse 
chromosome at roughly 1 Mb resolution across 1,160 single cells31. 
Whereas in published work, detected loci were binned and tabulated 
to convert distances into an ensemble contact frequency, our spatial 
genome aligner resolves single-molecule chromatin fibers at single-cell 
resolution across multiple genome scales. Indeed, our spatial genome 
aligner traces points whose median distance matrices are commen-
surate with KR-normalized bulk Hi-C contacts (1 Mb, Spearman cor-
relation of −0.9 ± 0.04; 25 kb, Spearman correlation of −0.85 ± 0.04). 
We found our spatial genome aligner can resolve large chromatin 
compartments imaged at 1 Mb intervals (Extended Data Fig. 1a,b) as 
well as finer, single-cell chromatin domains imaged at 25 kb intervals 
(Fig. 2a,b). At 25-kb resolution, local chromatin structure is often non-
linearly organized into topologically associating-domain-like patterns, 
which may have variable boundaries, variable domain numbers and 
lifetimes26–34,39–43. Because our polymer model is a freely rotating chain 
of flexible segments, we found that it accommodates such abrupt 
changes in local topology not easily captured when tabulated in an 
ensemble fashion (Fig. 2a–c).

To evaluate the performance of spatial genome alignment on finer 
genomic length scales, and on data from other chromatin imaging 
protocols, we performed spatial genome alignment on multiplexed 
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Fig. 1 | Spatial genome alignment of multiplexed DNA FISH imaging data 
against a reference soft-polymer structural model of DNA. Schematic of 
spatial genome alignment. Spatial coordinates in three dimensions (x, y, z) of 
signal detected from each imaged loci are abstracted as nodes in a graph, ordered 
by their appearance on the reference genome. Using a freely jointed Gaussian 
chain model (F), our aligner estimates an expected spatial distance (r) based 

on the genomic distance separating two loci. This expected spatial distance is 
compared to the observed distance, and an edge between two loci are connected 
weighted proportionally to physical likelihood. We task the aligner to find the 
shortest path through our adjacency matrix, which returns the sequence of 
spatial positions whose path length equates to the most likely polymer.
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DNA FISH data of the Sox2 locus imaged at 5-kb resolution49. In our 
previous work, we adapted a protocol based on sequential DNA-FISH28 
to label a 210-kb genomic region on mouse chr3, spanning both the 
Sox2 gene locus in the F123 hybrid mESC line and its super-enhancer 
110 kb downstream. By sequentially imaging these loci and tracing the 
chromatin, we were previously able to visualize promoter–enhancer 
contacts corralled within a topologically associating domain (TAD). 
When we applied our spatial genome aligner to this fine 5-kb resolu-
tion chromatin imaging experiment, we found our spatial genome 
aligner can indeed recapitulate the TAD found at this region (Extended 
Data Fig. 2), faithfully capturing known promoter–enhancer interac-
tions. We note the positional uncertainties, determined using Gauss-
ian fitting for fluorophores, can vary across imaging platforms. This 
uncertainty is roughly 50 nm when drift and chromatic aberration are  
appropriately corrected30.

We additionally benchmarked our spatial genome aligner with 
a published chromatin tracing algorithm49 (Extended Data Fig. 2). 
Previously, chromatin tracing on multiplexed DNA FISH emphasized 
the optical quality of a fluorescence spot, a metric incorporating (1) 
brightness, (2) proximity to a chromosome center and (3) relative 
agreement to a moving average of preceding and subsequent spots. An 
E–M procedure then sequentially selected one spot with the highest 
quality for each chromatin locus, while iteratively updating its quality 
scores. In contrast, our spatial genome aligner introduces another 
metric into spot selection—physical constraints dictated by polymer 
physics—as a decision criterion for selecting spots. Compared to previ-
ously published E–M spot selection algorithms (Spearman correlation 
−0.73), our spatial genome aligner produces a median distance matrix 
that achieves a similar correlation with respect to Hi-C (Spearman cor-
relation −0.76). The difference between the two methods become larger 
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Fig. 2 | Spatial genome alignment of seqFISH+ chromatin imaging of mESCs 
at 25 kb and 1 Mb resolution. a, Heatmaps of seqFISH+ chromatin imaging 
of mESCs at 25 kb resolution (bottom left) juxtaposed to contact frequency 
from bulk proximity-ligation assay or Hi-C binned at 25 kb (top right). The 
distance matrix is an untabulated, median distance matrix of all single-molecule 
chromatin fibers identified by spatial genome alignment for every chromosome 
across 1,160 cells. Heatmaps for 1 Mb chromatin tracing imaging data are shown 
in Extended Data Fig. 4. b, Spearman correlation between pairwise spatial 

distances (x axis, log normalized) imaged at 25 kb resolution against Hi-C contact 
frequency (y axis, log normalized) binned at 25 kb resolution. c, Spatial distance 
to proximity-ligation correlation comparison across methodologies, at 1 Mb 
seqFISH+ imaging resolution as well as 25 kb resolution. For 25 kb resolution 
where DNA domains organize nonlinearly, we note that single-molecule 
chromatin fiber tracing via spatial genome alignment captures structural 
variations more faithfully than tabulating all pairwise spatial distances within a 
specified radius into an ensemble structure.
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when we tabulate distances into contacts against a range of distance 
thresholds, with spatial genome alignment achieving a Spearman 
correlation of −0.714 at a 150-nm threshold compared to the E–M algo-
rithm’s −0.651 (Extended Data Fig. 2f–h). Notably, our spatial genome 
aligner performs a global optimization that incorporates the rela-
tive positioning of all imaged loci rather than a local moving average.  
Considering all imaged loci may be more robust against noise com-
pared to a moving average, in the event a starting point has especially 
low signal-to-noise and unduly affects the downstream moving average. 
Additionally, our spatial genome aligner traces the most likely polymer 
fibers in linearithmic time using dynamic programming, compared to 
the heuristic E–M approach that relies on iterative convergence. Taken 
together, we believe that the genomic distance separating imaged loci 
has the potential to disambiguate spot selection and that our spatial 
genome aligner can be used to model chromatin fibers at multiple 
lengths scales, on multiple datasets, and on different multiplexed-FISH 
imaging modalities.

Polymer fiber karyotyping
A nucleus may have multiple copies of a chromosome. Finding all cop-
ies has traditionally relied on identifying compact clusters of imaged 
loci, aggregating by chromatin fiber. A k-means approach of clustering 
assumes the ploidy of a cell is known beforehand28,30, and this approach 
is unable to accommodate copy number variations. For k = 2 and ploidy 
n = 1, k-means may inadvertently look for a nonexistent second ‘phan-
tom’ chromosome. Conversely, for k = 2 and ploidy n = 3, k-means would 
fail to detect an entire chromosome altogether. A copy number agnostic 
approach of clustering, such as DBSCAN, relies on density of detected 
loci31,32, however, its density neighborhood parameter is difficult to 
tune. A large density neighborhood may inadvertently aggregate two 
spatially separable chromosomes as a single dense cluster, misassign-
ing two separate homologs as one. A small density neighborhood may 
fracture an intact chromosome into separate partitions.

In contrast, our spatial genome aligner provides a density or ploidy 
independent framework for identifying chromatin fibers. We provide 
all detected spatial coordinates of a chromosome and a reference 
genome to our spatial genome aligner, tasking it to extend (if at all 
possible) the most likely path from chromosome start to end. Since 
the path length (CDF) of a putative polymer reflects the physical like-
lihood of a polymer, we reasoned that the copy numbers of chromo-
somes inside interphase cells can be obtained simply by counting all 
physically likely polymer fibers. First, we set a likelihood threshold 
by scrambling a simulated polymer model of a reference genome 
such that the observed spatial distances between genes no longer 
abides by the genomic intervals that separate them (Fig. 3b). Next, we 
iteratively apply spatial genome alignment, extending polymer paths 
from putative seeds and subtracting nodes visited by the shortest 
path before searching for next shortest path, until no physically likely 
polymer path can be discovered (Fig. 3a). In this manner, we produce 
orthogonal sets of coordinates belonging to contiguous chromatin 
fibers with likelihood scores below our threshold. We call this process 
polymer fiber karyotyping.

Using chromatin tracing data spanning the mouse genome at 
roughly 1 Mb intervals, we performed spatial genome alignment to dis-
cover all possible chromatin fibers in the mESCs. A diploid cell should 
have half as many chromatin fibers as a tetraploid cell; we reasoned 
this should also reflect in the total number of loci detected in a cell. 
Comparing the total detected fluorescence signals per chromosome in 
a cell to its assigned ploidy determined by polymer fiber karyotyping, 
we notice a linear relationship. Every incremental increase in ploidy is 
accompanied by a stepwise, multiplicative increase in the total number 
of detected loci (Fig. 3c). Building on this, we compare the agreement of 
copy numbers assigned by each chromosome. Hierarchical clustering 
of copy numbers assigned by each chromosome across 1,160 cells show 
three distinct clusters of cells whose copy numbers are homogenously 

congruent for all 19 autosomal chromosomes. Namely, we see cells 
proportionally falling into a 6:2:2 distribution of 2N:3N:4N: cells, 
respectively, matching a replicative profile of highly dividing mESCs 
(Fig. 3d). Treating each chromosome as a separate agent for karyo-
typing, we quantified the copy number agreement between different 
chromosomes using Cohen’s kappa test. Pairwise comparisons of each 
chromosome against another show agreement (kappa ≥0.3), except 
for chromosome X (Fig. 3e). Although the spatial genome aligner had 
every opportunity to find as many fibers for chromosome X as it did for 
other autosomal chromosomes (2.618 ± 1.114 copies; mean, standard 
error), it found fewer copies (1.699 ± 0.669 copies) of chromosome 
X in this male cell line. Some heterogeneity among copy numbers 
between cells exists in part due to inherent imaging labeling efficiency, 
detection efficiency and cell segmentation challenges, as well as the 
stringent spatial fitting criteria of the spatial genome alignment. 
This gave us additional confidence that our spatial genome aligner 
produces accurate cell karyotypes without supervision, and that it 
can discriminate copy numbers in interphase where even the human  
eye cannot.

To assess our polymer fiber karyotyping’s accuracy in counting 
interphase chromosomes, we simulated 1,000 aneuploid cells. In each 
cell, we randomized copy numbers between 0 and 4 for each of the 
20 mouse chromosomes, such that the copy number of one chromo-
some cannot inform the copy number of another chromosome in the 
same cell (Extended Data Fig. 3a). To these simulated chromosomes 
for which we know the true localizations of loci, we added additional 
layers of noise including extra stray localizations (false positive) and 
signal dropout (false negative) (Extended Data Fig. 3a). Surveying a 
grid of 49 different combinations of false positive and false negative 
rates (FNRs), we evaluated our polymer fiber karyotyping accuracy in 
the analysis of chromosome counting (Extended Data Fig. 4). We also 
evaluated the accuracy of spatial genome alignment in the classifica-
tion of signal selection amid noise on these simulated aneuploid cells 
(Extended Data Fig. 3).

At the alignment level, we honed in on 50% FNR and 0% false posi-
tive rate (FPR): a condition most representative of detection efficiency 
and off-targets reported in DNA seqFISH+ experiments31,32. At this 
noise condition, we achieve an average true coverage rate (true posi-
tive → true positive) of 27 ± 13.2% out of a maximum 50% true positive 
loci (Extended Data Fig. 3d). In fact, even in the setting of 0% FNR and 0% 
FPR (perfect information) our aligner captures 88 ± 13.2% true coverage 
rate out of a maximum 100% true positive loci (Extended Data Fig. 3d). 
This strongly suggests our aligner’s requirement to fit spatial distances 
between loci to be congruent with its genomic distance is extremely 
stringent. Indeed, the most dominant error made by our aligner is the 
omission of true positives or Type III error true positive → false nega-
tive), across all chromosomes (Extended Data Fig. 3c) and across all 
noise conditions (Extended Data Fig. 3d). At 50% FNR 0% FPR our aligner 
averages a Type III (true positive → false negative) error of 18 ± 13.2% 
across all chromosomes (Extended Data Fig. 3d). In comparison, we 
report an average 6 ± 6% Type I error rate (true negative → false posi-
tive), where we select a false positive spot in the absence of true signal 
(Extended Data Fig. 3d). This again suggests our aligner is making 
highly specific judgments in spot selection. The lowest source of error 
is a type II error (true positive → false positive), where the selection of 
a false positives in the presence of true signal hovers around 5 ± 4.8% 
at 50% (Extended Data Fig. 3d). Since we set an upper limit for number 
of loci skipped, the omission of true positive loci may accumulate for 
especially high signal dropout conditions, leading to early termination 
of alignment and potentially missed chromosomes.

At the karyotyping level, we found our routine achieves near per-
fect precision recall in the setting of perfect information (Extended 
Data Fig. 4a) but begins to miss chromosomes at increasing dropout 
rates (Extended Data Fig. 4b). We wondered whether our aligner ever 
‘alternates’ between loci, leaving behind enough ‘residual points’ that 
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lead to an overcounting of chromosomes on second iteration. Instead, 
we found our algorithm may undercount but almost never overcount, 
across a range of noise conditions (Extended Data Fig. 4a–c). Even when 
we added extra noise signals, our algorithm did not mistake these stray 
localizations for additional chromatin fibers (Extended Data Fig. 4c). 
We found that chromosome detection efficiency slightly increases 
with added noise (Extended Data Fig. 4c). For instance, at 50% FNR 0% 
FPR, our polymer fiber karyotyping identifies 3,243 of 3,927 2N chro-
mosomes. At 50% FNR 20% FPR, our routine identifies 3,472 of 3,927 
2N chromosomes. We attribute this improved chromosome detection 
sensitivity to a ‘placeholding’ effect that stems from the design of our 
aligner. Just as the aligner has an upper limit to total number of loci 
skipped per chromatin fiber, our aligner also has an upper limit to 

the number of loci skipped at any given locus. Dropout without any 
noise may result in consecutive missing signals stretching beyond the 
furthest allowable skip. Yet in the setting of signal dropout and added 
noise, our algorithm may potentially align to a placeholding ‘noise’ 
spot, taking the penalty of an incongruent spatial segment to complete 
the alignment from chromosome start to end.

Aggregation of homologous chromosomes in tetraploid  
mESC cells
Of the putative 4N chromosomes predicted by our spatial genome 
aligner, we asked whether these are polyploid cells with four separable 
chromosomes before replication, or diploid cells with two pairs of sister 
chromatids after replication (Fig. 4a–c). As sister chromatids are shown 
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Fig. 3 | Polymer fiber karyotyping on interphase mESCs. a, Schematic of 
polymer fiber karyotyping by iterative path subtraction. For every plausible 
polymer found, all nodes visited on the polymer path are subtracted before a new 
graph is constructed for additional rounds of spatial genome alignment. Paths 
are extended until no physical plausible paths can be discovered. b, The score of 
each path is recorded, interpreted as the CDF of the polymer and compared to 
a physically unlikely threshold. Paths are extended for a given chromosome in 
a cell until either no more paths can be extended or a path extended has a score 
above threshold. c, Boxplot (center line, median; box, 25th to 50th percentile; 
bars, minima and maxima): of predicted copy number and total detected loci per 
chromosome (including spots omitted by spatial genome alignment) of mESC 

(n = 1,160 cells examined over four experiments). For every extra chromosome 
detected by polymer fiber karyotyping, we find a stepwise multiplicative increase 
in the total detected loci (for example, 1 chr, 100 points, 2 chr, 200 points, …). 
Pearson correlation coefficient evaluates this trend of detected loci per increase 
in assigned ploidy. d, Hierarchical clustering of mESCs by copy number similarity. 
Copy number of chromosomes is congruent across the mouse genome in a given 
cell with the exception of chrX in this male cell line. A dominant faction of cells is 
2N in addition to a smaller faction of 3N cell with unsynchronized replication and 
a smaller faction of 4N cells postreplication. e, Heatmap of pairwise comparisons 
of copy number assigned by different chromosomes, with agreement scored by 
Cohen’s kappa.
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to be tightly paired in a parallel fashion50–53, we reasoned that if two 
chromatin fibers reside in the same spatial neighborhood, they are likely 
sister chromatids of the same homolog. We performed density-based 
clustering to assign fibers of every ploidy to homologs. Under a set 
density parameter, most diploid cells had two spatially resolvable fibers 
singularly residing in different territories (Fig. 4b). Notably, under the 
same density parameter most tetraploid cells also had not four spatially 
resolvable fibers, but also two clusters of paired fibers that cannot be 
parsed by eye or by known clustering algorithms (Fig. 4b).

To test whether these paired fibers are indeed sister chromatids, 
we examined the trans-fiber loci distances relative to the cis-fiber loci 
distances. In agreement with published sister chromatid sensitive 
Hi-C on Drosophila and human cell lines52,53, paired fibers in mESCs 
resolved by our spatial genome aligner are spatially coupled. Explicitly, 
a given locus of one sister chromatid is followed by the same locus 
on its attendant sister chromatid, faithfully ‘shadowing’ each other 
(for example, chromasome 1 (chr1) µ = 1,606.8 nm separation; 95% CI 
(1,540.3, 1,734.5)) (Fig. 4d). Congruent with previously published work, 
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the spatial distance between cis-fiber interactions is closer for smaller 
genomic distances but which converges with trans-fiber interactions 
above 10 Mb (Fig. 4e). Given the parallel nature of pairing and reca-
pitulation of sister chromatid interactions found by sister chromatid 
sensitive Hi-C, we presumed the tetraploid cells were in fact replicated 
diploid cells showing paired sister chromatids.

Because these sister chromatids are tightly coupled, it is plausi-
ble that loci belonging to one sister are inadvertently selected by its 
attendant sister and vice versa. To assess this misselection event, we 
revisited all putative sister chromatid pairs of mESC chr1. Examining 
a sliding window of three loci, we allowed sisters to exchange their 
selected spatial positions for these three loci. Next, we re-evaluated 
the resultant bond probabilities between three upstream loci to the 
three downstream exchanged loci (Extended Data Fig. 5a). If the new 
bond probabilities are more probable than the original on both sister 
chromatid fibers, we call this a misselection event (Extended Data  
Fig. 5b). A sequence of consecutive misselections of any length is called 
a cross-over event (Extended Data Fig. 5d). We found that our spatial 
genome aligner is susceptible to these errors when tracing paired sister 
chromatids, and has an average locus misselection rate of 5.06 ± 1.84%. 
The mean cross-over per fiber is 5.08 ± 3.74 (Extended Data Fig. 5d). 
One source of misselections lies in the sparsity of data (Extended Data 
Fig. 6a,c). Rarely are two signals simultaneously detected for a locus 
(chr1, 7.34%) and present for selection by both the main sister and its 
attendant (Extended Data Fig. 6a,c). In fact, for chr1 34.5% of all cases 
with zero signals are detected for a given locus. In the absence of robust 
signal, our polymer fiber karyotyping routine is greedy. Whichever 
sister is discovered first is incentivized to select as many detected loci 
as it sees fit, at the cost of potentially selecting signals that belong to 
the other sister. A signal cannot be re-selected by subsequent sisters. 
When only one signal is detected for a given locus, we therefore see a 
disproportionate imbalance of the single locus signal assigned to the 
main sister traced first (34%) compared to the signal assigned to the 
attendant sister traced second (19.6%). In a controlled simulation of 
paired sister chromatid fibers, we find that the predominant cross-over 
error our aligner makes is a cross-over in the absence of signal on the 
present sister chromatid but presence of signal on the attendant sister 
(type I, true negative → false positive; Extended Data Fig. 7d). In the 
presence of signal on both sister chromatids, our aligner rarely makes 
cross-over errors (Type II; true positive → false positive). These results 
hold true for a range of sister chromatid pairing strengths (Extended 
Data Fig. 7b,d). Future improvements in experimental detection effi-
ciency, sister chromatid specific labeling and algorithmic flexibility 
permitting revisiting signals with higher intensity (indicative of coin-
cident signals) may decrease this misselection error and improve sister 
chromatid tracing coverage.

Canonically, homologous chromosomes are divorced from each 
other in the nucleus and are widely acknowledged to reside in sepa-
rate territories6. Yet, of the 207 cells tetraploid for chr1 we find two 
predominant patterns: three-quarters (146 out of 207 cells) bearing 
two spatially separable clusters presumed to be different homologs 
(sep-hom) and, strangely, a quarter (49 out of 207 cells) with all four 
fibers are coalesced (compact) (Fig. 4c). We note a marginal population 
of cells (12 out of 207 cells) with three or more separable structures 
corresponding to separated sister chromatids (sep-sis). In case our 
clustering density parameter had inadvertently grouped two separable 
homologs together, we visually inspected each putative compact 4N 
chr1. To our surprise, we find that the majority of the compact state  
(31 out of 49 candidates) cells, cumulatively 2.67% of total cell popu-
lation, has four chromatin fibers spatially intermingling and which 
cannot be separated by eye.

Why would the newly replicated homologous chromosomes 
coalesce? While homologous chromosome generally lie in separate 
chromosome territories54,55, some species such as Drosophila exhibit 
extensive homologous pairing in somatic cells56. It is thought that 

communication between homologs, across a number of species55–57, 
underlies gene regulation58, chromosome counting59, DNA repair (with 
resultant loss of heterozygosity)60–63, and even chromosome topol-
ogy64. The trans-homologous interactions identified in mammalian 
cells under physiological conditions have been sparse65,66. However, 
there have been reports of such events in the setting of human dis-
eases67,68, suggesting this rarity of homologous pairing may be either 
species specific or due to mechanisms in mammals that deliberately 
prevent such interactions55. Here we suggest the possibility that mul-
tiplexed DNA FISH and chromatin tracing may help better understand 
this potential for trans-homologous interactions.

To understand our observed compact chromosome territories, 
we began by parsing which two fibers belong to one homolog within 
the compact structure. Spatial proximity prohibits clustering from 
separating homologs and assigning pairs of fibers as sisters. Since 
true sister pairings should involve two fibers shadowing each other, 
we reasoned sisters can be assigned by proximity of a given locus on 
two fibers. There are two natural assignments: grouping the closest 
pairs by the starting locus (SA; mouse centromere, which, in mouse, 
is located at the end of each chromosome), and grouping the clos-
est pairs by the end locus (mouse telomere, noncentromeric mouse 
telomere) (Fig. 5a). While both are telomeres, we use centromeric 
and telomeric to denote locations: namely the start and end locus of 
the chromosomes, respectively. We note spatial proximity may cause 
our spatial genome aligner to inadvertently select spots belonging 
to other fibers. Therefore, we explored the centromere–centromere 
distances as well as telomere–telomere distances of the two remaining 
permutations. Specifically, these permutations correspond to the best 
possible alternate pairing (alt1) as well as the remaining pairing (alt2), 
ranked in this order.

When replicated homologs reside in separate chromosome terri-
tories, we find that the telomeres of putative sister chromatids grouped 
by their centromere are likely coupled (Fig. 5d, left). The mean distance 
separating telomeres of centromere sisters (mean 3,857.5 nm; 90% CI 
(3,451.5, 4,263.5)) is smaller than the distance between its centromere–
telomere and not known to interact (mean 4,474.9 nm; 90% CI (4,295.8, 
4,654.1)). In contrast, the next best alternative pairing has a telomere 
separation (mean 5,767.4 nm; 90% CI (5,342.2, 6,192.6)), larger than two 
noninteracting loci. In the same manner, the centromeres of putative 
sisters grouped by their telomere (end locus) are also tightly coupled. 
All other alternate pairings exhibit a spatial separation above that of 
two noninteracting loci.

When replicated homologs coalesce, we find that putative sisters 
grouped by their centromere may lose pairing at their telomeres. The 
mean distance separating telomeres of Start Assigned (SA) sisters is 
similar (µ = 3,286.5 nm; 90% CI (2,835.9, 3,737.1)), compared to the 
distance between two noninteracting loci (µ = 4,310.9 nm; 90% CI 
(4,110.2, 4,511.7)). The next best alternative pairing has a telomere 
separation (µ = 2,544.2 nm; 90% CI (2,131.2, 2,597.1)) closer than the 
centromere assigned telomere distance. Should this be due to misas-
signment, then all three pairing scenarios should share a uniformly 
unpaired distance distribution with mean distances above coupling. 
Yet, there almost always exists an alternate pairing between putative 
homologs that theoretically should not interact. The same analysis 
on End Assigned (EA) sisters confers an ambiguous result, likely due 
to this loss of pairing.

The tendency for cis-homolog coupling decreases moving away 
from the centromere, resulting in a ‘flare-up’ of putative trans-homolog 
interactions near the telomere of chromosomes (Fig. 5b). Since DNA 
seqFISH+ labels discrete genomic loci, we are not able to visualize the 
contiguous polymer physically linking imaged loci. Additionally, DNA 
seqFISH+ probes do not discriminate homologs. Our reanalysis of mis-
selection events (Extended Data Fig. 5) and analysis of simulated sister 
chromatid pairs (Extended Data Fig. 7) suggest our aligner may inad-
vertently cross-over between loci that belong to other chromatin fibers, 
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albeit at lower rates than true coverage. We are therefore unable to 
definitively show all spots traced by our aligner lie on the same contigu-
ous fiber, and that our assignments by loci proximity are always sisters 

of the same homolog. However, our spatial alignment analysis in bulk 
suggests a possible loss of sister pairing toward the telomeric end and 
increased trans-homologous interaction within this compact 4N state. 

G2/M G1 S

a

b c

Alt1 Alt2

Start

20,000

15,000

10,000

D
is

ta
nc

e 
(n

m
)

SA
Assignment

Chrom = chr1 | Class = separate Chrom = chr1 | Class = compact

Annotation
Start
Start - alt1
Start - alt2
End
End - alt1
End - alt2
Start – end (ctrl)

EA SA
Assignment

EA

5,000

0

End
Alt1 Alt2Best Best

Centromere–centromere 
distance

Telomere–telomere 
distance

EA
(homolog assignment by telomeric end)

Alt1 Alt2

Start

End
Alt1 Alt2Best Best

Centromere–centromere 
distance

Telomere–telomere 
distance

d

e

3 Mb 195.2 Mbchr1
(attendant)

19
5.

2 
M

b
3 

M
b

ch
r1

(s
el

f)

3 Mb 195.2 Mbchr1
(homolog 2)

19
5.

2 
M

b
3 

M
b

2,000

1,750

1,500

1,250 nm

1,000

750

500

2.00

1.75

(trans)
 Enrichm

ent
(cis)

1.50

1.25

1.00

0.75 –1 0
Scaled intensity (IF)

Pseudotime
H4K20me1

Sep-sis

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9
chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chrX

chr1

6
5
4
3
2
1
0

chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9
chr10

C
opy num

ber

chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chrX

Sep-hom

Compact

H4K16ac

1
0.50

0.25

ch
r1

(H
om

ol
og

 1)

3 Mb 195.2 Mbchr1

19
5.

2 
M

b
3 

M
b

ch
r1

SA
(homolog assignment by centromeric start)

- End
- Start

Compact: replicate1-FOV3-cell 34, chr1

S1 S4

E3
E1

E2
E4

S3

S2

Cis-homolog, trans-sister

Cis-homolog/trans-homolog

Trans-homolog, trans-sister

Fig. 5 | Sister chromatid interactions in compact homolog state. a, Violin plot 
(center dot, median; gray bar, quartiles) comparing spatial separation between 
centromeric starts or between telomeric ends of sister chromatids, stratified by 
sister chromatids in separate chromosome territories (n = 146 cells across four 
experiments) and by sister chromatids in a compact territory (n = 49 cells across 
four experiments). All six permutations, including sisters assigned by closest 
centromeric starts (SA) and its alternate pairings are shown, as well as sisters 
assigned by closest telomeric ends (EA) and its alternate pairings. Note that in 
mouse chromosomes, the centromere is located at the end of the chromosome. We 
refer to the centromere and centromeric to delineate the centromeric telomere; 
the telomere and telomeric to delineate the noncetromeric mouse telomere. The 

pairwise distance between a centromeric start and its telomeric end on the same 
fiber is presented as a control for unpaired loci. The colors of the chromosome 
cartoons do not indicate phased labeling, and instead emphasize combinations 
of grouping two fibers. b, Median distance matrix of cis-homolog trans-sister 
chromatids versus trans-homolog trans-sister chromatids. A representative 
structure is shown on the bottom left, with a heatmap showing cis-homolog to 
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We ordered the cells along the same pseudotime axis as determined 
using previously published cell-cycle markers (H4K20me1, H4K16ac) 
(Fig. 5c–e). We found that this compact 4N state is scattered throughout 
interphase leading up to S phase. Additionally, this compact 4N state 
is rarely synchronized across multiple chromosomes, and appears to 
occur stochastically. This suggests trans-homologous interactions 
between replicated chromosomes are likely uncoordinated and not 
initiated by a particular cell-cycle checkpoint.

Extranumerary paired chromosomes in mouse cortical 
neurons
Extranumerary chromosomes and more broadly aneuploidy have 
previously been reported in the brain, by both FISH and single-cell 
sequencing69–73. This copy number variation is thought to underlie 
a functional diversity adequately supporting neural complexity70. In 
DNA seqFISH+ imaging of mouse cortex, we sought to evaluate such 
copy number variations with polymer fiber karyotyping. Because cryo-
sectioning may cut through nuclei, leaving some chromosomes (in 
whole or in part) out of view, we analyzed 701 fully segmented mouse 
neurons32, all lying in the center z-sections of female mouse cortexes 
derived from three biological replicates. Of these intact nuclei, we 
honed in on excitatory neurons: the predominant cell type in this data-
set (n = 458/701 neurons).

Our karyotyping routine reports 58.05 ± 6.38% (mean, standard 
deviation) of a given chromosome as 2N. It classifies 13.82 ± 3.03% of a 
given chromosome as 1N, and 19.68 ± 5.08 of a given chromosome as 
3N (Fig. 6a). Unlike cell line imaging, karyotyping on multiplexed-FISH 
imaging of tissue is challenged by (1) poor probe labeling, (2) higher 
background fluorescence, (3) difficult cell segmentation and (4) afore-
mentioned cyrosectioning artifact that may collectively contribute to 
missed chromosomes (Fig. 6a). Additionally, our extensive analysis of 
polymer fiber karyotyping on simulated aneuploid cells indicates that, 
on data with low imaging detection efficiency, our aligner may poten-
tially undercount chromosomes (Extended Data Fig. 4). Our aligner’s 
criteria of fitting the spatial separation between each pair of loci to be 
congruent with its genomic distance is extremely specific in filtering 
out noise, sometimes at the cost of lost sensitivity. It currently has a set 
threshold for total number of skipped loci that qualify a valid polymer. 
It also has a restriction in the number of loci can be skipped at a step in 
spatial genome alignment. Either successive dropout in a region of a 
genome (despite all other loci fully detected) or cumulative dropout 
across the chromosome may terminate our alignment, potentially miss-
ing a chromosome. In this mouse brain imaging dataset, the detection 
efficiency hovers around 47.3 ± 16.2% (2,326 ± 795 spots; 2,460 labeled 
loci) for 1 Mb tracing32. At this sparsity, we therefore believe the number 
of chromosomes classified as 1N is at least partially contributed by a 
tendency to undercount in our algorithm. The potential to undercount, 
however, led us to take a closer look at extranumerary chromosomes 
(3N) in cortical neurons.

Due to data sparsity, many loci are absent on putative extranu-
merary chromosomes. To ascertain these are indeed three separate 
chromatin fibers and not two fibers parsed into three, we filtered all 
putative 3N chromosomes seeking fibers that are routed through 
three separate detections per locus for at least three different loci. 
We note that each detection of a locus under DNA seqFISH+ imaging 
is not a one-time detection, but in fact a temporal barcode wherein a 
locus is detected at least four out of five times, at the correct temporal 
sequence, while satisfying error correction. We also note that in our 
simulated aneuploid cells and in simulated sister chromatid pairs, 
despite high signal dropout and simulated noise, our aligner does not 
split one chromatin fiber into two (Extended Data Fig. 7f). Even still, 
we find that 8.72 ± 4.18% of each chromosome are predicted to be 3N 
under this more stringent criterion. We validated our karyotyping 
results by analyzing haplotype-resolved single-cell Dip-C sequencing 
on mouse cortical neurons classified as excitatory74 (Extended Data 

Fig. 8a). By counting total reads, as well as inspecting the relative fold 
change of reads assigned to the maternal versus paternal haplotype, 
most sequenced neurons have balanced haplotyped reads (|log2| fold 
change <0.9). Also, 10.82 ± 1.31% of every chromosome have twice 
(|log2| fold change ≥0.9) as many reads of one haplotype as the other 
(Extended Data Fig. 8a,b). Not only may this reflect copy number vari-
ations prevalent in cortical neurons, it may also indicate the extranu-
merary chromosome is potentially contributed to by one haplotype.

Because single-cell sequencing affords relative copy numbers of 
reads and fails to capture the nuclear organization of the aneuploid 
cells, we inspected the spatial organization of these copy number vari-
ations. Looking at chromosome X, where the inactive chromosome is 
distinguished from the active by RNA imaging of Xist, density-based 
clustering reveals that excitatory neurons with three chromosome 
X have predominantly two chromosome territories (Fig. 6b). One 
chromatin fiber is standalone, while the two remaining fibers are 
constituents of the same territory (Fig. 6c). Of the doubly occupied 
chromosome territories, two-thirds are devoid of any Xist signal, sug-
gesting a preference for active chromosome X (P = 0.049369, one-sided 
binomial test; Fig. 6f). Despite different gene dosage, we detect no 
significant gene expression relative to cells with two detected copies 
of the X chromosome, irrespective of chromosome X activation status 
(Fig. 6e). Most labeled genes show no significant change relative to 
elevated gene dosage (Extended Data Fig. 9).

Between fibers in the doubly occupied chromosome territory, the 
active chromosome X fibers show some degree of pairing (Spearman 
r = 0.26) at a locus-to-locus level with its attendant fiber (Fig. 6d,g). 
This manifests as a strong diagonal in the trans-fiber pairwise distance 
matrix, as well as a spatial distance distribution mimicking that of 
cis-fiber pairwise distances. The same cannot be said of the inactive 
chromosome X, whose double constituents bear little resemblance 
(Spearman r = 0.046).

Discussion
Here we present a spatial genome aligner for multiplexed DNA FISH 
data. We show that this framework resolves chromatin fibers from 
discretely labeled positions of genomic loci, amid noise and signal 
dropout. In our spatial genome aligner, each observed locus’ spatial 
position is checked against a reference model of a polymer chain. This 
reference model, a Gaussian chain abstracting connections between 
imaged loci as bond probabilities, dictate that even a highly variable 
structure as DNA follows predictable patterns of distance separation 
between loci. Our model uses a fixed scaling factor to roughly esti-
mate spatial distance from genomic distance. We recognize that DNA 
compaction is known to change throughout the genome, and our fixed 
scaling factor does not recapitulate the exact spatial distance sepa-
rating each locus imaged. However, we hypothesized this estimated 
distance can inform soft decisions in the selection of imaged DNA loci, 
in addition to considering optical qualities of signals detected, to trace 
chromatin structures. We found this framework captures chromatin 
compartments and domains also found in Hi-C, on multiple lengths 
scales and across different chromosomes. Future frameworks may fuse 
other channels of information, such as A/B compartments, chromatin 
modifications, gene expression levels and association with nuclear 
structures to estimate different distance parameters throughout the 
genome during chromatin tracing.

Our algorithm falls into an early lineage of spatial genome aligners, 
including work by Ross et al. that abstracts connections between loci as 
polymer segments and whose edge weights are proportional to physi-
cal likelihood45. Chiefly, whereas a reference polymer structure can 
reconcile each individual locus’ most likely spatial position using the 
forward–backward algorithm45,48, we demonstrate the use of dynamic 
programming to find the most plausible sequence of spatial positions 
discoverable48. In other words, finding the shortest path in our graph 
representation is to find the most physically likely polymer without any 
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physical discontinuity. Our aligner builds connections between loci in 
the sequential order they appear on the reference genome. Currently, 
this prevents discovery of certain structural variants, such as inver-
sions, translocations and duplications. However, we believe finding 
the most likely contiguous polymer may be instrumental to uncovering 
copy number variations at the single-cell level. Through iterative sub-
traction of shortest paths to find all valid polymers, our data indicate 
a capacity to recover sister chromatids otherwise mistakenly grouped 

as one chromosome fiber. We therefore propose a new form of karyo-
typing called polymer fiber karyotyping that is density or clustering 
independent. Ascribing a physical likelihood to polymers allows us to 
estimate the copy number of chromosomes, paving way for the study 
of copy number variations in interphase for which the expected copy 
number is unknown. For instance, the study of oncogene amplification 
in the setting of cancer heterogeneity is currently limited by reliance 
on compact alignment of probes in metaphase spreads22. It is also held 
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Violin plot (center dot, median; gray bar, quartiles) of gene expression counts 
of three genes lying on chromosome X, comparing the effect of gene dosage on 
transcription, subclassified by chrX activation status (active, n = 20 cells across 
four experiments; inactive, n = 9 cells across four experiments; control: n = 20 
randomly selected cells across four experiments). f, Count plot of excitatory 
cortical neuron nuclei with three copies of chromosome X, classified by the 
activation status of the territory where two of the three chromosome X fibers 
colocalize. g, Spatial distance separation (bolded line, mean; shaded band, 95% 
confidence interval) across genomic length scales between loci on the same 
chromatin fiber (cis) versus separation between loci across separate chromatin 
fibers (trans), subclassified by chromosome X activation status.
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back by uncertainty in measurement due to unknown true copy number 
postoncogene amplification.

Perhaps not unexpectedly, a potential to resolve discrete poly-
mer fibers instead of tabulating chromosome positions can point 
to inter-chromosomal interactions. Multiplexed-FISH captures in 
high throughput native chromosome structures directly in intact 
nucleus among a range of different replicative states. Chromosomes 
undergo transformative structural change throughout the cell cycle, 
disassembling the interphase nucleus to condense into sister chro-
matids during mitosis: a process that has been historically studied 
using proximity-ligation sequencing1. And yet, so far, sister chromatid 
level interactions have been difficult to resolve from imaging. This is 
perhaps due to a lack of biochemical labeling that can discriminately 
label sisters that are identical in sequence. Here, we propose a com-
putational model relying on statistical mechanics to resolve sister 
chromatid interactions from fluorescence imaging and although our 
spatial genome aligner awaits further field testing, it has enabled us to 
model sister chromatids from several imaged loci difficult to discern 
by the human eye. While most replicated homologs seem with our 
method to be divorced and reside in separate territories, our modeling 
suggests compact territories where all four sister chromatids of a given 
chromosome spatially aggregate. Whereas in separate territories 
each sister seems to be shadowed by its attendant sister, we believe 
that in the compact territory sister chromatids can lose sister pairing 
and might even pair with the other homolog. Such an interpretation 
is evocative of a cross-over event, which is thought to occur in mitotic 
cells at exceedingly rare frequencies (roughly 1–2%) consistent with our 
observation60,61. This deserves further investigation to study whether 
genetic information is indeed being exchanged and may bring compel-
ling insight to the regulatory mechanisms of loss of heterozygosity 
underlying disease. Mechanistically, how a sister chromatid eschews 
pairing with its own homologous attendant and assiduously choose 
a sister from the other homolog is a mystery. We acknowledge that 
diffraction-limited widefield microscopy may ‘merge’ two signals 
belonging to separate chromatin fibers. Multiplexed STORM (that is, 
Oligo-STORM)25,27, which can precisely resolve chromatin organization 
with single-molecule sensitivity at subdiffraction limit resolution, may 
provide complementary information on sister chromatid pairing and 
global organization. Additionally, as homologous interactions are 
highly species specific (that is, Diptera)55–58 we believe this study would 
benefit from multiplexed DNA FISH in multiple model systems to study 
the permeance of this phenomenon. Studies such as these will simulta-
neously test the robustness of our spatial genome aligner. For example, 
to what extent might the inferences of copy numbers and sisters by 
the method reflect artifacts arising from suboptimal primary imaging 
data? Does the size of each targeted region, which if too large may on 
imaging disperse into multiple spots, affect our results? Will open, 
actively transcribed regions exacerbate this potential? Such questions 
regarding our approach could be addressed through the application of 
our approach to various biological systems across many laboratories.

Multiplexed DNA FISH affords an intimate look into the elusive 
inner realities of genomic mosaicism in the brain. We chronicle the 
intranuclear spatial organization of copy number variations, with 
single-cell sensitivity and at whole-genome scale, heretofore only 
reported as frequencies69–73. We show that in neurons with three copies 
of a chromosome, the extranumerary chromosome shares a chromo-
some territory with another chromatin fiber, preserving two chromo-
some territories in the nuclei. Within the doubly occupied territory, 
each chromatin fiber appears to shadow each other, evocative of sister 
chromatids previously imaged in dividing mESCs. In our study, we 
focus on the X chromosome, previously annotated in this dataset by 
the detection or absence of Xist RNA signal. We note that the absence 
of Xist signal as a proxy for identifying the active X chromosome may 
not unequivocally identify the active X chromosome. We also cannot 
rule out the possibility double occupancy itself induces loss of Xist 

expression, or expression of genes on other chromosomes, poten-
tially explaining why we detect no gene dosage effect across copy 
number variations (Extended Data Fig. 9). Further, we cannot exclude 
the possibility that active state influences probe labeling efficiency 
and imaging detection errors. The role and origin of the extranumer-
ary chromosome is unclear. One possibility is that the extranumerary 
chromosome is the derivative of a nondisjunction event, occurring in 
a neuroprogenitor during development. Why these chromatin fibers 
did not dissociate postdivision is unclear. Another possibility is that the 
extranumerary chromosome is a remnant of asynchronous replication, 
a vestige in a neuroprogenitor that failed to withdraw or complete its 
replication timing75. It has been noted that olfactory neurons singularly 
and stochastically select one olfactory receptor gene from an array of 
over a thousand possibilities. The olfactory neuron must then select 
among which allele of this selected gene for final expression76. The 
allele selection appears to hinge on asynchronous replication; the 
expressed allele is faithfully marked by early replication. Others have 
also noted asynchronous replication as a possible epigenetic mark for 
monoallelic expression77–79. In this spirit and along the emerging field 
of genome imaging, we believe our spatial genome aligner provides a 
new perspective of chromatin imaging analysis with which we hope to 
unravel foundational biological principles.
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maries, source data, extended data, supplementary information, 
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Methods
Spatial genome alignment algorithm
Conceptually, we abstract each detected fluorescence signal from a 
3D image stack as a four-dimensional (4D) node v = (x, y, z, t). Here, (x, 
y, z) correspond to subpixel spatial coordinates of a genomic locus 
detected in imaging, with a resultant positional uncertainty (σx, σy, σz) 
in each spatial axis discovered from 3D Gaussian fitting. The fourth 
dimension, t, corresponds to an order of the gene on the reference 
genome, ordered from 5′ to 3′ for every chromosome. For notation, we 
use vt;i to refer to a node i with spatial position (xi, yi, zi) corresponding to 
order t on the reference genome; there may be as many as nt detected 
nodes for a given gene order t.

 (1) Graph construction: we define a directed acyclic graph G = (V, E) 
as follows:

•	 V = {vt;i}, 1 ≤ i ≤ nt, 1 ≤ t ≤ T represents the set of nodes in the 
graph, for every candidate node i of a gene order t among nt 
candidates, for all T genes on the reference genome. 
We note that due to signal dropout, there may be genes for 
which nt = 0, in which case no nodes for the given order t are 
populated.

•	 E = {wt+c;j
t; i  = (vt;i, vt+c;j)}, 1 ≤ i ≤ nt, 1 ≤ j ≤ nt+c, 1 ≤ t ≤ T, 1 ≤ c ≤ C 

represents the set of all edges connecting ordered pairs of 
nodes, between every candidate node i of a gene order t 
among nt candidates, to every candidate node j of a gene 
order t + c among nt+c candidates, for allowable skips 1 ≤ c ≤ C, 
for all T genes on the reference genome.

•	 We disallow self-loops by enforcing a lower bound on the 
skip parameter c ≥ 1, such that no edges propagate 3′ → 5′, or 
more explicitly, no edges from a node of order t connect to 
any node with order less than or equal to t + 1. This prevents 
discovery of certain structural variants, such as inversions, 
translocations and duplications, but helps restrict solutions 
to strictly the reference genome. We permit nodes to ‘look 
ahead’ to downstream genes by skipping up to a permissi-
ble upper bound c ≤ C, scaled later by an affine gap penalty. 
This accounts for signal dropout resulting in false negative 
signals, in which case all nodes of a given order t may be false 
positives and must be skipped.

 (2) Calculate bond probabilities: we weight the edges using a 
physical analogy of a polymer model of DNA. Namely, we use 
the freely jointed Gaussian chain model, wherein chemical 
bonds model connections between two monomers. Here, our 
discrete spatially resolved genomic locations are analogous to 
these monomers, connected on the same chromatin fiber. In 
this model, the spatial distance separating these two locations 
is modeled after a Gaussian distribution:

wt+c;j
t; i = 4π(Rt+c;j

t;i )2 1

(2π(St+c;jt;i )2)
3/2 e

−(
(Rt+c;j

t;i )2

2(St+c;j
t;i )2

)
(4)

where Rt+c; j
t;i  is the distance in nanometers between the ith node with 

gene order t to the jth node with gene order t + c. St+c;jt;i  is expanded as:

(St+c;jt;i )2 = σ2t;i + σ2t+c;j +
2
3
lpτLt+c;jt;i (5)

where the positional uncertainties of both the start locus σ2t;i and end 
locus σ2t+c;j are appended to the second moment S2 = 2

3
lpτLt+c;jt;i . We note 

these positional uncertainties are previously measured via a Gaussian 
fitting routine around each detected fluorophore, and done separately 
for each laser channel. While the positional uncertainties may differ 
across imaging platforms, we estimate based on Su et al.30 that the 
uncertainty is roughly 50 nm when the drift and chromatic aberration 

are appropriately corrected for. Operationally, we permit the toggling 
of the term arising from integrating the spherical differential volume 
4π(Rt+c;j

t;i )2. In our analysis, we did not use this term, instead opting for 
the following:

wt+c;j
t; i = 1

(2π(St+c;jt;i )2)
3/2 e

−(
(Rt+c;j

t;i )2

2(St+c;j
t;i )2

)
(6)

 
Here, lp is the persistence length of DNA in nanometers, τ is a scaling 
factor that converts genomic distance in base pairs to spatial distance 
in nanometers and Lt+c;jt;i  is the genomic distance in base pairs that sepa-
rate the start locus vt;i and end locus vt+c;j. The positional uncertainty 
is calculated separately for the start and end locus to accommodate 
chromatic aberrations, in which case loci imaged using different laser 
channels may have different localization error. τLt+c;jt;i  together reflects 
the contour length of the DNA polymer. Collectively, this allows a 
comparison of the observed spatial distance Rt+c;j

t;i  that separate two 
loci with an estimated spatial distance parametrized as St+c;jt;i . 
In this present study, we estimate τ by fitting a power-law function 
through pairwise spatial distance and genomic interval data to estimate 
a length scale of each basepair per nanometer, as had been done in 
previous literature26,27,31,42. We do so separately for each chromosome, 
as previous studies show the length scales differ across mouse chro-
mosomes31. We fix the persistence length at lp = 150 bp, and allow τ to 
scale both the contour length L and the persistence length lp, reducing 
one free parameter. Our key assumption in this model relies on the 
conversion factor τ. DNA compaction is known to change throughout 
A/B compartments7 and highly expressed genes80 among other regions, 
and our model’s genomic scale is fixed: it does not recapitulate the 
exact spatial distance at each imaged locus. Its fidelity may also change 
at different genomic scales (that is, 1 Mb, 25 kb, 5 kb). However, our 
main aspiration is to use this estimated spatial distance to inform soft 
decisions in the selection of spots, in addition to optical qualities of 
signals detected, in a bid to trace chromatin structures. 
In this manner, a traversal from chromosome start to end along this 
graph would accumulate a sequence of bond probabilities whose 
product reflects the physical likelihood of the discovered polymer:

CDF =
H
∏
h=1

wvh+1
vh ,p = ⟨v1, v2… vH⟩ (7)

for every node v  visited on path p  from source to sink. 
Each edge weight wt+1;j

t; i  is negative log normalized into positive edge 
weights whose additive sum is equivalent to the polymer CDF. We do so 
for several reasons: (1) this controls for numerical underflow in calculat-
ing the multiplicative product of small decimals; (2) this reframes the 
optimization objective from maximizing the likelihood function to 
minimizing the negative log likelihood and (3) the CDF is now computed 
as a sum of edge weights, permitting the use of existing dynamic pro-
gramming shortest-path algorithms solving for additive edge weights. 
Below, we write edge weights w to represent negative log normalized 
bond probabilities. To permit nodes to skip potential false positive and 
‘look ahead’ to downstream genes, we apply penalize each bond skipped:

w′t+c;jt; i = γc−1 wt+c;j
t; i (8)

where γc-1 is a gap penalty scaled for every skip c. Adjacent nodes (c = 1) 
are not penalized. This gap penalty is an important regularization 
policy that makes sure a skipped edge never has a smaller cost than the 
cumulative cost of an equivalent number of consecutive edges. For 
example, if a segment of 1 Mb has a log-bond probability of 5,013.34 
(0.34 nm per bp, lp = 150 bp, 1 pixel is roughly 100 nm) and a segment 
of 2 Mb has a log-bond probability of 10,014.38, the cost of ‘skipping’ 
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an edge (traversing a 2 Mb bond) may be preferred instead of traversing 
two consecutive 1 Mb edges (2 × 5,013.34 = 10,026.68). We apply a 
multiplicative gap penalty of at least this ratio γ1 ≥

10026.68
10014.38

 to prevent a 
preferential skip.
 (3) Initialize adjacency matrix: we append a single source and a 

single sink node in our graph to allow gaps in the start and end 
of polymer alignment. From our graph G with total N =

T
∑
t=1

nt 

nodes, we construct an (N, N) adjacency matrix that is padded 
by an additional row with index 1 and column with index N + 2 to 
an (N + 2, N + 2) matrix. We initialize the first row of the adja-
cency matrix with ‘pseudo’-bonds that enable up to the first K 
genes to be skipped. These edges linking an imaginary starting 
position to an observed position are weighted as:

wk;j
1; i =

1

( 4π
3
lpτLt+c;jt;i )

3/2
e
−( α2τL

4
3
lp
)
, 1 < k ≤ K (9)

 
where α  scales an imaginary stretched genomic segment  
with an implicit skip penalty.

We also initialize the last column of the adjacency matrix with 
‘pseudo’-bonds that enable up to the last K genes to be skipped. Simi-
larly, the edges linking an observed position to an imaginary ending 
position is weighted as:

wN;j
N−k; i =

1

( 4π
3
lpτLt+c;jt;i )

3/2
e
−( α2τL

4
3
lp
)
, 1 < k ≤ K (10)

 
These initializations behave as ‘seeds’ that permit late chromosome 
starts (from locus 1 − k) and early chromosome ends (from locus 
N − k − N) should the first or last few loci have poor labeling efficiency 
and need to be skipped.
 (4) Path finding: we find the shortest path from source to sink in 

our graph using a dynamic programming algorithm. As all edge 
weights in this directed graph are nonnegative, and the sum of 
traversed edges equate to the CDF of the traversed polymer, we 
use Dijkstra’s shortest-path algorithm as a dynamic program-
ming means for finding the most plausible polymer:

min
H
∑
h=1

wvh+1
vh , p∗ = ⟨v1, v2… vH⟩ (11)

for every node v visited on the shortest path p*.
We estimate our worst-case time complexity to be:

Θ (|E| + |V| log |V|) = Θ(
||||

T
∑
t=1

nt

t+C≤T
∑
t+1

nt
||||
+
||||

T
∑
t=1

nt
||||
log

||||

T
∑
t=1

nt
||||
) (12)

Polymer fiber karyotyping algorithm
We developed a routine that finds all possible polymers of a given 
chromosome on a cell-by-cell basis. Chiefly, we accept all polymers 
below a physical likelihood threshold. This threshold can be derived by 
scrambling the genomic intervals separating each probed locus, such 
that the observed genomic distance no longer abides by the expected 
distances. We then perform an iterative search wherein nodes of each 
shortest path discovered are subtracted from graph G before search-
ing for the next shortest path, until no likely paths below the physical 
likelihood threshold can be discovered (Extended Data Fig. 10).

We retrieved spatially resolved fluorescent signal information 
for mouse genome-wide DNA seqFISH+ probe sets at multiple length 

scales (1 Mb, 25 kb), and for multiple cell types (mESC https://zenodo.
org/record/3735329; mouse cortical neurons https://doi.org/10.5281/
zenodo.4708112). Congruent with previous publications26–32,42, we fit a 
power-law function through pairwise spatial distances of observed loci, 
plotted against its genomic-distance separation. From this power-law 
function, we estimated a parameter corresponding to nanometers 
per basepair, for every cell type, for every mouse chromosome. To 
evaluate the performance of our parameter in its ability to recapitulate 
true chromatin structure, we performed a hyperparameter search. 
Explicitly, we fit a power function through pairwise spatial and genomic 
intervals, and with the power function we estimated the distance scale 
(nanometers per basepair) for a range of different genomic resolutions 
(that is, 10 kb, 100 kb, 1 Mb, 10 Mb …) (Extended Data Fig. 3a). Using 
10% of cells in each dataset, we performed spatial genome alignment 
and compared its median distance matrix to Hi-C or cell-type resolved 
Dip-C. We used the parameter that engendered the best fit for our  
final analysis.

With this spatial distance parameter, for every nucleus and for 
every chromosome, we iteratively performed spatial genome align-
ment until no physically plausible fibers could be discovered. Finally, 
we counted the number of fibers discovered for every chromosome 
to assign a chromosome copy number, producing a cell karyotype.

mESC Hi-C data analysis
To evaluate the spatial genome alignment results of mESCs, we 
retrieved mESC Hi-C contact matrices from the 4DN Data Portal (experi-
ment set 4DNESU4Y9CBF). Next, we used Straw (https://github.com/
aidenlab/straw, v.0.0.6) to extract Knight–Ruiz normalized count 
matrices for every mouse. Whereas read counts can be evenly binned, 
the loci imaged by DNA seqFISH+ spanned irregular intervals. To 
compare Hi-C with DNA seqFISH+ imaging data, where the genomic 
distances separating each locus are irregular intervals, we performed 
the following normalization. For DNA seqFISH+ imaging data, we kept 
the imaged locus ordered 5′ to 3′ closest to each integer 1 Mb or 25 kb 
bin, dropping all other loci to calculate a final distance matrix. For 
the corresponding Hi-C matrix, we binned the reads at 1 Mb and 25 kb 
resolution, respectively, dropping the same bins removed from the 
DNA seqFISH+ distance matrix. To assess spatial genome alignment 
accuracy, we compared the median imaging distance matrix to its cor-
responding KR-normalized Hi-C contact matrix using the Spearman 
correlation coefficient.

Excitatory mouse cortical neuron Dip-C data analysis
To evaluate the spatial genome alignment results of excitatory mouse 
cortical neurons, we retrieved cell-type resolved Dip-C contact matrices 
from NCBI GEO (accession no. GSE162511)74. First, we note a dearth of 
multi-modal data that ideally allows concomitant cell-type classifica-
tion using one sequencing modality and proximity-ligation analysis on 
the same cell. In Dip-C, neuronal cell types were resolved by coproject-
ing NeuN+ neurons with bulk Hi-C sequencing of multiple cell types. 
Neurons coclustering with Slc17a7+ cells delineating excitatory neu-
rons were also classified as excitatory. It is possible some of these cells 
classified as excitatory may belong to broader cell types. In contrast, 
DNA seqFISH+ imaging resolved both RNA and DNA in the nuclei, which 
allowed excitatory neuron markers (that is, Slc17a7+, Neurod2) detected 
in RNA imaging to label cell types. Second, we note a difference in the 
mouse strains of the two datasets. Dip-C focused on an F1 cross with 
CAST/EiJ × C57BL/6J background while the DNA seqFISH+ imaging 
purely focused on C57BL/6J mice.

Amid these caveats, we used Straw to extract Knight–Ruiz nor-
malized count matrices for every mouse chromosome. For the DNA 
seqFISH+ imaging data, we again kept the imaged locus ordered 5′ to 
3′ closest to each integer 1 Mb bin, dropping all other loci to calculate 
a final distance matrix. For the corresponding Dip-C contact matrix, 
we binned the reads at 1 Mb resolution and dropped the same bins 
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removed from the imaging distance matrix. To assess spatial genome 
alignment accuracy, we compared the imaging distance matrix to its 
corresponding Hi-C matrix using the Spearman correlation coefficient.

Using the same Dip-C dataset, we inspected haplotype-resolved 
reads—namely preprocessed ‘seg’ files—to evaluate read counts 
assigned to each haplotype. We discarded any ambiguous or 
multi-contact read pairs and counted cells wherein one haplotype has 
nearly twice as many reads as the other, as a proxy for identifying copy 
number variations and the haplotype source of those copy number 
variations at the single neuron level.

Benchmarking against M-DNA-FISH spot selection algorithm
In conjunction, we analyzed M-DNA-FISH imaging of a 210-kb genomic 
region spanning the Sox2 locus (chr3:34,601,078-34,811,078) based on 
previous work49. We considered all chromosome centers assigned to the 
129 allele, which lacks the 7.5 kb tandem CTCF-binding sites inserted 
on the CAST allele. The previous E–M routine outlined in refs. 28,49  
generates ten candidate spots per locus, per putative chromosome 
in every nucleus, assuming a diploid cell line. Each candidate spot is 
assigned a score, derived as a combination of: (1) fluorescence intensity, 
(2) proximity to chromosome center and (3) agreement with moving 
average of previous loci positions. A candidate spot with a score of 
−1.5 or more is considered a high-quality spot for the E–M routine, 
with more negative scores tracking with decreasing quality. For spatial 
genome alignment, we fed all candidate spots with a much lower qual-
ity threshold score of −4, such that for every high-quality spot there 
is also a low-quality spot. We included this extra noise and ignored 
the fluorescence intensity information to demonstrate the supreme  
use and specificity of genomic distances as a spot selection  
criterion. We compared the spatial genome alignment results and E–M 
tracing results against Hi-C, which sequenced the control mouse chr3 
lacking the CTCF-binding site insertion. We also calculated the Spear-
man correlation between the discovered pairwise median distances 
and pairwise KR-normalized Hi-C contact frequency for each of the 
two algorithms.

Homolog assignment and sister chromatid aggregation 
analysis
In diploid cells, we used density-dependent clustering algorithm 
DBSCAN81 (scikit-learn v.1.0.1) to separate homologous chromosomes 
residing in separate chromosome territories.

In tetraploid cells, instead of using density-based clustering to 
parse and assign homologs, we opted to take a different approach. 
We first assigned chromatin interaction patterns (that is, separate 
homologs, compact homologs, separated sisters in tetraploid cells) 
with DBSCAN to find spatially separable structures and classify tetra-
ploid cells. To assign sister chromatids and in turn homologs, we paired 
chromatin fibers by the closest starting positions and assigned them 
as sisters of the same homolog. This allowed us to pair sisters as part of 
the same homolog in tetraploid cells that had only one spatially dense 
cluster (that is, compact homologs). In the setting of compact chromo-
somes where two homologs are spatially not separable, we accounted 
for alternative pairing scenarios, such as pairing by the telomeric ends. 
We analyzed the spatial separation of each chromosome starts and ends 
based on pairing by centromeric starts as well as pairing by telomeric 
ends, and all possible alternative pairings.

Sister chromatid misselection assessment
To identify potential loci belonging to one sister chromatid but mis-
selected by the other, we examined all 402 putative sister chromatid 
pairs for mESC chromosome 1 (177 loci in length). First, we interpolated 
spatial coordinates for any loci not detected on a sister chromatid 
fiber. Next, using a sliding window of three loci beginning at locus 3 
and sliding until locus 175, we exchanged spatial positions between 
the main sister and attendant sister for these three loci. Finally, we 

recalculated the bond probabilities of three loci upstream to the three 
loci exchanged. If the multiplicative product of all recalculated prob-
abilities is more likely than the product of original bond probabilities, 
we call this a misselection event. We also counted any consecutive 
sequence of misselections and called this a cross-over event.

Simulation of aneuploid cells and analysis
To study the impact our aligner has on chromosome counting in isola-
tion from other sources of technical artifacts, we used the polychrom 
package (https://github.com/open2c/polychrom/) to simulate chro-
mosomes under nuclear confinement82. We randomized copy numbers 
for each of the 20 mouse chromosomes, generating 1,000 such sets 
of aneuploid cells. We then performed polymer fiber karyotyping on 
each cell, repeating the process for different levels of added noise and 
signal dropout. Detailed descriptions of the parameters underlying the 
simulation, as well as descriptions of the analysis can be found under 
Supplementary Materials.

Simulation of sister chromatid pairs and analysis
To study the impact our aligner has on parsing tightly paired chromatin 
fibers from other sources of technical artifacts, we used the polychrom 
package to simulate tightly paired chromatin fibers. Simulating 100 
pairs of sister chromatids corresponding to mouse chromosome 1, 
we varied the pairing strength between coupled fibers to generate 
five separate conditions. We then applied polymer fiber karyotyping 
on each of the 100 pairs, across the five conditions, fixing the signal 
dropout to 50% and added noise to 0%. Detailed descriptions of the 
parameters underlying the simulation, as well as descriptions of the 
analysis can be found under Supplementary Materials.

Normalization of chromatin levels for pseudotime analysis
Consistent with previously published work, we constructed a gener-
alized linear model for normalizing sequential immunofluorescence 
data. In this generalized linear model are latent variables controlling for 
and removing contributions from cell size and total fluorescence inten-
sity over all chromatin marks, as well as batch effect from replicate ID 
and field of view. Specifically, we used a noncanonical log-link function:

logYi ≈ β0 +∑
j
βjXj (13)

where Yi is the vector of total fluorescence intensity of chromatin 
mark i across all cells, and Xj are latent variables contributing to bias. 
Using the Pearson residuals of each fitting, we corrected the read-
out of two chromatin marks, H4K20me1 and H4K16ac, with which we 
constructed a principal curve to order cells across the cell cycle or 
pseudotime. Matching previously published results, H4K20me1 and 
H4K16ac peaked at opposite ends of the pseudotime axis, ordering 
cells from G2/M.

Gene dosage and transcriptional activity analysis
After polymer fiber karyotyping, we stratified cells by the copy num-
bers discovered for each chromosome and inspected the seqFISH+ 
RNA imaging corresponding to genes in the DNA seqFISH+ imaging. 
We performed pairwise t-tests to evaluate statistical significance for 
the few genes that lie on each mouse chromosome.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All traced chromatin structures with spatial genome alignment are 
available and hosted on 4D Nucleome Data Portal (accession nos. 
4DNFIXGTJBGU, 4DNFIFBXKXK9, 4DNFIYNWVJEP, 4DNFI7G3BWDF, 

http://www.nature.com/naturebiotechnology
https://github.com/open2c/polychrom/


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01568-9

4DNFIVBL8AWT, 4DNFIU73OR5W and 4DNFIS6MLXGA). Published 
seqFISH+ datasets analyzed in this paper are hosted and available 
on Zenodo (mESC https://zenodo.org/record/3735329; mouse cor-
tical neurons https://doi.org/10.5281/zenodo.4708112). Published 
M-DNA-FISH datasets analyzed in this paper are hosted and available on 
4D Nucleome Web Portal (accession nos. 4DNESIGBIXQS, 4DNESC5P-
KTQ9, 4DNES51KSIZ9, 4DNESNEKOCAP and 4DNESOXQX1JT).

Code availability
The spatial genome aligner is available at https://github.com/
b2jia/jie (ref. 83). The aligner and peripheral analysis rely on algo-
rithms implemented in scipy (v.1.7.2)84 and scikit-learn (v.1.0.1)81. 
A walkthrough of the intuition behind this algorithm can be found 
at https://github.com/b2jia/jie/blob/main/jupyter/00-spatial-
genome-alignment-walk-thru.ipynb.
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Extended Data Fig. 1 | Spatial genome alignment on 1 Mb seqFISH+ 
chromatin imaging of mESCs. (a) Heatmaps of seqFISH+ chromatin imaging 
of mouse embryonic stem cells (mESCs) at 1 Mb kb resolution (bottom left) 
juxtaposed to contact frequency from bulk proximity ligation assay or Hi-C 

binned at 25 kb (top right), continued from Fig. 2. (b) Spearman correlation 
between pairwise spatial distances (x-axis; log-normalized) imaged at 25 kb 
resolution against Hi-C contact frequency (y-axis; log-normalized) binned at  
1 Mb resolution.
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Extended Data Fig. 2 | Spatial genome alignment on sequential 5 kb M-DNA-
FISH imaging of mESC Sox2 locus. (a) Median distance matrix of spatial 
genome alignment resolved Sox2 locus (chr3:34601078-34811078), sequentially 
imaged at a finer 5 kb resolution, using a different imaging protocol based on 
multiplexed DNA-FISH. (b) Median distance matrix identified by traditional 
spot selection using an expectation-maximization routine previously used to 
analyze M-DNA-FISH datasets. (c) KR-normalized Hi-C contact matrix of the Sox2 
locus, juxtaposed as a comparison to median distance matrices discovered by 
two chromatin tracing algorithms. (d, e) Correlation plot of pairwise genomic 
distances discovered by spatial genome alignment and an E-M spot selection 

routine respectively, plotted against KR normalized Hi-C contact frequency. 
(f) Heatmaps of tabulated distances (radius = 150 nm) from spatial genome 
alignment of M-DNA-FISH imaging (bottom left) juxtaposed to contact 
frequencies from Hi-C binned at 5 kb (top right). (g) Heatmaps of tabulated 
distances (radius = 150 nm) from E-M spot selection of M-DNA-FISH imaging 
(bottom left) juxtaposed to contact frequencies from Hi-C binned at 5 kb (top 
right). (h) Spearman correlation (y-axis) of tabulated distances from M-DNA-
FISH tracing against bulk Hi-C, across a range of distance thresholds (x-axis) for 
tabulating distances into contacts, delineated for each of the tracing methods 
(spatial genome alignment and E-M spot selection).
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Extended Data Fig. 3 | Spatial genome alignment on simulated aneuploid 
cells. (a) Schematic of simulation process generating aneuploid cells. Enforced 
chromosome territories segregated separate copy numbers, but permitted weak 
trans-interactions. Each aneuploid cell was subject to 49 different conditions of 
dropout and added noise. A power law fit to pairwise genomic-to-spatial distance 
allowed the estimation of expected spatial distance for a range of genomic 
distances (green dots, scatter plot). Subsequent alignment via polymer fiber 
karyotyping was parsed into 5 categories of signal selection. The best distance 
parameter – spatial distance divided by genomic distance – was selected based 
on the parameter that minimized the errors parsed, after alignment on 10 

simulated cells on both perfect information (0% FNR 0% FPR) as well as imperfect 
information (50% FNR 0% FPR; 50% FNR 20% FPR). (b) Histogram of signal 
selection, delineated into 5 categories, for mouse chromosome 1 at 50% False 
Negative Rate (FNR) and 0% False Positive Rate (FPR). (c) Boxplot (center line – 
50%tile; box – 25% to 75%tile; bar – 0 to 100%tile) of signal selection, delineated 
into 5 categories, for all mouse chromosomes (n = 1000 simulated cells with an 
average copy number of 2 per chromosome) at 50% FNR and 0% FPR. (d) Table 
of signal selection, delineated into 5 categories, summarized for all mouse 
chromosomes across all 49 conditions of dropout and added noise.
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Extended Data Fig. 4 | Polymer fiber karyotyping on simulated aneuploid 
cells. (a) Table of expected compared to predicted copy numbers, summarized 
for mouse chromosome 1 (left) and for all mouse chromosomes (middle), and 
its precision/recall statistics at 0% FNR 0% FPR. (b) Table of expected compared 
to predicted copy numbers, summarized for mouse chromosome 1 (left) and for 

all mouse chromosomes (middle), and its precision/recall statistics at 50% FNR 
0% FPR. Table of expected compared to predicted copy numbers, summarized 
for mouse chromosome 1 (left) and for all mouse chromosomes (middle), and its 
precision/recall statistics at 50% FNR 20% FPR.
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Extended Data Fig. 5 | Assessment of misselection between tightly coupled 
sister chromatids. (a) Schematic of misselection assessment. For every 
tightly paired sister chromatid, a sliding window of three downstream loci are 
allowed to exchange with loci on the other sister. Bond probabilities between 
three upstream loci and three downstream loci are calculated. Original 
bond probabilities are compared to the cross-over probabilities to evaluate 
misselection. (b) Bar-plot of misselection frequency per locus on mESC chr 1. 

(c) Representative image of loci belonging to sister chromatids whose bond 
probabilities are more probable (-log(Ppredicted/Palternate) > 0) if loci are exchanged 
between sisters. (d) Number of cross-over events, defined as sequences of 
misselections of any length, per sister chromatid. (e) Number of misselected loci 
per sister chromatid. (f) Histogram of length of consecutive misselections across 
tightly paired sister chromatids. (g). Histogram of length of consecutive correct 
selections across tightly paired sister chromatids.
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Extended Data Fig. 6 | Spatial genome alignment locus detection in putative 
sister chromatids. (a) Frequency of loci detection on tightly coupled sister 
chromatids, stratified by detection on both sister chromatids, detection on 
main sister, detection on attendant sister, and failure of detection on either, for 
each of the mouse chromosomes. (b) Boxen plot (center line – 50%tile) of inter-

sister spatial distance, for each matched locus, across all mouse chromosomes 
(n = 1160 cells). (c) Detection rate averaged across all loci of a given chromosome, 
for each chromosome, stratified by detection on both sister chromatids, 
detection on main sister, detection on attendant sister, and failure of detection 
on either, for each of the mouse chromosomes.
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Extended Data Fig. 7 | Spatial genome alignment on simulated paired 
chromatin fibers. (a) Summary of inter-sister locus distance, intra-sister locus 
distance, persistence length, and sister-chromatid pairing strength for DNA 
seqFISH+ imaging of mouse chromosome 1. (b) Spearman correlation plot of 
all 100 pairs of paired fibers, delineated by the frequency of pairing bonds. (c) 
Representative heatmap of twenty simulated pairs at different pairing strengths, 
traced via spatial genome alignment. Red delineates misselected loci (cross-
over), while gray delineate loci dropped out as input to emulate 50% FNR 0% 

FPR. (d) Bar plot (center line – 50%tile; box – 25 to 50%tile; bar – 0 to 100%tile) 
of locus selection summarized for alignment on simulated pairs of different 
pairing strengths (n = 100 pairs of fibers, per pairing strength), parsed into 5 
categories of locus selection. (e) Frequency of cross-over during spatial genome 
alignment on simulated chromatin pairs of different pairing strengths. (f) Table 
of expected compared to predicted copy numbers for polymer fiber karyotyping 
on simulated chromatin pairs of different pairing strengths.
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Extended Data Fig. 8 | Haplotype-resolved single-cell sequencing of mouse 
cortical excitatory neurons. (a) Heatmap of log2 fold change of haplotyped 
Dip-C reads assigned to the paternal vs maternal allele. (b) Histogram of log2 

fold change of haplotyped Dip-C reads. Most reads are balanced between the 
two haplotypes, while a distinct peak around 1 and −1 (red arrows) are present for 
every chromosome.
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Extended Data Fig. 9 | Effect of gene dosage on transcription in excitatory 
mouse cortical neurons. (a) Violin-plot (center dot – median; gray bar – 
quartiles) of RNA transcripts detected by seqFISH+ RNA imaging, corresponding 
to genes traced by seqFISH+ DNA imaging (excitatory neurons - n = 458 cells 

across 3 experiments). RNA counts are stratified by gene dosage, delineated 
by mouse chromosome. Statistical significance and p-values evaluated by two-
sample pairwise t-tests are labeled above, comparing 2N vs 3N nuclei of a given 
chromosome.
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Extended Data Fig. 10 | Polymer fiber karyotyping routine. Workflow of 
iterative spatial genome alignment to uncover all physically likely fibers of a 
given chromosome in single cells. For any given cell, after subsetting detected 
loci by chromosomes, the aligner constructs a directed acyclic graph (DAG) 
from all signals belonging to a given chromosome. The aligner next finds the 
shortest path through this DAG using dynamic programming, where this path 

represents a putative polymer fiber and the path score its physical likelihood. 
For every putative fiber discovered from alignment, the aligner updates the DAG 
by subtracting all visited nodes while the discovered fiber has a likelihood score 
within threshold. This process is repeated until no polymer under threshold can 
be discovered, upon which the routine terminates alignment.
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