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RESEARCH ARTICLE

Chemopreventive Metabolites Are Correlated
with a Change in Intestinal Microbiota
Measured in A-T Mice and Decreased
Carcinogenesis
Amrita K. Cheema1,2☯, Irene Maier3☯, Tyrone Dowdy1, YiwenWang4, Rajbir Singh1, Paul
M. Ruegger5, James Borneman5, Albert J. Fornace, Jr1,2, Robert H. Schiestl3,6,7*

1 Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of
America, 2 Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical
Center, Washington, D.C., United States of America, 3 Department of Environmental Health Sciences,
Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States
of America, 4 Department of Biostatistics, Biomathematics and Bioinformatics, Georgetown University
Medical Center, Washington, D.C., United States of America, 5 Department of Plant Pathology and
Microbiology, University of California Riverside, Riverside, California, United States of America,
6 Department of Pathology Geffen School of Medicine, University of California Los Angeles, Los Angeles,
California, United States of America, 7 Department of Radiation Oncology, Geffen School of Medicine,
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Abstract
Intestinal microbiota play a significant role in nutrient metabolism, modulation of the immune

system, obesity, and possibly in carcinogenesis, although the underlyingmechanisms result-

ing in disease or impacts on longevity caused by different intestinal microbiota are mostly

unknown. Herein we use isogenic Atm-deficient and wild type mice as models to interrogate

changes in the metabolic profiles of urine and feces of these mice, which are differing in their

intestinal microbiota. Using high resolution mass spectrometry approach we show that the

composition of intestinal microbiota modulates specific metabolic perturbations resulting in a

possible alleviation of a glycolytic phenotype. Metabolites including 3-methylbutyrolactone,

kyneurenic acid and 3-methyladenine known to be onco-protective are elevated in Atm-defi-

cient and wild type mice with restricted intestinal microbiota. Thus our approach has broad

applicability to study the direct influence of gut microbiome on host metabolism and resultant

phenotype. These results for the first time suggest a possible correlation of metabolic alter-

ations and carcinogenesis, modulated by intestinal microbiota in A-T mice.

Introduction
Ataxia telangiectasia (A-T) is a recessive genetic disorder of childhood that occurs in one out of
100,000 humans worldwide. A-T is a multi-system, progressive disorder associated with a high
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incidence of lymphoid malignancies [1]. Approximately 30–40% of A-T patients develop neo-
plasia during their life and more than 40% of all tumors in A-T patients are non-Hodgkin’s
lymphomas, ~20% acute lymphocytic leukemias, and 5% Hodgkin’s lymphomas [2–6]. A-T
patients suffer from compromised immune function, neurodegeneration, infections of the
respiratory system, and increased mortality due to 1000-fold increase in malignancy [1, 7–9].
Although ground breaking studies have led to a better and deeper understanding of ataxia tel-
angiectasia mutated (ATM) gene function [10, 11], no effective therapy is currently available to
prevent cancer or progressive neurodegeneration.

Several laboratories have generated different strains of Atm-deficient (Atm-/-) mice and
reported that Atm-/-mice developed lymphomas and died between 2 and 5 months of age [12–
16]. Later studies, including our own, showed that the onset of lymphoma can be drastically
delayed till 7–12 months, which was not a result of genetic diversity [17–20]. Instead, it was found
to be associated with changes in intestinal microbiota, including an increase in Lactobacillus john-
sonii [21], and reduced lymphoma incidence was achieved by administering the antioxidant N-
acetyl cysteine [19]. The inflammatory effect of normal intestinal microbiota compositions could
shorten lifespan of mice compared to mice housed under sterile housing conditions. Subse-
quently, we generated Atm-/-mice harboring different but well characterized intestinal micro-
biota, termed conventional microbiota (CM), and restricted microbiota (RM). Restricted
microbiota harbor relatively few bacterial species, dominated by unclassified Bacteroidetes, and
are free of known pathogens [22]. RMmice were originally obtained by Caesarean section and re-
derived into the mouse colony with restricted flora adoptive mothers [23]. Sterile housing and a
restriction of intestinal microbiota (in RMmice) yielded a 4.5-fold lower level of genetic instabil-
ity, differences in acute leukocyte genotoxicity, inflammation markers, and a 2.5-fold delayed
onset of lymphoma resulting in longevity as compared to mice with CM [21]. We further demon-
strated that increased levels of L. johnsonii present in RMmice, led to low basal levels of chromo-
somal genotoxicity and inflammation inAtm-/-mice compared to the CMmice [21, 24]. Given
that energy metabolism has been implicated in oncogenesis, we hypothesized that the microbiome
is likely to influence host metabolism resulting in an altered phenotype. In this study, we used a
comparative fecal and urine metabolomics profiling approach to discern how either of the micro-
biota compositions, CM or RM, would impact the metabolic phenotype of Atm-/-mice.

Gut microbiome are known to have a profound influence of a myriad of diseases including
dementia, obesity and cancer, although the molecular implications of dysbiosis are yet to be
elucidated [25]. For example, microbiota have been shown to influence energy metabolism,
beta-oxidation of lipids, bile acid, glutamine and tryptophan metabolism, as well as oxidative
stress and immune response metabolites [26, 27]. Most of recently reported studies focus on
the regulatory and signaling pathways that are directly affected by microbiome in different
patho-physiological conditions; however, there is a lack in studies that directly examine the
metabolic consequences of alterations in gut microbiome.

Metabolomics is a qualitative and quantitative evaluation of alterations in endogenous
metabolism in response to a specific perturbation in a biological system [28]. It represents the
endpoint of genetic regulation and its impact on altered enzymatic activities and endogenous
biochemical reactions in a cell [29]; thus characterizing precise changes in metabolism is likely
to enable better understanding of how cells adapt to oxidative stress and minimize DNA dam-
age and genomic instability. Moreover, correlation of metabolic profiles with gut microbiota
offers to provide valuable insights into host-microbe interactions as well as valuable steps for
achieving a breakthrough in personalized therapy paradigm [30–33]. Since ATM function
influences cell signaling and metabolism [34], a metabolomics approach using isogenic mouse
models differing only in microbiome composition should allow for a direct assessment of accu-
mulated bacterial metabolites and the effects of the microbiome on metabolism [35].

Metabolic Modulations by Microbiota
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Methods

Reagents and standards
Acetonitrile (ACN), methanol, and water (all LC-MS grade) were purchased from Fisher Scien-
tific (NJ, USA). Debrisoquine, 4-nitrobenzoic acid (4-NBA), and heparin were purchased from
Sigma (USA). All standard compounds used for tandem mass spectrometry based validation of
metabolite identification were bought from Sigma. Lipid standards were ordered from Avanti
Polar Inc. Other reagents for preparation and analyses of samples are described in the respec-
tive sections.

Animal housing and husbandry
The study was performed under the guidelines of the UCLA Animal Research Committee and
specifically approved procedures for animal breeding, housing and sample collection in this
study. Mice were housed under two types of specific pathogen free (SPF) conditions at UCLA
Department of Laboratory and Animal Research, where either sterile (for RM), or non-sterile
(for CM) food, water, and bedding were employed. Atm-/- mice harboring RM and CMmicro-
biota were created by rederivation as described in Fujiwara et al. [23], and by antibiotic treat-
ment [36] followed by orogastric gavage of CM feces, respectively. The same procedures were
applied in wild type mice. Mice of the RM colony were maintained under strictly aseptic and
sterile conditions at the animal facility of the Radiation Oncology Department for several
years. Atm-/- mice were obtained by intercrossing Atm+/- mice and identified by genotyping as
previously described [21]. CM and RMmice for the metabolomics study were born in the
respective colonies and were not treated with antibiotics. Urine and fecal samples from male
Atm-/- and Atm+/+ (referred to as wild type, or WT) mice aged 6–8 months were investigated
by metabolomics-based molecular phenotyping. The different mice strains used in this study
were defined as follows: Atm-KO-RM (Atm knock out mice carrying restricted microbiota);
Atm-KO-CM (Atm knock out mice carrying conventional microbiota); WT-RM (wild type
mice carrying restricted microbiota); and WT-CM (wild type mice carrying conventional
microbiota). All urines and feces were separately collected in Eppendorf tubes from individual
mice. The urine samples were centrifuged and the supernatant was aliquoted and frozen at
-80°C until further use. All experiments were performed using at least 5 mice per genotype for
metabolomics and at least 3–4 mice for 16S RNA sequencing experiments.

Intestinal bacterial analysis
For this study, Illumina-based high-throughput sequencing of bacterial 16S rRNA genes from
intestinal mucosa samples [37] was performed as described [38]. DNA was extracted from
these samples using the PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA,
USA), and a 30-second bead-beating step using a Mini-Beadbeater-16 (BioSpec Products, Bar-
tlesville, OK, USA).

Metabolite extraction and metabolomics profiling
Urine samples were processed as described previously [39] using 66% acetonitrile in water to
precipitate any proteins or cellular debris. The samples were centrifuged, dried under vacuum,
and stored at -80°C until analysis. Fecal samples were processed by initially sonicating in
extraction solvent containing water and methanol (50% v/v) and internal standards, followed
by addition of chloroform (1:1 v/v). The samples were centrifuged and the two biphasic layers
were separated carefully. To each of the solvent phase two volumes of acetonitrile was added
and mixed thoroughly by vortexing. The samples were incubated at -20°C for 4 hours to allow
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protein precipitation followed by centrifugation. The supernatant was combined and dried
under vacuum, and resuspended in water containing 5% methanol for MS analysis.

Metabolites extracted from urine and fecal samples were analyzed in the same batch with
two technical replicates for each sample to assess chromatographic reproducibility. The sample
queue was randomized to avoid bias. Each sample (5 μl) was injected onto a reverse-phase
50 × 2.1 mm Acquity 1.7μm BEH C18 column (Waters Corp, Milford, MA), using an Acquity
UPLC (Waters Corporation, USA) system online with an electrospray quadrupole time-of-
flight tandem mass spectrometer (ESI-Q-TOF) (QTOF Premiere, Waters Corporation, USA).
Positive and negative ion mode were operated; the details of tune page parameters have been
described before [39, 40]. Together, we performed a broad range metabolite extraction and
used reversed phase chromatography that would support the detection of a broad class of
metabolites for urine and fecal samples. These data were normalized to the ion intensity of the
internal standards (debrisoquine and 4, nitrobenzoic acid) and weight of the fecal pellet (for
fecal samples), or creatinine (for urine samples). A 500 pg/μL solution of sulfadimethoxine in
50% acetonitrile ([M + H] +, m/z 311.0814) was infused at 0.08 μL/min flow rate as the refer-
ence mass (lock mass) for accurate mass measurements. The quality control (QC) samples for
each matrix comprised an aliquot of all samples in the study set, thus representing a universal
set of metabolites. The QC sample was used to initially condition the column and thereafter, it
was injected after every ten injections to account for reproducibility of the LC-MS data [41].
The coefficient of variance was examined for internal standards and creatinine in the QC sam-
ples and was found to be less than 15%. As explained above, five biological replicates per group
were used for comparative profiling, while pooled QC samples were used for assessing techni-
cal reproducibility throughout each batch acquisition.

Statistical analysis of LC-MS data and Pathway Analysis
The UPLC-QTOF raw data files were converted into NetCDF format (Network Common Data
Form) using the MassLynx software (Waters Corp, Milford, MA). Subsequently, the LC-MS
data were preprocessed using XCMS software as described [42]. The normalized data were pro-
cessed using Metaboanalyst software (2.0) [43] and univariate analysis methods. Principal
components analysis (PCA) was performed as an exploratory analysis to check for inter-group
variability based on overall metabolite profiles. The candidate markers were selected by exam-
ining each volcano plot thereby considering fold change threshold of 2 and statistical p-value
less than 0.05. A Benjamini-Hochberg correction was applied, which estimates conservative q-
values [44], to ensure control of the false discovery rate (FDR) at a significance level of 0.05.
Relative quantitation was achieved for molecular ions using the UPLC-QTOF system by taking
a ratio of normalized intensity of the respective for the ions of interest in the comparative
groups. This approach has been used by several laboratories including ours in previously
reported studies [45–48]. The significant peaks from the FDR-adjusted analysis were putatively
identified based on their m/z against Metabosearch, which performs accurate mass-based
metabolite search through four main online databases; the Human Metabolome Database
(HMDB), Lipid Maps, Madison Metabolomics Consortium Database (MMCD), and Metline
[49]. The mass tolerance was kept at 5 parts per million to minimize false positive identifica-
tion. The identity of metabolites was subsequently confirmed by comparisons of fragmentation
spectra and retention time with commercially available standard compounds using tandem
mass spectrometry (MS-MS). Signal intensities of the differentially abundant metabolites were
visualized as a heat map, wherein the log transformed data were hierarchically clustered by
Pearson correlation and average linkage clustering. The mean signal intensity is colored black,
red indicates above-mean intensity, green denotes below-mean intensity and the degree of
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color saturation reflects the magnitude of intensity relative to the mean. Both, fecal and urine
metabolomics data sets were analyzed using the Ingenuity Pathway Analysis (IPA) tool to
score for correlative biochemical pathways.

Results

RMmice have a distinct phylotype-reduced and pathogen-depleted
intestinal microbiota composition compared to CMmice
We created a mouse model with a selectively restricted microbiota, in which mice exhibit dimin-
ished T-cell immunity [37, 50], low risk for inflammatory infections, and high susceptibility to
ionizing radiation in conjunction with proliferative pro-inflammatory T-cell signaling [22]. In
prior research, the bacterial communities in feces from these mice were investigated by pyrose-
quencing of the bacterial 16S rRNA gene, and distinct profiles were identified for Atm-/- and
wild type mice bearing RM and CMmicrobiota, respectively [21, 22]. Since we have observed
prolonged lifespans associated with a reduced number of B-cells in Atm-/- RMmice [51], inci-
dence of inflammatory non-Hodgkin B-cell lymphoma and neoplasia was suspected to be low.
Consistent with these findings, pro-inflammatoryHelicobacter hepaticus, anotherHelicobacter
sp., and Bacteroides stercoris were less abundant or absent in RMmice compared to CMmice in
mucosa samples of small intestine and colon (Table 1). Advanced Illumina-based high-through-
put sequencing was newly applied to the deep sequencing of intestinal samples fromWTmice.
We next investigated whether an onco-protective phenotype could be associated with differen-
tially abundant metabolites detected in RMmice as compared to CMmice.

Microbiota drive changes in urinary metabolomics profiles in Atm-/- and
WTmice
To investigate microbiota-associated metabolic alterations, we performed comparative meta-
bolomic profiling of urine samples obtained from Atm-/- or Atm+/+ (wild type, or WT) mice
harboring either the RM or CMmicrobiota. Pre-processing using XCMS resulted in a three
dimensional data matrix (m/z, retention time, and intensity values) consisting of a total of
1588 (Atm-KO-RM), 1672 (Atm-KO-CM), 1465 (WT-RM) and 1575 (WT-CM) features that

Table 1. Bacterial phylotypes inhabiting the mucosa of small intestine and colon samples from CM
and RMmice identified by high throughput Illumina analysis of the 16S rRNA gene.

Nearest Cultured Relative (accession) (% identity) (Differentially abundant in
intestine)

CM RM P

Unclassified Bacteroidetes (AY239461) (94% identity) 8% 49% 0.049

Barnesiella intestinihominis (AB547647) (95% identity) 0% 4% 0.029

Nearest Cultured Relative (accession) (% identity) (Differentially abundant in
colon)

CM RM P

Helicobacter hepaticus ATCC 51449 (NR_102911) (100% identity) 17% 0% 0.013

Helicobacter sp. MIT 04–8588 (GU902718) (100% identity) 11% 0% 0.002

Bacteroides stercoris (AB714307) (100% identity) 8% 0% 0.038

Unclassified Bacteroidetes (AY239461) (94% identity) 12% 49% 0.003

Unclassified Bacteroidetes (AY239461) (96% identity) 2% 5% 0.017

Values in CM and RM columns are % of Illumina rRNA gene reads from intestinal mucosal samples. These

values were compared by 2-tailed Student’s T-Tests. n = 3–4 mice for each of the two colonies. CM is

conventional microbiota. RM is restricted microbiota. % identity was determined by analyses using Blast

(NCBI) [69].

doi:10.1371/journal.pone.0151190.t001
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were subsequently used for statistical analyses. Candidate markers were selected by examining
the volcano plot and considering a fold change threshold of 2 and p-value less than 0.05 (Fig 1,
Panels A and C). Principal component analysis resulted in a reasonable class separation of
Atm-KO andWT groups harboring CM or RMmicrobiota, respectively (Fig 1, Panels B and
D). The identity of some metabolites was confirmed using tandem mass spectrometry
(Table 2) and these are visualized as a heat map (Fig 2). For some other metabolites that came
up as being significantly dysregulated on the volcano plots we were unable to find biological
annotations in the databases. Interestingly, the presence of RMmicrobiota influenced both
genotypes in a similar manner, although changes in the levels of urinary citrate were not

Fig 1. Urine metabolomics in RM and CMmousemodels. Panel A and C. Volcano plots facilitating visualization of differentially abundant metabolites that
were selected based on fold change (X-axis) and p-value in (Y-axis) for Atm-KO andWTmice, respectively. The m/z values highlighted in pink have a fold
change of� 0.5 or� 2.0 and p-value� 0.05 in RM as compared to CMmice and were selected for further characterization. Panel B and D: PCA plots
showing separation between RM and CM in Atm-KO andWTmice, respectively.

doi:10.1371/journal.pone.0151190.g001
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significant for the WT mice. The urinary levels of 3-methylbutyrolactone were found to be
high in Atm-KO-RM andWT-RMmice. Additionally, mice with RMmicrobiota also showed
elevation of methyladenine, while the levels of metabolites like sarcosine, N-acetyl serine, and
N-acetyl glutamine were depleted in mice of both genotypes with RM as compared to CM

Table 2. Validated urine metabolites that were differentially abundant in RM as compared to CM in Atm-KO andWTmice.

Name of the Metabolite ESI Mode m/z* RT ** Atm KO WT Major CID Fragments

FC*** p-value q-value FC*** p-value q-value

Thymidine POS 243.0998 4.0 " <0.0001 0.0001 " 0.0062 0.0129 170.0746, 172.0893

3-Methylbutyrolacetone POS 101.0603 1.2 " 0.0001 0.0009 " 0.0070 0.0131 55.05550, 73.0661, 83.0524

Methyladenine POS 150.0778 0.4 " 0.0011 0.0037 " 0.0166 0.0249 108.0446, 123.0674

Citric acid NEG 191.0182 0.3 " <0.0001 0.0001 " 0.0937 0.1125 85.0291, 87.0086, 111.0085

Acetyl-L-glutamine NEG 187.0717 0.3 # 0.0001 0.0009 # <0.0001 0.0002 125.0736, 145.0646

Sarcosine POS 90.0541 1.1 # 0.4276 0.4528 # <0.0001 0.0001 72.04

N-Acetyl-Serine NEG 146.0447 0.3 # 0.0012 0.0039 # 0.0006 0.0026 74.252, 84.0457, 98.0257

* m/z = Mass/charge;

** RT = Retention Time in minutes;

*** FC = Fold Change = RM/CM (� 0.5 or � 2.0);

q-value = False Discovery Rate (FDR) adjusted p-value.

doi:10.1371/journal.pone.0151190.t002

Fig 2. Heat map showing differential abundance of urine metabolites in the various study groups: Metabolites profiles for Atm-KO-CM group, Atm-
KO-RM,WT-CM, andWT-RM, respectively. Each column represents a sample, and each row represents a metabolite. The mean signal intensity of CM
group is colored black; red indicates above-mean intensity, green denotes below mean intensity, and the degree of color saturation reflects the magnitude of
intensity relative to the mean.

doi:10.1371/journal.pone.0151190.g002
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mice. Additionally, Atm-KO-RMmice showed upregulation of metabolites participating in
TCA cycle like aconitic acid, and substituted amino acids as intermediary metabolites of purine
like nicotinate D-ribonucleoside (Table 3). WT-RMmice showed an increase in the urinary
levels of N-phosphoacetyl-L-asparatic acid; a metabolite that has been shown to have a strong
anti-tumor activity (Table 4) [52]. Both genotypes of RMmice showed differential abundance
of a number of di- and tripeptides differing in composition.

Microbiota drive alterations in the fecal metabolome in Atm-/- and WT
mice
Next we performed metabolomic profiling of fecal samples obtained from Atm-/- or wild type
(WT) mice harboring either the RM or CMmicrobiota. Pre-processing using XCMS resulted
in 1478 (Atm-KO-RM), 1742 (Atm-KO-CM), 1655 (WT-RM) and 1675 (WT-CM) features
that were subjected to multivariate analyses. Putative markers were selected by examining the
volcano plot and considering a fold change threshold of 2 and p-value less than 0.05 (Fig 3,
Panels A and C). Again, principal component analysis resulted in clear separation of Atm-/-

andWT groups harboring CM or RMmicrobiota, respectively (Fig 3, Panels B and D). The
identity of these metabolites was confirmed using tandem mass spectrometry (Table 5). Metab-
olites identified from individual difference detection analyses were visualized as a heat map

Table 3. Urine metabolites that were differentially abundant in RM as compared to CM in only Atm-KOmice.

Metabolite Name ESI Mode m/z* RT ** Atm KO (Urine)

FC*** p-value

Aconitic acid NEG 173.0078 0.4 " 0.0001

N-Acetylornithine POS 175.1092 2.6 " 0.0024

O-Ureidohomoserine POS 178.0811 2.5 " 0.0050

Asn Asp POS 248.0872 2.8 " 0.0006

Nicotinate D-ribonucleoside POS 256.0797 0.4 " 0.0141

Oleamide POS 282.2785 8.0 # 0.0316

Glycylprolylhydroxyproline POS 286.1373 0.4 " 0.0345

Asp Gly Cys POS 294.0773 0.9 " 0.0061

5-Thymidylic acid POS 307.0716 0.5 " 0.0154

Octanoylglucuronide NEG 319.1394 2.5 " 0.0276

Thr Thr Thr POS 322.1586 4.8 " 0.0151

Phe Ala Asn NEG 349.1504 3.7 " 0.0495

Ala His Glu NEG 354.1398 4.9 # 0.0004

1-Phosphatidyl-D-myo-inositol NEG 389.0529 1.9 # 0.0023

Met Ser Arg POS 393.1943 2.7 " 0.0010

Lys-Phe-OH NEG 400.1501 1.0 " 0.0042

Trp-Asp-OH POS 442.1236 4.1 " 0.0006

Aspartyl-2-deoxy-adenosine-5-monophosphate POS 447.0988 3.5 " 0.0019

serine hydroxamate-AMP NEG 448.0999 3.6 " 0.0057

Trp-Phe-OH NEG 472.1521 3.7 # 0.0098

Arachidonoyl PAF C-16 POS 768.5948 9.3 " 0.0453

GPCho(18:2/18:2) NEG 781.5600 5.1 # 0.0038

* m/z = Mass/charge;

** RT = Retention Time in minutes;

*** FC = Fold Change = RM/CM (� 0.5 or � 2.0).

doi:10.1371/journal.pone.0151190.t003
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(Fig 4). Atm-KO andWT-RMmice showed statistically significant upregulation of a number
of metabolites including homophenylalanine, sphinganine, methyluridine and riboflavin
sodium phosphate. There was an elevation in the levels of kynurenic acid (a tryptophan metab-
olite) [53]. RMmice also showed elevation in the fecal levels of riboflavin phosphate (Vitamin
B2), which is a precursor of flavin adenine dinucleotide (FAD) and flavin adenine mononucle-
otide (FMN) that are essential cofactors of TCA cycle. In addition, Atm-KO-RMmice showed
alterations in relative abundance of free fatty acids, secondary bile acids as well as tripeptides as
compared to the Atm-KO-CMmice (Table 6). WT-RMmice showed differentials levels of a
number of glycerophospholipids, di- and tripeptides as well as fatty acids (Table 7).

In order to gain insights into metabolite enrichment representing specific molecular net-
works and pathway perturbations caused by changes in gut microbiome in Atm- KO mice, we
used the Ingenuity Pathway Analysis (IPA) tool. This was achieved by integrating the fecal and
urine metabolomics data sets that were initially scored separately for differentially expressed
metabolites. Pathway analysis showed positive correlation for metabolic intermediates of TCA

Table 4. Urine metabolites that were differentially abundant in RM as compared to CM in only WTmice.

Metabolite Name ESI Mode m/z* RT ** WT (Urine)

FC*** p-value

Dihydroxyquinoline POS 162.0544 2.0 # 0.0005

Hydroxyadipic acid POS 163.0604 2.2 # 0.0004

m-Hydroxyhippuric acid NEG 194.0452 2.8 # 0.0005

Dopaquinone NEG 194.0470 0.6 " 0.0002

Decenedioic acid NEG 199.0984 4.6 # 0.0261

Pantothenic Acid POS 220.1173 1.1 " 0.0000

N-acetyl-beta-D-glucosaminylamine POS 221.1116 1.1 # 0.0000

N-octanoyl-L-Homoserine lactone NEG 226.1432 5.4 # 0.0220

Ser Lys POS 234.1455 4.2 # 0.0254

Tiglylcarnitine NEG 242.1391 4.9 # 0.0176

N-phosphonoacetyl-L-ornithine NEG 253.0608 2.9 # 0.0146

N-phosphonoacetyl-L-aspartic acid NEG 254.0061 1.6 " 0.0061

Asn Gln NEG 259.1026 4.5 # 0.0004

3-Methoxy-4-hydroxyphenylglycol sulfate NEG 263.0237 0.8 " 0.0298

Ala Ala Lys NEG 287.1707 4.9 # 0.0473

Thr Ala Thr POS 292.1512 4.2 # 0.0229

2-Oxo-nonadecanoic acid POS 313.2717 8.1 # 0.0001

Gly Met Asn POS 321.1234 3.9 # 0.0409

Cys Asp Cys NEG 338.0512 1.1 # 0.0033

Val Thr Glu NEG 346.1650 5.8 # 0.0198

Thr-Asp-OH NEG 355.0807 4.0 " 0.0000

Asn Ser His NEG 355.1383 5.0 # 0.0067

Cys Val His NEG 356.1388 5.0 # 0.0050

Cys Pro Phe POS 366.1511 2.1 # 0.0005

Ala Tyr Asn POS 367.1609 2.1 # 0.0004

* m/z = Mass/charge;

** RT = Retention Time in minutes;

*** FC = Fold Change = RM/CM (� 0.5 or � 2.0).

doi:10.1371/journal.pone.0151190.t004
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cycle in RM as compared to CM in Atm-KO mice (Fig 5 Panel A). Examination of molecular
networks revealed an upregulation of TP53 regulated metabolite networks (Fig 5 Panel B).
Although these networks may affect a broad range of cellular processes, they can be considered
distinct key metabolites that help explain the observed phenotype in these mice. Further inves-
tigations into more specific metabolite changes may answer to the basic question of precisely
how do changes in microbiota composition result in an onco-protective phenotype.

Discussion
Despite increasing efforts in the field of A-T research, the mechanisms by which enteric micro-
biota lead to changes in Atm-mediated lymphomagenesis remain elusive. ATM regulates the

Fig 3. Gut microbiota modulates fecal metabolomic profiles in Atm-KO andWTmice. Panel A and C. Volcano plots facilitating visualization of
differentially abundant metabolites that were selected based on fold change (X-axis) and p-value in (Y-axis) for Atm-KO andWTmice, respectively. The m/z
values highlighted in pink have a fold change of� 0.5 or� 2.0 and p-value� 0.05 in RM as compared to CMmice and were selected for further
characterization. Panels B and D: PCA plots showing separation between RM and CM in Atm-KO andWTmice, respectively.

doi:10.1371/journal.pone.0151190.g003
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cellular response to oxidative stress and it senses double-stranded DNA breaks, thus inhibiting
cell cycle progression [11, 54]. It has been demonstrated that intestinal microbiota can induce
cancer development [35], for exampleHelicobacter pylori, inducing gastric cancer and lym-
phoma inWTmice and humans, as well as potentially influencing the response of cancer to
therapies [55, 56]. We have previously shown reduction of cancer susceptibility and an impact
on longevity by specific alterations in gut microbiota composition in Atm-/-mice. Using an
untargeted, high resolution mass spectrometry approach, we then asked how this translates into
metabolic changes in mice that are genetically identical but differ only in their gut microbiome
composition. Surprisingly, we did not find differently abundant metabolites in blood profiles
(data not shown). Moreover, our results from the analysis of urine and fecal samples suggest
that distinct intestinal microbiota cause a metabolic shift towards the upregulation of metabo-
lites including kyneurenic acid, methyladenine and 3-methybutyrolactone that may attenuate
cancer-promoting signaling pathways, reported to be associated with an onco-protective pheno-
type independent of the genotype of the mice. We found that intestinal microbiota restriction in
Atm-deficient mice led to a 2.5-fold extension of lymphoma latency and 4 fold increased longev-
ity, and significant differences in chromosomal genotoxicity, oxidative DNA damage and
inflammation; our research was the first to show a relationship between intestinal microbiota
and lymphoma onset [21]. Lactobacillus johnsonii, one of the indicator phylotypes that we iden-
tified to be more abundant in RM than CMmice, is known to increase the number of Paneth
cells, which are a host cell type that produces antimicrobial compounds, and are located together
with stem cells in the intestinal crypt [57]. The extended lifespans of our RMmouse models
appear to be caused by an intestinal microbiota comprised largely of unclassified members of
the Bacteroidetes (Table 1), which in turn result in specific metabotypes.

Table 5. Validated fecal metabolites that were differentially abundant in RM as compared to CM in the Atm-KO andWTmice.

Metabolite Name ESI Mode m/z* RT ** Atm KO WT Major CID Fragments

FC*** p-value q-value FC*** p-value q-value

Palmitoyl-Ethanolamide POS 300.2896 2.5 " 0.0053 0.0119 " 0.0083 0.0131 62.0612, 95.0872

Homophenylalanine POS 180.1006 0.9 " 0.0046 0.0113 " 0.0007 0.0031 97.0512, 117.0698

3-Methyluridine NEG 257.0775 0.4 " 0.0003 0.0013 " <0.0001 0.0003 82.03001, 154.0508,

214.0718

O-Benzyl-L-Tyrosine POS 272.1296 0.4 " 0.0009 0.0033 " 0.006 0.0129 91.0553, 226.1236, 255.1023

Dihydroceramide C2 POS 344.3183 3.1 " 0.0023 0.007 " 0.0078 0.0131 81.0711, 95.0867, 266.2828

Sphinganine POS 302.3049 2.5 " 0.0011 0.0037 " 0.008 0.0131 91.0552, 254.2855

3-hydroxyphenyl-Arachidonoyl amide POS 396.2922 3.7 " <0.0001 0.0003 " 0.0601 0.0738 110.0616, 203.1800

Kynurenic acid NEG 188.0365 1.7 " 0.0171 0.025 " 0.1489 0.1711 144.044

Cytidine NEG 242.0764 1.2 " 0.0429 0.0538 " 0.0405 0.0521 109.0395

Riboflavin sodium phosphate NEG 477.0794 0.3 " 0.0261 0.0371 " 0.1368 0.1606 78.9596, 96.9696

Thymine POS 127.0495 0.6 " 0.031 0.043 " 0.0391 0.0515 84.0450, 110.0238

Isonicotinic acid POS 124.0405 0.4 " 0.1739 0.1956 " 0.0322 0.0434 80.0504, 96.0450,

124.0398

Adenosine POS 268.1035 0.6 " 0.2196 0.2371 " 0.0082 0.0131 94.0413, 136.0631

LysoPE(18:1(9Z)/0:0) NEG 478.2967 3.5 # 0.2118 0.2334 # 0.0045 0.0113 78.9599, 281.2458

* m/z = Mass/charge;

** RT = Retention Time in minutes;

*** FC = Fold Change = RM/CM (� 0.5 or � 2.0);

q-value = False Discovery Rate (FDR) adjusted p-value.

doi:10.1371/journal.pone.0151190.t005

Metabolic Modulations by Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0151190 April 13, 2016 11 / 19



Potentially chemopreventive metabolites were found to be differentially abundant in a
microbiota-dependent manner in Atm-KO or WT mice; for example, the urinary levels of
3-methylbutyrolactone were elevated in both genotypes harboring RMmicrobiota. This metab-
olite is known to be produced by the intestinal bacteria and exhibits strong anti-aromatase
properties [58]. Further, this metabolite inhibits fatty acid synthase (FAS), which activates car-
nitine palmitoyltransferase 1beta (CPT-1beta) and ultimately results in beta-oxidation of long
chain fatty acids and prevention of lipid accumulation [59]. In addition, alpha-methylbutyro-
lactone acts as a selective alkylating agent for thiol rich enzymes like phosphofructokinase,
DNA polymerase and glycogen synthase; thus regulating cell proliferation [60]. Additionally,
mice with RMmicrobiota showed elevation of methyladenine, which is a potent inhibitor of
phosphoinositide 3-kinases (PI3K) and has also been shown to exhibit tumor suppressor activ-
ity [61–64]. There was an elevation in the levels of kynurenic acid (a tryptophan metabolite) in
feces of RMmice. Walczak et al. have reported the potential chemopreventative role of this
metabolite in colon cancer [53]. Elevation of kynurenic acid has been shown to positively cor-
relate with immune tolerance [65–67]. An upregulation of metabolites participating in oxida-
tive phosphorylation was found in RM as compared to CM in Atm- KO (Fig 5, Panel A) mice,
as well as an upregulation of TP53 regulated molecular networks in RMmice (Fig 5, Panel B).
Interestingly, TP53 is known to regulate the expression of TIGAR (TP53-induced Glycolysis
and Apoptosis Regulator) that has been shown to downregulate glycolysis by lowering the
endogenous levels of fructose 1,6 biphosphate [68]. This is an interesting finding, generating
new hypothesis for investigating how alleviation of glycolytic phenotype in RMmice is
induced. Future investigations in our laboratory will specifically follow the molecular links and
associations proposed herein.

Fig 4. Heat map showing differential abundance of fecal metabolites in various study groups (Panels A-D): Metabolites profiles for Atm-KO-CM
group, Atm-KO-RM,WT-CM, andWT-RM, respectively. Each column represents a sample, and each row represents a metabolite. The mean signal
intensity of CM group is colored black; red indicates above-mean intensity, green denotes below mean intensity, and the degree of color saturation reflects
the magnitude of intensity relative to the mean.

doi:10.1371/journal.pone.0151190.g004
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Table 6. Fecal metabolites that were differentially abundant in RM as compared to CM only in Atm-KOmice.

Metabolite Name ESI Mode m/z* RT ** Atm KO (Fecal)

FC*** p-value

L-Methionine NEG 148.0432 0.4 # 0.0014

Tryptophan POS 205.0965 1.6 # 0.0374

Hydroxydecanedioic acid NEG 217.1082 2.4 # 0.0231

6-Acetyl-D-glucose NEG 221.0687 1.5 # 0.0053

9,12-Dioxo-dodecanoic acid NEG 227.1280 3.4 # 0.0357

Malonylcarnitine POS 248.1122 0.4 # 0.0078

AFMK (Acetyl-N-formyl-5-methoxykynurenamine) NEG 263.1011 2.3 # 0.0035

Heptanoylcarnitine NEG 272.1844 2.9 # 0.0068

trans-Farnesyl phosphate NEG 301.1586 3.1 # 0.0243

Ser Arg Gly NEG 317.1577 2.9 # 0.0213

Ser Lys Ser NEG 319.1647 3.0 # 0.0044

Met Val Ala POS 320.1669 2.9 # 0.0299

Phe Arg NEG 320.1700 3.0 # 0.0050

Eicosapentaenoyl ethanolamide POS 346.2734 3.1 # 0.0237

Cys Gln Cys POS 353.0977 2.7 # 0.0143

DHA ethyl ester POS 357.2794 4.3 # 0.0465

3-Oxo-chol-11-enic acid POS 373.2752 3.8 # 0.0425

Ile Thr Phe POS 380.2167 7.5 # 0.0465

Hydroxytetracosenoic acid NEG 381.3370 8.4 " 0.0158

His Asp Asn NEG 383.1299 2.8 # 0.0002

Allochenodeoxycholic acid NEG 391.2852 4.3 # 0.0175

Vitamin D6 POS 411.3633 6.7 " 0.0474

Lys His Met POS 415.2148 4.8 # 0.0257

Lys-Tyr-OH NEG 416.1451 1.5 # 0.0239

PA(17:1/0:0) POS 423.2508 7.9 # 0.0269

His Phe Met NEG 432.1713 1.1 # 0.0127

PE(P-16:0/0:0) NEG 436.2817 6.0 " 0.0283

Met Met Arg POS 437.1989 4.8 # 0.0268

PC(P-14:0/0:0) NEG 450.3013 3.3 # 0.0171

(22R)-1a,22,25-Trihydroxy-23;24-tetradehydro-24a,24b-dihomo-20-epivitamin D3 NEG 455.3139 5.3 # 0.0239

Trp Trp Ala POS 462.2094 3.8 # 0.0222

PA(22:2(13Z,16Z)/0:0) NEG 489.2991 3.2 # 0.0050

Trp Asp Trp POS 506.2044 4.0 # 0.0239

D-Urobilinogen POS 591.3198 3.1 # 0.0100

Atalanine POS 611.2065 9.3 # 0.0006

PA(P-16:0/15:1(9Z)) POS 617.4588 8.2 # 0.0067

Cer(d18:0/24:0) POS 652.6553 9.0 # 0.0186

PG(14:1(9Z)/14:1(9Z)) POS 663.4281 8.2 # 0.0050

Palmitoyl thio-PC POS 750.5451 9.4 # 0.0484

PA(18:1/22:4) POS 751.5342 9.4 # 0.0475

MGDG(18:2/18:3) POS 777.5552 9.4 # 0.0426

PI(P-16:0/16:1) POS 793.5189 8.3 # 0.0035

16:2-Glc-Campesterol POS 797.6345 8.9 # 0.0103

PG(18:1/20:2) POS 801.5637 8.9 # 0.0049

PC(16:1/22:6) POS 804.5513 8.0 # 0.0488

* m/z = Mass/charge;

** RT = Retention Time in minutes;

*** FC = Fold Change = RM/CM (� 0.5 or � 2.0).

doi:10.1371/journal.pone.0151190.t006
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Table 7. Fecal metabolites that were differentially abundant in RM as compared to CM only in WTmice.

Name of Unique Metabolite ID ESI Mode m/z* RT ** WT (Fecal)

FC*** p-value

Alanine POS 90.0550 0.3 # 0.0037

3-Amino-alanine POS 106.0743 8.5 " 0.0428

Hydroxybenzoquinone POS 125.0230 0.4 # 0.0283

4-Hydroxyquinoline NEG 144.0448 2.5 # 0.0036

Orotic acid NEG 155.0106 0.4 # 0.0110

Acetyl-DL-Valine NEG 158.0810 1.5 # 0.0232

2-Hydroxylamino-4,6-dinitrotoluene NEG 212.0314 0.4 # 0.0020

3-Methoxytyrosine POS 212.0930 1.3 # 0.0043

N-Acetyl-beta-D-glucosaminylamine POS 221.1112 1.4 # 0.0438

L-4-Hydroxy-3-methoxy-a-methylphenylalanine POS 226.1071 1.5 # 0.0118

Gamma-glutamyl-proline NEG 242.1136 2.3 # 0.0238

Palmitic acid NEG 255.2318 7.4 # 0.0176

Asp Gln POS 262.1058 0.4 # 0.0217

AFMK (Formyl-N-acetyl-5-methoxykynurenamine) POS 265.1202 2.3 # 0.0316

N-Acetyl-L-glutamate 5-phosphate NEG 268.0202 0.3 # 0.0018

Isovalerylglucuronide NEG 277.0919 1.3 " 0.0068

2-methyl-16-heptadecenoic acid NEG 281.2480 7.5 # 0.0374

Met Gly Ser NEG 292.0972 0.5 # 0.0019

C20:4n-2;6;9;12 NEG 303.2316 7.0 # 0.0484

Arachidic acid NEG 311.2976 8.4 # 0.0106

3-Oxo-nonadecanoic acid POS 313.2747 7.0 # 0.0010

His Gly Cys POS 316.1097 0.6 # 0.0258

Ser Pro Asp NEG 316.1165 0.6 " 0.0161

Leu Trp POS 318.1815 2.4 # 0.0433

Hydroxysphinganine POS 318.3007 4.9 " 0.0122

His Leu Gly POS 326.1834 1.7 # 0.0130

Docosanoic acid NEG 339.3246 8.8 # 0.0428

2,3-dinor Thromboxane B1 NEG 343.2122 2.9 " 0.0345

Leu Thr Leu NEG 344.2169 2.9 " 0.0099

18-Oxo-resolvin E1 NEG 347.1878 3.2 # 0.0391

Coutaric acid NEG 348.1907 3.2 # 0.0400

S-(2-Hydroxyethyl)glutathione NEG 350.1028 0.5 " 0.0177

MG(0:0/18:3/0:0) NEG 351.2510 8.0 # 0.0012

13,14-Dihydro PGF-1a NEG 357.2618 3.7 " 0.0211

His Asn Cys NEG 371.1180 2.7 # 0.0307

Pro Glu Met NEG 374.1379 7.4 # 0.0302

Pro His Glu NEG 380.1610 7.0 # 0.0434

Lys-Lys-OH NEG 381.1748 7.5 # 0.0461

Pentacosanoic acid NEG 381.3723 9.5 # 0.0369

Val Glu His NEG 382.1763 7.5 # 0.0456

S-Adenosylhomocysteine NEG 383.1160 0.5 " 0.0014

Glu Phe Val POS 394.1940 2.0 # 0.0232

Hexacosanoic acid NEG 395.3859 9.9 # 0.0415

PC(O-12:0/0:0) NEG 424.2795 3.3 # 0.0003

Glu Arg Glu NEG 431.1883 4.8 # 0.0077

Palmityl myristoleate NEG 449.4324 10.6 # 0.0452

(Continued)
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Table 7. (Continued)

Name of Unique Metabolite ID ESI Mode m/z* RT ** WT (Fecal)

FC*** p-value

PE(O-18:0/0:0) POS 468.3489 6.6 " 0.0054

Sulfocholic acid NEG 487.2420 3.9 # 0.0111

Hydroxydydrogesterone glucuronide NEG 489.2540 3.9 # 0.0109

Glycochenodeoxycholate 7-sulfate NEG 528.2599 2.3 # 0.0269

Trp Arg Trp NEG 545.2651 4.1 # 0.0228

DG(16:0/16:0/0:0) POS 569.5133 9.4 " 0.0031

Ceramide (d18:0/20:0) POS 596.5966 10.6 " 0.0451

PG(O-16:0/12:0) NEG 651.4610 7.9 # 0.0037

PG(14:0/14:0) NEG 665.4351 7.5 # 0.0318

Ceramide (t18:0/24:0) POS 668.6561 10.1 " 0.0297

* m/z = Mass/charge;

** RT = Retention Time in minutes;

*** FC = Fold Change = RM/CM (� 0.5 or � 2.0).

doi:10.1371/journal.pone.0151190.t007

Fig 5. Functional Pathway Analysis showingmajor upregulated pathways in Atm-KOmice with RM as compared to CMmicrobiota. Panel A shows
significantly perturbed canonical pathways in Atm-KO-RMmice, while Panel B shows a TP53 regulated network that correlated strongly with metabolic
profiles of Atm-KO-RMmice.

doi:10.1371/journal.pone.0151190.g005
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Our results demonstrate that microbiome composition leads to specific changes in overall
host metabolism, which may have direct implications on phenotype. This proof of principle
investigation opens up several relevant and challenging questions; particularly, how lipids mea-
sured in feces of these mice indirectly regulate apoptosis, or if the altered metabolic profile
accounts at least in part for extended life and decreased incidence of carcinogenesis in eukary-
otes and will be a part of future studies. Further investigation is also needed to specify the regu-
latory role of certain microbiota compositions in permitting genotoxicity by reducing local or
systemic autophagy.

In conclusion, our pilot study demonstrates metabolite profiles likely modulated by specific
phylotypes in RMmice that correlate with our previously reported observations of decreased
tumor incidence and general leukocyte genotoxicity in RMmice as compared to Atm-KO-CM
mice [21]. These alterations in the mean abundance of the interrogated metabolites, including
3-methylbutyrolactone and 3-methyadenine (Fig 2) and kynurenic acid (Fig 4) were more pro-
nounced in Atm-KO mice as compared to the WT RMmice, which may help explain genotype
based susceptibility. Together, these findings lend credence to the notion that manipulating
microbial composition could be used as an effective strategy to prevent or alleviate cancer sus-
ceptibility. The onco-protective effect of RMmicrobiota is true for WT as well as Atm-KO
mice—the only difference lies in cancer susceptibility for both genotypes. Remarkably, our
findings suggest that composition of the gut microbiota influences and alters central carbon
metabolism in a genotype independent manner. In future, it is our hope that the use of probiot-
ics-containing RM would be a potential chemopreventive for normal humans, while the same
type of microbiota would decrease tumor incidence in cancer susceptible populations.
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