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Abstract

The classical n-variable Kloosterman sums over the finite field Fp give rise to a lisse
Ql-sheaf Kln+1 on Gm,Fp = P1

Fp
− {0,∞}, which we call the Kloosterman sheaf. Let

Lp(Gm,Fp , SymkKln+1, s) be the L-function of the k-fold symmetric product of Kln+1. We
construct an explicit virtual scheme X of finite type over SpecZ such that the p-Euler factor of
the zeta function of X coincides with Lp(Gm,Fp , SymkKln+1, s). We also prove similar results

for ⊗kKln+1 and
Vk Kln+1.

0. Introduction

For each prime number p, let Fp be a finite field with p elements. Fix an algebraic closure Fp

of Fp. For any power q of p, let Fq be the subfield of Fp with q elements. Let l be a prime number

distinct from p. Fix a nontrivial additive character ψ : Fp → Q
∗

l . Thus, ψ(1) is a primitive

p-th root of unity, which is denoted by ζp. For any nonzero x ∈ Fq, we define the n-variable

Kloosterman sum by

Kln+1(Fq, x) =
∑

x1,...,xn+1∈F∗

q ,x1···xn+1=x

ψ(TrFq/Fp
(x1 + · · · + xn+1)) ∈ Z[ζp].

In [SGA 4 1
2 ] [Sommes trig.] §7, Deligne constructs a lisse Ql-sheaf Kln+1 on Gm,Fp

= P1
Fp

−{0,∞}

such that for any x ∈ Gm(Fq) = F∗
q , we have

Tr(Fx,Kln+1,x̄) = (−1)nKln+1(Fq, x),

Mathematics Subject Classification: 14F20, 11L05.
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where Fx is the geometric Frobenius element at the point x. For any natural number k, consider

the L-function

Lp(Gm,Fp
, SymkKln+1, s) =

∏

x∈|Gm,Fp |

det(1 − Fxp
−sdeg(x), (SymkKln+1)x̄)

−1

of the k-fold symmetric product SymkKln+1 of Kln+1, where |Gm,Fp
| is the set of Zariski closed

points in Gm,Fp
. This L-function in s has two parameters k and p. It was first studied by Robba

[Ro] in the case n = 1 via p-adic methods. More recently, its basic properties and p-adic variation

as k varies p-adicaly have been studied extensively in connection with Dwork’s unit root conjecture.

See [W1], [GK], [FW1] and [FW2].

In this paper, we fix k and study the variation of this L-function as p varies. It was observed

in [FW1] Lemma 2.2 that for each p, the L-function Lp(Gm,Fp
, SymkKln+1, s) is a polynomial in

p−s with coefficients in Z. This naturally leads to the conjecture that the infinite product

ζk,n(s) :=
∏

p

Lp(Gm,Fp
, SymkKln+1, s)

is automorphic and thus extends to a meromorphic function in s ∈ C. This is easy to prove if

n = 1 and k ≤ 4. If n = 1 and k = 5, the series ζ5,1(s) is essentially the L-function of an elliptic

curve with complex multiplication and thus meromprhic in s ∈ C, see [PTV]. If n = 1 and k = 6,

the modularity of ζ6,1(s) follows from [HS] and the references listed there. In this case, one obtains

a rigid Calabi-Yau threefold. In the case n = 1 and k = 7, the series ζ7,1(s) is conjectured by

Evans [Ev] to be given by the L-function associated to an explicit modular form of weight 3 and

level 525. With the recent progress on the modularity problem due to Taylor and Harris, it may

be possible to prove the meromorphic continuation of ζk,n(s) for some larger k and n.

To prove the meromorphic continuation of ζk,n(s), the first step would be to prove that ζk,n(s)

is motivic (or geometric) in nature, i.e., it arises as the zeta function of a motive over SpecZ. This

question was raised in [FW1] and is solved in this paper. We will construct a virtual Ql-sheaf G

of geometric origin on SpecZ so that the Euler factor

Lp(Spec Z,G, s) = det(1 − Fpp
−s,Gp̄)

−1

of the L-function of G coincides with Lp(Gm,Fp
, SymkKln+1, s) for each prime number p, where Fp

is the geometric Frobenius element at p. We also prove similar results for ⊗kKln+1 and
∧k

Kln+1.

To describe our results, we introduce the following schemes over Z.

Definition 0.1. Denote the homogeneous coordinates of Pkn−1 by [xij ] (i = 1, . . . , n, j =

1, . . . , k). Let Yk be the subscheme of Pkn−1 defined by

xij 6= 0,

2



let Yk0 be the subscheme defined by

xij 6= 0,
∑

i,j

xij = 0,

let Zk be the subscheme defined by the conditions

xij 6= 0,

k
∑

j=1

1
∏n
i=1 xij

= 0,

and let Zk0 be the subscheme defined by

xij 6= 0,

k
∑

j=1

1
∏n
i=1 xij

= 0,
∑

i,j

xij = 0.

These are schemes of finite type over Z. Let Sk be the group of permutations of the set {1, . . . , k}.

It acts on Pkn−1 by permuting the homogenous coordinates xi1, . . . , xik for each i. Similarly Sk

acts on Zk0, Zk, Yk0 and Yk. The notations Yk/Sk, Yk0/Sk, Zk/Sk, and Zk0/Sk denote the

quotient scheme of Yk, Yk0, Zk, and Zk0 by Sk, respectively. Our main result is the following

theorem.

Theorem 0.2. For a scheme X of finite type over Z, let ζX(s) denote its zeta function. We have

Lp(Gm,Fp
,⊗kKln+1, s) =

(

ζZk0,Fp
(s− 2)ζYk,Fp

(s)

ζZk,Fp
(s− 1)ζYk0,Fp

(s− 1)

)(−1)kn

,

Lp(Gm,Fp
, SymkKln+1, s) =

(

ζZk0,Fp/Sk
(s− 2)ζYk,Fp/Sk

(s)

ζZk,Fp/Sk
(s− 1)ζYk0,Fp/Sk

(s− 1)

)(−1)kn

.

Thus,
∏

p

Lp(Gm,Fp
,⊗kKln+1, s) =

(

ζZk0
(s− 2)ζYk

(s)

ζZk
(s− 1)ζYk0

(s− 1)

)(−1)kn

,

∏

p

Lp(Gm,Fp
, SymkKln+1, s) =

(

ζZk0/Sk
(s− 2)ζYk/Sk

(s)

ζZk/Sk
(s− 1)ζYk0/Sk

(s− 1)

)(−1)kn

.

The above formulas can be simplified significantly. This is done in §4. To prove the above

results, we need to relate Kloosterman sheaves by the l-adic Fourier transformation. This is done

in §1. We prove Theorem 0.2 in §2 and §3.

Remark 0.3. For any partition λ of k, let Sλ(Kln+1) be the Weyl construction applied to

Kln+1. (Confer [FH] §6.1.) The method developed in this paper can also be used to show that

Lp(Gm,Fp
, Sλ(Kln+1), s) is the Euler factor at p of the L-function of a virtual Ql-sheaf on SpecZ

3



of geometric origin for each prime number p. An example is given in Theorem 3.2 for the k-th

exterior product.

1. Kloosterman Sheaves and the Fourier Transformation

In this section, we give an inductive construction of Kloosterman sheaves using the l-adic

Fourier transformation. We refer the reader to [L] for the definition and properties of the Fourier

transformation.

The morphism

P : A1
Fp

→ A1
Fp

corresponding to the Fp-algebra homomorphism

Fp[t] → Fp[t], t 7→ tp − t

is a finite galois étale covering space, and it defines an Fp-torsor

0 → Fp → A1
Fp

P
→ A1

Fp
→ 0.

Pushing-forward this torsor by ψ−1 : Fp → Ql, we get a lisse Ql-sheaf Lψ of rank 1 on A1
Fp

, which

we call the Artin-Schreier sheaf. Let X be a scheme over Fp and let f be an element in the ring of

global sections Γ(X,OX) of the structure sheaf of X . Then f defines an Fp-morphism X → A1
Fp

so

that the induced Fp-algebra homomorphism Fp[t] → Γ(X,OX) maps t to f . We often denote this

canonical morphism also by f , and denote by Lψ(f) the inverse image of Lψ under this morphism.

The main result of this section is the following.

Proposition 1.1. Let i : Gm,Fp
→ Gm,Fp

be the morphism x 7→ 1
x , and let j : Gm,Fp

→ A1
Fp

be

the canonical open immersion. For each integer n ≥ 1, define Kln inductively as follows:

Kl1 = Lψ|Gm,Fp
,

Kln+1 = (F(j!i
∗Kln))|Gm,Fp

,

where F(−) = Rp2!(p
∗
1(−) ⊗L Lψ(tt′))[1] denotes the Fourier transformation. Here

p1, p2 : A1
Fp

×Fp
A1

Fp
→ A1

Fp

are the projections, and tt′ is regarded as an element in

Γ(A1
Fp

×Fp
A1

Fp
,OA1

Fp
×FpA1

Fp
) ∼= Fp[t, t

′].

(i) For any t ∈ Gm(Fq), we have

Tr(Ft,Kln,t̄) = (−1)n−1
∑

x1,...,xn∈F∗

q , x1···xn=t

ψ(TrFq/Fp
(x1 + · · · + xn)).
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(ii) Kln is a lisse Ql-sheaf on Gm,Fp
of rank n. It is tame at 0, and its Swan conductor at ∞

is 1.

It follows from the proposition that the sheaf Kln defined inductively using the Fourier trans-

formation as above coincides with the Kloosterman sheaf constructed by Deligne.

Proof. We use induction on n. When n = 1, the assertions are clear. Suppose the assertions hold

for Kln. We have

Tr(Ft,Kln+1,t̄)

= Tr(Ft, (F(j!i
∗Kln))t̄)

= −
∑

s∈Fq

ψ(TrFq/Fp
(st))Tr(Fs, (j!i

∗Kln)s̄)

= (−1)n
∑

s∈F∗

q

ψ(TrFq/Fp
(st))

∑

x1,...,xn∈F∗

q , x1···xn= 1
s

ψ(TrFq/Fp
(x1 + · · · + xn))

= (−1)n
∑

s,x1,...,xn∈F∗

q , x1···xn= 1
s

ψ(TrFq/Fp
(x1 + · · · + xn + st))

= (−1)n
∑

x1,...,xn+1∈F∗

q , x1···xn+1=t

ψ(TrFq/Fp
(x1 + · · · + xn+1)),

where the second equality follows from the definition of the Fourier transformation, and the third

equality follows from the induction hypothesis. This proves (i) holds for Kln+1. Let η0 (resp. η∞)

be the generic point of the strict henselization of P1
Fp

at 0 (resp. ∞). By the induction hypothesis,

Kln is tame at 0. Hence (i∗Kln))|η∞ is tame. By [L] 2.3.1.3 (i), Kln+1 = (F(j!i
∗Kln))|Gm,Fp

is a

lisse sheaf on Gm,Fp
. Moreover, by [L] 2.5.3.1, F (∞,0′)((i∗Kln)|η∞) is tame. It follows that Kln+1

is tame at 0. By the stationary phase principle [L] 2.3.3.1 (iii), we have

Kln+1|η∞′ = F (0,∞′)((i∗Kln)|η0) ⊕F (∞,∞′)((i∗Kln)|η∞).

Since (i∗Kln))|η∞ is tame, we have F (∞,∞′)((i∗Kln))|η∞) = 0 by [L] 2.4.3 (iii) b). By the induction

hypothesis, the Swan conductor of (i∗Kln)|η0 is 1 and its rank is n. By [L] 2.4.3 (i) b), the Swan

conductor of F (0,∞′)((i∗Kln)|η0) is 1, and its rank is n + 1. Hence the Swan conductor of Kln+1

at ∞ is 1, and the rank of Kln+1 is n+ 1. This proves (ii) holds for Kln+1.

2. The L-function of ⊗kKln+1

Let

Ãn+1
Fp

= {(x, y) ∈ An+1
Fp

×Fp
Pn

Fp
|x lies on the line determined by y}

5



be the blowing-up of An+1
Fp

at the origin, let

π1 : Ãn+1
Fp

→ An+1
Fp

, π2 : Ãn+1
Fp

→ Pn
Fp

be the projections, let

H = {[x0 : . . . : xn] ∈ Pn|
∑

xi = 0},

and let

κ : H → Pn
Fp

be the canonical closed immersion. Consider the morphism

s : An+1
Fp

→ A1
Fp
, s(x0, . . . , xn) = x0 + · · · + xn.

We have

Rπ2!π
∗
1s

∗Lψ = κ!Ql(−1)[−2].

This follows from the fact that Ãn+1
Fp

is a line bundle over Pn
Fp

, and that for any point a = [a0 :

. . . : an] in Pn
Fp

, we have

RΓc(π
−1
2 (a) ⊗ Fp, π

∗
1s

∗Lψ) ∼= RΓc(A
1
Fp
,Lψ(t

∑

ai)) =

{

0 if
∑

ai 6= 0,
Ql(−1)[−2] otherwise.

Lemma 2.1. For a subscheme Z of Pn
Fp

, let

Z0 = Z ∩H, X̃ = π−1
2 (Z), X = π1(X̃).

We have a natural distinguished triangle

RΓc((X − {0}) ⊗ Fp, s
∗Lψ) → RΓc(Z0 ⊗ Fp,Ql(−1)[−2]) → RΓc(Z ⊗ Fp,Ql) → .

Proof. Let π′
1 : X̃ → X be the restriction of π1 to X̃. We have a distinguished triangle

RΓc(π
′−1
1 (X − {0})⊗ Fp, π

∗
1s

∗Lψ) → RΓc(X̃ ⊗ Fp, π
∗
1s

∗Lψ) → RΓc(π
′−1
1 ({0}) ⊗ Fp, π

∗
1s

∗Lψ) → .

On the other hand, we have

X − {0} ∼= π′−1
1 (X − {0}), π′−1

1 (X) = X̃, π′−1
1 ({0}) ∼= Z,

and hence

RΓc(π
′−1
1 (X − {0})⊗ Fp, π

∗
1s

∗Lψ) ∼= RΓc((X − {0}) ⊗ Fp, s
∗Lψ),

RΓc(X̃ ⊗ Fp, π
∗
1s

∗Lψ) ∼= RΓc(Z ⊗ Fp, Rπ2!π
∗
1s

∗Lψ)

∼= RΓc(Z ⊗ Fp, κ!Ql(−1)[−2])

∼= RΓc(Z0 ⊗ Fp,Ql(−1)[−2]),

RΓc(π
′−1
1 ({0})⊗ Fp, π

∗
1s

∗Lψ) ∼= RΓc(Z ⊗ Fp,Ql).

6



Our assertion follows.

By Proposition 1.1, we have

F(j!i
∗Kln)|Gm,Fp

∼= Kln+1.

By [L] 1.2.2.7, we have

F(∗k(j!i
∗Kln))|Gm,Fp

∼= ⊗kKln+1[1 − k], (1)

where ∗k denotes the k-fold convolution product. Let

sn : Gn
m → A1,

pn : Gn
m → Gm

be the morphisms

sn(x1, . . . , xn) = x1 + · · · + xn,

pn(x1, . . . , xn) = x1 · · ·xn,

respectively. By [SGA 4 1
2 ] [Sommes trig.] §7, we have

Kln ∼= Rpn!s
∗
nLψ[n− 1]. (2)

Denote the coordinates of Gkn
m by xij (i = 1, . . . , n, j = 1, . . . , k). Let

skn : Gkn
m → A1,

fkn : Gkn
m → A1

be the morphisms

skn((xij)) =
∑

i,j

xij ,

fkn((xij)) =

k
∑

j=1

1
∏n
i=1 xij

,

respectively. By the Künneth formula, the definition of the convolution product [L] 1.2.2.6, and

the isomorphism (2), we have

∗k(j!i
∗Kln) ∼= Rfkn,!s

∗
knLψ [k(n− 1)].

Combined with the isomorphism (1), we get

(F(Rfkn,!s
∗
knLψ)[kn− 1])|Gm,Fp

∼= ⊗kKln+1. (3)

7



By Grothendieck’s formula for L-functions, we have

Lp(Gm,Fp
,⊗kKln+1, s) = det(1 − Fp−s, RΓc(Gm,Fp

,⊗kKln+1))
−1.

Taking into account of the isomorphism (3), we get

Lp(Gm,Fp
,⊗kKln+1, s) = det(1 − Fp−s, RΓc(Gm,Fp

, (F(Rfkn,!s
∗
knLψ)[kn− 1])|G

m,Fp
))−1

=
det(1 − Fp−s, RΓc(A

1
Fp
,F(Rfkn,!s

∗
knLψ)[kn− 1]))−1

det(1 − Fp−s, (F(Rfkn,!s∗knLψ)[kn− 1])|0̄)−1

By the definition of the Fourier transformation, we have

(F(Rfkn,!s
∗
knLψ))|0̄ ∼= RΓc(A

1
Fp
, Rfkn,!s

∗
knLψ)[1] ∼= RΓc(G

kn
m,Fp

, s∗knLψ)[1].

Hence

det(1 − Fp−s, (F(Rfkn,!s
∗
knLψ)[kn− 1])|0̄)

−1 = det(1 − Fp−s, RΓc(G
kn
m,Fp

, s∗knLψ)[kn])−1.

By the inversion formula for the Fourier transformation [L] 1.2.2.1, we have

RΓc(A
1
Fp
,F(Rfkn,!s

∗
knLψ)) ∼= (F(F(Rfkn,!s

∗
knLψ)))0̄[−1]

∼= (Rfkn,!s
∗
knLψ)0̄(−1)[−1]

∼= RΓc(Xk,Fp
, s∗knLψ)(−1)[−1],

where Xk is the subscheme of Gkn
m over Z defined by the equation

k
∑

j=1

1
∏n
i=1 xij

= 0.

Hence

det(1 − Fp−s, RΓc(A
1
Fp
,F(Rfkn,!s

∗
knLψ)[kn− 1]))−1

= det(1 − Fp−s, RΓc(Xk,Fp
, s∗knLψ)(−1)[kn− 2])−1.

It follows that

Lp(Gm,Fp
,⊗kKln+1, s) =

det(1 − Fp−s, RΓc(A
1
Fp
,F(Rfkn,!s

∗
knLψ)[kn− 1]))−1

det(1 − Fp−s, (F(Rfkn,!s∗knLψ)[kn− 1])|0̄)−1

=
det(1 − Fp−s, RΓc(Xk,Fp

, s∗knLψ)(−1)[kn− 2])−1

det(1 − Fp−s, RΓc(Gkn
m,Fp

, s∗knLψ)[kn])−1
.

Let Zk be the subscheme of Pkn−1 over Z defined by the conditions

xij 6= 0,

k
∑

j=1

1
∏n
i=1 xij

= 0,

8



and let Zk0 be the subscheme defined by

xij 6= 0,

k
∑

j=1

1
∏n
i=1 xij

= 0,
∑

i,j

xij = 0.

By Lemma 2.1, we have

det(1 − Fp−s, RΓc(Xk,Fp
, s∗knLψ)(−1)[kn− 2])−1 =

det(1 − Fp−s, RΓc(Zk0,Fp
,Ql)(−2)[kn− 4])−1

det(1 − Fp−s, RΓc(Zk,Fp
,Ql)(−1)[kn− 2])−1

=
ζZk0,Fp

(s− 2)(−1)kn

ζZk,Fp
(s− 1)(−1)kn

.

Let Yk be the subscheme of Pkn−1 over Z defined by the condition

xij 6= 0,

and let Yk0 be the subscheme defined by

xij 6= 0,
∑

i,j

xij = 0.

By Lemma 2.1 again, we have

det(1 − Fp−s, RΓc(G
kn
m,Fp

, s∗knLψ)[kn])−1 =
det(1 − Fp−s, RΓc(Yk0,Fp

,Ql)(−1)[kn− 2])−1

det(1 − Fp−s, RΓc(Yk,Fp
,Ql)[kn])−1

=
ζYk0,Fp

(s− 1)(−1)kn

ζYk,Fp
(s)(−1)kn

.

So we finally get

Lp(Gm,Fp
,⊗kKln+1, s) =

det(1 − Fp−s, RΓc(Xk,Fp
, s∗knLψ)(−1)[kn− 2])−1

det(1 − Fp−s, RΓc(Gkn
m,Fp

, s∗knLψ)[kn])−1

=

(

ζZk0,Fp
(s− 2)ζYk,Fp

(s)

ζZk,Fp
(s− 1)ζYk0,Fp

(s− 1)

)(−1)kn

.

Hence
∏

p

Lp(Gm,Fp
,⊗kKln+1, s) =

(

ζZk0
(s− 2)ζYk

(s)

ζZk
(s− 1)ζYk

(s− 1)

)(−1)kn

.

This proves the assertions about the L-functions of ⊗kKln+1 in Theorem 0.1.

3. The L-function of SymkKln+1

Lemma 3.1. Let V be a Ql-vector space, let π : V → V and F : V → V be two linear maps such

that π2 = π and Fπ = πF . Then we have

det(1 − Ft, im(π)) = det(1 − Fπt, V ).

9



Proof. Since π2 = π, we have

V = ker(π) ⊕ im(π),

and

π|ker(π) = 0, π|im(π) = id.

Since Fπ = πF , the subspaces ker(π) and im(π) are stable under F . It follows that

det(1 − Fπt, V ) = det(1 − Fπt, im(π))det(1 − Fπt, ker(π))

= det(1 − Ft, im(π)).

Denote the coordinates of Gkn
m by xij (i = 1, . . . , n, j = 1, . . . , k). Let

skn : Gkn
m → A1,

fkn : Gkn
m → A1

be the morphisms

skn((xij)) =
∑

i,j

xij ,

fkn((xij)) =
k
∑

j=1

1
∏n
i=1 xij

,

respectively. Recall that in the previous section, we obtain the isomorphisms (1) and (3):

⊗kKln+1
∼=

(

F(∗k(j!i
∗Kln))[k − 1]

)

|Gm
∼=

(

F(Rfkn,!s
∗
knLψ)[kn− 1]

)

|Gm
.

The group Sk acts on ⊗kKln+1 and on ∗k(j!i
∗Kln) by permuting the factors, and it acts on

Rfkn,!s
∗
knLψ by permuting the coordinates xi1, . . . , xik of Gkn

m for each i. These actions are com-

patible with the above isomorphisms. By Grothendieck’s formula for L-functions, we have

Lp(Gm,Fp
, SymkKln+1, s) = det(1 − Fp−s, RΓc(Gm,Fp

, SymkKln+1))
−1.

Let

π =
1

k!

∑

σ∈Sk

σ.

We have π2 = π, and π induces the projection of ⊗kKln+1 to its direct factor SymkKln+1. It

follows that

Hm
c (Gm,Fp

, SymkKln+1) ∼= im(Hm
c (Gm,Fp

,⊗kKln+1)
π
→ Hm

c (Gm,Fp
,⊗kKln+1))

for all m. Applying Lemma 3.1 to

π : Hm
c (Gm,Fp

,⊗kKln+1) → Hm
c (Gm,Fp

,⊗kKln+1),

10



we get

det(1 − Fp−s, Hm
c (Gm,Fp

, SymkKln+1)) = det(1 − Fπp−s, Hm
c (Gm,Fp

,⊗kKln+1)).

It follows that

Lp(Gm,Fp
, SymkKln+1, s) = det(1 − Fπp−s, RΓc(Gm,Fp

,⊗kKln+1))
−1

= det(1 − Fπp−s, RΓc(Gm,Fp
, (F(Rfkn,!s

∗
knLψ)[kn− 1])|G

m,Fp
))−1

=
det(1 − Fπp−s, RΓc(A

1
Fp
,F(Rfkn,!s

∗
knLψ)[kn− 1]))−1

det(1 − Fπp−s, (F(Rfkn,!s∗knLψ)[kn− 1])|0̄)−1
.

The same argument as in §2 shows that

det(1 − Fπp−s, RΓc(A
1
Fp
,F(Rfkn,!s

∗
knLψ)[kn− 1]))−1

= det(1 − Fπp−s, RΓc(Xk,Fp
, s∗knLψ)(−1)[kn− 2])−1

=
det(1 − Fπp−s, RΓc(Zk0,Fp

,Ql)(−2)[kn− 4])−1

det(1 − Fπp−s, RΓc(Zk,Fp
,Ql)(−1)[kn− 2])−1

,

where Zk is the subscheme of Pkn−1 over Z defined by the condition

xij 6= 0,

k
∑

j=1

1
∏n
i=1 xij

= 0,

Zk0 is the subscheme defined by

xij 6= 0,

k
∑

j=1

1
∏n
i=1 xij

= 0,
∑

i,j

xij = 0,

and the group Sk acts on Zk and on Zk0 by permuting the homogeneous coordinates xi1, . . . , xik

for each i. The same argument as in §2 also shows that

det(1 − Fπp−s, (F(Rfkn,!s
∗
knLψ)[kn− 1])|0̄)

−1

= det(1 − Fπp−s, RΓc(G
kn
m,Fp

, s∗knLψ)[kn])−1

=
det(1 − Fπp−s, RΓc(Yk0,Fp

,Ql)(−1)[kn− 2])−1

det(1 − Fπp−s, RΓc(Yk,Fp
,Ql)[kn])−1

,

where Yk is the subscheme of Pkn−1 defined by

xij 6= 0,

Yk0 is the subscheme defined by

xij 6= 0,
∑

i,j

xij = 0,

11



and the group Sk acts on Yk and on Yk0 by permuting the homogeneous coordinates xi1, . . . , xik

for each i. So we have

Lp(Gm,Fp
, SymkKln+1, s)

=
det(1 − Fπp−s, RΓc(A

1
Fp
,F(Rfkn,!s

∗
knLψ)[kn− 1]))−1

det(1 − Fπp−s, (F(Rfkn,!s∗knLψ)[kn− 1])|0̄)−1

=
det(1 − Fπp−s, RΓc(Zk0,Fp

,Ql)(−2)[kn− 4])−1det(1 − Fπp−s, RΓc(Yk,Fp
,Ql)[kn])−1

det(1 − Fπp−s, RΓc(Zk,Fp
,Ql)(−1)[kn− 2])−1det(1 − Fπp−s, RΓc(Yk0,Fp

,Ql)(−1)[kn− 2])−1
.

Let

a : Zk0 → Spec Z, b : Zk → SpecZ, c : Yk0 → SpecZ, d : Yk → SpecZ

be the structure morphisms of Zk0, Zk, Yk0 and Yk, respectively. By Lemma 3.1, we have

det(1 − Fπp−s, Hm
c (Zk0,Fp

,Ql)(−2)) = det(1 − Fp−(s−2), im(Hm
c (Zk0,Fp

,Ql)
π
→ Hm

c (Zk0,Fp
,Ql)))

= det(1 − Fpp
−(s−2), im(Rma!Ql

π
→ Rma!Ql))

det(1 − Fπp−s, Hm
c (Zk,Fp

,Ql)(−1)) = det(1 − Fp−(s−1), im(Hm
c (Zk,Fp

,Ql)
π
→ Hm

c (Zk,Fp
,Ql)))

= det(1 − Fpp
−(s−1), im(Rmb!Ql

π
→ Rmb!Ql)),

det(1 − Fπp−s, Hm
c (Yk0,Fp

,Ql)(−1)) = det(1 − Fp−(s−1), im(Hm
c (Yk0,Fp

,Ql)
π
→ Hm

c (Yk0,Fp
,Ql)))

= det(1 − Fpp
−(s−1), im(Rmc!Ql

π
→ Rmc!Ql)),

det(1 − Fπp−s, Hm
c (Yk,Fp

,Ql)) = det(1 − Fp−s, im(Hm
c (Yk,Fp

,Ql)
π
→ Hm

c (Yk,Fp
,Ql)))

= det(1 − Fpp
−s, im(Rmd!Ql

π
→ Rmd!Ql)).

So we have

Lp(Gm,Fp
, SymkKln+1, s)

=
det(1 − Fπp−s, RΓc(Zk0,Fp

,Ql)(−2)[kn− 4])−1det(1 − Fπp−s, RΓc(Yk,Fp
,Ql)[kn])−1

det(1 − Fπp−s, RΓc(Zk,Fp
,Ql)(−1)[kn− 2])−1det(1 − Fπp−s, RΓc(Yk0,Fp

,Ql)(−1)[kn− 2])−1

=
∏

m

(

det(1 − Fpp
−(s−2), im(Rma!Ql

π
→ Rma!Ql))det(1 − Fpp

−s, im(Rmd!Ql
π
→ Rmd!Ql))

det(1 − Fpp−(s−1), im(Rmb!Ql
π
→ Rmb!Ql))det(1 − Fpp−(s−1), im(Rmc!Ql

π
→ Rmc!Ql))

)(−1)kn+m+1

,

and

∏

p

Lp(Gm,Fp
, SymkKln+1, s)

=
∏

m

(

L(SpecZ, im(Rma!Ql
π
→ Rma!Ql), s− 2)L(SpecZ, im(Rmd!Ql

π
→ Rmd!Ql), s)

L(SpecZ, im(Rmb!Ql
π
→ Rmb!Ql), s− 1)L(SpecZ, im(Rmc!Ql

π
→ Rmc!Ql), s− 1)

)(−1)kn+m

.

The above sheaf im(Rma!Ql
π
→ Rma!Ql) and the similar sheaves for the morphisms b, c and d can

be made more explicit. The group Sk acts on Rma!Ql. We have

(Rma!Ql)
Sk ∼= im(Rma!Ql

π
→ Rma!Ql).
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Let a′ : Zk0/Sk → SpecZ be the structure morphism of the quotient of Zk0 by Sk. Then we have

(Rma!Ql)
Sk ∼= Rma′!Ql.

To prove this, we use the Hochschild-Serre type spectral sequences in [G] 5.2.1. These spectral

sequences are constructed by Grothendieck for the cohomology of sheaves of abelian groups on

topological spaces. We can construct similar spectral sequences for the cohomology of étale sheaves

of torsion abelian groups on schemes. We then use the fact that Hi(Sk,−) are annihilated by k!

for all i > 0 to conclude that similar spectral sequences degenerate for cohomology of Ql-sheaves.

So we have

Rma′!Ql
∼= im(Rma!Ql

π
→ Rma!Ql).

Therefore we have

Lp(Gm,Fp
, SymkKln+1, s)

=
∏

m

(

det(1 − Fpp
−(s−2), im(Rma!Ql

π
→ Rma!Ql))det(1 − Fpp

−s, im(Rmd!Ql
π
→ Rmd!Ql))

det(1 − Fpp−(s−1), im(Rmb!Ql
π
→ Rmb!Ql))det(1 − Fpp−(s−1), im(Rmc!Ql

π
→ Rmc!Ql))

)(−1)kn+m+1

=
∏

m

(

det(1 − Fpp
−(s−2), Rma′!Ql)det(1 − Fpp

−s, Rmd′!Ql)

det(1 − Fpp−(s−1), Rmb′!Ql)det(1 − Fpp−(s−1), Rmc′!Ql)

)(−1)kn+m+1

=

(

ζZk0,Fp/Sk
(s− 2)ζYk,Fp/Sk

(s)

ζZk,Fp/Sk
(s− 1)ζYk0,Fp/Sk

(s− 1)

)(−1)kn

.

This proves the assertions about the L-functions of SymkKln+1 in Theorem 0.2.

Similarly, by working with

π′ =
1

k!

∑

σ∈Sk

sgn(σ)σ

instead of π, we can prove the following result for the k-th exterior power.

Theorem 3.2. Notation as above. We have

Lp(Gm,Fp
,
k
∧

Kln+1, s)

=
∏

m





det(1 − Fpp
−(s−2), im(Rma!Ql

π′

→ Rma!Ql))det(1 − Fpp
−s, im(Rmd!Ql

π′

→ Rmd!Ql))

det(1 − Fpp−(s−1), im(Rmb!Ql
π′

→ Rmb!Ql))det(1 − Fpp−(s−1), im(Rmc!Ql
π′

→ Rmc!Ql))





(−1)kn+m+1

,

and

∏

p

Lp(Gm,Fp
,

k
∧

Kln+1, s)

=
∏

m





L(SpecZ, im(Rma!Ql
π′

→ Rma!Ql), s− 2)L(SpecZ, im(Rmd!Ql
π′

→ Rmd!Ql), s)

L(SpecZ, im(Rmb!Ql
π′

→ Rmb!Ql), s− 1)L(SpecZ, im(Rmc!Ql
π′

→ Rmc!Ql), s− 1)





(−1)kn+m

.
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The sheaf im(Rma!Ql
π′

→ Rma!Ql) and the similar sheaves for the morphisms b, c and d can

again be made more explicit. Let S be the constant sheaf Ql on Zk0/Sk provided with an action of

Sk so that σ ∈ Sk acts as multiplication by Sgn(σ). Let pZk0
: Zk0 → Zk0/Sk be the projection.

Using Hochschild-Serre type spectral sequences, one can show that

Rma′!

(

(pZk0,∗Ql ⊗ S)Sk

)

∼= im(Rma!Ql
π′

→ Rma!Ql).

4. Simplified formulas

The formula for
∏

p Lp(Gm,Fp
,⊗kKln+1, s) in Theorem 0.2 can be significantly simplified. Since

Yk is isomorphic to Gkn−1
m , we have

#Yk(Fq) = (q − 1)kn−1.

A simple inclusion-exclusion argument shows that

#Yk0(Fq) =
1

q

(

(q − 1)kn−1 + (−1)kn
)

.

This gives the relation
ζYk

(s)

ζYk0
(s− 1)

= ζ(s)(−1)kn

,

where ζ(s) is the Riemann zeta function. Similarly, one checks that

#Zk(Fq) = (q − 1)k(n−1) 1

q

(

(q − 1)k−1 + (−1)k
)

=
1

q

(

(q − 1)kn−1 + (−1)k(q − 1)k(n−1)
)

.

Thus ζZk
(s) is also determined explicitly by the Riemann zeta function. The only non-trivial factor

in the formula for
∏

p Lp(Gm,Fp
,⊗kKln+1, s) is the zeta function ζZk0

(s). From the last equation

defining Zk0, we get

xnk = −





n−1
∑

i=1

xik +

n
∑

i=1

k−1
∑

j=1

xij



 .

Substituting this into the second equation defining Zk0, we see that Zk0 is isomorphic to the toric

hypersurface Wk in

{[xij ] ∈ Pkn−1|x11 = 1, xij 6= 0} ∼= Gkn−1
m

defined by

x11 = 1,

k−1
∑

j=1

1
∏n
i=1 xij





n−1
∑

i=1

xik +

n
∑

i=1

k−1
∑

j=1

xij



−
1

∏n−1
i=1 xik

= 0.

Thus, we obtain the simplified formula

∏

p

Lp(Gm,Fp
,⊗kKln+1, s) = ζ(s)

(

ζWk
(s− 2)

ζZk
(s− 1)

)(−1)kn

.
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The formula for the L-function of SymkKln+1 is more complicated. The scheme Yk/Sk can be

explicitly described as follows. Let S = k[xij ] be the polynomial ring with the canonical grading by

the degrees of polynomials. The group Sk acts on S by permuting the indeterminates xi1, . . . , xik.

Let f =
∏

i,j xij . Then Yk = SpecS(f). Let sij be the j-th elementary symmetric polynomial of

xi1, . . . , xik. Then the subring of S fixed by Sk is

SSk = k[sij ].

Let S′ = k[sij ]. It is isomorphic to a polynomial ring. Introduce a grading on S′ by setting

deg(sij) = j. Then we have

(S(f))
Sk = S′

(f)

and hence

Yk/Sk = SpecS′
(f).

Let Qkn−1 = ProjS′ which is a weighted projective space. Then Yk/Sk is the complement of the

hypersurface f = 0 in Qkn−1.
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221.

[GK] E. Grosse-Klönne, On families of pure slope L-functions, Doc. Math., 8 (2003), 1-42.

[HS] K. Hulek, J. Spandaw, B. van Geemen, D. van Straten, The modularity of the Barth-Nieto

quintic and its relatives, Adv. Geom. 1 (2001), no. 3, 263-289.

15



[L] G. Laumon, Transformation de Fourier, constantes d’équations fontionnelles, et conjecture de

Weil, Publ. Math. IHES 65 (1987), 131-210.

[PTV] C. Peters, J. Top and M. van der Vlugt, The Hasse zeta function of a K3 surface related to

the number of words of weight 5 in the Melas codes, J. Reine Angew. Math., 432 (1992), 151-176.

[Ro] P. Robba, Symmetric powers of p-adic Bessel equation, J. Reine Angew. Math., 366 (1986),

194-220.

[SGA 4 1
2 ] P. Deligne et al, Cohomologie Étale, Lecture Notes in Math., 569, Springer-Verlag (1977).

[W1] D. Wan, Dwork’s conjecture on unit root zeta functions, Ann. Math., 150 (1999), 867-927.

16




