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Abstract

The relationship between analogy and schema induction is
widely acknowledged and constitutes an important
motivation for developing computational models of
analogical mapping. However, most models of analogical
mapping provide no clear basis for supporting schema
induction. We describe LISA (Hummel & Holyoak, 1996),
a recent model of analog retrieval and mapping that is
explicitly designed to provide a platform for schema
induction and other forms of inference. LISA represents
predicates and their arguments (i.e., objects or
propositions) as patterns of activation distributed over
units representing semantic primitives. These
representations are actively (dynamically) bound into
propositions by synchronizing oscillations in their
activation: Arguments fire in synchrony with the case roles
to which they are bound, and out of synchrony with other
case roles and arguments. By activating propositions in
LTM, these patterns drive analog retrieval and mapping.
This approach to analog retrieval and mapping accounts for
numerous findings in human analogical reasoning (Hummel
& Holyoak, 1996). Augmented with a capacity for
intersection discovery and unsupervised learning, the
architecture supports analogical inference and schema
induction as a natural consequence. We describe LISA's
account of schema induction and inference, and present
some preliminary simulation results.

Schemas, Induction and Analogy

Cognitive scientists have long appealed to the notion of
schemas to explain many aspects of human thinking (see
Rumelhart, 1980). A schema is a generalized knowledge
structure that characterizes the relationships applicable to
some class of objects or events. For example, a
"permission schema" (Cheng & Holyoak, 1985) might
describe the class of situations in which some precondition
must be satisfied before permission to perform an act is
granted (e.g., one must be over 21 to drink alcohol); a
"combustion engine schema" might specify the general
relationships among the parts and operation of a combustion
engine. Schemas support inferences. For example, a
reasoner could use the permission schema to infer that a
teenage beer drinker would be in violation of the rule; a
reasoner could use the combustion engine schema to
anticipate that a Honda 1.6 liter engine will not run after the
gas line has been cut (even if that person has never actually
cut the gas line of a Honda 1.6 liter engine). An essential
property of schemas is that they are relational structures
rather than simple lists of features or properties. That is,
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they explicitly specify how the properties of a class are
related to one another: the (legal) drinking of alcohol is
contingent upon being over 21; the gas line carries the
gasoline to the carburetor.

An important question regarding schemas concems their
origin: How do we induce a general schema from experience
with specific objects and events? As Holland, Holyoak,
Nisbett and Thagard (1986) have emphasized, induction
cannot proceed by blind search. Rather, it entails
discovering systematic correspondences among the elements
of specific known instances (objects or events) and using
those correspondences to guide the induction of generalized
schemas. For example, consider inducing a simple schema
describing situations in which a man loves a woman, the
woman likes flowers, and the man gives the woman flowers,
based on the examples: (1) Jim loves Mary, Mary likes
roses, and Jim gives Mary roses, and (2) Bill loves Susan,
Susan likes tulips, and Bill gives Susan tulips. To generate
the schema from the examples, it is first necessary to
appreciate that Jim corresponds to Bill rather than Mary, that
loves corresponds to loves rather than gives, and so forth.
Knowledge of these correspondences is crucial for knowing
which elements to generalize over.

One way to discover the appropriate correspondences is to
draw an analogy between the instances. For this reason, it
has been argued that analogical reasoning plays an important
role in schema induction (Gentner, 1989; Holyoak &
Thagard, 1995). Analogical reasoning generally involves
using a relatively well-understood source analog to guide
inferences about a less familiar rarger analog. This process
has four major components: (1) using the target to retrieve a
potentially useful source from memory; (2) mapping
elements of the source onto elements of the target to identify
systematic correspondences; (3) using the mapping to draw
inferences about the target; and (4) inducing a generalized
schema that captures the commonalties between the source
and target (e.g., Carbonell, 1983; Gentner, 1989; Gick &
Holyoak, 1983).

Numerous models of analogy have been developed that
collectively address the stages of analog retrieval, mapping,
and inference (e.g., Falkenhainer, Forbus & Gentner, 1989;
Forbus, Gentner & Law, 1995; Halford et al., 1994;
Hofstadter & Mitchell, 1994; Holyoak & Thagard, 1989;
Thagard, Holyoak, Nelson & Gochfeld, 1990). On the face
of it, such models provide a basis for modeling schema
induction (because they provide a computational account of
how to determine the correspondences between elements).
However, this apparent connection, while widely recognized,
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has generally not been computationally realized. In part,
this shortcoming reflects the way these models represent
analog elements (Hummel & Holyoak, 1996). Most modcls
of analogical mapping represent analogs either as collections
of symbols composed into propositions (e.g., Falkenhainer
et. al, 1989; Keane, 1995) or as localist units in a
connectionist network (e.g., Holyoak & Thagard, 1989;
Thagard et. al, 1990). Representations of this type can
readily capture structure, making them very attractive as a
basis for analogical mapping (an inherently structural
problem). But lacking any detailed semantic decomposition,
such representations are inadequate for generalization and
building abstractions (basic components of schema
induction). In general, the twin requirements of structure
sensitivity and flexible generalization pose a serious
challenge to the design of an architecture that aims to
integrate analogical mapping with schema induction.

We have recently developed a computational model of
analogy based on very different assumptions about the
representation of analog elements and the operations that
discover correspondences between them (Hummel &
Holyoak, 1996; see Hummel & Holyoak, 1992, and
Hummel, Meltz, Thompson, & Holyoak, 1994, for
precursors). The heart of the model is an architecture for
representing structured information in a distributed fashion,
capturing both the structure-sensitivity of a localist or
symbolic representation and the flexible generalization
provided by a distributed connectionist representation. The
model, called LISA (Learning and Inference with Schemas
and Analogies), is designed to provide an integrated account
of all four major components of analogy use, from retrieval
to schema induction. We have recently shown that LISA
accounts for numerous findings concerning human analog
retrieval and mapping (Hummel & Holyoak, 1996). This
paper describes some preliminary results using LISA for
schema induction and inference.

The LISA Model

Analog Representation, Retrieval and Mapping

We will briefly sketch the LISA model and its approach to
analog retrieval and mapping. These operations are described
in detail (along with simulation results) by Hummel and
Holyoak (1996). The core of LISA's architecture is a
system for actively (i.e., dynamically) binding roles to their
fillers in working memory (WM) and encoding those
bindings in LTM. LISA uses synchrony of firing for
dynamic binding in WM (Hummel & Holyoak, 1992;
Shastri & Ajjenagadde, 1993). Case roles and objects are
represented in WM as distributed patterns of activation on a
collection of semantic units (small circles in Figure 1); case
roles and objects fire in synchrony when they are bound
together and out of synchrony when they are not.

Every proposition is encoded in LTM by a hierarchy of
structure units (see Figures 1 and 2). At the bottom of the
hierarchy are predicate and object units. Each predicate unit
locally codes one case role of one predicate. For example,
lovel represents the first (agent) role of the predicate "love",
and has bidirectional excitatory connections to all the
semantic units representing that role (e.g., emotionl,
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strongl, positivel, etc.); love2 represents the patient role
and is connected to the corresponding semantic units (€.g.,
emotion2, strong2, positive2, etc.). Semantically-related
predicates share units in corresponding roles (e.g., lovel and
likel share many units), making the semantic similarity of
different predicates explicit. Object units are just like
predicate units except that they are connected to semantic
units describing things rather than roles. For example, the
object unit Mary might be connected to units for human,
adult, female, etc., whereas rose might be connected to
plant, flower, and fragrant.

w proposition
Jim- Mary- sub- ey
lovel love2 proposition

predicate
& object
semantic

Figure 1: Illustration of the LISA representation
of the proposition "love (Jim Mary)".

Sub-proposition units (SPs) bind roles to objects in
LTM. For example, "love (Jim Mary)" would be
represented by two SPs, one binding Jim to the agent of
loving, and the other binding Mary to the patient role
(Figure 1). The Jim+agent SP has bidirectional excitatory
connections with Jim and lovel, and the Mary+patient SP
has connections with Mary and love2. Proposition (P) units
reside at the top of the hierarchy and have bidirectional
excitatory connections with the corresponding SP units. P
units serve a dual role in hierarchical structures (such as
"Sam knows that Jim loves Mary"), and behave differently
according to whether they are currently serving as the
"parent” of their own proposition or the "child" (i.e.,
argument) of another (see Hummel & Holyoak, 1996). It is
important to emphasize that structure units do not encode
semantic content in any direct way. Rather, they serve only
to store that content in LTM, and to generate (and respond
to) the corresponding synchrony patterns on the semantic
units.

The final component of LISA's architecture is a set of
mapping connections between structure units of the same
type in different analogs. Every P unit in one analog shares
a mapping connection with every P unit in every other
analog; likewise, SPs share connections across analogs, as
do objects and predicates. For the purposes of mapping and
retrieval, analogs are divided into two mutually exclusive
sets: a driver and one or more recipients. Retrieval and
mapping are controlled by the driver. (There is no necessary
linkage between the driver/recipient distinction and the more
familiar source/target distinction.) LISA performs mapping



as a form of guided pattern matching. As P units in the
driver become active, they generate (via their SP, predicate
and object units) patterns on the semantic units (one pattern
for each role-argument binding). The semantic units are
shared by all propositions, so the patterns generated by one
proposition will activate one or more similar propositions
in LTM (analogical access) or in WM (analogical mapping).
Mapping differs from retrieval solely by the addition of the
modifiable mapping connections. During mapping, the
weights on the mapping connections grow larger when the
units they link are active simultaneously, permiting LISA
to learn the correspondences generated during retrieval.
These connection weights also serve to constrain subsequent
memory access. By the end of a simulation run,
corresponding structure units will have large positive
weights on their mapping connections, and non-
corresponding units will have strongly negative weights.

Inference and Schema Induction

Augmented with intersection discovery and unsupervised
learning, LISA's approach to mapping supports inference
and schema induction as a natural consequence. Consider the
previous "love and flowers" analogs (Figure 2). During
mapping, corresponding elements in the two analogs will
become active simultaneously. For instance, "love (Jim
Mary)" in the driver, will activate "love (Bill Susan)" in the
recipient. Corresponding elements (such as Jim and Bill)
will fire in synchrony with one another, and non-
corresponding elements (Jim and Susan) will fire out of
synchrony (Figure 3a). Jim shares male with Bill, and Mary
shares female with Susan, so a natural proposition to
induce from these correspondences is "loves (male, female)"
(Figure 3b). To induce this part of the schema, it is
necessary to (a) make explicit what corresponding elements
have in common, and (b) encode those common elements
into LTM as a new proposition.

]
Analog 1 : Analog 2
I . (give(Bill
love(Jim  like(Mary (giveUim ! jove(Bill  like(Sus.
M : Susan
Mary) roses) m;?‘; : Susan) tulips) tligs)

8/8/8/25"‘25\8\25\8

Semantic

Figure 2: Representation of the "loves and flowers"”
analogy. Shapes (triangle, rectangle, etc.) correspond to
classes of units as in Fig. 1. Not all connections are
shown.

LISA performs (a) by means of a simple type of
intersection discovery. Although we have described the
activation of semantic units only from the perspective of the
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driver, the recipient analog also feeds activation to the
semantic units. The activation of a semantic unit is a linear
function of its inputs, so any semantic unit that is common
to both the driver and recipient will receive input from both
and become roughly twice as active as any semantic unit
receiving input from only one analog. Common semantic
elements are thus tagged as such by their activation values.

U e e e o -

Analog 1
( ,)’ love(Jim Mary)

(b), < Analogl '.:-
+ love(Jim Mary) h

O T R R I

Figure 3: (a) Jim+love-agent in Analogl activates
Bill+love-agent in Analog 2. In the Schema, predicate
unit 1 is recruited for love agent, and object unit 3 is
recruited for the intersection of Jim and Bill ("human”
and "male"). SP 4 is recruited for human male (object
3) bound to love-agent (predicate 1). Proposition unit 3
begins to be recruited. (b) Mary+love-patient in
Analog 1 activates Susan+love-patient in Analog 2.
Predicate 4 is recruited for love-patient; object 1 is
recruited for "human” and "female". SP 7 is recruited
for the binding of predicate 4 and object 1. Proposition
unit 3 now codes "love(human male, human female)".



These common elements are encoded into LTM by means
of an unsupervised learning algorithm. In addition to
structure units representing the known source and targel
analogs, LISA has a collection of unrecruited structure units
(i.e., units with random connections to one another and to
the semantic units) that reside together in a third "schema
analog” (Figure 3). Unrecruited predicate and object units
have input thresholds that only allow them to receive input
from highly active semantic units -- that is, semantic units
that are common to both the driver and recipient analogs.
Such semantic units are depicted in dark gray in Figure 3.
Without the aid of an external teacher, these unrecruited
schema units learn to respond to these common elements of
the known analogs. Simultaneously, unrecruited SP units
learn to respond to specific conjunctions of predicate, object,
and (in the case of hierarchical propositions) P units, and
unrecruited P units leam to respond to specific combinations
of SP units. The result is that propositions describing the
common elements of the known analogs are encoded into
LTM as a third analog -- a schema. Figure 3 illustrates this
process for one proposition in the "love and flowers"
analogy.

As we will describe more fully below, LISA accomplishes
analogical inference by the same unsupervised learning
algorithm as used for schema induction, except that the
unrecruited units reside not in a completely separate analog
(the to-be-induced schema), but in the target itself.

Simulations

Schema Induction

To simulate the induction of the "love and flowers" schema,
we gave LISA the following analogs (schematized in
Figures 2 and 3):

Analog 1 Analog 2:

love (Jim Mary) love (Bill Susan)

like (Mary roses) like (Susan tulips)
give (Jim Mary roses) give (Bill Susan tulips)

Every object (person or flower) was represented by five
semantic units. All people shared the features person, Jim
and Bill shared malel and male2, and Mary and Susan shared
femalel and female2. Each person also had two unique
features, so that no two people were identical. The flowers
(roses and tulips) were each connected to five semantic units,
three of which they shared. The predicates were represented
by four semantic units each per case role. Love shared two
units with like (emotion and positive) but only one with
give (positive). There was also a third analog containing
only "unrecruited” units -- i.e., units with initially random
connections to one another and (in the case of object and
predicate units) to the semantic units. This analog served as
the schema-learning analog. It had 10 object units, 15
predicate units, 15 SP units, and 10 P units.

Every proposition in Analogs 1 and 2 was selected
(activated) twice during the simulation run. As indices of
mapping and schema induction, we recorded both the final
values of the cross-analog mapping weights and the final
values of the (initially random) connections in the third,

355

schema analog. By the end of the run, there was one object
unit in the schema analog that had leammed large positive
weights (i.e., > 0.7) to the semantic units person, malel and
male2, and very small weights (< 0.2) to all other semantic
units. This unit had been recruited to represent "male
person” and accordingly had developed strong mapping
weights to Jim and Bill and negative weights to all other
objects. A different unit had been recruited to represent
"female person” and a third to represent "generic flower."
These units had strong mapping weights to Mary and Susan
and to roses and tulips, respectively. The predicates recruited
units in an analogous fashion, as did the SP and P units.
Although this was only a "toy" example, LISA's
performance with it suggests that it can induce a relational
schema given specific analogs as examples.

As a more challenging test of LISA's ability to induce
schemas from examples, we gave it simplified descriptions
of Gick and Holyoak's (1980) "tumor" and "fortress" stories.
These stories describe, respectively, situations in which a
doctor uses many weak rays (rather than a single powerful
one) to destroy a stomach tumor, and a general deploys
several small groups of soldiers (rather than one large group)
to capture a fortress. Presented with stories of this type and
given a task in which they must map them onto one
another, people will induce a more general "convergence
schema” describing what the stories have in common (Gick
& Holyoak, 1983).

We gave LISA these stories in a simplified eight-
proposition format and ran them in the same general manner
as for the "loves and flowers" analogy. As was the case for
the previous example, LISA induced a schema by recruiting
one structure unit for each element of the two analogs,
abstracting over common elements (e.g., recruiting a single
new unit for both "tumor" and "fortress”, which play
analogous roles in the two stories), and mapping the
abstracted (schema) elements to the corresponding original
story elements.

Analogical Inference

The same unsupervised learning algorithm that supports
schema induction can be used in LISA to perform inductive
inference by a form of "copy with substitution and
generation” (Falkenhainer et al., 1989; Holyoak, Novick &
Melz, 1994). Here, known elements or relations in one
analog are used to "fill gaps” in a less familiar analog.
Consider, for example, this "uncle" analogy, which we gave
LISA:

Analog | Analog 2:

father (Abe Bill) father (Adam Bob)
brother (Charles Abe) brother (Cary Adam)
uncle (Charles Bill)

In Analog 1, Charles is Bill's uncle, a fact that is explicitly
stated. In Analog 2, Cary is likewise the uncle of Bob, but
this fact is not explicitly stated. We allowed LISA to map
the two propositions in Analog 2 onto Analog 1,
establishing the correspondences (as mapping connection
weights) between Adam and Abe, Bob and Bill, and Cary and
Charles.



We then allowed LISA to map Analog | back onto
Analog 2. When the father and brother propositions in
Analog 1 became active, they simply activated the
corresponding propositions in Analog 2, reinforcing the
established mappings. But when the uncle proposition
became active in Analog 1, there was no corresponding
proposition in Analog 2. Instead, Analog 2 had a collection
of unrecruited units of the type used for schema induction in
the previous examples. Because there were no predicate
units pre-dedicated for the uncle relation, two unrecruited
predicate units learned (without supervision) to respond to
the two places of the uncle relation. The unit recruited for
unclel (the agent of the uncle relation) fired in synchrony
with the Cary unit (because Cary was being driven by
Charles, which was firing in synchrony with unclel in
Analog 1). As a result, an SP unit was recruited to respond
to the conjunction of Cary and unclel. Similarly, a
predicate unit was recruited for uncle2 and an SP unit was
recruited for the conjunction Bob-uncle2. Finally, a P unit
was recruited to respond to these two new SPs. Each of
these units developed strong mapping connection weights to
the corresponding units in Analog 1. The result of these
operations was that LISA "inferred" that Cary is the uncle of
Bob and stored this inference in LTM as a new proposition
in Analog 2.

Conclusion

LISA provides a solution to the problem (forcefully posed
by Fodor & Pylyshyn, 1988) of representing knowledge
over a distributed set of units while preserving systematic
relational structure. Like previous models based on
symbolic or localist-connectionist representations, LISA is
able to retrieve and map analogs based in large part on
structural constraints. But in addition, LISA is able to
capitalize on its distributed representations of meaning to
integrate analogical mapping with a flexible generalization
mechanism. This induction engine can make analogical
inferences about a specific target analog; the same basic
mechanism can create new schemas by finding and coding
the structured intersection between multiple analogs. LISA
thus provides an explanation of why people appear to induce
generalized schemas as a natural consequence of using
analogies (e.g., Novick & Holyoak, 1991; Ross &
Kennedy, 1990). Analogical reasoning provides both the
input and the trigger for inductive learning.
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