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Abstract

Antibiotic-associated diarrhea (AAD) is a common and unintended adverse effect of antibiotic 

treatment. It is characterized by the disruption of the gut microbiota, decreased intestinal short 

chain fatty acid (SCFA) concentrations, accumulation of luminal carbohydrates and colonic bile 

acids, altered water absorption, and ultimately diarrhea. Probiotics were shown to prevent AAD in 

numerous clinical trials. This review examines what is currently known about how probiotics 

reduce the risk for AAD via modulating the gut microbiota, altering nutrient and bile acid 

metabolism, inducing epithelial solute transporter activity, supporting intestinal barrier function, 

and influencing the immune system. Although probiotics are frequently prescribed with antibiotic 

use, mechanistic evidence verifying how they confer protection against AAD is extremely limited. 

This information is urgently needed for improving recommendations for sustaining probiotic 

development and for implementing probiotics in clinical settings.
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Introduction

Antibiotic-associated diarrhea (AAD) is an important morbidity resulting from antibiotic 

use. AAD is more than a bothersome adverse event of antibiotic treatment; it is associated 

with prescription noncompliance and overuse of second-line antibiotics. Although all age 

groups are affected by AAD, children are particularly at risk because they are often placed 

on antibiotics, and the rate of diarrhea associated with antibiotic usage among children is 

between 20 to 35% [1]. AAD is defined as clinically unexplained diarrhea that occurs in 

connection with antibiotic administration. Any antibiotic could potentially cause AAD, but 

broad-spectrum antibiotics that predominantly target anaerobes and are poorly absorbed 

(such as clindamycin, cephalosporins (cefixime and ceftriaxone), and amoxicillin-

clavulanate) have a higher AAD incidence [2].

One of the most commonly prescribed uses of probiotics is for the prevention of antibiotic-

associated diarrhea (AAD). Strains from numerous bacterial species have been tested in 

clinical studies for mitigating AAD including members of the Bacillus, Bifidobacterium, 
Clostridium, Lactobacillus, Lactococcus, Leuconostoc, and Streptococcus genera. Among 

the fungi, Saccharomyces boulardii has also been examined. Lactobacillus rhamnosus strain 

GG and S. boulardii strain CNCM I-745 have been most frequently studied [3,4]. A recent 

(2019) Cochrane review of probiotics for the prevention of pediatric AAD found 33 

randomized clinical trials with 6352 participants meeting the inclusion criteria [5••]. This 

review reported that probiotics conferred a moderate beneficial effect for AAD prevention 

(number needed to treat for an additional beneficial outcome (NNTB) 9, 95% CI 7 to 13). 

Consistent with a prior Cochrane review (2015), the risk ratio of developing AAD was 

significantly reduced when ≥ 5 billion colony forming units (CFUs)/day were consumed [6]. 

It was suggested that 5 to 40 billion CFU/day of L. rhamnosus or S. boulardii, the two most 

commonly applied species, were the most appropriate for preventing AAD in children 

receiving antibiotics [6]. Nonetheless, the certainty of evidence in the Cochrane review was 

ranked as moderate because of minor issues with the risk of bias and inconsistency between 

probiotic strains used [6]. New large, well-designed, multi-centered, randomized trials were 

recommended [6]. Such studies will be difficult to design because many questions remain on 

which strains are most effective and on the appropriate timing and duration of use. 

Understanding the underlying molecular mechanisms of probiotic effects in the 

gastrointestinal (GI) tract would help to address those questions. Therefore, this review 

examines what is presently known about the mechanistic basis for probiotic prevention of 

AAD.

Modulation of gut microbiota composition

Antibiotics cause significant disruptions to the normal composition and functional attributes 

of the gut microbiome [7]. Such deficits can persist well after the cessation of antibiotic 

administration [7] and are associated with the development of obesity, asthma, and 

inflammatory bowel disease (IBD) [8]. Among the numerous impacts of antibiotics on the 

gut microbiome are reductions in microbial taxonomic richness, diversity, and evenness in 

the GI tract [7]. Those drastic changes result in a depletion of the normal gut bacterial 
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residents, and opportunities for colonization by pathogens such as Clostridium difficile. 
Presently, C. difficile is predicted to account for about 20% of all AAD cases [9]. However, 

other opportunistic pathogens, such as Clostridium perfringens, Klebsiella oxytoca, 

Klebsiella pneumonia, Staphylococcus aureus, and Candida species have also been 

associated with AAD [10].

Probiotics are assumed to benefit human health by their direct actions on the composition 

and function of the human gut microbiota [11,12]. However, very few studies on antibiotic 

use have addressed this possibility (Table 1). In a four-week trial with patients treated for C. 
difficile infection, administration of a four-strain capsule of Lactobacillus and 

Bifidobacterium together with antibiotics was associated with significant reductions in the 

duration of C. difficile diarrhea [13]. Examination of fecal contents showed that subjects 

consuming the probiotic capsules contained lower proportions of Verrucomicrobiaceae in 

their stools compared to those given placebo (empty) capsules [14•] (Table 1). Although few 

other probiotic-induced differences in bacterial fecal composition were found [14•], the 

reduced levels of Verrucomicrobiaceae were consistent with the positive association that this 

family has with susceptibility to C. difficile infection [15]. In another study initiated after 

completion of antibiotic treatment for Helicobacter pylori infection, there were fewer 

antibiotic-induced changes to fecal bacterial and fungal composition among subjects taking 

a multi-strain mixture of Bacillus subtilis and Enterococcus faecium compared to subjects 

on a placebo product [16] (Table 1). A similar finding was reported in another study on H. 
pylori treatment, but in that case, the putative probiotic strains were taken during antibiotic 

use [17].

When antibiotics were administered to healthy volunteers, ingestion of S. boulardii CNCM 

I-745 together with a seven-day regime of amoxicillin-clavulanate was associated with 

attenuation of microbiota shifts, including less Escherichia coli overgrowth [18]. A very 

different outcome of putative probiotic-mediated effects on the gut microbiome was found in 

another study wherein healthy volunteers were given a course of ciprofloxacin and 

metronidazole for 7 days and then administered a 28-day course of an 11-strain mixture or 

placebo [19]. Consumption of the microbial preparation resulted in potentially negative and 

persistent consequences on the mucosal and fecal gut microbiome composition (i.e. delayed 

post-antibiotic reconstitution of the indigenous mucosal microbiome composition and the 

host GI transcriptome) and a similar effect was observed in mice [19]. However, it should be 

noted that no clinical endpoints were measured to establish whether that particular study 

design or strain preparation had measurable consequences on human health.

Animal models have also been used to investigate the extent to which the administration of 

(putatively) probiotic microorganisms alter antibiotic-mediated changes to the gut 

microbiome (Table 1). The fecal contents of rats given Lactobacillus paracasei CNCM 

I-3689 prior to, during, and after subcutaneous challenges with clindamycin and oral 

vancomycin-resistant Enterococcus faecalis contained significantly lower levels of 

vancomycin-resistant enterococci (VRE) and showed a better recovery of members of the 

phylum Bacteroidetes after antibiotic treatment was ended [20]. Other studies focused 

specifically on administration of the (putative) probiotic microorganisms after antibiotic use 

[21–23,24•,25•]. Most consistent among the findings was a reduction in the proportions of 
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Proteobacteria [21–23, 24•, 25•,] and an increase in Bacteroides when strains of 

Lactobacillus were consumed [23,24•]. Although several reports noted that Lactobacillus 
consumption did not result in significant changes to the diversity of bacteria in the distal GI 

tract [21,25•], other studies described an improved recovery of the gut microbiota towards 

pre-treatment composition [23,24•,26].

The numerous ways that probiotics could modulate gut microbiome composition have been 

reviewed elsewhere [11]. Specific molecular mechanisms include inhibition of intestinal 

pathogens by the production of anti-bacterial compounds, competitive exclusion either by 

the consumption of limited nutrient resources or adherence to the epithelium, or stimulation 

of indigenous microbial activity (Figure 1). Recently, probiotic E. coli Nissle 1917 was 

found to produce a class of bacteriocins that limit the expansion of competing 

Enterobacteriaceae during intestinal inflammation [27]. The importance of bacteriocins for 

ecological fitness of bacteria in the GI tract was also shown for Gram-positive bacteria such 

as E. faecalis [27]. Pathogen outgrowth could also be inhibited by competitive exclusion by 

probiotics for intestinal binding sites. This capacity was indicated by the inhibition of 

Campylobacter jejuni infection by a Lactobacillus gasseri SBT2055 (LG2055) cell surface-

associated, aggregation-promoting factor which binds to extracellular matrix proteins on 

intestinal cells [28]. Alternatively, end-products of probiotic metabolism could be consumed 

by members of the gut microbiota in cross-feeding interactions. For example, a 

propionogenic bacterial consortium was recently shown to restore fecal propionate levels 

and alter bacterial composition after antibiotic treatment in a model of the human intestinal 

microbial ecosystem (M-SHIME) [29•].

Alter nutrient metabolism in the intestine

Antibiotic-mediated, gut microbiome remodeling also results in significant alterations to 

intestinal metabolomes [30]. Perhaps most important among lumenal metabolite changes is 

the reduction in short-chain fatty acid (SCFA) levels [31,32]. SCFAs butyrate, propionate, 

and acetate are the primary end-products of bacterial carbohydrate metabolism in the GI 

tract and constitute approximately 10% of the human daily caloric requirement [33]. 

Reductions in SCFA biosynthesis might lead to AAD because these compounds promote 

NaCl and water absorption [31]. SCFA are rapidly absorbed by the colon and stimulate Na-

dependent fluid absorption via a cyclic AMP-independent process with Na-H, SCFA-HCO3, 

and Cl-SCFA exchanges [31].

Evidence of probiotic-mediated effects on intestinal SCFA was provided in a human trial 

whereby Lactobacillus plantarum 299V prevented a decrease in SCFA during metronidazole 

use [26] (Table 1). In mice, L. rhamnosus GG was as effective as the butyrate derivative 

tributyrin at preventing antibiotic-induced intestinal injury and reductions in SCFA receptor 

(GPR109a) and transporter (SLC5A8) levels [34]. Because lactobacilli lack the pathways 

necessary for butyrate production, the effect of L. rhamnosus GG was likely the result of 

probiotic-induced, cross-feeding with the gut microbiota to result in increased lumenal 

butyrate levels or via a butyrate-independent mechanism. In another study, Lactobacillus 
acidophilus ATCC4537-secreted compounds were able to prevent enteropathogenic E. coli 
inhibition of butyrate uptake by Caco-2 cells due to a mechanism that involved prevention of 
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monocarboxylate transporter isoform 1 (MCT1) endocytosis [35]. Notably, this activity was 

not found for heat-killed L. acidophilus or for three other Lactobacillus strains tested [35].

Probiotics could contribute directly to intestinal SCFA by the production of organic acids 

such as lactate and acetate or by providing a more hospitable environment for SCFA-

producing bacteria (Figure 1). Acetate production by probiotic Bifidobacterium in the GI 

tract was shown to reduce the risk for enteropathogenic E. coli infection [36]. Probiotic 

metabolism and production of organic acids (e.g. lactate and acetate) in situ could lower 

lumenal pH and oxygen levels as well as provide substrates used for butyrate and propionate 

synthesis by other bacterial GI inhabitants [37]. Additionally, growth of probiotic bacteria in 

the intestine could lead to lower concentrations of undigested carbohydrates, thereby 

reducing the risk of diarrhea caused by disruptions in osmogradients [31].

Direct modulation of solute secretion and absorption

The lack of solute absorption and/or active solute secretion by the intestinal epithelium 

results in watery diarrhea. Solute levels are controlled by a variety of basolateral and apical 

channels and transporters which are responsible for Cl− secretion and the active transport of 

Na+ across the epithelium with parallel Cl− or HCO3− absorption [38,39]. In mice, B. 
subtilis CU1 (CNCM I2745), but not L. plantarum CNCM I-4547, reduced the risk of AAD 

by inducing the expression of higher quantities of the epithelial Na+/H+ exchanger 3 protein 

NHE3, a protein that promotes fluid absorption, and lower levels of cystic fibrosis 

transmembrane conductance regulator (CFTR), a protein with a major role in Cl− secretion 

[40]. In another study, L. acidophilus ATCC4357 prevented Citrobacter rodentium-induced 
diarrhea in mice by counteracting the inhibition of NHE3 [41]. The Cl−/HCO3− exchanger 

protein DRA also remained active with L. acidophilus administration [41]. Additionally, 

Bacteroides fragilis ZY-312 [25•] and L. rhamnosus GG [34] resulted in the increased 

expression of genes coding for aquaporin water-channel membrane proteins (Table 1).

Because of the importance of lumenal solute concentrations in diarrhea development, 

probiotic-mediated alterations to intestinal electrolyte transporters could be a potent 

mechanism for AAD prevention (Figure 1). Besides SCFAs (discussed above), other 

compounds might confer similar effects as was recently shown for gassericin A, a 

bacteriocin made by L. gasseri and Lactobacillus frumenti [42••]. Wild-type L. gasseri, but 

not an isogenic mutant deficient in gassericin A synthesis, was able to prevent diarrhea in 

piglets. Testing of the purified bacteriocin in vitro showed that it increased intestinal fluid 

absorption as a result of inducing higher cellular cyclic nucleotide levels in epithelial cells 

via mechanism involving binding to the membrane protein Keratin 19 (KRT19) and 

activating mTOR (mechanistic Target of Rapamycin) phosphodiesterase activity [42].

Increase secondary bile acid concentrations

In healthy individuals, approximately 95% of lumenal bile acids are reabsorbed in the distal 

ileum [43]. The remaining amounts are modified by intestinal bacteria and then are either 

excreted or passively absorbed [43]. Antibiotics disrupt this process and result in increases 

in colonic primary bile acids, compounds that inhibit epithelial ion transport proteins [43]. 
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Reductions in microbially-modified, secondary bile acids also increase susceptibility to C. 
difficile infection [44].

The potential for probiotics to alter bile acid composition concurrent with antibiotic 

consumption was shown in healthy volunteers given S. boulardii CNCM I-745 [45•] (Table 

1). Fecal samples from individuals on amoxicillin-clavulanate contained higher quantities of 

cholic acid, a primary bile acid, and lower levels of secondary bile acids. Those changes 

were reversed in subjects taking S. boulardii CNCM I-745 [45•]. Although more studies are 

needed to assess the relative importance of bile acid metabolism on probiotic prevention of 

AAD, such outcomes might occur either by direct modification of bile acids by probiotic 

microbes or by broader effects which result in the maintenance/enrichment of certain 

members of the gut microbiome (Figure 1). Direct modification of bile acids with bile salt 

hydrolases (BSH) by Lactobacillus, Bifidobacterium, and Clostridium species is already 

well known. BSHs deconjugate bile acids and the resulting compounds can then be further 

modified to secondary and tertiary bile acids by other intestinal bacteria [43]. A functional 

role for intestinal BSH was demonstrated in mice whereby it was shown that higher BSH 

activity resulted in systemic responses mitigating cardiometabolic impacts of a high fat diet 

[46]. Recently, it was determined that bsh genes are enriched among vertebrate-associated 

Lactobacillus species [47]. An intestine-associated BSH phylotype with the highest 

enzymatic activity was only found in Lactobacillus and not other members of the human gut 

microbiome [48•].

Improve intestinal barrier function

Intestinal epithelial barrier integrity is increasingly understood to be important for the 

pathology of a number of intestinal and systemic diseases [49]. Antibiotics induce deficits in 

barrier function, or a “leaky gut”, according to studies with rodent models (Table 1) but the 

severity of the barrier losses appears to vary depending on the antibiotic used [50]. The 

capacity of certain, administered bacteria to prevent antibiotic-induced disruptions to the 

intestinal epithelium was demonstrated in animal studies (Table 1). A strain of Bacillus 
amyloliquefaciens was associated with improved structural and functional aspects of small 

intestine tissues in piglets given aureomycin [51]. Similar findings were reported for 

Lactobacillus casei CGMCC 12435 and a mixture of Lactobacillus and Bifidobacterium 
strains given to mice after ampicillin treatment [23,24]. Those results were supported by the 

observed increases in transcripts for tight junction proteins [23,24,51]. A high dose of B. 
fragilis ZY-312 (daily administration of 109 CFU) was associated with colonic increases in 

ZO-1 and occludin tight junction proteins, mucin synthesis, and cell markers for epithelial 

cell proliferation [25•]. Currently, specific compounds responsible for probiotic-induced 

changes to epithelial barrier function are largely unknown [52]. Recently, we have shown 

that the bacteriocin Plantaricin EF produced by L. plantarum can prevent pro-inflammatory 

cytokine mediated deficits to barrier integrity in in vitro and that wildtype L. plantarum, but 

not a plantaricin-deficient mutant strain, increases intestinal ZO-1 synthesis in obese mice 

[53•]. Other extracellular bacterial proteins such as the outer membrane pilus-associated 

protein synthesized by Akkermansia mucinophilia can also confer improvements to the 

intestinal barrier [54].
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Alter intestinal immune responses

Antibiotics also affect immune homeostasis. In human subjects, antibiotic use resulted in 

impaired vaccine responses among individuals with low pre-existing antibody titers [55]. 

Antibiotics were also found to induce long-term, macrophage-dependent increases in 

inflammatory T helper 1 (TH1) responses in mice and heightened susceptibility to some 

infections [56].

Putative and established probiotic bacteria and yeast were found to counter antibiotic 

activation of inflammatory pathways in humans [19], piglets [51], and mice [23,24] (Table 

1). Reductions in C-reactive protein, Complement C3, and IgG with administered 

Lactobacillus strains [24] indicate that those microbes might be able to limit the systemic 

effects of antibiotics (Table 1). These findings are consistent with strain-specific 

immunomodulation capacities of probiotics in healthy human subjects and individuals with 

chronic immune-associated diseases (e.g. allergy, asthma) [57,58]. Although the specific 

probiotic cell products able to directly alter immune cell function during antibiotic use are 

not yet known, recent reports show that certain extracellular compounds, such as 

Bifidobacterium exopolysaccharides [59] and Lactobacillus Slayer proteins [60] are 

immunomodulatory. Therefore, there are likely multiple secreted compounds made by 

probiotics which could influence immune system during antibiotic administration (Figure 1).

Conclusions

Results from clinical trials support the use of probiotics for preventing AAD. Therefore, it is 

notable that very few studies have investigated the molecular basis for probiotic AAD 

prevention (Table 1). Most reports have focused on strains that are not commercially 

available and are poorly characterized. Moreover, very few mechanistic studies with humans 

and animal models have directly examined L. rhamnosus GG or S. boulardii CNCM I-745, 

the strains most commonly tested in human trials [6] (Table 1). For these reasons, it is not 

yet possible to report which gut-modulating activities of probiotic microorganisms are the 

most important for protecting against AAD. Just as AAD is result of multiple factors 

connected with antibiotic administration (e.g. disruption of the gut microbiota, decreased 

intestinal SCFA concentrations, accumulation of luminal carbohydrates and colonic bile 

acids, altered water absorption), it is most likely that probiotic effects are multi-factorial and 

are both strain- and host-background dependent. It is also expected that there will be 

mechanistic overlap between strains (e.g. effects due to the production of organic acids) as 

well as strain-specific, host-microbe interactions (e.g. effects due to secretion of strain-

specific enzymes and proteins) [61]. Such effects could be assessed in well-controlled, 

multi-center clinical trials for which intestinal and gut microbiota responses are measured 

and combined with complementary animal model studies using the same protocols. 

Elucidating the molecular mechanisms of probiotic action in the gut is extremely important 

for developing recommendations for existing strains such as the recommended dose, 

frequency, and duration of a probiotic intervention, the value of using multi-strain 

formulations, and the optimal protocols and ingredients for probiotic manufacture and 

carrier delivery. This knowledge is also needed for designing the appropriate assays to select 

the next-generation probiotics.
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Highlights:

• Clinical studies support the use of probiotics for preventing AAD.

• AAD prevention by probiotics is multifactorial and strain dependent.

• Probiotics are associated with gut microbiome modulation upon antibiotic 

use.

• Intestinal bile acids and SCFAs are implicated in probiotic prevention of 

AAD.

• Probiotic effector compounds may regulate intestinal fluid secretion and 

absorption.
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Figure 1. Schematic model of the potential molecular mechanisms responsible for probiotic 
prevention of AAD.
Antibiotic treatment disrupts the composition of the GI tract microbiota, leading to increased 

growth of opportunistic pathogens, the accumulation of undigested carbohydrates, and 

reduced levels of SCFAs and modified bile acids. Probiotics might counter antibiotic-

induced effects in the GI tract by directly impairing pathogen growth or by inducing other 

alterations to gut microbiota composition via SCFA synthesis, production of other secreted 

metabolites such as bacteriocins, or by reducing lumenal pH and O2 levels. Probiotics might 

also cause changes to bile acid composition as well as directly interact with the intestinal 

epithelium and immune system to result in increased gut barrier function and modulation of 

water and solute transport.
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