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Abstract

Performative Prediction: Theory and Practice

by

Juan Carlos Perdomo Silva

Doctor of Philosophy in Engineering- Electrical Engineering & Computer Science

University of California, Berkeley

Professor Peter L. Bartlett, Co-chair

Associate Professor Moritz Hardt, Co-chair

When algorithmic predictions inform social decision-making, these predictions don’t just

forecast the world around them: they actively shape it. Building models that influence

the world is, in fact, often the primary goal of prediction. For example, in medicine, we

predict the risk of a person developing a disease to hopefully minimize the likelihood

that it occurs. In elections, we predict voting preferences with the goal of targeting

information campaigns that are explicitly designed to influence people’s political beliefs.

If done properly, social predictions are performative. They directly interact with the world

around them and change it.

In this thesis, we will first introduce a learning-theoretic framework, performative pre-

diction, that places these problems on formal mathematical grounds. We will illustrate

how the framework can be used to analyze common social prediction dynamics, such as

repeated retraining in response to strategic effects. Furthermore, we will discuss how

it can be used to design decision rules that embrace the distinction between forecasting

future outcomes accurately and steering them towards socially desirable targets.

In the second part of the thesis, we will use these theoretical ideas as a guiding lens to

study early warning systems, a popular class of risk prediction tools used in over half of

US public high schools. We will present the results of a collaboration with the Wisconsin

Department of Public Instruction in which we performed the first large-scale evaluation

of the long-term impacts of early warning systems on graduation rates. At the end, we

will close with a discussion regarding the policy implications of our work.
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Caminante, son tus huellas
el camino y nada más;
caminante, no hay camino,
se hace camino al andar.

Al andar se hace camino
y al volver la vista atrás;
se ve la senda que nunca
se ha de volver a pisar.

Caminante no hay camino,
sino estelas en la mar.

- Antonio Machado
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Chapter 1

Introduction

Whenever algorithmic predictions inform human decision-making, these predictions

don’t just forecast the world around them: they actively shape it.

Building predictors that influence the world is often the entire point of prediction. In

medicine, we predict the risk of a person having a heart attack to hopefully minimize

the likelihood that it occurs. In elections, we predict voting preferences with the goal of

targeting ads that are explicitly designed to influence people’s political beliefs. If done

properly, social predictions are performative; they directly interact with the world around

them and change it.

Once we notice this feedback between predictions and their encompassing environ-

ments, we start to see that performative predictions are pervasive. In addition to exam-

ples listed above, people use data and algorithmic predictions to make better decisions in

finance, education, online job networks, and even in planning for climate change. Any-

where predictions interact with people, changing the behavior of the algorithm directly

influences the observable behavior of the broader social system. This observation is the

intellectual starting point for the results contained in this thesis.

Despite these rich, dynamic interactions between algorithms and their environments,

social prediction problems are typically formalized through the lens of supervised learn-

ing. The central assumption in this framework is that the population in question is well

approximated by a fixed probability distribution from which individuals and outcomes

are drawn randomly. To apply supervised learning in medicine, for example, we must

believe that patients and their individual health outcomes are static quantities that we

passively observe and make predictions on. Crucially, the predictions we make cannot

impact the likelihood of future health outcomes. If we effectively act upon the outputs of

our predictor, we invalidate the central tenet of supervised learning!

Neglecting the feedback, or the lack thereof, between algorithmic predictions and their
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social environment leads to the design of learning systems that lack validity and fail to

address the broader social objectives they were designed for. In the latter part of this

thesis, we will illustrate an unfortunate example of these shortcomings in the context of a

popular class of risk predictors used within US public education.

We believe that artificial intelligence and machine learning will play important roles in

the development of new solutions to challenging social problems. However, the success of

this agenda depends on achieving a rigorous understanding of the issues that arise when

data-driven algorithms interact with people. Over the last few decades, we’ve started

to see exciting progress in this direction. There has been exciting research formalizing

what it means to preserve individual privacy [16], ensure fairness [17], and designing

algorithms that are compatible with economic incentives .

In this thesis, we contribute to this broader agenda by studying a different piece of

the puzzle that has so far been largely neglected by the academic community: the ways

prediction systems can directly influence data distributions. The results of this work are

motivated by what we refer to as the performativity thesis of machine learning.

When we apply prediction to social problems, the population in question is not a static object. It is
dynamic, and a function of the predictive model.

Performativity is a well-studied concept within the social sciences and has been previ-

ously applied to provide new insights in linguistics and economics [6, 51]. In this work, we

bring this rich intellectual tradition to learning theory and place performative prediction

problems on firm mathematical foundations. As hinted at by the title, the thesis has two

main parts: a theoretical component and an empirical case study.

1.1 Part 1: Theoretical Foundations of Performative
Prediction

To articulate concerns and propose solutions, we need to be able to talk about problems

clearly. Therefore, in the first part of this thesis, we introduce a learning-theoretic frame-

work, performative prediction, which formalizes the idea that predictions can directly

change the observed distribution of data.

Sitting in between the generality of reinforcement learning and the simplicity of super-

vised learning, the framework is carefully scoped to capture the specific types of dynamics

present in social prediction problems. On a technical level, we aim to develop a mathe-

matical language that is rich enough to express the impacts of social predictions, yet is not

so broad that positive results become computationally or statistically intractable.
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Performative prediction enables us to make succinct and precise claims regarding the

behavior of learning algorithms in social systems. Conceptually, we divide our theoretical

insights established through this line of work into two distinct categories. In more detail,

in the first part of this thesis we illustrate how the framework enables us to:

1. Analyze the convergence and limiting behavior of common, existing social prediction

dynamics, such as retraining (Chapter 3).

2. Proactively embrace the causal impacts of prediction to find performatively “opti-

mal” decision rules. Importantly, optimality could entail the desire to forecast future

outcomes accurately, as well as to steer data distributions towards socially desirable

targets. (Chapter 4 & 5)

With regards to the first point, when ignored, performativity can surface as a form

of distribution shift. As the decision maker acts according to a predictive model, the

distribution over data points appears to change over time. For example, in bank lending,

people may repeatedly manipulate their features in response to a decision rule with the

hopes of achieving a desired outcome. In practice, the response to such distribution shifts

is to frequently retrain the predictive model as more data becomes available. Retraining

is often considered an undesired — yet necessary — cat and mouse game of chasing a

moving target.

Amongst our theoretical contributions, we analyze the closed-loop behavior of this

repeated retraining dynamic. We identify conditions under which retraining converges to

an equilibrium solution we refer to as performative stability, whereby the deployed model is

minimizes expected risk for the distribution that it induces. Performatively stable models

are fixed points of retraining. Furthermore, under certain conditions they might also have

good predictive performance, but not always. Identifying when and why performatively

stable models perform well from an accuracy or social welfare perspective is a central

focus of our work in Chapter 2.

Moving onto the second point, apart from analyzing existing social prediction dynam-

ics, performative prediction enables the design of new “optimal” learning algorithms that

proactively account for the causal impacts of prediction. If predictions can shape the world

around us, the design space of “optimal” predictors is significantly more expansive than

in supervised learning. In particular, the goals of prediction may not be to just accurately

forecast future outcomes, but also to actively steer them towards socially desirable targets.

Drawing upon a recent and exciting line of work on omniprediction [28, 29], we demon-

strate how one can learn decision rules that are simultaneously “best in class” for many

different high-level objectives in performative settings. These learning algorithms effec-
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tively serve as a “menu” of performatively optimal decision rules that enable decision makers

to flexibly decide on the goals of prediction.

Performative optimality is a distinct solution concept from performative stability. In-

tuitively, it is a wholistic measurement of how well a predictor performs according to

some loss function, while considering the fact that different predictors can induce dif-

ferent distributions. Performatively optimal models can, in general, be difficult to solve

for, in Chapter 4 we identify several natural conditions under which they can be found

efficiently.

Lastly, performative prediction is largely a nascent area of research, and we hope

readers will be inspired to establish new connections between this field and other do-

mains. Throughout our presentation, we will aim to mention several exciting works in

this direction.

1.2 Part 2: Empirical Investigations
Using these theoretical results on performativity as a guiding lens, in the second part of

this thesis we conduct a case study on the use of algorithmic predictions in US public

education.

During the past 15 years, there’s been a boom in the use of early warning systems to

improve low high school graduation rates. Early warning systems are risk assessment

tools which predict the probability that each individual student in middle school will

graduate from high school on-time. Counselors and teachers used these predictions to

identify at-risk students with the goal of individually targeting interventions that keep

students on track to graduate.

Using over a decade’s worth of data from the DEWS program implemented in Wiscon-

sin public schools, we provide the first large-scale evaluation of the long-term impacts of

early warning systems. Quickly summarizing, we find that risk assessments made by the

system are highly accurate. Yet, despite being actively examined by schools, we find no

evidence that the availability of these predictions has led to improved graduation rates in

Wisconsin.

Said otherwise, the risk scores made by the Wisconsin DEWS system are not per-

formative. This is unfortunate since the ideal early warning system should be strongly

performative. Recall that predictions are explicitly made with the intent of changing ed-

ucational trajectories for underserved students. Predicting that a student is at high risk

of dropping out should ideally lead to an effective intervention that ensures students do

graduate on-time. High risk predictions should be self-negating prophecies. This lack of
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performativity stems from misunderstanding the social context in which these predictions

take place.

In search of an explanation behind the accuracy, but non-impact of the DEWS program,

we uncover a robust statistical law present in Wisconsin public schools. Within each school,

academic outcomes are essentially independent of individual student performance. Most

of the variance in the individual likelihoods of on-time graduation come from the fact

that students across schools with different levels of resources and wealth behave very

differently. And this variance is indeed captured by environmental features used within

DEWS that lead to a high level of overall accuracy.

However, students within the same school have nearly identical features and likeli-

hoods of on-time graduation. The lack of within school variance means that assigning

each student in the school the same probability of on-time graduation (i.e. the school

average) is a near-optimal prediction. From the perspective of counselors and school staff,

the predictions provide, little to no new information and are hence largely ignored. It

stands to reason that predictions which are ignored cannot be performative and change

outcomes.

These empirical results have direct policy implications for the use of algorithmic sys-

tems in education. They demonstrate that, due to the degree of racial and socioeconomic

segregation between US school districts, even perfectly implemented individual risk pre-

dictors provide little to no actionable information to counselors needing to make difficult

decisions regarding which students to devote attention to. The overarching barrier to-

wards improving graduation rates in Wisconsin is not how to identify future dropouts

within schools, but rather how to overcome structural differences between schools. We

hope that our work inspires future evaluations of algorithmic systems in public policy

initiatives.
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Part I

Theoretical Foundations of Performative
Prediction
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Chapter 2

The Performative Prediction Framework

In this chapter, we formally present the performative prediction framework.

Conceptually, the goal of our work here is to introduce a set of mathematical definitions

and tools that allow us to clearly reason about the ways predictive models can actively

shape their surrounding social environments. In other words, we turn the performativity

thesis of machine learning, outlined in the introduction, into formal mathematical terms.

The framework brings together different ideas from classical supervised learning, game

theory, and optimal control to provide a new perspective on learning in social systems.

We will do our best to point out the connections and differences to these different fields

as we go along.

The concepts we introduce in this chapter setup the questions we will address later on

regarding the long-term behavior of social prediction dynamics (such as retraining) and

the design of performatively optimal decision rules. The focus of this chapter, however,

is largely not on algorithms, but rather on definitions and illustrating through various

examples how these definitions map onto real world concepts we aim to study. We will

get to algorithms in later chapters.

In particular, the focus of this chapter will be on discussing the ideas of performative

optimality and performative stability. While optimality describes decision rules that are

“best in class” according to some user specified notion of optimality, stable solutions are

a fixed point definition. They describe the limits of retraining dynamics that often occur

in practice when predictions impact the world. While at first glance, these definitions

might seem completely unrelated, we will study how they can in fact describe very

similar prediction models in certain settings. The main technical results on this chapter

describe the similarities and differences between these two definitions with the aim of

contextualizing later algorithmic results.
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2.1 Main Definitions
Performative prediction is a decision-theoretic framework that extends the classical sta-

tistical theory underlying risk minimization. The goal of risk minimization is to find

a decision rule, specified by model parameters �, that performs well on a fixed joint

distribution𝒟 over features 𝑥 and an outcome variable 𝑦.

For example, in linear regression where we make predictions �̂� = �⊤𝑥 , the goal is to

find the vector of parameters �★
that minimizes the average squared error:

�★ ∈ arg min

�
E(𝑥,𝑦)∼𝒟

[
(𝑦 − �⊤𝑥)2

]
.

Throughout our presentation in this chapter, we focus on predictive models 𝑓� that are

parametrized by a vector � ∈ Θ, where the parameter space Θ ⊆ R𝑑 is a closed, convex set.

In terms of notation, we will refer to predictive models both as � and 𝑓�, interchangeably.

Lastly, whenever we define a variable �∗ = arg min� 𝑔(�) as the minimizer of a function 𝑔,

we resolve the issue of the minimizer not being unique by setting �★
to an arbitrary point

in the arg min� 𝑔(�) set.

The Distribution Map
Whenever predictions are performative, the choice of predictive model affects the observed

distribution over instances 𝑧 = (𝑥, 𝑦). We formalize this intuitive notion by introducing

the idea of a distribution map𝒟(·).
The distribution map is a function from the set of model parameters to the space of

distributions. For a given choice of parameters �, we think of𝒟(�) as the distribution over

features and outcomes that results from making decisions according to the model specified

by �. This mapping from predictive model to distribution is the key conceptual device of

our framework and mathematizes the performativity thesis outlined in the introduction.

The distribution map is quite powerful in terms of the kinds of dynamics it can describe.

In particular, the choice of model can influence the marginal distribution over features 𝑋

or the conditional distribution over outcomes𝑌. It can also change both of these quantities

simultaneously.

We call a problem feature performative if the choice of model 𝑓� affects the distribution

over𝑋.1 Alternatively, we say a problem is outcome performative if the marginal distribution

over features is static and unaffected by 𝑓�, but the conditional distribution over 𝑌 is

1
Formally, performative prediction subsumes strategic classification [33]. In this learning problem, an

institution makes predictions on people. As a response to the system, individuals manipulate their features

with the goal of achieving a desirable classification.
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influenced by the predictor. Lastly, we will say a problem is jointly performative, or just

performative for short, if 𝑓� influences the joint distribution over (𝑥, 𝑦).

Example 2.1.1 (financial trading). To illustrate these different types of performative effects,

consider the task of predicting the future price of a commodity (e.g., oil) in order to inform

trading decisions. Depending on the choice of features, the problem exhibits different

kinds of performativity.

If we use the temperature today to predict the price of oil tomorrow, the features are

not performative. However, the future price of oil tomorrow is affected by our prediction

since the prediction shapes trading activity which ultimately determines prices. This

problem is hence outcome performative, but not feature performative. If in addition to

temperature, we also incorporated some index of consumer demand into our feature set,

then the problem becomes jointly performative. Demand depends on prices which are in

turn influenced by our predictions.

While we might have some intuition regarding what subsets of the observed data are

actively influenced by the predictive model, we generally assume that the distribution

map𝒟(·) is unknown to the learner. To improve the quality of their model, the learner can

however observe the kind of data that it induces. If they deploy a model �, the learner

gets to observe samples (𝑥, 𝑦) ∼ 𝒟(�), where𝒟(�) is some arbitrary distribution that may

be significantly different for different models 𝑓�.

The Performative Risk
Given that different models induce different distributions, a natural objective in perfor-

mative prediction is to evaluate a model � on the resulting distribution 𝒟(�). Here,

performance is measured via some loss function ℓ . This results in a notion we call the

performative risk, defined as

PR(�) := E𝑧∼𝒟(�)ℓ (𝑧;�) . (2.1)

Relative to objectives like the expected risk is supervised learning, the model parameters

� appear in two places within the expression for the performative risk.2 This additional

dependence of the distribution on the model parameters means that the performative risk

may not be convex in �, even if the loss is a convex function of �. Understanding when

and why the performative risk is convex is the central focus of Chapter 4.

Remark 2.1.2 (regarding loss functions). At a high level, a loss function is a way for us to

express preference over (data, prediction) pairs. In performative prediction, the kinds of

preferences we want to express may differ significantly from those in supervised learning.

2
In supervised learning, there is a fixed data distribution𝒟 and the expected risk is: E𝑧∼𝒟ℓ (𝑧, �).
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For example, when performing supervised learning over binary outcomes (assume

�̂� , 𝑦 ∈ {0, 1}), we often optimize the 0-1 loss 1{𝑦 ≠ �̂�} since we prefer accurate predictions.

That is, predictions that accurately forecast future outcomes.

In performative settings, predictions can actively shape the data. Therefore, we might

not only care about accuracy, but also steering outcomes towards particular targets. For

instance, in education, we might not just want to accurately predict which students will

graduate from high school on time, but also maximize the likelihood that they do graduate.

We might express this desire to steer objectives by including losses such as ℓ (�̂� , 𝑦) = 1− 𝑦
(here, 𝑦 = 1 indicates on-time graduation).3

We examine this question regarding the choice of loss and how it relates to the overar-

ching goals of prediction in Chapter 5. However, we include this remark here to encourage

the reader to think of the loss ℓ in the performative risk as something that can be quite

different from classical objectives in learning theory (e.g. 0-1 or squared loss).

Performative Optimality
The performative risk is a way of measuring how well a model is doing according to

a specific objective. This definition naturally motivates that concept of a performatively
optimal predictor, a model that achieves the minimum possible performative risk:

Definition 2.1.3. A predictor 𝑓�PO
is performatively optimal with respect to a loss function

ℓ and a class of models { 𝑓� : � ∈ Θ} if the following relationship holds:

�PO = arg min

�∈Θ
E𝑧∼𝒟(�)ℓ (𝑧;�).

That is, �PO = arg min�∈Θ PR(�).

The following example illustrates the differences between the traditional notion of

optimality in supervised learning and performative optima.

Example 2.1.4 (biased coin flip). Consider the task of predicting the outcome of a biased

coin flip where the bias of the coin depends on a feature 𝑥 and the prediction 𝑓�(𝑥).
In particular, define𝒟(�) in the following way. The feature 𝑥 is a 1-dimensional feature

supported on {±1} and 𝑌 | 𝑋 ∼ Bernoulli(1
2
+ �𝑋 + 𝜖�𝑋) with � ∈ (0, 1

2
) and 𝜖 < 1

2
− �.

Assume that the class of predictors consists of linear models of the form 𝑓�(𝑥) = �𝑥 + 1

2

and that the objective is to minimize the squared loss: ℓ (𝑧;�) = (𝑦 − 𝑓�(𝑥))2.

3
Note that this steering loss does not depend explicitly on �̂� or �. The choice of � influences the

performative risk PR(�) = E(𝑥,𝑦)∼𝒟(�)1 − 𝑦 only via the performative effects of � on the distribution over

outcomes 𝑦.
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The parameter 𝜖 represents the performative aspect of the model. If 𝜖 = 0, outcomes

are independent of the assigned scores and the problem reduces to a standard supervised

learning task where the optimal predictive model is the conditional expectation 𝑓�SL
(𝑥) =

E[𝑌 | 𝑋 = 𝑥] = 1

2
+ �𝑥, with �SL = �.

In the performative setting with 𝜖 ≠ 0, the optimal model �PO balances between its

predictive accuracy as well as the bias induced by the prediction itself. In particular, a

direct calculation demonstrates that

�PO = arg min

�∈[0,1]
E𝑧∼𝒟(�)

(
𝑌 − �𝑋 − 1

2

)
2

⇐⇒ �PO =
�

1 − 2𝜖
.

Hence, the performative optimum and the supervised learning solution are equal if 𝜖 = 0

and diverge as the performativity strength 𝜖 increases.

Performative Stability & Retraining
Apart from performative optimality, an alternative, natural property for a model 𝑓� to

satisfy is that, given that we use the predictions of 𝑓� as a basis for decisions, those

predictions are also simultaneously optimal for the distribution that the model induces.

We introduce the notion of performative stability to refer to predictive models that satisfy

this condition.

Definition 2.1.5 (performative stability and decoupled risk). A model 𝑓�PS
is performatively

stable if the following relationship holds:

�PS = arg min

�
E𝑧∼𝒟(�PS)ℓ (𝑧;�).

If we define DPR(�, �′) := E𝑧∼𝒟(�)ℓ (𝑧;�′) as the decoupled performative risk; then,

�PS = arg min

�
DPR(�PS, �).

A performatively stable model 𝑓�PS
minimizes the expected loss on the distribution

𝒟(�PS) resulting from deploying 𝑓�PS
in the first place. Consequently, performatively

stable models are the fixed points of repeated retraining.

Repeated retraining, or repeated risk minimization (RRM), is a natural learning dy-

namic that arises in practice whenever predictions are performative. A learner deploys

a model 𝑓�, and after deployment, realizes that its performance has degraded since the

distribution has changed (due to the performative effects of prediction). As a heuristic

way to combat this distribution shift, the learner fits a new model to the observed data

and redeploys. More formally:
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Definition 2.1.6 (RRM). Repeated risk minimization (RRM) refers to the procedure where,

starting from an initial model 𝑓�0
, we perform the following sequence of updates for every

𝑡 ≥ 0:

�𝑡+1 = 𝐺(�𝑡) := arg min

�∈Θ
E𝑧∼𝒟(�𝑡)ℓ (𝑧;�).

A model that is performatively stable eliminates the need for retraining since any

retraining procedure would simply return the same model parameters. This definition

and its connection to retraining invites a number of exciting questions.

First of all, unlike performative optimality, stability is a fixed point definition. There-

fore, it not at all clear that these stable solutions even exist! There is the possibility that

once we begin retraining, we might continue doing so forever without reaching a fixed

point. Furthermore, even if there do exist, can we guarantee that they are unique? Lastly,

what can we say about their performative risk? Are stable points ever close to performative

optima? We will answer all of these over the following chapters.

Before moving on, we observe that performative optimality and performative stability

are in general two distinct solution concepts. Performatively optimal models need not

be performatively stable and performatively stable models need not be performatively

optimal. We illustrate this point in the context of our previous biased coin toss example.

Example 2.1.4 (continued). Consider again our model of a biased coin toss. In order for a

predictive model 𝑓� to be performatively stable, it must satisfy the following relationship:

�PS = arg min

�∈[0,1]
E𝑍∼𝒟(�PS)

(
𝑌 − �𝑋 − 1

2

)
2

⇐⇒ �PS =
�

1 − 𝜖
.

Solving for �PS directly, we see that there is a unique performatively stable point.

Therefore, performative stability and performative optimality need not identify. In fact,

in this example, they identify if and only if 𝜖 = 0. Note that, in general, if the distribution

map 𝒟(�) is constant across �, performative optima must coincide with performatively

stable solutions. Furthermore, both coincide with "static" supervised learning solutions

as well.

For ease of presentation, we refer to a choice of parameters � as performatively stable

(optimal) if the model parametrized by �, 𝑓� is performatively stable (optimal). We will

occasionally also refer to performative stability as simply stability.
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Remark 2.1.7. Performative stability and optimality can be expressed via the decoupled

performative risk as follows:

�PS is performatively stable ⇔ �PS = arg min

�
DPR(�PS, �),

�PO is performatively optimal ⇔ �PO = arg min

�
DPR(�, �).

2.2 Contrasting Optimality and Stability
As discussed previously, performative stability and performative optimality are in general

distinct solution concepts. Consequently, they can differ significantly in terms of their

relevant performative risks. In this section, we aim to contextualize exactly how different

stability and optimality can be, and start to see when we might prefer one vs another.

More concretely, the main goal of this subsection is to set the stage for later algorithmic

results. As we will later see, different algorithms lead to different solutions. Repeated re-

training of machine learning models leads to performative stability. And, depending on the

strength of performative effects, these stable solutions may or may not be approximately

performatively optimal. By understanding when stability why and optimality differ, we

can begin to understand when simple algorithmic solutions, like repeated retraining,

achieve good predictive performance, versus when they do not.

We begin by introducing several technical conditions that are relevant for this analysis.

One of the core assumptions of the performativity framework is that similar predictive

models induce similar distributions. The intuition behind this assumption is quite natural.

If two models make very similar predictions, then any subsequent decisions will also be

quite similar, and hence induce similar distributions. More formally, we assume that the

distribution map 𝒟(·) is a Lipschitz function of the model parameters �. We refer to this

condition as 𝜖-sensitivity:

Definition 2.2.1 (𝜖-sensitivity). We say that a distribution map 𝒟(·) is 𝜖-sensitive if for all

�, �′ ∈ Θ:

𝑊1

(
𝒟(�),𝒟(�′)

)
≤ 𝜖∥� − �′∥2, (2.2)

where𝑊1 denotes the Wasserstein-1 distance, or earth mover’s distance and ∥ · ∥2 denotes

the Euclidean norm.

The earth mover’s distance is a natural notion of distance between probability distri-

butions that provides access to a rich technical repertoire [85, 86]. Furthermore, we can

verify that it is satisfied in various settings.
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Example 2.2.2. A simple example where this assumption is satisfied is for a Gaussian

family. Given � = (�, 𝜎1, . . . , 𝜎𝑝) ∈ R2𝑝
, define 𝒟(�) = 𝒩(𝜖1 �, 𝜖2

2
diag(𝜎2

1
, . . . , 𝜎2

𝑝)) where

𝜖1, 𝜖2 ∈ R. Then𝒟(·) is 𝜖-sensitive for 𝜖 = max

{
|𝜖1 |, |𝜖2 |

}
.

Example 2.1.1 (continued). The following, stylized data generating process for the fi-

nancial trading example from before is also 𝜖-sensitive. Assume we predict oil prices as a

linear function of some features 𝑥 that are not affected by prediction. Since outcomes are

performative, we might imagine the following model for the distribution map:

(𝑥, 𝑦) ∼ 𝒟(�) ⇐⇒ (𝑥
base

, 𝑦
base
) ∼ 𝒟

base
and (𝑥, 𝑦) =

(
𝑥

base
, 𝑦

base
+ 𝜖′ · (�⊤𝑥

base
− 𝑦

base
)
)

That is, there is some base distribution over features and outcomes 𝒟
base

. In a type of

self-fulfilling prophecy, if we make a prediction �̂� = �⊤𝑥, the true prices are nudged closer

to our predicted prices by a factor of 𝜖 · (�̂� − 𝑦
base
), since trading based off the predictions

moves the true prices. If features have bounded norm, sup𝑥 ∥𝑥∥2 ≤ 𝐵, then 𝒟(·) is 𝜖
sensitive for 𝜖 = 𝜖′𝐵.

In addition to 𝜖-sensitivity, we will make repeated use of the following definitions

throughout the remainder of our presentation. To facilitate readability, we let

𝒵 := ∪�∈Θsupp(𝒟(�)).

We say that a loss function ℓ (𝑧;�) is 𝛾-strongly convex in � if for all �, �′ ∈ Θ and 𝑧 ∈ 𝒵,

ℓ (𝑧;�) ≥ ℓ (𝑧;�′) + ∇�ℓ (𝑧;�′)⊤(� − �′) + 𝛾

2

∥� − �′∥2
2
. (2.3)

If this holds only for 𝛾 = 0, we say that a function is simply convex, or weakly convex.

A loss function ℓ (𝑧;�) is 𝐿𝑧-Lipschitz in 𝑧 if for all � ∈ Θ and 𝑧, 𝑧′ ∈ 𝒵,

|ℓ (𝑧;�) − ℓ (𝑧′;�)| ≤ 𝐿𝑧 ∥𝑧 − 𝑧′∥2. (2.4)

Likewise, ℓ is 𝐿�-Lipschitz in � if for all 𝑧 ∈ 𝒵 and �, �′ ∈ Θ,

|ℓ (𝑧;�) − ℓ (𝑧;�′)| ≤ 𝐿�∥� − �′∥2. (2.5)

The first result of this section shows that, under appropriate regularity conditions on

the loss function, if 𝒟(·) is 𝜖-sensitive, all performative optima and stable points lie in a

ball of radius at most 𝒪(𝜖).
Recall that the value of 𝜖 in the definition of 𝜖-sensitivity is a measure how strongly

predictions can influence the observed data distribution. Small values of 𝜖 indicate that

the data changes very weakly, and smoothly, as a function of our predictions. On the other

hand, larger values allow for different models to induce vastly different distributions.
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Theorem 2.2.3. Suppose that the loss ℓ (𝑧;�) is 𝐿𝑧-Lipschitz in 𝑧 (2.4), 𝛾-strongly convex in �
(2.3), and that the distribution map𝒟(·) is 𝜖-sensitive (2.2). Then, for every performatively stable
point �PS and every performative optimum �PO:

∥�PO − �PS∥2 ≤
2𝐿𝑧𝜖
𝛾

.

Proof. By definition of performative optimality and performative stability we have that:

DPR(�PO, �PO) ≤ DPR(�PS, �PS) ≤ DPR(�PS, �PO).

We claim that DPR(�PS, �PO) −DPR(�PS, �PS) ≥ 𝛾
2
∥�PO − �PS∥2

2
. By definition of DPR, we

can write

DPR(�PS, �PO) −DPR(�PS, �PS) = E𝑍∼𝒟(�PS)
[
ℓ (𝑍;�PO) − ℓ (𝑍;�PS)

]
.

Since ℓ (𝑧;�PO) ≥ ℓ (𝑧;�PS) +∇�ℓ (𝑧;�PS)⊤(�PO −�PS) + 𝛾
2
∥�PO −�PS∥2

2
for all 𝑧, we have that

E𝑍∼𝒟(�PS)
[
ℓ (𝑍;�PO) − ℓ (𝑍;�PS)

]
≥ E𝑍∼𝒟(�PS)

[
∇�ℓ (𝑍;�PS)⊤(�PO − �PS)

]
+ 𝛾

2

∥�PO − �PS∥2
2
. (2.6)

Now, by the first order optimality conditions for convex functions,

E𝑍∼𝒟(�PS)
[
∇�ℓ (𝑍;�PS)⊤(�PO − �PS)

]
≥ 0,

so we get that equation (2.6) implies that:

E𝑍∼𝒟(�PS)
[
ℓ (𝑍;�PO) − ℓ (𝑍;�PS)

]
≥ 𝛾

2

∥�PO − �PS∥2
2
.

Since the population distributions are 𝜖-sensitive and the loss is 𝐿𝑧-Lipschitz in 𝑧, we have

that DPR(�PS, �PO) − DPR(�PO, �PO) ≤ 𝐿𝑧𝜖∥�PO − �PS∥2. If 𝜖 < 𝛾∥�PO−�PS∥2
2𝐿𝑧

then we have

that 𝐿𝑧𝜖∥�PO − �PS∥2 < 𝛾
2
∥�PO − �PS∥2

2
which is a contradiction since it must hold that

DPR(�PS, �PO) −DPR(�PO, �PO) ≥ DPR(�PS, �PO) −DPR(�PS, �PS).

□

The main message of this theorem is that in cases where the performative effects are

small, performatively stable solutions are not all that different from performative optima.

This makes intuitive sense. If 𝜖 = 0, the distribution map is a constant function. In

this case, performative prediction reduces to supervised learning since data is drawn

from a fixed distribution 𝒟 for all models 𝑓�. As noted in Example 2.1.4, if there is no
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performativity, performative optima, performatively stable points, and the supervised

learning optima all identify. What this theorem shows is that the extent to which these

concepts differ degrades smoothly with the strength of performativity.

Furthermore, under additional regularity conditions on the loss, we can show that

performatively stable points are not only close in parameter space to performative optima,

they also approximately minimize the performative risk:

Corollary 2.2.4. Assume that the loss function ℓ is 𝐿𝑧- and 𝐿�-Lipschitz in 𝑧 (2.4) and � (2.5)

respectively, and 𝛾-strongly convex in � (2.3). If the distribution map is 𝜖-sensitive (2.2), then any
performative optimal model �PO and performatively stable solution �PS satisfy:

PR(�PS) − PR(�PO) ≤
2𝐿𝑧𝜖(𝐿� + 𝐿𝑧𝜖)

𝛾
.

Proof. The proof follows from applying Theorem 2.2.3 and the dual formulation of the

earth mover’s distance (i.e Kantorovich-Rubinstein, Lemma 3.5.1):

PR(�PS) − PR(�PO) ≤
��
PR(�PS) −DPR(�PS, �PO)

�� + ��
DPR(�PS, �PO) − PR(�PO)

��
≤ 𝐿�∥�PO − �PS∥ + 𝐿𝑧𝜖∥�PO − �PS∥

≤ 2𝐿𝑧𝜖(𝐿� + 𝐿𝑧𝜖)
𝛾

.

□

Remark 2.2.5. Note that Corollary 2.2.4 and Theorem 2.2.3 hold for any pair of performative

optima �PO and performatively stable models �PS. Neither of these needs to be unique. It

could also be the case that performatively stable points do not even exist, in which case

the results are vacuously true.

However, this idea that stable points are nearly performatively optimal is only true

if performative effects are very weak. That is, 𝜖 is vanishingly small relative to all other

problem parameters. If 𝜖 is small, but not vanishingly small, Theorem 2.2.3 can be vacuous

as we will now see.

Proposition 2.2.6. For any 𝛾,Δ, and 𝜖 > 0, there exists a performative prediction problem where
the distribution map is 𝜖-sensitive and the loss is Lipschitz in both 𝑧 and �, as well as 𝛾-strongly
convex in � and smooth in 𝑧. Yet, the unique stable point �PS maximizes the performative risk and

PR(�PS) −min

�
PR(�) ≥ Δ.
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Proof. Let 𝑧 ∼ 𝒟(�) be a point mass at 𝜖�, and define the loss to be:

ℓ (𝑧;�) = −𝛽 · �⊤𝑧 + 𝛾

2

∥�∥2
2
,

for some 𝛽 ≥ 0. This loss is 𝛾-strongly convex and the distribution map is 𝜖-sensitive. A

short calculation shows that the performative risk simplifies to

PR(�) =
(𝛾

2

− 𝜖𝛽
)
· ∥�∥2

2
. (2.7)

For 𝜖 ≠ 𝛾/𝛽, there is a unique performatively stable point at the origin (� = 0). For 𝛽 large

enough, 𝜖 > 𝛾
2𝛽 this point is the unique maximizer of the performative risk. Moreover, for

𝜖 > 𝛾
2𝛽 , min� PR(�) = (𝛾/2 − 𝜖𝛽) ·max�∈Θ ∥�∥2

2
. Therefore, depending on the radius of Θ,

the suboptimality gap of �PS can be arbitrarily large. □

While the loss is Lipschitz in the counterexample above, the Lipschitz constant scales

the diameter of the parameter spaceΘ. In particular, the Lipschitz constant 𝐿𝑧 is equal to 𝛽 ·
max�∈Θ ∥�∥2. Therefore, Theorem 2.2.3 states that stable points and optima are at distance

at most
2𝐿𝑧𝜖
𝛾 =

2𝛽𝜖
𝛾 max�∈Θ ∥�∥2. When 𝜖 > 𝛾

2𝛽 , as assumed in the proof of Proposition 2.2.6,

this bound on the distance becomes vacuous: ∥�PS − �PO∥2 ≤ max�∈Θ ∥�∥2.

Remark 2.2.7. Not that for 𝛾/(2𝛽) < 𝜖 < 𝛾/𝛽, the performative risk is a concave function

in �, PR(�) = −𝑐∥2∥2 for some 𝑐 > 0. Hence, the performative risk can be non-convex

even if the loss ℓ is smooth and strongly convex with 𝜖 smaller than the inverse condition

number 𝛾/𝛽.

Conclusion.

Summarizing, in this chapter we have defined the main elements of the performative

prediction framework, such as the distribution map𝒟(·) and the performative risk PR(·).
Furthermore, we’ve defined the two main solution concepts: performative stability and

performative optimality. Performative stability is a fixed point definition whereby models

minimize expected risk over the distribution they induce. Whereas, performative opti-

mality is, in general, a distinct concept guaranteeing that a predictor achieves minimal

performative risk. If the loss functions are well-conditioned, and the performative ef-

fects are vanishingly small, then these solutions achieve similar predictive performance.

However, if performative effects are lower bounded by a constant, stability comes with no

general guarantees: stable solutions can in fact maximize the performative risk.
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2.3 Chapter Notes
The performative prediction framework was introduced in [65] where the authors defined

the main concepts and introduced the major theorems relating stability and optimality.

Proposition 2.2.6 was presented in [59] as motivation for studying algorithms for finding

performatively optimal solutions.

Since its introduction, the ideas behind performative prediction have found several

interesting applications. Hardt et al. use the performative prediction lens to study notions

of market power in economics. As part of their analysis, they provide an interesting

decomposition of the performative risk of a predictive model into terms that represent

forecasting and steering, where steering captures the ability of a firm to influence consumer

behavior. Furthermore, Malik [52] illustrates how prediction algorithms in the housing

market can be performative and induce feedback loops in real estate prices. Mandal et al.

[53] extend these ideas to reinforcement learning to formalize the notion that predictions

can change the underlying transition to dynamics of a Markov decision process.

Several different works study performativity in a game theoretic context where mul-

tiple agents are making predictions simultaneously and jointly influencing the observed

data distribution [48, 64, 67]. In biology, [22, 23] establish an exciting connection between

performative prediction and feedback design loops that arise when prediction systems

are used to study the design of biological sequences (e.g proteins). Lastly, performativ-

ity has been used to analyze the kinds of dynamics present in recommendation systems

where algorithmic predictions determine the content shown to users and can slowly shape

preferences over time [19].
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Chapter 3

Understanding Retraining

In the previous chapter, we introduced the concept of the performative risk as a way to

measure the value of the prediction rule in settings where predictions are performative

and can actively change data distributions. While performative optima are by definition

“best-in-class”, according to this measure of performance, if predictions are only weakly

performative, an alternative solution concept, performative stability, is also near optimal.

This observation has strong implications regarding the validity and impact of common

machine learning practices. Often times, people heuristically respond to performative

effects of prediction by repeatedly retraining their machine learning models. For example,

• According to their recently open-sourced code, Twitter, a major social media site,

trains a model to predict the likelihood that each of their users will interact with a

particular tweet [81]. Tweets are ranked according to these predictions and the top

few tweets are then displayed to the user.

These predictions are evidently performative. If the model predicts a user is unlikely

to engage with a tweet, they will never observe that piece of content, and hence never

click on it. The opposite behavior holds for tweets predicted to be highly relevant.

Furthermore, these models are “continuously trained” on historical datasets of user-

tweet interactions [80]. These datasets were themselves influenced by predictions

generated by historical models. This yields a feedback loop whereby the previous

model predictions partly determine what the new deployed model will be.

• Google uses supervised learning methods to predict the estimated travel time for

people using its maps system [14, 47]. These travel time predictions inform user’s

decisions regarding which route to take. Consequently, they have the potential to be

highly performative [50].
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If we predict that a particular route has a relatively low travel time, drivers will be

more likely to choose it, hence increasing traffic on this route and altering the true

travel time.

As in the Twitter example, these models are periodically retrained on the most

recently available traffic data [47]. That is, Google finds the the model that minimizes

the empirical risk over the data induced by the previously deployed predictor.

Both of these examples almost exactly match our definition of repeated retraining

(Definition 2.1.6):

1. The learner deploys a model �𝑡 and observes samples drawn (𝑥, 𝑦) ∼ 𝒟(�𝑡).

2. As a response to the distribution shift, the learner retrains and computes:1

�𝑡+1 ≈ arg min

�∈Θ
E𝑧∼𝒟(�𝑡)ℓ (𝑧;�).

3. The new model �𝑡+1 is deployed and the process starts over again.

The main results of this chapter are algorithmic in nature. Informally speaking, they

state that if the performative effects are weak, and well-conditioned, several variants of

this natural retraining dynamic are guaranteed to rapidly converge to a stable point.

Taken together, our results provide a new perspective on retraining. If performative

effects are a second-order concern (that is predictions only impact the observed data

very slightly), retraining is actually a principled way to approach performative prediction

problems; this dynamic will quickly converge to an approximately optimal solution. As-

suming the relevant loss functions adequately express our social preferences,2 these results

establish how machine learning systems such as the Twitter recommendation algorithm

or the Google ETA model are not haphazard heuristics, but theoretically well-founded

approaches to social prediction.

1
We intentionally use ≈ to indicate that the exact update rule might vary from problem to problem.

However, the key idea is that one tries to minimize expected risk overt the distribution induced by the

previous model.

2
This assumption regarding the choice of loss is crucial. Claims regarding the social benefits of retraining

are evidently vacuous if there is a strong mismatch if our mathematical objectives are poor proxies for social

value. See discussion in Chapter 5
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3.1 Retraining in the Limit of Infinite Data

Exact Retraining
We begin our presentation by considering the simplest and idealized version of repeated

risk minimization as seen in Definition 2.1.6. In this setting, the learner deploys a model

�𝑡 and then finds the exact population risk risk minimizer,

�𝑡+1 = 𝐺(�) := arg min

�
E𝑧∼𝒟(�𝑡)ℓ (𝑧;�).

In the real world, the distribution map is not known, hence this algorithm cannot be

practically implemented. Nevertheless, it serves as a useful starting point for our analysis

of retraining procedures that will guide later results.

As one might imagine, we need to make some assumptions, on both the loss function

ℓ and the distribution map 𝒟(·), in order to prove that retraining dynamics are nicely

behaved. Otherwise, performatively stable points might not even exist as per the following

example:

Example 3.1.1. Consider optimizing the squared loss ℓ (𝑧;�) = (𝑦 − �)2, where � ∈ [0, 1]
and the distribution of the variable 𝑦, according to𝒟(�), is a point mass at 0 if � ≥ 1

2
, and

a point mass at 1 if � < 1

2
.

Clearly, there is no performatively stable point for this problem, and RRM will simply

result in the infinite, alternating sequence 1, 0, 1, 0, . . . .

In addition to conditions like 𝜖-sensitivity and strong convexity, throughout this chap-

ter we will often assume that loss function is smooth. We say that a loss function ℓ is

𝛽𝑧-smooth in 𝑧 if the gradient of the loss function with respect to � is Lipschitz in 𝑧.3 More

formally, ℓ is 𝛽𝑧-smooth in 𝑧 if for all � ∈ Θ:

∥∇�ℓ (𝑧, �) − ∇�ℓ (𝑧′, �)∥2 ≤ 𝛽𝑧 ∥𝑧 − 𝑧′∥2. (3.1)

Likewise, we say that ℓ is 𝛽�-smooth in � if for all 𝑧

∥∇�ℓ (𝑧, �) − ∇�ℓ (𝑧, �′)∥2 ≤ 𝛽�∥� − �′∥2. (3.2)

Lastly, a loss is 𝛽-jointly smooth if it is both 𝛽𝑧-smooth in 𝑧 and 𝛽�-smooth in � for

𝛽𝑧 , 𝛽� ≤ 𝛽. With these preliminaries out of the way, we are now ready to state our main

result regarding the convergence of repeated risk minimization.

3
Note that even though the Lipschitzness condition is with respect to 𝑧, the gradient of the loss ℓ is taken

with respect to �.
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Theorem 3.1.2. Suppose that the loss ℓ (𝑧;�) is 𝛽-smooth in 𝑧 (3.1) and 𝛾-strongly convex in �
(2.3). If the distribution map𝒟(·) is 𝜖-sensitive (2.2), then the following statements are true:

(a) ∥𝐺(�) − 𝐺(�′)∥2 ≤ 𝜖
𝛽
𝛾 ∥� − �′∥2, for all �, �′ ∈ Θ.

(b) If 𝜖 < 𝛾
𝛽 , the iterates �𝑡 of RRM converge to a unique performatively stable point �PS at a

linear rate: ∥�𝑡 − �PS∥2 ≤ 𝛿 for all 𝑡 ≥
(
1 − 𝜖

𝛽
𝛾

)−1

log

(
∥�0−�PS∥2

𝛿

)
.

Proof. Fix �, �′ ∈ Θ. Let 𝑓 (𝜑) = E𝑧∼𝒟(�)ℓ (𝑧; 𝜑) and 𝑓 ′(𝜑) = E𝑧∼𝒟(�′)ℓ (𝑧; 𝜑). Since 𝑓 is

𝛾-strongly convex and 𝐺(�) is the unique minimizer of 𝑓 (𝑥)we know that,

𝑓 (𝐺(�)) − 𝑓 (𝐺(�′)) ≥ (𝐺(�) − 𝐺(�′))⊤ ∇ 𝑓 (𝐺(�′)) +
𝛾

2

∥𝐺(�) − 𝐺(�′)∥2
2

𝑓 (𝐺(�′)) − 𝑓 (𝐺(�)) ≥ 𝛾

2

∥𝐺(�) − 𝐺(�′)∥2
2

Together, these two inequalities imply that

−𝛾∥𝐺(�) − 𝐺(�′)∥2
2
≥ (𝐺(�) − 𝐺(�′))⊤ ∇ 𝑓 (𝐺(�′)).

Next, we observe that (𝐺(�) − 𝐺(�′))⊤∇�ℓ (𝑧;𝐺(�′)) is ∥𝐺(�) − 𝐺(�′)∥2𝛽-Lipschitz in

𝑧. This follows from applying Cauchy-Schwarz and the fact that the loss is 𝛽-smooth

in 𝑧. Using the dual formulation of the optimal transport distance (Lemma 3.5.1) and

𝜖-sensitivity of𝒟(·),

(𝐺(�) − 𝐺(�′))⊤∇ 𝑓 (𝐺(�′)) − (𝐺(�) − 𝐺(�′))⊤∇ 𝑓 ′(𝐺(�′)) ≥ −𝜖𝛽∥𝐺(�) − 𝐺(�′)∥2∥� − �′∥2.

Furthermore, using the first-order optimality conditions for convex functions, we have

(𝐺(�) − 𝐺(�′))⊤∇ 𝑓 ′(𝐺(�′)) ≥ 0, and hence

(𝐺(�) − 𝐺(�′))⊤∇ 𝑓 (𝐺(�′)) ≥ −𝜖𝛽∥𝐺(�) − 𝐺(�′)∥2∥� − �′∥2.

Therefore, we conclude that,

−𝛾∥𝐺(�) − 𝐺(�′)∥2
2
≥ −𝜖𝛽∥𝐺(�) − 𝐺(�′)∥2∥� − �′∥2.

Claim (a) then follows by rearranging.

To prove claim (b) we note that �𝑡 = 𝐺(�𝑡−1) by the definition of RRM, and𝐺(�PS) = �PS

by the definition of stability. Applying the result of part (a) yields

∥�𝑡 − �PS∥2 ≤ 𝜖
𝛽

𝛾
∥�𝑡−1 − �PS∥2 ≤

(
𝜖
𝛽

𝛾

) 𝑡
∥�0 − �PS∥2. (3.3)

Setting this expression to be at most 𝛿 and solving for 𝑡 completes the proof of (b). □
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Somewhat surprisingly, this convergence result is exactly tight; removing any single

assumption required for convergence by Theorem 3.1.2 is enough to construct a coun-

terexample for which RRM diverges:

Proposition 3.1.3. Suppose that the distribution map𝒟(·) is 𝜖-sensitive with 𝜖 > 0 (2.2). RRM
can fail to converge at all in any of the following cases, for any choice of parameters 𝛽, 𝛾 > 0:

(a) The loss is 𝛽-jointly smooth ((3.2) & (3.1)) and convex, but not strongly convex in � (2.3).

(b) The loss is 𝛾-strongly convex in �, but not jointly smooth.

(c) The loss is 𝛽-jointly smooth and 𝛾-strongly convex in �, but 𝜖 ≥ 𝛾
𝛽 .

Proof. We use a separate counterexample to prove each claim.

Proof of (a) Consider the linear loss defined as ℓ ((𝑥, 𝑦);�) = 𝛽𝑦�, for � ∈ [−1, 1]. Note

that this objective is 𝛽-smooth in (𝑥, 𝑦) and convex in �, but not strongly convex. Let the

distribution of 𝑦 according to 𝒟(�) be a point mass at 𝜖�, and let the distribution of 𝑥 be

invariant with respect to �. Clearly, this distribution is 𝜖-sensitive.

Here, the decoupled performative risk has the following form DPR(�, 𝜑) = 𝜖𝛽�𝜑. The

unique performatively stable point is 0. However, if we initialize RRM at any point other

than 0, the procedure generates the sequence of iterates . . . , 1,−1, 1,−1 . . . , thus failing to

converge. Furthermore, this behavior holds for all 𝜖, 𝛽 > 0.

Proof of (b) Consider a type of regularized hinge loss

ℓ (𝑧;�) = 𝐶max(−1, 𝑦�) + 𝛾

2

(� − 1)2,

and suppose Θ ⊇ [− 1

2𝜖 ,
1

2𝜖 ].
Let the distribution of𝑌 according to𝒟(�)be a point mass at 𝜖�, and let the distribution

of 𝑋 be invariant with respect to �. Clearly, this distribution is 𝜖-sensitive. Let �0 = 2.

Then, by picking 𝐶 big enough, RRM prioritizes to minimize the first term exactly, and

hence we get �1 = − 1

2𝜖 . In the next step, again due to large 𝐶, we get �2 = 2. Thus,

RRM keeps oscillating between 2 and − 1

2𝜖 , failing to converge. This argument holds for

all 𝛾, 𝜖 > 0.

Proof of (c): Suppose that the loss function is the squared loss, ℓ (𝑧;�) = (𝑦 − �)2, where

𝑦, � ∈ R. Note that this implies 𝛽 = 𝛾. Let the distribution of 𝑌 according to 𝒟(�) be a
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point mass at 1 + 𝜖�, and let the distribution of 𝑋 be invariant with respect to �. This

distribution family satisfies 𝜖-sensitivity, because

𝑊1(𝒟(�),𝒟(�′)) = 𝜖 |� − �′|2.
By properties of the squared loss, we know

arg min

�′
DPR(�, �′) = E𝑍∼𝒟(�) [𝑌] = 1 + 𝜖�.

It is thus not hard to see that RRM does not contract if 𝜖 ≥ 𝛾
𝛽 = 1:

|𝐺(�) − 𝐺(�′)| = |1 + 𝜖� − 1 − 𝜖�′| = 𝜖 |� − �′|,
which exactly matches the bound of Theorem 3.1.2 and proves the first statement of

the proposition. The unique performatively stable point of this problem is � such that

� = 1 + 𝜖�, which is �PS = 1

1−𝜖 for 𝜖 > 1.

For 𝜖 = 1, no performatively stable point exists, thereby proving the second claim of

the proposition. If 𝜖 > 1 on the other hand, and �0 ≠ �PS, we either have �𝑡 → ∞ or

�𝑡 → −∞, because

�𝑡 = 1 + 𝜖�𝑡−1 =

𝑡−1∑
𝑘=0

𝜖𝑘 + �0𝜖
𝑡 =

𝜖𝑡 − 1

𝜖 − 1

+ �0𝜖
𝑡 ,

thus concluding the proof. □

This Proposition 3.1.3 leads to a number of interesting conclusion. First, it suggests

a fundamental difference between strong and weak convexity in our framing of perfor-

mative prediction (weak meaning 𝛾 = 0). In supervised learning, using strongly convex

losses generally guarantees a faster rate of optimization, yet asymptotically, the solution

achieved with either strongly or weakly convex losses is globally optimal. However, in

our framework, strong convexity is in fact necessary to guarantee convergence of repeated

risk minimization, even for arbitrarily smooth losses and an arbitrarily small sensitivity

parameter.

Second, this result shows that 𝜖 = 𝛾/𝛽 is a sharp threshold which characterizes the

convergence of repeated risk minimization. If 𝜖 is just below the inverse condition number

𝛾/𝛽, then retraining converges. If it’s just above, then there are simple counterexample

showing it may diverge. However, this does not mean that repeated retraining is guaran-

teed to diverge on any problem for which 𝜖 > 𝛾/𝛽. As we will illustrate later on, retraining

can still quickly converge to performative stability even for values 𝜖 that are significantly

above this cutoff.4

4
The curious reader may be wondering what happens if 𝜖 is exactly equal to 𝛾/𝛽. As we will see in later

proofs (Proposition 3.1.6), stable points might not exist if 𝜖 is exactly at the threshold. Hence, we cannot

guarantee that RRM will converge to stability.
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Gradient Descent & Approximate Retraining
Repeated risk minimization is an elegant, yet highly idealized and unimplementable

procedure. Instead of finding the exact risk minimizer on the most recent distribution,

a more natural dynamic we might imagine is that the learner simply performs a small

update to the model using the new data.

In particular, we can analyze the behavior of repeated gradient descent.

Definition 3.1.4 (RGD). Repeated gradient descent (RGD) is the procedure where, starting

from an initial model 𝑓�0
, we perform the following sequence of updates for every 𝑡 ≥ 0:

�𝑡+1 = 𝐺
gd
(�𝑡) := ΠΘ

(
�𝑡 − �𝑡 · E𝑍∼𝒟(�𝑡)∇�ℓ (𝑍;�𝑡)

)
,

where �𝑡 > 0 is a step size and ΠΘ denotes the Euclidean projection operator onto Θ.

Repeated retraining is very much in the spirit of modern optimization algorithms.

If loss functions are complicated, we may not be able to compute the optimal solution

in closed form. Hence, we sequentially update our solution by following the negative

gradient. Furthermore, note that repeated gradient descent only requires the loss ℓ to be

differentiable with respect to �. It does not require taking gradients of the performative

risk.

Given that RGD only takes a single gradient step, we might naively expect it to have

very different convergence properties to RRM. However, we find that it converges to

stability at a comparable (i.e. linear) rate as RRM, and under (nearly) the same conditions.

The proofs for the remaining results in this chapter are somewhat technical. We therefore

delay them to the end of the chapter.

Proposition 3.1.5. Assume that the loss ℓ is 𝛽-jointly smooth and 𝛾-strongly convex in �.
Furthermore, suppose that the distribution map 𝒟(·) is 𝜖-sensitive for 𝜖 < 𝛾

𝛽 and that �PS lies
in the interior of the set Θ.5 Then, repeated gradient descent (RGD) with a constant step size
�𝑡 = � :=

𝛾−𝜖𝛽
2(1+𝜖2)𝛽2

satisfies the following:

(a) ∥�𝑡+1 − �PS∥2 ≤
(
1 − �(𝛾−𝜖𝛽)

2

)
∥�𝑡 − �PS∥2, where 0 <

�(𝛾−𝜖𝛽)
2

< 1.

(b) The iterates �𝑡 of RGD converge to the stable point �PS at a linear rate,

∥�𝑡+1 − �PS∥2 ≤ 𝛿 for all 𝑡 ≥ 2

�(𝛾 − 𝜖𝛽) log

(
∥�0 − �PS∥2

𝛿

)
.

5
Note for 𝜖 < 𝛾/𝛽, Theorem 3.1.2 guarantees that stable point �PS exists and is unique.
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Relative to the analogous result for exact retraining (RRM), Proposition 3.1.5 assumes

that the loss is jointly smooth in 𝑧 and �, whereas we only needed smoothness in 𝑧 for

the previous result. Since RGD is a gradient-based algorithm, we require this additional

assumption to ensure that we make sufficient progress with each gradient update. Sim-

ilar, smoothness type conditions are typical in analyses of gradient methods in convex

optimization.

As noted previously, modulo the smoothness assumption, we establish that this con-

vergence analysis of repeated gradient descent is tight:

Proposition 3.1.6. Suppose that the distribution map𝒟(·) is 𝜖-sensitive (2.2). Repeated gradient
descent can fail to converge to a performatively stable point in any of the following cases, for any
choice of positive step size sequence {�𝑡}𝑡≥1:

(a) The loss is 𝛽-jointly smooth ((3.2) & (3.1)) and convex in � (2.3), but not strongly convex,
for any 𝛽, 𝜖 > 0.

(b) The loss is 𝛽-jointly smooth and 𝛾-strongly convex, but 𝜖 ≥ 𝛾
𝛽 , for any 𝛾, 𝛽, 𝜖 > 0.

Proof. Let Θ = R, and let 𝑧 ∼ 𝒟(�) be a point mass at 1 + 𝜖�. This distribution map is

clearly 𝜖-sensitive. Furthermore, define the loss as,

ℓ (𝑧;�) = −𝛽𝑧� + 𝛾

2

�2,

where 𝛽 ≥ 𝛾 is an arbitrary positive scalar. Note that this objective is convex in � and

𝛽-jointly smooth. Furthermore, it has a unique performatively stable point �PS =
𝛽/𝛾

1−𝜖𝛽/𝛾
whenever 𝜖 ≠

𝛾
𝛽 ; when 𝜖 =

𝛾
𝛽 , there is no stable point. Repeated gradient descent has the

dynamics:

�𝑡+1 = �𝑡 − �𝑡E𝑧∼𝒟(�𝑡)∇ℓ (𝑧;�𝑡)
= �𝑡 − �𝑡(𝛾 − 𝜖𝛽)�𝑡 + �𝑡𝛽
= (1 − �𝑡 (𝛾 − 𝜖𝛽))�𝑡 + �𝑡𝛽.

If 𝛾 = 0, then the loss ℓ (𝑧;�) is convex. Furthermore, for any values of 𝜖, 𝛽 > 0 and any

positive step size sequence {�𝑡}∞𝑘=1
, it holds that 1+ �𝑡𝜖𝛽 > 1 meaning that RGD diverges.

To prove the second part of the statement, if 𝛾 > 0, then the loss is 𝛾-strongly convex.

Furthermore, if 𝜖 > 𝛾/𝛽, then for any step size sequence {�𝑡}∞𝑘=1
, 1 − �𝑡(𝛾 − 𝜖𝛽) > 1 and

RGD again diverges. When 𝜖 =
𝛾
𝛽 , there is no stable solution and hence RGD does not

converge to stability. □

The main insight from this proposition is that 𝜖 = 𝛾/𝛽 is again a sharp threshold for

the convergence of RGD, just like it is for RRM. Furthermore, strong convexity is again

essential to guarantee any kind of convergence to stability.
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Greedy Deploy

Input: step size sequence {�𝑘}∞𝑘=1

Deploy initial classifier �0 ∈ Θ

For each 𝑡 = 0, 1, . . .

• Observe 𝑧(𝑡) ∼ 𝒟(�𝑡)

• Update model parameters:

�𝑡+1 = �𝑡 − �𝑡∇ℓ (𝑧(𝑡);�𝑡)

• Deploy �𝑡+1

Lazy Deploy

Input: step size sequence {�𝑡 , 𝑗}∞𝑡 , 𝑗=1

Deploy initial classifier �0 ∈ Θ

For each 𝑡 = 0, 1, . . .

• Set 𝜑𝑡 ,1 = �𝑡

• For each 𝑗 = 1, . . . , 𝑛(𝑡) :

1. Observe 𝑧
(𝑡)
𝑗
∼ 𝒟(�𝑡)

2. Update model parameters:

𝜑𝑡 , 𝑗+1 = 𝜑𝑡 , 𝑗 − �𝑡 , 𝑗∇ℓ (𝑧(𝑡)𝑡 ; 𝜑𝑡 , 𝑗)

• Deploy �𝑡+1 = 𝜑𝑘,𝑛(𝑡)

Figure 3.1: Stochastic gradient method for performative prediction. Greedy deploy

publishes the new model at every step, while lazy deploy performs several gradient

updates before releasing the new model.

3.2 Retraining in Finite Samples
Having studied the behavior of various retraining algorithms at the population level, we

now move on to analyzing their empirical counterparts which work in finite samples.

More specifically, in this section we study two variants of the stochastic gradient

method for optimization in performative settings, which we refer to as greedy deploy and

lazy deploy. At each iteration, both methods use the observed data to perform a stochastic

gradient update to the model parameters. However they choose to deploy these updated

models at different time intervals.

In the greedy deploy variant, at each iteration we observe a data point drawn from

𝒟(�𝑡), perform a stochastic gradient updates, and immediately redeploy the new model.

In practice, data is often plentiful, but model deployments can be quite costly in terms

of engineering effort. In such a scenario, it makes sense to aim to minimize the number

of model deployment steps by updating the model parameters on multiple data points

before initiating another model deployment. This is exactly what the lazy deploy variant
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does. The algorithm proceeds in stages. At each stage 𝑡, it collects a 𝑛(𝑡) ≫ 1 many

samples and uses all of these samples to update the model before redeploying.

Our main theorems for this section are upper bounds on the convergence rate of both

of these methods. In particular, we prove that if losses are smooth, strongly convex

and the distribution map is 𝜖-sensitive with 𝜖 < 𝛾/𝛽 then lazy and greedy deploy both

asymptotically converge to performative stability.

In terms of their relative performance, the upper bounds on the rates of convergence

are nearly identical. However, these are only upper bounds. As such they can only draw

an incomplete picture regarding the merits of these methods. We therefore complement

our theoretical investigations with empirical simulations. These are presented later on in

Section 3.3. Jumping ahead, we find that greedy deploy generally performs better than

lazy deploy when the distribution map has a small Lipschitz constant, i.e., the performative

effects are small. Conversely, lazy deploy fares better when the distribution map is less

Lipschitz.

Greedy Deploy

Before moving onto our analysis, we introduce the following assumption which is cus-

tomary in the stochastic optimization literature [10, 88].

For the given loss function ℓ , there exist constants 𝜎2
and 𝐿2

such that for all �, �′ ∈ Θ:

E𝑧∼𝒟(�)
[
∥∇ℓ (𝑧;�′)∥2

2

]
≤ 𝜎2+𝐿2∥�′−𝐺(�)∥2

2
, where 𝐺(�) := arg min

�′
E𝑧∼𝒟(�)ℓ (𝑧;�′). (3.4)

We begin by stating a technical lemma which introduces a recursion for the distance

between �𝑡 and �PS.

Lemma 3.2.1. Assume that the loss function is 𝛽-jointly smooth ((3.2) & (3.1)), 𝛾-strongly convex
in � (2.3) and together with 𝒟(·) satisfies the second moment bound from Equation 3.4. If the
distribution map 𝒟(·) is 𝜖-sensitive (2.2) with 𝜖 < 𝛾/𝛽, then greedy deploy with step size �𝑡
satisfies the following recursion for all 𝑘 ≥ 1:

E
[
∥�𝑡+1 − �PS∥2

2

]
≤

(
1 − 2�𝑡(𝛾 − 𝜖𝛽) + �2

𝑡 𝐿
2

(
1 + 𝜖

𝛽

𝛾

)
2

)
E
[
∥�𝑡 − �PS∥2

2

]
+ �2

𝑡 𝜎
2.

Similar recursions underlie many proofs of SGD, and Lemma 3.2.1 can be seen as their

generalization to the performative setting. The key insight achieved by this bound is that

implies a strong contraction to the performatively stable point if the performative effects

are weak, that is when 𝜖 ≪ 𝛾/𝛽.
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Using this recursion, a simple induction argument suffices to prove that greedy deploy

converges to the performatively stable solution. Moreover, it does so at the usual 𝑂(1/𝑘)
rate.

Theorem 3.2.2. Assume that the loss function is 𝛽-jointly smooth ((3.2) & (3.1)), 𝛾-strongly
convex in � (2.3) and together with𝒟(·) satisfies the second moment bound from Equation 3.4. If
the distribution map 𝒟(·) is 𝜖-sensitive (2.2) with 𝜖 < 𝛾/𝛽, then for all 𝑘 ≥ 0 greedy deploy with
step size �𝑡 =

(
(𝛾 − 𝜖𝛽)𝑘 + 8𝐿2/(𝛾 − 𝜖𝛽)

)−1 satisfies

E
[
∥�𝑡+1 − �PS∥2

2

]
≤

𝑀
greedy

(𝛾 − 𝜖𝛽)2𝑘 + 8𝐿2

,

where 𝑀
greedy

= max

{
2𝜎2, 8𝐿2∥�1 − �PS∥2

2

}
.

Comparing this result to the traditional analysis of SGD for smooth, strongly convex

objectives (e.g. [69]), we see that the traditional factor of 𝛾 is replaced by 𝛾− 𝜖𝛽, which we

view as the effective strong convexity parameter of the performative prediction problem.

When 𝜖 = 0, there are no performative effects and the problem of finding the stable solution

reduces to that of finding the risk minimizer on a fixed, static distribution. Consequently,

it is natural for the two bounds to identify.

Lazy Deploy

Contrary to greedy deploy, lazy deploy collects multiple data points and hence takes

multiple stochastic gradient steps between consecutive model deployments. In the Twitter

recommendation problem described earlier, this corresponds to only redeploying the

prediction model every few weeks, instead of every day.

This modification significantly changes the trajectory of lazy deploy relative to greedy

deploy. In particular, the observed samples follow the distribution of the last deployed
model, which might differ from the current iterate. More precisely, after deploying

�𝑡 , in the lazy deploy variant, we perform 𝑛(𝑡) stochastic gradient steps to the model

parameters using samples from𝒟(�𝑡). This yields the sequence of models �𝑡 ,1, . . . , �𝑡 ,𝑛(𝑡)
that are generated offline. At the end of stage 𝑡, we deploy the last iterate in this sequence

�𝑡+1 = �𝑡 ,𝑛(𝑡) (see right panel in Figure 3.1).

At a high level, lazy deploy converges to performative stability because it progressively

approximates the repeated risk minimization procedure described previously, where

�𝑡+1 = arg min

�′∈Θ
E𝑧∼𝒟(�𝑡)ℓ (𝑧;�′).

As established in Theorem 3.1.2 converges to a performatively stable classifier at a linear

rate when 𝜖 < 𝛾/𝛽. Moreover, since the underlying distribution 𝒟(�𝑡)remains static
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between deployments, a classical analysis of SGD shows that for large values of 𝑛(𝑘) these

“offline” iterates 𝜑𝑘,𝑗 converge to the risk minimizer on the distribution corresponding to

the previously deployed classifier. In particular, for large 𝑛(𝑘), �𝑡+1 ≈ 𝐺(�𝑡). By virtue

of approximately tracing out the trajectory of RRM, lazy deploy converges to �PS as well.

This intuition is formalized in the following theorem.

Theorem 3.2.3. Assume that the loss function is 𝛽-jointly smooth ((3.2) & (3.1)), 𝛾-strongly
convex in � (2.3) and together with 𝒟(·) satisfies the second moment bound from Equation 3.4.
If the distribution map 𝒟(·) is 𝜖-sensitive (2.2) with 𝜖 < 𝛾/𝛽, for any 𝛼 > 0, running lazy
deploy with 𝑛(𝑘) ≥ 𝑛0𝑘

𝛼 , 𝑘 = 1, 2, . . . many steps between deployments and step size sequence
�𝑘,𝑗 = (𝛾 𝑗 + 8𝐿2/𝛾)−1, satisfies

E
[
∥�𝑡+1 − �PS∥2

2

]
≤ 𝑐𝑘 · ∥�1 − �PS∥2

2
+

(
𝑐Ω(𝑘) + 2

𝑘𝛼·(1−𝑜(1))

)
·𝑀

lazy
,

where 𝑐 =
(
𝜖
𝛽
𝛾

)
2 + 𝑜(1) and 𝑀

lazy
=

3(𝜎+𝛾)2
𝛾2(1−𝑐) . Here, 𝑜(1) is independent of 𝑘 and vanishes as 𝑛0

grows; 𝑛0 is chosen large enough such that 𝑐 < 1.

Comparing Lazy and Greedy Deploy
As we alluded to previously, the behavior of both algorithms is critically affected by the

strength of performative effects 𝜖. For 𝜖 ≪ 𝛾/𝛽, the effective strong convexity parameter

𝛾 − 𝜖𝛽 of the performative prediction problem is large. In this setting, the distribution

shift induced by deploying a new model is negligible and greedy deploy behaves almost

like SGD in classical supervised learning, converging quickly to performative stability.

Conversely, for 𝜖 close to the convergence threshold, the contraction of greedy deploy

to the performatively stable classifier is weak. In this regime, we expect lazy deploy to

perform better since the convergence of the offline iterates 𝜑𝑘,𝑗 to the risk minimizer on

the current distribution 𝐺(�𝑘) is unaffected by the value of 𝜖. Lazy deploy then converges

by closely mimicking the behavior of RRM.

In terms of the asymptotics of both algorithms, we identify the following tradeoff

between the number of samples and the number of deployments sufficient to converge to

performative stability.

Corollary 3.2.4. Assume that the loss function is 𝛽-jointly smooth ((3.2) & (3.1)), 𝛾-strongly
convex in � (2.3) and together with 𝒟(·) satisfies the second moment bound from Equation 3.4.
Furthermore, assume that𝒟(·) is 𝜖-sensitive (2.2) with 𝜖 < 𝛾/𝛽.

• To ensure that greedy deploy returns a solution �★ such that, E
[
∥�★−�PS∥2

2

]
≤ 𝛿, it suffices

to collect 𝒪(1 / 𝛿) samples and to deploy 𝒪(1 / 𝛿) classifiers.
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• To achieve the same guarantee using lazy deploy, it suffices to collect 𝒪(1 / 𝛿
𝛼+1

(1−𝜔)·𝛼 ) samples
and to deploy 𝒪(1 / 𝛿 1

𝛼 ) classifiers, for any 𝛼 > 0 and some 𝜔 = 1 − 𝑜(1) which tends to 1
as 𝑛0 grows.

We see from the above result that by choosing large enough values of 𝑛0 and 𝛼, we

can make the sample complexity of the lazy deploy algorithm come arbitrarily close to

that of greedy deploy. However, to match the same convergence guarantee, lazy deploy

only performs 𝒪(1 / 𝛿
1

𝛼 ) deployments, which is significantly better than the 𝒪(1 / 𝛿)
deployments for greedy deploy.

This reduction in the number of deployments is particularly relevant when considering

the settings that performative prediction is meant to address. Whenever we use prediction

in social settings, there are important social costs associated with making users adapt to a

new model [60]. Furthermore, in industry, there are often significant technical challenges

associated with deploying a new classifier. By choosing 𝑛(𝑘) = 𝑛0𝑘
𝛼

appropriately, we

can reduce the number of deployments necessary for lazy deploy to converge while at the

same time improving the sample complexity of the algorithm.

3.3 Applications to Strategic Classification
Having introduced the performative prediction framework, and used it to theoretically

analyze various retraining algorithms, in this section:

• Discuss the implications of our theoretical results for strategic classification, a pop-

ular framework for learning in social environments.

• Empirically evaluate retraining algorithms on a semi-synthetic simulation environ-

ment.

Overview of Strategic Classification
Strategic classification is a two-player game between an institution which deploys a clas-

sifier and agents who selectively adapt their features in order to improve their outcomes.

A classic example of this setting is that of a bank which uses a machine learning

classifier to predict whether or not a loan applicant is creditworthy. Individual applicants

react to the bank’s classifier by manipulating their features with the hopes of inducing a
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Input: base distribution𝒟
base

, classifier 𝑓�, cost function 𝑐, and utility function 𝑢

Sampling procedure for𝒟(�):

1. Sample (𝑥
base

, 𝑦
base
) ∼ 𝒟

base

2. Compute best response 𝑥BR← arg max𝑥′ 𝑢(𝑥′, �) − 𝑐(𝑥′, 𝑥)

3. Output sample (𝑥BR, 𝑦base
)

Figure 3.2: Distribution map for strategic classification.

favorable classification. This game is said to have a Stackelberg structure since agents adapt

their features only after the bank has deployed their classifier.6

The optimal strategy for the institution in a strategic classification setting is to deploy

the solution corresponding to the Stackelberg equilibrium, defined as the classifier 𝑓� which

achieves minimal loss over the induced distribution 𝒟(�) in which agents have strategi-

cally adapted their features in response to 𝑓�. In fact, we see that this equilibrium notion

exactly matches our definition of performative optimality:

𝑓�SE
is a Stackelberg equilibrium ⇐⇒ �SE ∈ arg min

�
PR(�).

We think of 𝒟 as a "baseline" distribution over feature-outcome pairs before any

classifier deployment, and 𝒟(�) denotes the distribution over features and outcomes

obtained by strategically manipulating 𝒟. As described in existing work [13, 33, 60], the

distribution function 𝒟(�) in strategic classification corresponds to the data-generating

process outlined in Figure 3.2.

Here, 𝑢 and 𝑐 are problem-specific functions which determine the best response for

agents in the game. Together with the base distribution 𝒟, these define the relevant

distribution map𝒟(·) for the problem of strategic classification.

A strategy that is commonly adapted in practice as a means of coping with the dis-

tribution shift that arises in strategic classification is to repeatedly retrain classifiers on

the induced distributions. This procedure corresponds to the repeated risk minimization

6
This is at least the classical framing of strategic classification: the institution moves first and the people

being classified respond after. In recent work, Zrnic et al. provide an interesting analysis showing that the

exact order of play may be inverted depending on the frequency with which players update their strategies

[91].



CHAPTER 3. UNDERSTANDING RETRAINING 33

procedure introduced in Definition 2.1.6, where

�𝑡+1 = arg min

�
E𝑧∼𝒟(�𝑡)ℓ (𝑧;�)

Previous theorems regarding the convergence of RRM, RGD, and lazy (or greedy) deploy

state that if performative effects are small, and losses are well-conditioned, any one of

these variants of retraining will converge to a performatively stable point �PS.

In the context of strategic classification, performative stability corresponds to Nash
equilibria. Recall that a model �PS is performatively stable if:

�PS = arg min

�
E𝑧∼𝒟(�PS)ℓ (𝑧;�).

That is, �PS is the institution’s best response to the data distribution that arises from

deploying �PS. Moreover, as seen in Figure 3.2 the data distribution𝒟(�PS) is by definition

the people’s best response to the classification rule outlined by �PS. Since both players are

playing their best response, we conclude that

𝑓�SE
is a Nash equilibrium ⇐⇒ �SE is performatively stable.

Note that by definition, PR(�PO) ≤ PR(�PS). Therefore, Stackelberg equilibria have better

performance from the institution’s perspective than Nash equilibria (i.e which is the

solution one would converge to by repeatedly retraining).

However, in certain cases, Nash equilibria achieves near optimal performative risk. The

following corollary is a restatement of Theorem 3.1.2 and Corollary 2.2.4 in the language

of strategic classification.

Corollary 3.3.1. Let the institution’s loss ℓ (𝑧;�) be 𝐿𝑧- and 𝐿�-Lipschitz in 𝑧 (2.4) and � (2.5)

respectively, 𝛽-smooth in 𝑧 (3.1) and 𝛾-strongly convex in � (2.3). If the distribution map is 𝜖-
sensitive (2.2), with 𝜖 < 𝛾

𝛽 , then RRM converges at a linear rate to a performatively stable classifier
�PS that is 2𝐿𝑧𝜖(𝐿� + 𝐿𝑧𝜖)𝛾−1 close in objective value to the Stackelberg equilibrium.

Taken together, our results describe the first set of sufficient conditions under which

repeated retraining overcomes strategic effects.

Simulations
We next examine the convergence of repeated risk minimization and repeated gradient

descent in a simulated strategic classification setting. We run experiments on a dynamic

credit scoring simulator in which an institution classifies the creditworthiness of loan
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Figure 3.3: Convergence in domain of RRM (left) and RGD (right) for varying 𝜖-sensitivity

parameters. We add a marker if at the next iteration the distance between iterates is

numerically zero. We normalize the distance by 𝑐 = ∥�0,𝑆∥−1

2
.

applicants.7 As motivated previously, agents react to the institution’s classifier by manip-

ulating their features to increase the likelihood that they receive a favorable classification.

To run our simulations, we construct a distribution map 𝒟(�), as described in Fig-

ure 3.2. For the base distribution 𝒟
base

, we use a class-balanced subset of a Kaggle credit

scoring dataset [40]. Features 𝑥 ∈ R𝑚−1
correspond to historical information about an

individual, such as their monthly income and number of credit lines. Outcomes 𝑦 ∈ {0, 1}
are binary variables which are equal to 1 if the individual defaulted on a loan and 0

otherwise.

The institution makes predictions using a logistic regression classifier. We assume that

individuals have linear utilities 𝑢(�, 𝑥) = −⟨�, 𝑥⟩ and quadratic costs 𝑐(𝑥′, 𝑥) = 1

2𝜖 ∥𝑥′−𝑥∥2,

where 𝜖 is a positive constant that regulates the cost incurred by changing features. Linear

utilities indicate that agents wish to minimize their assigned probability of default.

We divide the set of features into strategic features 𝑆 ⊆ [𝑚 − 1], such as the number of

open credit lines, and non-strategic features (e.g., age). Solving the optimization problem

described in Figure 3.2, the best response for an individual corresponds to the following

update,

𝑥′𝑆 = 𝑥𝑆 − 𝜖�𝑆 ,

where 𝑥𝑆 , 𝑥
′
𝑆
, �𝑆 ∈ R|𝑆 |. As per convention in the literature [13, 33, 60], individual outcomes

𝑦 are unaffected by strategic manipulation.

7
Code is available at https://github.com/zykls/performative-prediction, and the simulator has been

integrated into the WhyNot software package [58].

https://github.com/zykls/performative-prediction
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Figure 3.4: Performative risk (left) and accuracy (right) of the classifier �𝑡 at different

stages of RRM for 𝜖 = 80. Blue lines indicates the optimization phase and green lines

indicate the effect of the distribution shift after the classifier deployment.

Intuitively, this data-generating process is 𝜖-sensitive since for a given choice of clas-

sifiers, 𝑓� and 𝑓�′, an individual feature vector is shifted to 𝑥𝑆 − 𝜖�𝑆 and to 𝑥𝑆 − 𝜖�′
𝑆
,

respectively. The distance between these two shifted points is equal to 𝜖∥�𝑆 − �′𝑆∥2. Since

the optimal transport distance is bounded by 𝜖∥� − �′∥2 for every individual point, it is

also bounded by this quantity over the entire distribution. In addition, to 𝜖-sensitivity,

this objective is also jointly smooth. Proofs for of both of these claims are presented in

the supplementary material for this chapter. Lastly, we add a regularization term to the

logistic loss to ensure that the objective is strongly convex.

For our experiments with RRM and RGD, instead of sampling from𝒟(�), we treat the

points in the original dataset as the true distribution. Hence, we can think of all these

procedures as operating at the population level.

Repeated Risk Minimization. The first experiment we consider is the convergence of

RRM. From our theoretical analysis, we know that RRM is guaranteed to converge at a

linear rate to a performatively stable point if the sensitivity parameter 𝜖 is smaller than

𝛾
𝛽 . In Figure 3.3 (left), we see that RRM does indeed converge in only a few iterations for

small values of 𝜖 while it divergences if 𝜖 is too large.

The evolution of the performative risk during the RRM optimization is illustrated in

Figure 3.4. We evaluate PR(�) at the beginning and at the end of each optimization round

and indicate the effect due to distribution shift with a dashed green line. We also verify

that the surrogate loss is a good proxy for classification accuracy in the performative

setting.
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Figure 3.5: Visualizing the Performative risk surface and trajectory of repeated risk mini-

mization for two different values of sensitivity parameter 𝜖. The initial iterate is the risk

minimizer on the base dataset (•). We mark the performative optimum (★) and performa-

tively stable point (×).
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Figure 3.6: Convergence of lazy and greedy deploy to performative stability. Results are

for the strategic classification experiments with 𝜖 = 0.001. (left panel) convergence as a

function of the number of samples collected. (center panel) convergence as a function of

the number of deployments. (right panel) excess performative risk with respect the the

stable classifier �PS as a function of stochastic gradient updates.

Repeated Gradient Descent. In the case of RGD, we find similar behavior to that of

RRM. While the iterates again converge linearly, they naturally do so at a slower rate

than in the exact minimization setting, given that each iteration consists only of a single

gradient step. Again, we can see in Figure 3.3 that the iterates converge for small values

of 𝜖 and diverge for large values.

Lazy & Greedy Deploy For these experiments, at each time step, the learner observes

a single sample from the distribution in which the individual’s features have been ma-

nipulated in response to the most recently deployed classifier. This is in contrast to the

previous experiments for RRM and RGD setup where the learner gets to observe the entire

distribution of manipulated features at every step. While we cannot compute the stable

point analytically in this setting, we can calculate it empirically by running RRM until

convergence.

The inverse condition number for this experiment is quite small 𝛾/𝛽 ≈ 10
−2

. We fist

pick 𝜖 within the regime of provable convergence, i.e., 𝜖 = 10
−3

, and compare the two

methods. As expected, for such a small value of 𝜖 greedy deploy is the preferred method.

Results are depicted in Figure 3.6.

We additionally explore the behavior of these algorithms outside the regime of prov-

able convergence with 𝜖 ≫ 𝛾/𝛽. We choose step sizes for both algorithms as defined in the

theoretical analysis with the exception that we ignore the 𝜖-dependence in the step size

schedule of greedy deploy and choose the same initial step size as for lazy deploy (Theo-

rem 3.2.2). As illustrated in Figure 3.6 (left), lazy significantly outperforms greedy deploy
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Figure 3.7: Convergence of lazy and greedy deploy to performative stability. Results are

for the strategic classification experiments with 𝜖 = 100. (left panel) convergence as a

function of the number of samples. (right panel) convergence as a function of the number

of deployments.

in this setting. Moreover, the performance of lazy deploy significantly improves with 𝛼.

In addition to speeding up convergence, choosing larger sample collection schedules 𝑛(𝑘)
substantially reduces the number of deployments, as seen in Figure 3.7 (right).

3.4 Chapter Notes
The theoretical results on retraining presented in this chapter first appeared in [65] and

[57]. Several of these analyses have since been generalized to hold for other variants of

the stochastic gradient method, like proximal point methods or SGD with dual averaging.

Drusvyatskiy and Xiao in fact establish a very general and clean analysis of when these

variants converge to performative stability. Wood et al. [87] prove complementary results

for this stochastic setting.

Throughout our presentation, we have assumed that if the learner deploys �𝑡 , they

immediately see samples drawn from 𝒟(�𝑡). A more realistic assumption is that the

distribution maintains a notion of state and that things smoothly vary over time. This idea

of including state in performative prediction was first studied by [11] and later extended

in [37, 48, 70].

Lastly, while most of the work listed so far studies retraining in linear or convex

settings, [61] study the limiting behavior of retraining non-convex neural networks under

qualitatively different assumptions.
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3.5 Supplementary Material

Technical Lemmas
Lemma 3.5.1 (Kantorovich-Rubinstein). A distribution map 𝒟(·) is 𝜖-sensitive if and only if
for all �, �′ ∈ Θ:

sup

{��� E𝑍∼𝒟(�)𝑔(𝑍) − E𝑍∼𝒟(�′)𝑔(𝑍) ��� ≤ 𝜖∥� − �′∥2 : 𝑔 : R𝑝 → R, 𝑔 is 1-Lipschitz
}
.

Lemma 3.5.2. Let 𝑓 : R𝑛 → R𝑑 be an 𝐿-Lipschitz function, and let 𝑋, 𝑋′ ∈ R𝑛 be random
variables such that𝑊1(𝑋, 𝑋′) ≤ 𝐶. Then

∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2 ≤ 𝐿𝐶.

Proof.

∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2
2
= (E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)])⊤(E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)])

= ∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2
(E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)])⊤
∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2

(E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]).

Now define the unit vector 𝑣 :=
E[ 𝑓 (𝑋)]−E[ 𝑓 (𝑋′)]
∥E[ 𝑓 (𝑋)]−E[ 𝑓 (𝑋′)]∥2 . By linearity of expectation, we can

further write

∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2
2
= ∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2 (E[𝑣⊤ 𝑓 (𝑋)] − E[𝑣⊤ 𝑓 (𝑋′)]).

For any unit vector 𝑣 and 𝐿-Lipschitz function 𝑓 , 𝑣⊤ 𝑓 is a one-dimensional 𝐿-Lipschitz

function, so we can apply Lemma 3.5.1 to obtain

∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2
2
≤ ∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2𝐿𝐶.

Canceling out ∥E[ 𝑓 (𝑋)] − E[ 𝑓 (𝑋′)]∥2 from both sides concludes the proof. □

Lemma 3.5.3 (First-order optimality condition). Let 𝑓 be convex and let Ω be a closed convex
set on which 𝑓 is differentiable, then

𝑥∗ ∈ arg min

𝑥∈Ω
𝑓 (𝑥)

if and only if
∇ 𝑓 (𝑥∗)𝑇(𝑦 − 𝑥∗) ≥ 0, ∀𝑦 ∈ Ω.

Lemma 3.5.4. Let 𝑠 ∈ (0, 1), and fix 𝛼 > 0, then,
𝑡∑
𝑘=1

𝑘−𝛼𝑠𝑡−𝑘 ≤ 𝑠𝑡(1−2
−1/𝛼)

1 − 𝑠 + 2𝑡−𝛼

1 − 𝑠 .
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Proof. Denote by 𝑎𝑘 := 𝑘−𝛼. Let 𝑀𝑡 = max{𝑚 ∈ 𝒩 : 𝑎𝑚 > 2𝑎𝑡}. We decompose the sum

depending on 𝑀𝑡 as follows:

𝑡∑
𝑘=1

𝑎𝑘𝑠
𝑡−𝑘 =

𝑀𝑡∑
𝑘=1

𝑎𝑘𝑠
𝑡−𝑘 +

𝑡∑
𝑘=𝑀𝑡+1

𝑎𝑘𝑠
𝑡−𝑘 .

We bound the first term trivially, by applying the fact that 𝑎𝑘 ≤ 1. For the second term,

we use the fact that 𝑎𝑘 ≤ 2𝑎𝑡 for 𝑘 > 𝑀𝑡 . We thus get:

𝑡∑
𝑘=1

𝑎𝑘𝑠
𝑡−𝑘 ≤

𝑀𝑡∑
𝑘=1

𝑠𝑡−𝑘 + 2𝑎𝑡

𝑡∑
𝑘=𝑀𝑡+1

𝑠𝑡−𝑘 ≤ 𝑠𝑡−𝑀𝑡

1 − 𝑠 +
2𝑎𝑡

1 − 𝑠 .

Since 𝑎𝑘 = 𝑘−𝛼, then 𝑀𝑡 ≤ 𝑡
2

1/𝛼 , and so

𝑠𝑡−𝑀𝑡

1 − 𝑠 +
2𝑎𝑡

1 − 𝑠 ≤
𝑠𝑡(1−2

−1/𝛼)

1 − 𝑠 + 2𝑎𝑡

1 − 𝑠 .

□

Proof of Lemma 3.2.1
Throughout the proof, we will use 𝑧(�PS)

to denote a sample from 𝒟(�PS) which is inde-

pendent from the whole trajectory of greedy deploy (e.g. {�𝑗 , 𝑧(𝑗)} 𝑗 , etc.).

Since Θ is closed and convex, we know

∥�𝑘+1 − �PS∥2
2
= ∥ΠΘ(�𝑘 − �𝑘∇ℓ (𝑧(𝑘);�𝑘)) − �PS∥2

2
≤ ∥�𝑘 − �𝑘∇ℓ (𝑧(𝑘);�𝑘) − �PS∥2

2
.

Squaring the right-hand side and expanding out the square,

E
[
∥�𝑘 − �𝑘∇ℓ (𝑧(𝑘);�𝑘) − �PS∥2

2

]
= E

[
∥�𝑘 − �PS∥2

2

]
− 2�𝑘E

[
∇ℓ (𝑧(𝑘);�𝑘)⊤(�𝑘 − �PS)

]
+ �2

𝑘
E
[
∥∇ℓ (𝑧(𝑘);�𝑘)∥2

2

]
:= 𝐵1 − 2�𝑘𝐵2 + �2

𝑘
𝐵3.

We begin by lower bounding 𝐵2. Since �PS is optimal for the distribution it induces,

by Lemma 3.5.3 we have E
[
∇ℓ (𝑧(�PS)

;�PS)⊤(�𝑘 − �PS)
]
≥ 0. This allows us to bound 𝐵2 as:

𝐵2 ≥ E
[
(∇ℓ (𝑧(𝑘);�𝑘) − ∇ℓ (𝑧(�PS)

;�𝑘) + ∇ℓ (𝑧(�PS)
;�𝑘) − ∇ℓ (𝑧(�PS)

;�PS))⊤(�𝑘 − �PS)
]

= E
[
(∇ℓ (𝑧(𝑘);�𝑘) − ∇ℓ (𝑧(�PS)

;�𝑘)⊤(�𝑘 − �PS)
]

+ E
[
(∇ℓ (𝑧(�PS)

;�𝑘) − ∇ℓ (𝑧(�PS)
;�PS))⊤(�𝑘 − �PS)

]
.
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For the first term, we have that

E
[
(∇ℓ (𝑧(𝑘);�𝑘) − ∇ℓ (𝑧(�PS)

;�𝑘)⊤(�𝑘 − �PS)
]

= E
[
E

[
(∇ℓ (𝑧(𝑘);�𝑘) − ∇ℓ (𝑧(�PS)

;�𝑘)⊤(�𝑘 − �PS) | �𝑘
] ]

≥ − 𝜖𝛽E
[
∥�𝑘 − �PS∥2

]
.

Having applied the law of iterated expectation, the above inequality follows from the fact

that, conditional on �𝑘 , the function ∇ℓ (𝑧;�𝑘)⊤(�𝑘 −�PS) is 𝛽∥�𝑘 −�PS∥−Lipschitz in 𝑧. To

verify this claim, we can apply the Cauchy-Schwarz inequality followed by the fact that

the gradient is 𝛽-jointly smooth. Then, we apply Lemma 3.5.1 and the fact that 𝒟(·) is

𝜖-sensitive to get the final bound.

Now, we use strong convexity to bound the second term,

E
[
(∇ℓ (𝑧(�PS)

;�𝑘) − ∇ℓ (𝑧(�PS)
;�PS))⊤(�𝑘 − �PS)

]
= E

[
E

[
(∇ℓ (𝑧(�PS)

;�𝑘) − ∇ℓ (𝑧(�PS)
;�PS))⊤(�𝑘 − �PS) | �𝑘

] ]
≥ 𝛾E

[
∥�𝑘 − �PS∥2

]
.

Therefore, we get that

𝐵2 ≥ (𝛾 − 𝜖𝛽)E
[
∥�𝑘 − �PS∥2

]
.

Now we move on to bounding 𝐵3. Using our assumption on the variance on the

gradients yields the following bound, we get

E
[
∥∇ℓ (𝑧(𝑘);�𝑘)∥2

2

]
≤ 𝜎2 + 𝐿2E

[
∥�𝑘 − 𝐺(�𝑘)∥2

]
= 𝜎2 + 𝐿2E

[
∥�𝑘 − �PS + �PS − 𝐺(�𝑘)∥2

]
≤ 𝜎2 + 𝐿2

(
E
[
(∥�𝑘 − �PS∥2 + ∥�PS − 𝐺(�𝑘)∥2)2

] )
≤ 𝜎2 + 𝐿2

(
1 + 𝜖

𝛽

𝛾

)
2

E
[
∥�𝑘 − �PS∥2

]
,

where in the last step we use the fact that G is a contraction mapping (Theorem 3.1.2),

which implies ∥�PS − 𝐺(�𝑘)∥ ≤ 𝜖
𝛽
𝛾 ∥�𝑘 − �PS∥.

Putting all the steps together completes the proof.
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Proof of Proposition 3.1.5
This proof is essentially a consequence of Lemma 3.2.1. By following the steps of

Lemma 3.2.1, we get

∥�𝑘+1 − �PS∥2
2
≤ ∥�𝑘 − �PS∥2

2
− 2�𝑘(E∇ℓ (𝑧(𝑘);�𝑘))⊤(�𝑘 − �PS) + �2∥E∇ℓ (𝑧(𝑘);�𝑘)∥2

2

:= 𝐵1 − 2�𝐵2 + �2𝐵3.

Following the same approach as in Lemma 3.2.1, we get

𝐵2 ≥ (𝛾 − 𝜖𝛽)∥�𝑘 − �PS∥2
2
.

The bound on 𝐵3 is slightly different, as we no longer make assumptions on the second

moment of the gradients; we use 𝑧(�PS)
to denote a sample from 𝒟(�PS) and proceed as

follows:

∥E∇ℓ (𝑧(𝑘);�𝑘)∥2
2
= ∥E∇ℓ (𝑧(𝑘);�𝑘) − E∇ℓ (𝑧(�PS)

;�PS)∥2
2

≤ ∥E∇ℓ (𝑧(𝑘);�𝑘) − E∇ℓ (𝑧(𝑘);�PS) + E∇ℓ (𝑧(𝑘);�PS) − E∇ℓ (𝑧(�PS)
;�PS)∥2

2

≤ 2∥E∇ℓ (𝑧(𝑘);�𝑘) − E∇ℓ (𝑧(𝑘);�PS)∥2
2

+ 2∥E∇ℓ (𝑧(𝑘);�PS) − E∇ℓ (𝑧(�PS)
;�PS)∥2

2

≤ 2𝛽2∥�𝑘 − �PS∥2
2
+ 2𝛽2𝜖2∥�𝑘 − �PS∥2

2

≤ 2𝛽2

(
1 + 𝜖2

)
∥�𝑘 − �PS∥2

2
,

where in the third inequality we apply the fact that the loss if 𝛽-jointly smooth, together

with Lemma 3.5.2. Putting everything together, this implies

∥�𝑘+1 − �PS∥2
2
≤ (1 − 2�(𝛾 − 𝜖𝛽) + 2�2𝛽2(1 + 𝜖2))∥�𝑘 − �PS∥2

2
.

Using the fact that

√
1 − 𝑥 ≤ 1 − 𝑥

2
for 𝑥 ∈ [0, 1], we get

∥�𝑘+1 − �PS∥2 ≤ (1 − �(𝛾 − 𝜖𝛽) + �2𝛽2(1 + 𝜖2))∥�𝑘 − �PS∥2.

By setting � =
𝛾−𝜖𝛽

2(1+𝜖2)𝛽2
, we can conclude

∥�𝑘+1 − �PS∥2 ≤
(
1 −
(𝛾 − 𝜖𝛽)2

4(1 + 𝜖2)𝛽2

)
∥�𝑘 − �PS∥2.

Note that
(𝛾−𝜖𝛽)2

4(1+𝜖2)𝛽2
< 1 because (𝛾 − 𝜖𝛽)2 ≤ 𝛾2 + 𝜖2𝛽2 ≤ (1 + 𝜖2)𝛽2

.
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We can unroll the above recursion to get

∥�𝑘+1 − �PS∥2 ≤
(
1 −
(𝛾 − 𝜖𝛽)2

4(1 + 𝜖2)𝛽2

) 𝑘
∥�1 − �PS∥2

≤ exp

(
−
𝑘(𝛾 − 𝜖𝛽)2
4(1 + 𝜖2)𝛽2

)
∥�1 − �PS∥2.

Setting the right-hand side to 𝛿 and expressing 𝑘 completes the proof.

Proof of Greedy Deploy: Theorem 3.2.2
From Lemma 3.2.1, we have that the following recursion holds:

E
[
∥�𝑘+1 − �PS∥2

2

]
≤

(
1 − 2�𝑘(𝛾 − 𝜖𝛽) + �2

𝑘
𝐿2

(
1 + 𝜖

𝛽

𝛾

)
2

)
E
[
∥�𝑘 − �PS∥2

2

]
+ �2

𝑘
𝜎2.

Using the fact that 𝜖 < 𝛾
𝛽 , we get that,

E
[
∥�𝑘+1 − �PS∥2

2

]
≤

(
1 − 2�𝑘(𝛾 − 𝜖𝛽) + 4�2

𝑘
𝐿2

)
E
[
∥�𝑘 − �PS∥2

2

]
+ �2

𝑘
𝜎2.

We proceed by using induction. As in the theorem statement, we let �𝑘 = 1

(𝛾−𝜖𝛽)(𝑘+𝑘0) ,

where we denote 𝑘0 = 8𝐿2

(𝛾−𝜖𝛽)2 . The base case, 𝑘 = 0, is trivially true by construction of the

bound and choice of 𝑘0. Now, we adopt the inductive hypothesis that

E
[
∥�𝑘+1 − �PS∥2

2

]
≤

max

{
2𝜎2, 8𝐿2∥�1 − �PS∥2

2

}
(𝛾 − 𝜖𝛽)2(𝑘 + 𝑘0)

.

Then, by Lemma 3.2.1, it is true that

E
[
∥�𝑘+2 − �PS∥2

2

]
≤

(
1 − 2�𝑘(𝛾 − 𝜖𝛽) + 4�2

𝑘
𝐿2

)
E

[
∥�𝑘+1 − �PS∥2

2

]
+ �2

𝑘
𝜎2

≤ 1

(𝛾 − 𝜖𝛽)2
©«
𝑘 + 𝑘0 − 2 + 4𝐿2

(𝛾−𝜖𝛽)2𝑘0

(𝑘 + 𝑘0)2
max

{
2𝜎2, 8𝐿2∥�1 − �PS∥2

2

}
+ 𝜎2

(𝑘 + 𝑘0)2
ª®¬

≤ 1

(𝛾 − 𝜖𝛽)2

(
𝑘 + 𝑘0 − 1.5

(𝑘 + 𝑘0)2
max

{
2𝜎2, 8𝐿2∥�1 − �PS∥2

2

}
+ 𝜎2

(𝑘 + 𝑘0)2

)
≤ 1

(𝛾 − 𝜖𝛽)2

(
𝑘 + 𝑘0 − 1

(𝑘 + 𝑘0)2
max

{
2𝜎2, 8𝐿2∥�1 − �PS∥2

2

}
− 0.5 · 2𝜎2 − 𝜎2

(𝑘 + 𝑘0)2

)
=

1

(𝛾 − 𝜖𝛽)2 ·
𝑘 + 𝑘0 − 1

(𝑘 + 𝑘0)2
max

{
2𝜎2, 8𝐿2∥�1 − �PS∥2

2

}
≤ 1

(𝛾 − 𝜖𝛽)2 ·
1

𝑘 + 1 + 𝑘0

max

{
2𝜎2, 8𝐿2∥�1 − �PS∥2

2

}
,
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where the last step follows because (𝑘 + 𝑘0)2 > (𝑘 + 𝑘0)2 − 1 = (𝑘 + 𝑘0 + 1)(𝑘 + 𝑘0 − 1).
Therefore, we have shown E

[
∥�𝑘+2 − �PS∥2

2

]
≤ 𝑀

greedy

(𝛾−𝜖𝛽)2(𝑘+1+𝑘0) , which completes the proof

by induction.

Proof of Lazy Deploy: Theorem 3.2.3
To prove Theorem 3.2.3, we use the following classical result about convergence of SGD

on a static distribution (see, e.g., [69]). The step size is chosen such that it matches the step

size of Theorem 3.2.2 when 𝜖 = 0. We include the proof for completeness.

Lemma 3.5.5. If the loss is 𝛾-strongly convex in � (2.3) and satisfied (3.4) then Lazy deploy
satisfies the following:

E
[
∥𝜑𝑘,𝑗+1 − 𝐺(�𝑘)∥2

2

]
≤

(
1 − 2�𝑘,𝑗𝛾 + �2

𝑘,𝑗
𝐿2

)
E

[
∥𝜑𝑘,𝑗 − 𝐺(�𝑘)∥2

2

]
+ �2

𝑘,𝑗
𝜎2.

If, additionally, �𝑘,𝑗 = 1

𝛾 𝑗+8𝐿2/𝛾 , then for all 𝑘 ≥ 1, 𝑗 ≥ 0, the following is true

E
[
∥𝜑𝑘,𝑗+1 − 𝐺(�𝑘)∥2

2

]
≤

𝑀
lazy

𝛾2 𝑗 + 𝐿2

,

where 𝑀
lazy

:= max

{
1.2𝜎2, 8𝐿2E[∥�𝑘 − 𝐺(�𝑘)∥2

2
]
}
.

Proof. First we prove the recursion. Since Θ is closed and convex, we know

E
[
∥𝜑𝑘,𝑗+1 − 𝐺(�𝑘)∥2

2

]
= E

[ΠΘ

(
𝜑𝑘,𝑗 − �𝑘,𝑗∇ℓ (𝑧(𝑘)𝑗 ; 𝜑𝑘,𝑗)

)
− 𝐺(�𝑘)

2

2

]
≤ E

[ 𝜑𝑘,𝑗 − �𝑘,𝑗∇ℓ (𝑧(𝑘)𝑗 ; 𝜑𝑘,𝑗) − 𝐺(�𝑘)
2

2

]
= E

[ 𝜑𝑘,𝑗 − 𝐺(�𝑘)2

2

]
− 2�𝑘,𝑗E

[
∇ℓ (𝑧(𝑘)

𝑗
; 𝜑𝑘,𝑗)⊤(𝜑𝑘,𝑗 − 𝐺(�𝑘))

]
+ �2

𝑘,𝑗
E
[
∥∇ℓ (𝑧(𝑘)

𝑗
; 𝜑𝑘,𝑗)∥2

]
.

Next, we examine the cross-term. By the first-order optimality conditions for convex

functions (Lemma 3.5.3), we know that E
[
∇ℓ (𝑧(𝑘)

𝑗
;𝐺(�𝑘))⊤(𝜑𝑘,𝑗 − 𝐺(�𝑘))

]
≥ 0. Using this

lemma along with strong convexity, we can lower bound this term as follows,

E
[
∇ℓ (𝑧(𝑘)

𝑗
; 𝜑𝑘,𝑗)⊤(𝜑𝑘,𝑗 − 𝐺(�𝑘))

]
≥ E

[
(∇ℓ (𝑧(𝑘)

𝑗
; 𝜑𝑘,𝑗) − ∇ℓ (𝑧(𝑘)𝑗 ;𝐺(�𝑘))⊤(𝜑𝑘,𝑗 − 𝐺(�𝑘))

]
≥ 𝛾E

[
∥𝜑𝑘,𝑗 − 𝐺(�𝑘)∥2

]
.

For the final term, we use our assumption on the second moment of the gradients,

E
[
∥∇ℓ (𝑧(𝑘)

𝑗
; 𝜑𝑘,𝑗)∥2

2

]
≤ 𝜎2 + 𝐿2E

[
∥𝜑𝑘,𝑗 − 𝐺(�𝑘)∥2

2

]
.
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Putting everything together, we get the desired recursion,

E
[
∥𝜑𝑘,𝑗+1 − 𝐺(�𝑘)∥2

2

]
≤ (1 − 2�𝑘,𝑗𝛾 + �2

𝑘,𝑗
𝐿2)E

[
∥𝜑𝑘,𝑗 − 𝐺(�𝑘)∥2

2

]
+ �2

𝑘,𝑗
𝜎2.

Now we turn to proving the second part of the lemma. We prove the result using induction.

As in the theorem statement, we let �𝑘,𝑗 =
1

𝛾(𝑗+𝑘0) , where we denote 𝑘0 = 8𝐿2

𝛾2
. The base

case, 𝑗 = 0, is trivially true by construction of the bound and choice of 𝑘0. Now, we adopt

the inductive hypothesis that

E
[
∥𝜑𝑘,𝑗+1 − 𝐺(�𝑘)∥2

2

]
≤

max

{
1.2𝜎2, 8𝐿2E

[
∥�𝑘 − 𝐺(�𝑘)∥2

2

]}
𝛾2(𝑗 + 𝑘0)

.

Then, by part (a) of this lemma, it is true that

E
[
∥𝜑𝑘,𝑗+2 − 𝐺(�𝑘)∥2

2

]
≤

(
1 − 2�𝑘,𝑗𝛾 + �2

𝑘,𝑗
𝐿2

)
E

[
∥𝜑𝑘,𝑗+1 − 𝐺(�𝑘)∥2

2

]
+ �2

𝑘,𝑗
𝜎2

≤ 1

𝛾2

©«
𝑗 + 𝑘0 − 2 + 𝐿2

𝛾2𝑘0

(𝑗 + 𝑘0)2
max

{
1.2𝜎2, 8𝐿2E

[
∥�𝑘 − 𝐺(�𝑘)∥2

2

]}
+ 𝜎2

(𝑗 + 𝑘0)2
ª®¬

≤ 1

𝛾2

(
𝑗 + 𝑘0 − 15/8
(𝑗 + 𝑘0)2

max

{
1.2𝜎2, 8𝐿2E

[
∥�𝑘 − 𝐺(�𝑘)∥2

2

]}
+ 𝜎2

(𝑗 + 𝑘0)2

)
≤ 1

𝛾2

(
𝑗 + 𝑘0 − 1

(𝑗 + 𝑘0)2
max

{
1.2𝜎2, 8𝐿2E

[
∥�𝑘 − 𝐺(�𝑘)∥2

2

]}
− 7/8 · 1.2𝜎2 + 𝜎2

(𝑗 + 𝑘0)2

)
=

1

𝛾2

·
𝑗 + 𝑘0 − 1

(𝑗 + 𝑘0)2
max

{
1.2𝜎2, 8𝐿2E

[
∥�𝑘 − 𝐺(�𝑘)∥2

2

]}
≤ 1

𝛾2

· 1

𝑗 + 1 + 𝑘0

max

{
1.2𝜎2, 8𝐿2E

[
∥�𝑘 − 𝐺(�𝑘)∥2

2

]}
,

where the last step follows because (𝑗 + 𝑘0)2 > (𝑗 + 𝑘0)2 − 1 = (𝑗 + 𝑘0 + 1)(𝑗 + 𝑘0 − 1).
Therefore, we have shown E

[
∥𝜑𝑘,𝑗+2 − 𝐺(�𝑘)∥2

2

]
≤ 𝑀

lazy

𝛾2(𝑗+1+𝑘0) , which completes the proof

by induction. □

Now we finally prove Theorem 3.2.3. First we state two deterministic identities used

in the proof, which follow from Theorem 3.1.2.

∥𝐺(�) − �PS∥2 ≤ 𝜖
𝛽

𝛾
∥� − �PS∥2, (3.5)

∥� − 𝐺(�)∥2 ≤ ∥� − �PS∥2 + ∥�PS − 𝐺(�)∥2 ≤
(
1 + 𝜖

𝛾

𝛽

)
∥� − �PS∥2. (3.6)

Note that identity (3.6) implies ∥� − 𝐺(�)∥2 < 2∥� − �PS∥2 if 𝜖 < 𝛾
𝛽 .
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By triangle inequality, we have

E
[
∥�𝑘+1 − �PS∥2

2

]
= E

[
∥�𝑘+1 − 𝐺(�𝑘) + 𝐺(�𝑘) − �PS∥2

2

]
≤ E

[
∥�𝑘+1 − 𝐺(�𝑘)∥2

2

]
+ 2E [∥�𝑘+1 − 𝐺(�𝑘)∥2∥𝐺(�𝑘) − �PS∥2] + E

[
∥𝐺(�𝑘) − �PS∥2

2

]
.

(3.7)

Denoting 𝑘0 = 8𝐿2

𝛾2
, Lemma 3.5.5 bounds the first term by

E
[
∥�𝑘+1 − 𝐺(�𝑘)∥2

2

]
= E

[
E

[
∥�𝑘+1 − 𝐺(�𝑘)∥2

2
| �𝑘

] ]
≤

1.2𝜎2 + 8𝐿2E
[
∥�𝑘 − 𝐺(�𝑘)∥2

2

]
𝛾2(𝑛(𝑘) + 𝑘0)

≤
1.2𝜎2 + 32𝐿2E

[
∥�𝑘 − �PS∥2

2

]
𝛾2(𝑛(𝑘) + 𝑘0)

,

where in the last step we apply identity (3.6). Note also that by Jensen’s inequality, we

know

E [∥�𝑘+1 − 𝐺(�𝑘)∥2] ≤
1.1𝜎 + 6𝐿E [∥�𝑘 − 𝐺(�𝑘)∥2]

𝛾
√
𝑛(𝑘) + 𝑘0

.

We can use this inequality, together with identities (3.5) and (3.6), to bound the cross-term

in equation (3.7) as follows:

2E [∥�𝑘+1 − 𝐺(�𝑘)∥2∥𝐺(�𝑘) − �PS∥2]

≤ 2𝜖
𝛽

𝛾
E [∥�𝑘+1 − 𝐺(�𝑘)∥2∥�𝑘 − �PS∥2]

≤
2𝜖

𝛽
𝛾√

𝑛(𝑘) + 𝑘0

E

[(
6𝐿

𝛾
∥�𝑘 − 𝐺(�𝑘)∥2 +

1.1𝜎
𝛾

)
∥�𝑘 − �PS∥2

]
≤

2𝜖
𝛽
𝛾√

𝑛(𝑘) + 𝑘0

E

[(
6𝐿

𝛾

(
1 + 𝜖

𝛽

𝛾

)
∥�𝑘 − �PS∥2 +

1.1𝜎
𝛾

)
∥�𝑘 − �PS∥2

]
≤

24𝜖𝛽𝐿

𝛾2

√
𝑛(𝑘) + 𝑘0

E
[
∥�𝑘 − �PS∥2

2

]
+

2.2𝜎𝜖𝛽

𝛾2

√
𝑛(𝑘) + 𝑘0

E [∥�𝑘 − �PS∥2] .

We bound the latter term by applying the AM-GM inequality; in particular, for all 𝛼0 ∈
(0, 1), it holds that

2.2𝜎𝜖𝛽

𝛾2

√
𝑛(𝑘) + 𝑘0

E [∥�𝑘 − �PS∥2] ≤
1.1𝜎𝜖𝛽

𝛾2

(
1

(𝑛(𝑘) + 𝑘0)𝛼0

+
E

[
∥�𝑘 − �PS∥2

2

]
(𝑛(𝑘) + 𝑘0)1−𝛼0

)
.
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Thus, the final bound on the cross-term in equation (3.7) is

2E [∥�𝑘+1 − 𝐺(�𝑘)∥2∥𝐺(�𝑘) − �PS∥2] ≤
(

24𝜖𝛽𝐿

𝛾2

√
𝑛(𝑘) + 𝑘0

+
1.1𝜎𝜖𝛽

𝛾2(𝑛(𝑘) + 𝑘0)1−𝛼0

)
E

[
∥�𝑘 − �PS∥2

2

]
+

1.1𝜎𝜖𝛽

𝛾2(𝑛(𝑘) + 𝑘0)𝛼0

.

The final term in equation (3.7) can be bounded by identity (3.5):

E
[
∥𝐺(�𝑘) − �PS∥2

2

]
≤

(
𝜖
𝛽

𝛾

)
2

E
[
∥�𝑘 − �PS∥2

2

]
.

Putting all the steps together, we have derived the following recursion, true for all

𝛼0 ∈ (0, 1):

E
[
∥�𝑘+1 − �PS∥2

2

]
≤

(
32𝐿2

𝛾2(𝑛(𝑘) + 𝑘0)
+ 24𝜖𝛽𝐿

𝛾2

√
𝑛(𝑘) + 𝑘0

+ 1.1𝜎𝜖𝛽

𝛾2(𝑛(𝑘) + 𝑘0)1−𝛼0

+
(
𝜖
𝛽

𝛾

)
2

)
E

[
∥�𝑘 − �PS∥2

2

]
+ 1.2𝜎2

𝛾2(𝑛(𝑘) + 𝑘0)
+ 1.1𝜎𝜖𝛽

𝛾2(𝑛(𝑘) + 𝑘0)𝛼0

≤ 𝑐E
[
∥�𝑘 − �PS∥2

2

]
+ 1.2𝜎2

𝛾2(𝑛(𝑘) + 𝑘0)
+ 1.1𝜎𝜖𝛽

𝛾2(𝑛(𝑘) + 𝑘0)𝛼0

, (3.8)

where we define

𝑐 :=
32𝐿2

𝛾2𝑛0

+ 24𝜖𝛽𝐿

𝛾2
√
𝑛0

+ 1.1𝜎𝜖𝛽

𝛾2𝑛
1−𝛼0

0

+
(
𝜖
𝛽

𝛾

)
2

.

We pick 𝑛0 large enough such that there exists 𝛼0 > 0 for which 𝑐 < 1.

Unrolling the recursion given by equation (3.8), we get

E
[
∥�𝑘+1 − �PS∥2

2

]
≤ 𝑐𝑘 ∥�1 − �PS∥2

2
+ 1

𝛾2

𝑘∑
𝑗=1

𝑐𝑘−𝑗
(

1.2𝜎2

𝑛(𝑗) + 𝑘0

+
1.1𝜎𝜖𝛽

(𝑛(𝑗) + 𝑘0)𝛼0

)
.

Since 𝛼0 < 1, we can upper bound the second term as

1

𝛾2

𝑘∑
𝑗=1

𝑐𝑘−𝑗
(

1.2𝜎2

𝑛(𝑗) + 𝑘0

+
1.1𝜎𝜖𝛽

(𝑛(𝑗) + 𝑘0)𝛼0

)
≤ 1.2𝜎2

𝛾2

𝑘∑
𝑗=1

𝑐𝑘−𝑗
1

𝑛(𝑗) + 𝑘0

+
1.1𝜎𝜖𝛽

𝛾2

𝑘∑
𝑗=1

𝑐𝑘−𝑗
1

(𝑛(𝑗) + 𝑘0)𝛼0

≤ 1

𝛾2(1 − 𝑐)

(
1.2𝜎2

𝑛0

(2𝑘−𝛼 + 𝑐(1−2
−1/𝛼)𝑘) +

1.1𝜎𝜖𝛽

𝑛
𝛼0

0

(2𝑘−𝛼·𝛼0 + 𝑐(1−2
−1/(𝛼𝛼

0
))𝑘)

)
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where in the second inequality we apply Lemma 3.5.4 after plugging in the choice of 𝑛(𝑘).
Using the fact that 𝛼0 ∈ (0, 1) and hence 𝑐(1−2

−1/(𝛼𝛼
0
))𝑘 < 𝑐(1−2

−1/𝛼)𝑘
, as well as 𝜖 < 𝛾

𝛽 and

𝑛0 ≥ 1, gives

1

𝛾2(1 − 𝑐)

(
1.2𝜎2

𝑛0

(2𝑘−𝛼 + 𝑐(1−2
−1/𝛼)𝑘) +

1.1𝜎𝜖𝛽

𝑛
𝛼0

0

(2𝑘−𝛼·𝛼0 + 𝑐(1−2
−1/(𝛼𝛼

0
))𝑘)

)
≤ 1.2𝜎2 + 1.1𝜎𝛾

𝛾2(1 − 𝑐)

(
4𝑘−𝛼𝛼0 + 2𝑐(1−2

−1/𝛼)𝑘
)

≤ 3(𝜎 + 𝛾)2
𝛾2(1 − 𝑐)

(
2𝑘−𝛼𝛼0 + 𝑐Ω(𝑘)

)
.

It remains to set 𝛼0; we set 𝛼0 = max{𝛿 ∈ (0, 1) : 𝑐 < 1} (note that the existence of such 𝛼0

is guaranteed by the choice of 𝑛0). Clearly, 𝛼0→ 1 as 𝑛0 grows, and so putting everything

together gives

E
[
∥�𝑘+1 − �PS∥2

2

]
≤ 𝑐𝑘 ∥�1 − �PS∥2

2
+ 3(𝜎 + 𝛾)2

𝛾2(1 − 𝑐)

(
2

𝑘𝛼·(1−𝑜(1))
+ 𝑐Ω(𝑘)

)
,

as desired.

Proof of Corollary 3.2.4
From Theorem 3.2.2, we know that for greedy deploy, E

[
∥�𝑘+1 − �PS∥2

]
= 𝒪( 1

𝑘
) where 𝑘

indexes both the number of classifiers and the number of samples collected. By inverting

this bound, we see that to ensure E
[
∥�𝑘+1 − �PS∥2

]
≤ 𝛿, it suffices to collect 𝒪( 1𝛿 ) samples.

From our analogous convergence result for lazy deploy (Theorem 3.2.3), we know that

after the 𝑘-th deployment, it holds thatE
[
∥�𝑘+1−�PS∥2

]
= 𝒪(1/𝑘𝛼·𝜔), for some 𝜔 = 1−𝑜(1)

which is independent of 𝑘 and tends to 1 as 𝑛0 grows. If we collect Θ(𝑗𝛼) samples for each

deployment 𝑗 = 1 . . . 𝑘, after 𝑘 deployments the total number of samples 𝑁 is Θ(𝑘𝛼+1).
Therefore,

E
[
∥�𝑘+1 − �PS∥2

]
= 𝒪(1 / 𝑁 𝛼·𝜔

𝛼+1 ).

By inverting these bounds, we get our desired result for the asymptotics of lazy deploy.

Experimental details
Base distribution. The base distribution consists of the Kaggle data set [40]. We sub-

sample 𝑛 = 18, 357 points from the original training set such that both classes are approx-

imately balanced (45% of points have 𝑦 equal to 1). There are a total of 10 features, 3 of
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which we treat as strategic features: utilization of credit lines, number of open credit lines,

and number of real estate loans. We scale features in the base distribution so that they

have zero mean and unit variance.

Verifying 𝜖-sensitivity. We verify that the map 𝒟(·), as described in Section 3.3, is 𝜖-

sensitive. To do so, we analyze 𝑊1(𝒟(�),𝒟(�′)), for arbitrary �, �′ ∈ Θ. Fix a sample

point 𝑥 ∈ R𝑚−1
from the base dataset. Because the base distribution 𝒟 is supported

on 𝑛 points, we can upper bound the optimal transport distance between any pair of

distributions𝒟(�) and𝒟(�′) by the Euclidean distance between the shifted versions of 𝑥

in𝒟(�) and𝒟(�′).
In our construction, the point 𝑥 is shifted to 𝑥 − 𝜖� and to 𝑥 − 𝜖�′ in 𝒟(�) and 𝒟(�′)

respectively. The distance between these two shifted points is ∥𝑥 − 𝜖� − 𝑥 + 𝜖�′∥2 =

𝜖∥� − �′∥2. Since the same relationship holds for all other samples 𝑥 in the base dataset,

the optimal transport from𝒟(�) to𝒟(�′) is at most 𝜖∥� − �′∥2.

Verifying joint smoothness of the objective. For the experiments described in Figure

3.3, we run repeated risk minimization and repeated gradient descent on the logistic loss

with ℓ2 regularization:

1

𝑛

𝑛∑
𝑖=1

−𝑦𝑖�⊤𝑥𝑖 + log

(
1 + exp(�⊤𝑥𝑖)

)
+ 𝛾

2

∥�∥2 (3.9)

For both the repeated risk minimization and repeated gradient descent we set 𝛾 =

1000/𝑛, where 𝑛 is the size of the base dataset.

For a particular feature-outcome pair (𝑥𝑖 , 𝑦𝑖), the logistic loss is
1

4
∥𝑥𝑖 ∥2 smooth [76].

Therefore, the entire objective is
1

4𝑛

∑𝑛
𝑖=1
∥𝑥𝑖 ∥2 + 𝛾 smooth. Due to the strategic updates,

𝑥𝐵𝑅 = 𝑥 − 𝜖�, the norm of individual features change depending on the choice of model

parameters.

Theoretically, we can upper bound the smoothness of the objective by finding the

implicit constraints on Θ, which can be revealed by looking at the dual of the objective

function for every fixed value of 𝜖. However, for simplicity, we simply calculate the

worst-case smoothness of the objective, given the trajectory of iterates {�𝑡}, for every fixed

𝜖.

Furthermore, we can verify the logistic loss is jointly smooth. For a fixed example

𝑧 = (𝑥, 𝑦), the gradient of the regularized logistic loss with respect to � is,

∇�ℓ (𝑧;�) = 𝑦𝑥 +
exp(�⊤𝑥)

1 + exp(�⊤𝑥)𝑥 + 𝛾�,
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which is 2-Lipschitz in 𝑧 due to 𝑦 ∈ {0, 1}. Hence, the overall objective is 𝛽-jointly smooth

with parameter

𝛽 = max

{
2,

1

4𝑛

𝑛∑
𝑖=1

∥𝑥𝑖 ∥2 + 𝛾
}
.

For RRM, 𝜖 is less than
𝛾
𝛽 only in the case that 𝜖 = 0.01. For RGD, 𝜖 is never smaller

than the theoretical cutoff of
𝛾

(𝛽+𝛾)(1+1.5�𝛽) .

Optimization details. The definition of RRM requires exact minimization of the objective

at every iteration. We approximate this requirement by minimizing the objective described

in expression (3.9) to small tolerance, 10
−8

, using gradient descent. We choose the step

size at every iteration using backtracking line search.

In the case of repeated gradient descent, we run the procedure as described in Defini-

tion 3.1.4 with a fixed step size of � = 2

𝛽+𝛾 . For the greedy vs lazy deploy comparison we

fix � = 10
3/𝑛 for all experiments. When evaluated on the base distribution, the objective

has parameters 𝛽 = 4.72, 𝛾 = 0.054 which yields
𝛾
𝛽 = 0.011.
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Chapter 4

In Search of Performative Optima I:
Establishing Convexity

Up until this point, the algorithmic results in this thesis have been primarily centered on

the possibilities and limitations of finding performatively stable points through retraining.

Recall that stability is a local definition of optimality, by which a model minimizes the

expected risk for the specific distribution that it induces. And, if performative effects are

very weak, this local definition of optimality is also nearly globally optimal. In particular,

we proved in Theorem 2.2.3 and Corollary 2.2.4 that stable points approximately minimize

the performative risk, the central notion of performance in performative prediction.

In full generality however, stability has little bearing on whether a predictive model

has low performative risk. If performative effects are not vanishingly small, stable models

can in fact maximize the performative risk, even for well-behaved, 𝜖-sensitive distribution

maps with 𝜖 values that are 𝒪(1) (Proposition 2.2.6).

Reasoning by analogy, stable models can be thought of as an echo chamber in an online

platform. In an echo chamber, one is reassured of their ideas by voicing them, but it’s

not clear whether they are reasonable outside of this niche community. Similarly, stable

solutions minimize risk on the distribution that they induce, but they provide no global

guarantees of performance.

In this chapter, we shift attention past performative stability and study optimizing

the performative risk directly. Optimizing the performative risk requires a different

algorithmic approach than what we’ve seen so far. Firstly, if performative effects are

significant, different predictive models can induce significantly different distributions.

Consequently, we need to actively anticipate performative effects rather than myopically

retrain until convergence, as the latter would only lead to stability. Second, as seen in even

in Proposition 2.2.6, the performative risk can be non-convex, even if the loss ℓ is convex
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and the distribution map 𝒟(·) has a small Lipschitz constant.1. This non-convexity poses

computational and statistical barriers when trying to find the performatively optimal

solution.

In this chapter, we start to answer the question of when and why can the performative

risk be optimized efficiently. In particular:

1. We identify natural conditions under which the performative risk is guaranteed to

be convex, even in settings where performative effects can be arbitrarily strong.

2. Having established these structural results, we move on to study optimization al-

gorithms which explicitly account for the impacts of prediction and provably and

efficiently minimize the performative risk.

4.1 When is the Performative Risk Convex
In this section, we introduce our main structural results illustrating how the performa-

tive risk can be convex in various settings, and hence amenable to direct optimization.

Throughout our presentation, we adopt the following convention. We state that the

performative risk is �-convex, for some � ∈ R, if the objective,

PR(�) − �
2

∥�∥2
2

is convex. In other words, if � is positive, then PR(�) is �-strongly convex. If � is negative,

then adding the analogous regularizer
�
2
∥�∥2 ensures PR(�) is convex.

To achieve tighter characterization of when the performative risk is convex, we will pay

close attention to properties of the loss function with respect to the data 𝑧. In particular,

we will sometimes assume that the loss ℓ is 𝛾𝑧-strongly convex in 𝑧.

That is, for all �, 𝑧, 𝑧′,

ℓ (𝑧;�) ≥ ℓ (𝑧′;�) + ∇𝑧ℓ (𝑧′;�)⊤(𝑧′ − 𝑧) +
𝛾𝑧
2

∥𝑧 − 𝑧′∥2
2
. (4.1)

Assuming convexity in the data is somewhat unorthodox within the stochastic optimiza-

tion literature since the data is not something we usually optimize over. However, in

performative prediction, we do in fact get to actively optimize the data distribution via

the dependence distribution map𝒟(·) on the model parameters �.2

In fact, it is quite natural to assume that we might want to actively steer the data

towards socially desirable targets 𝑧★ by adding terms like ∥𝑧 − 𝑧★∥2
2

to the loss function

1
In particular, in the counterexample from Proposition 2.2.6, PR(·) is concave if 𝜖 > 𝛾/𝛽

2
Interestingly, convexity in the data also holds for natural loss functions like squared loss (𝑦 − �⊤𝑥)2.
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ℓ . For examples, in education, we might want induce models that steer people towards

achieving certain features 𝑥 (e.g., higher test scores) or particular outcomes (e.g., increase

the likelihood of graduating from high school on time. As we will later see, adding these

steering terms to the objective can often make optimization easier, not harder.

Lastly, in this chapter we will focus our analysis on problems which satisfy a structural

condition we call mixture dominance. A distribution map, loss pair (𝒟(·), ℓ ) satisfies mixture
dominance if the following condition holds for all �, �′, �0 ∈ Θ and 𝛼 ∈ (0, 1):

E𝑧∼𝒟(𝛼�+(1−𝛼)�′)ℓ (𝑧;�0) ≤ E𝑧∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)ℓ (𝑧;�0). (4.2)

While previous definitions like smoothness and strong convexity are standard in the

optimization literature and have appeared previously in our study of performative pre-

diction, the mixture dominance condition is novel and plays a central role in our analysis

of when the performative risk is convex.

To provide some intuition for this condition, we recall the definition of the decoupled
performative risk:

DPR(�, �′) = E𝑧∼𝒟(�)ℓ (𝑧;�′).

Notice that asserting convexity of the performative risk is equivalent to showing convexity

of DPR(�, �)when both arguments are forced to be the same. While convexity of the loss

ℓ in � guarantees that DPR is convex in the second argument, mixture dominance (4.2)

essentially posits convexity of DPR in the first argument. Importantly, assuming convexity

in each argument separately does not directly imply that the performative risk is convex.3

Assumption (4.2) is a stochastic dominance statement: the mixture distribution 𝛼𝒟(�)+
(1 − 𝛼)𝒟(�′) “dominates”𝒟(𝛼� + (1 − 𝛼)�′) under a certain loss function. Similar condi-

tions have been extensively studied within the literature on stochastic orders [75]. Part of

our analysis relies on incorporating tools from this literature. For example, using results

from stochastic orders we can show that (4.2) holds when the loss is convex in 𝑧 and the

distribution map𝒟(·) forms a location-scale family of the form:

𝑧� ∼ 𝒟(�) ⇔ 𝑧�
𝑑
= (Σ0 + Σ(�))𝑧base

+ �0 + ��, (4.3)

where 𝑧
base
∼ 𝒟

base
is a sample from a fixed zero-mean distribution𝒟

base
, and Σ(�), � are

linear maps (see Proposition 4.5.4 for a formal proof).

Location-scale distribution maps of this sort are commonplace throughout the perfor-

mative prediction literature and hence satisfy mixture dominance if the loss ℓ is convex.

For instance, the distribution map for the strategic classification simulations whereby fea-

tures adapt towards the decision boundary, 𝑥′
𝑆
= 𝑥𝑆 − 𝜖�𝑆, is a location family. Other

3
For example, bilinear objectives 𝑢⊤𝑣 are convex in (𝑢, 𝑣) separately for 𝑢, 𝑣 ∈ R𝑛 , but not jointly.
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examples of location families can be found in previous work on strategic classification [26,

30]. Mixture dominance can also hold in discrete settings, e.g. 𝒟(�) = Bernoulli(𝑎⊤� + 𝑏)
satisfies this condition for any loss. Having provided some context on the mixture domi-

nance condition, we can now state the main result of this section:

Theorem 4.1.1. Suppose that the loss function ℓ (𝑧;�) is 𝛾-strongly convex in � (2.3), 𝛽-smooth in
𝑧 (3.1), and that𝒟(·) is 𝜖-sensitive (2.2). If mixture dominance (4.2) holds, then the performative
risk is �-convex for � = 𝛾 − 2𝜖𝛽.

One interesting facet of this result is that it shows that under the mixture dominance

condition, 𝜖 = 𝛾/(2𝛽) is a sharp threshold for PR(·) to be convex in �. In particular, if

𝜖 < 𝛾/(2𝛽), the theorem above guarantees that the performative risk if guaranteed to be

strongly convex. Furthermore, in the proof of Proposition 2.2.6, we saw that there exists

a performative prediction problem satisfying the mixture dominance condition that is

𝛽-smooth in 𝑧, 𝛾-strongly convex in �, and 𝜖-sensitive for which PR(·) is concave in � if

𝜖 > 𝛾/(2𝛽). Hence, 𝛾/(2𝛽) is a sharp threshold for convexity of the performative risk.

Remark 4.1.2. Notice that this is the second time we find the existence of sharp thresholds

in performative prediction. Recall from Chapter 3 that 𝜖 = 𝛾/𝛽 is a sharp threshold for

the convergence of repeated retraining (Definition 2.1.6). Now, we see that dividing this

quantity by 2, we get another threshold for the convexity of the performative risk.

Summarizing, assume that mixture-dominance condition holds, that the loss is 𝛾-

strongly convex in �, 𝛽-smooth in 𝑧, and that the distribution map𝒟 is 𝜖-sensitive:

• If 𝜖 > 𝛾/𝛽, performative stable point may not exist and retraining may not converge.

• If 𝜖 ∈ (𝛾/(2𝛽), 𝛾/𝛽), retraining is guaranteed to converge to a unique stable point, but

this stable point may maximize the performative risk. Furthermore, the performative

risk PR(·)may be non-convex.

• If 𝜖 < 𝛾/(2𝛽), repeated retraining converges to stability, but performative optimality

is also within reach since PR(�) is now guaranteed to be convex.

While the threshold 𝜖 = 𝛾/(2𝛽) is in general tight as argued above, for certain families

of distribution maps the conclusion of Theorem 4.1.1 can be made considerably stronger.

Indeed, in some cases the performative risk is convex regardless of the magnitude of

performative effects, as observed in the following example.

Example 2.1.1 (continued). Recall the financial trading example where the true prices

of financial instruments are nudged to be closer towards our predictions �̂� = �⊤𝑥
base

by
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some constant 𝜖′,

(𝑥, 𝑦) ∼ 𝒟(�) ⇐⇒ (𝑥
base

, 𝑦
base
) ∼ 𝒟

base
and (𝑥, 𝑦) =

(
𝑥

base
, 𝑦

base
+ 𝜖′ · (�⊤𝑥

base
− 𝑦

base
)
)

If ℓ is the squared loss (𝑦 − �⊤𝑥)2, then the performative risk is always convex regardless

of the magnitude of 𝜖′. In particular, a short calculation shows that:

PR(�) = (1 − 𝜖′)2E(𝑥
base

,𝑦
base
)∼𝒟

base

(𝑦
base
− �⊤𝑥

base
)2

Motivated by this observation, we specialize the analysis in Theorem 4.1.1 to the

particular case of location-scale families, and obtain a result that is at least as tight as the

previous theorem.

Theorem 4.1.3. Suppose that ℓ (𝑧;�) is 𝛾-strongly convex in � (2.3), 𝛽-smooth in 𝑧 (3.1), and
𝛾𝑧-strongly convex in 𝑧 (4.1). Furthermore, suppose that𝒟(�) forms a location-scale family (4.3)

with 𝜖 as its sensitivity parameter4. Define Σ𝑧
base

to be the covariance matrix of 𝑧
base
∼ 𝒟0, and

let

𝜎min(�) = min

∥�∥2=1

∥��∥2, 𝜎min(Σ) = min

∥�∥2=1

∥Σ1/2
𝑧

base

Σ(�)⊤∥𝐹 .

Then, the performative risk is �-convex for � equal to:

max{𝛾 − 𝛽2/𝛾𝑧 , 𝛾 − 2𝜖𝛽 + 𝛾𝑧(𝜎2

min
(�) + 𝜎2

min
(Σ))}.

The key difference relative to the previous theorem, is that now we take into account

the fact that the loss function can be strongly convex in the data 𝑧. This property can

make convexity easier to establish as we will now illustrate in Example 4.1.4. Under the

location-scale assumption, we can add regularizers of the form 𝛼/2∥𝑧 − 𝑧★∥2
2

to ensure

convexity of the performative risk. These quadratic terms are 𝛼-convex in 𝑧, meaning that

if the previous objective was 𝛾𝑧 convex, it is now 𝛾𝑧 + 𝛼 convex. Note that the smoothness

parameter (with respect to 𝑧) remains unchanged since a loss is 𝛽𝑧 smooth if the gradient

of ℓ with respect to � is 𝛽𝑧-Lipschitz. Since ∇�(𝛼/2∥𝑧 − 𝑧★∥2
2
) = 0 this constant remains

unchanged!

In general, one can achieve a tighter analysis of when the performative risk is convex

by distinguishing between variables which are static, whose distribution is the same under

𝒟(�) for all �, and performative variables which are influenced by the deployed classifier.

For the most part we avoid this distinction in the main body of this chapter for the

sake of readability, however, we elaborate on how the analysis can be strengthened in the

supplementary material for this chapter. We now illustrate an application of Theorem 4.1.3

on a scale family example.

4
The sensitivity parameter 𝜖 for location-scale families can be explicitly bounded in terms of the param-

eters � and Σ(�); see the supplementary material of this chapter.
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Example 4.1.4. Suppose that 𝑥 > 0 is a one-dimensional feature drawn from a fixed

distribution 𝒟𝑥 , and let 𝑦 |𝑥 ∼ �𝑥 · Exp(1) be distributed as an exponential random

variable with mean �𝑥. Let the loss be the squared loss, ℓ ((𝑥, 𝑦);�) = 1

2
(𝑦 − � · 𝑥)2 and let

Θ = R+. Note that this example exhibits a self-fulfilling prophecy property whereby all

solutions are performatively stable. On the other hand, PR(�) = �2E𝑥2
, and the unique

performative optimum is �PO = 0. Again, we see how stability has no bearing on whether

a solution has low performative risk.

However, we note that the loss is 1-strongly convex in 𝑦. Furthermore, by averaging

over the static features, we observe that PR(�) is E𝑥2
-strongly convex in � and E𝑥-smooth

in 𝑦. Therefore, according to Theorem 4.1.3, the performative risk is convex and hence

tractable to optimize, since 𝛾 − 𝛽2/𝛾𝑧 = E𝑥2 − (E𝑥)2 ≥ 0 by Jensen’s inequality.

While this example, like most others in this section, is intended as a toy problem to

provide the reader with some intuition regarding the intricacies of performativity, many

instances of performative prediction in the real world do exhibit a self-fulfilling prophecy

aspect whereby predicting a particular outcome increases the likelihood that it occurs.

For instance, predicting that a student is unlikely to do well on a standardized exam

may discourage them from studying in the first place and hence lower their final grade.

Settings like these where stability is a vacuous guarantee of performance remind us how

developing reliable predictive models requires going outside the stability echo chamber.

As a final note, to prove the results in this section, we have imposed additional as-

sumptions such as mixture dominance, or analyzed the special case of location-scale

families. The reader might naturally ask whether these settings are so restrictive that one

can optimize the performative risk using previous optimization methods for performative

prediction which find stable points. Or in particular,

If the performative risk is convex,
are performative optima and performative stable points now the same?

It turns out that both solutions can still have qualitatively different behavior, regardless

of the strength of performative effects or the convexity of PR(·). First, notice that the

example in the proof of Proposition 2.2.6 is a location family, and as such it satisfies

mixture dominance. In that example, when 𝜖 ∈ ( 𝛾
2𝛽 ,

𝛾
𝛽 ), methods for finding stable points

converge to a maximizer of the performative risk; however, this is outside the regime

where the performative risk is convex. In what follows, by relying on Theorem 4.1.3, we

provide another scale family example where the performative risk is convex regardless of

𝜖, yet stable points can be arbitrarily suboptimal.
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Example 4.1.5. Suppose that 𝒟(�) = 𝒩(�, 𝜖2�2) for some � ∈ R and 𝜖 > 0. This distri-

bution map is 𝜖-sensitive. Furthermore, if ℓ is the squared loss, ℓ (𝑧;�) = 1

2
(𝑧 − �)2, then

there is a unique stable point �PS = �. On the other hand, �PO = �/(1 + 𝜖2).
Notice how, contrary to the performative optimum �PO, the stable point �PS is indepen-

dent of 𝜖 and hence oblivious to the performative effects. Depending on �, the stable point

can be arbitrarily suboptimal, since PR(�PS) − PR(�PO) = Ω(�2). Note also that, according

to Theorem 4.1.3, the performative risk is 𝛾 − 2𝜖𝛽 + 𝛾𝑧𝜎2

min
(Σ) = 1 − 2𝜖 + 𝜖2

-convex. Since

1 − 2𝜖 + 𝜖2 = (𝜖 − 1)2 ≥ 0, the performative risk is always convex and hence tractable to

optimize.

4.2 Optimization Algorithms
Having identified conditions under which the performative risk is convex, we now con-

sider methods for efficiently optimizing it. One of the main challenges of carrying out

this task is that, even in convex settings, the learner can only access the objective via

noisy function evaluations corresponding to model deployments. Without knowledge

of the underlying distribution map 𝒟(·), it is infeasible to (exactly) compute gradients

of the performative risk. A naive solution is to apply a zeroth-order method, however,

these algorithms are in general hard to tune, and their performance scales poorly with the

problem dimension.

Our main algorithmic contribution is to show how one can address these issues by

creating an explicit model of the distribution map and then optimizing a proxy objective

for the performative risk offline. We refer to this as the two-stage procedure for optimizing

the performative risk and show it is provably efficient for the case of location families.

To develop further intuition, consider the following simple example. Let 𝑧 ∼ 𝒩(𝜖�, 1)
be a one-dimensional Gaussian and let ℓ (𝑧;�) = 1

2
(𝑧 − �)2 be the squared loss. Then, the

performative risk, PR(�) = 1

2
(𝜖 − 1)2�2

, is a simple, convex function for all values of 𝜖 (as

indeed confirmed by Theorem 4.1.3, since 𝛾−2𝜖𝛽+𝛾𝑧𝜎2

min
(�) = 1−2𝜖+ 𝜖2 ≥ 0). However,

gradients are unavailable since they depend on the density of𝒟(�), denoted 𝑝�, which is

typically unknown:

∇�PR(�) = E𝑧∼𝒟(�)∇�ℓ (𝑧;�) + E𝑧∼𝒟(�)ℓ (𝑧;�)∇� log 𝑝�(𝑧)
= E𝑧∼𝒟(�) − (𝑧 − �) + 𝜖(𝜖 − 1)�.

Despite the simplicity of this example, the earlier approaches to optimization in per-

formative prediction, such as repeated retraining, fail on this problem. The reason is that

they essentially ignore the second term in the gradient computation which requires ex-

plicitly anticipating performative effects. For example, retraining computes the sequence
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of updates

�𝑡+1 = arg min

�
E𝑧∼𝒟(�𝑡)

1

2
(𝑧 − �)2 = 𝜖�𝑡 ,

which diverges for |𝜖 | > 1.

Generic Derivative-Free Methods
Having observed the difficulty of computing gradients, the most natural starting point

for optimizing the performative risk is to consider derivative-free methods for convex

optimization [2, 25, 78]. These methods work by constructing a noisy estimate of the

gradient by querying the objective function at a randomly perturbed point around the

current iterate.

For instance, Flaxman et al. [25] sample a vector 𝑢 ∼ Unif(𝒮𝑑−1) to get a slightly biased

gradient estimator,5

∇�PR(�) ≈ 𝑑
𝛿
E[PR(� + 𝛿𝑢)𝑢],

for some small 𝛿 > 0. Generic derivative-free algorithms for convex optimization re-

quire few assumptions beyond those given in the previous section to ensure convexity.

Moreover, they guarantee convergence to a performative optimum given sufficiently many

samples. Unfortunately, their rate of convergence can be slow and scales poorly with the

problem dimension. In general, zeroth-order methods require �̃�(𝑑2/Δ2) samples to obtain

a Δ-suboptimal point [2, 78], which can be prohibitively expensive if samples are hard to

come by.

Two-Stage Approach
In cases where we have further structure, an alternative solution to derivative-free methods

is to utilize a two-stage approach to optimizing the performative risk. In the first stage,

we estimate a coarse model of the distribution map, 𝒟(·) via experiment design. Then,

in the second stage, the algorithm optimizes a proxy to the performative risk treating the

estimated𝒟 as if it were the true distribution map:

�̂PO ∈ arg min

�
P̂R(�) := E

𝑧∼𝒟(�)ℓ (𝑧;�).

The exact implementation of this idea depends on the problem setting at hand; to make

things concrete, we instantiate the approach in the context of location families and prove

5
We use 𝒮𝑑−1

to denote the unit sphere in R𝑑
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Stage 1: Construct a model of the distribution map

(Estimate location parameter � with experiment design)

For 𝑖 = 1, . . . 𝑛:

• Sample and deploy classifier �𝑖
i.i.d.∼ 𝒩 (0, 𝐼𝑑).

• Observe 𝑧𝑖 ∼ 𝒟(�𝑖).
Estimate � via least squares:

�̂ ∈ arg min

�

𝑛∑
𝑖=1

∥𝑧𝑖 − ��𝑖 ∥2
2

Gather samples from the base distribution

For 𝑗 = 𝑛 + 1, . . . 2𝑛:

• Deploy classifier �𝑗 = 0, and observe 𝑧 𝑗 ∼ 𝒟(0).

Stage 2: Minimize a finite-sample approximation of the performative risk,

arg min

�∈Θ

1

𝑛

2𝑛∑
𝑗=𝑛+1

ℓ (𝑧 𝑗 + �̂�;�).

Figure 4.1: Two-Stage Algorithm for Location Families.

that it optimizes the performative risk with significantly better sample complexity than

generic zeroth-order methods. For the remainder of this section, we assume the distribu-

tion map𝒟 is parameterized by a location family

𝑧� ∼ 𝒟(�) ⇔ 𝑧�
𝑑
= 𝑧

base
+ ��,

where the matrix � ∈ R𝑚×𝑑 is an unknown parameter, and 𝑧
base
∼ 𝒟0 is a zero-mean

random variable.6

In the first stage of our two-stage procedure we build a model of the distribution

map 𝒟 that in effect allows us to draw samples 𝑧 ∼ 𝒟(�) ≈ 𝒟(�). To do this, we

6
The variable 𝑧0 being zero-mean is only to simplify the exposition; the same analysis carries over when

there is an additional intercept term. Similarly, the choice of Gaussian noise in the experiment design phase

of Algorithm 4.1 is made for convenience. In general, any subgaussian distribution with full rank covariance

would suffice.
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perform experiment design to recover the unknown parameter � which captures the

performative effects. In particular, we sample and deploy 𝑛 classifiers �𝑖 , 𝑖 ∈ [𝑛], observe

data 𝑧𝑖 ∼ 𝒟(�𝑖), and then construct an estimate �̂of the location map�using ordinary least

squares. We then gather samples from the base distribution 𝒟0 by repeatedly deploying

the zero classifier. In the location-family model, deploying the zero classifier ensures we

observe data points 𝑧
base

, without performative effects. With both of these components,

given any �′, we can simulate 𝑧 ∼ 𝒟(�′) by taking 𝑧 = 𝑧
base
+ �̂�′.

In the second stage, we use the estimated model to construct a proxy objective. Define

the perturbed performative risk:

P̂R(�) = E
𝑧∼𝒟(�)ℓ (𝑧;�) = E𝑧base

∼𝒟0
ℓ (𝑧

base
+ �̂�;�).

Note that PR(�) = E𝑧
base
∼𝒟0

ℓ (𝑧
base
+ ��;�). Using the estimated parameter �̂ and samples

𝑧𝑖 ∼ 𝒟0, we can construct a finite-sample approximation to the perturbed performative

risk and find the following optimizer:

�̂𝑛 ∈ arg min

�∈Θ
P̂R𝑛(�) :=

1

𝑛

2𝑛∑
𝑖=𝑛+1

ℓ (𝑧𝑖 + �̂�;�).

The main technical result in this section shows that, under appropriate regularity assump-

tions on the loss, Algorithm 4.1 efficiently approximates the performative optimum. In

particular, when the data dimensionality 𝑚 is comparable to the model dimensionality

𝑑, i.e. 𝑚 = 𝒪(𝑑), then computing a Δ-suboptimal classifier requires 𝒪(𝑑/Δ) samples. In

contrast, the derivative-free methods considered previously require 𝒪(𝑑2/Δ2) samples to

compute a classifier of similar quality. The formal statement and proof of this result is

deferred to the supplementary material for this chapter.

Theorem 4.2.1 (Informal). Under appropriate smoothness and strong convexity assumptions
on the loss ℓ , if the distribution of 𝑧

base
is sub-Gaussian, and if the number of samples 𝑛 ≥

Ω(𝑑 + 𝑚 + log(1/𝛿)), then, with probability 1 − 𝛿, Algorithm 4.1 returns a point �̂𝑛 such that

PR(�̂𝑛) − PR(�PO) ≤ 𝒪(
𝑑 + 𝑚 + log(1/𝛿)

𝑛
+ 1

𝛿𝑛
).

While we analyze this two-stage procedure in the context of location families, the

principles behind the approach can be extended to more general settings. Whenever the

distribution map has enough structure to efficiently estimate a model 𝒟 that supports

sampling new data, we can always use the “plug-in” approach above and construct and

optimize a perturbed version of the performative risk.
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4.3 Simulations
We complement our theoretical analysis with empirical evaluations on the semi-synthetic

strategic classification simulation introduced previously in Chapter 3.

In our experiments, we pay particular attention to understanding the differences in

empirical performance between algorithms which converge to performative optima, such

as the two-stage procedure or derivative-free methods, versus the optimization algorithms

which converge to performatively stable points, such as greedy and lazy SGD.

In addition, we examine the differences in the sample efficiency of the different algo-

rithms and examine their sensitivity to the relevant structural assumptions outlined in

Section 4.1. To evaluate derivative-free methods, we implement the “gradient descent

without a gradient” algorithm from [25], which we refer to from here on out as the “DFO

algorithm.” For each of the following experiments, we run each algorithm 50 times and

display 95% bootstrap confidence intervals. We provide a formal description of all the

procedures, as well as a detailed description of the experimental setup in Section 4.5.

We briefly review the details regarding the strategic classification simulator from Chap-

ter 3. The simulator models a strategic classification problem between a bank and individ-

ual agents seeking a loan. The bank deploys a logistic regression classifier 𝑓� to determine

the individuals’ default probabilities, while agents strategically manipulate their features

to achieve a more favorable classification. The goal of the bank is to find the performative

optimal model, or Stackelberg equilibria that minimizes the performative risk.

As detailed previously, the distribution map for this problem is a location family and

is 𝜖-sensitive. The institution’s loss is an ℓ2 regularized logistic regression objective.

Since the logistic loss is not strongly convex in the features, we only have a certificate of

convexity when 𝜖 is small enough (namely, 𝜖 ≤ 𝛾
2𝛽 ). We consider two values of 𝜖: one which

is below this critical threshold (𝜖 = .0001), and one large value for which we do not have

theoretical guarantees (𝜖 = 100). When 𝜖 is small, both the DFO algorithm and the two-

stage method yield significantly higher accuracy solutions compared to the two variants

of SGD (see left panel of Figure 4.2). This observation serves as further evidence that

stable points have significantly worse performative risk relative to performative optima,

even in regimes where 𝜖 < 𝛾/(2𝛽).
Also note that, although both the DFO algorithm and the two-stage algorithm improve

upon methods for repeated retraining, the two-stage algorithm converges with signifi-

cantly fewer samples and significantly lower variance. Indeed, a few thousand samples

suffice for convergence of the two-stage method, whereas the DFO algorithm has still not

fully converged after a million samples.

Lastly, on the top right plot, we evaluate these methods for 𝜖 ≫ 𝛾/(2𝛽)which is outside

the regime of our theoretical analysis. Consequently, we have no convergence guarantees
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Figure 4.2: Classification accuracy versus number of samples collected for the two-stage

algorithm, DFO algorithm, greedy SGD, and lazy SGD, for 𝜖 = 0.0001 ≤ 𝛾
2𝛽 (left) and

𝜖 = 100 ≫ 𝛾
2𝛽 (right). Each experiment is repeated 50 times, and we display 95% bootstrap

confidence intervals.

for any of the four algorithms. Despite the lack of guarantees and the increased strength

of performative effects, we see that the two-stage procedure achieves only a slightly lower

accuracy than in the previous setting. On the other hand, as described in our echo

chamber analogy, greedy and lazy SGD rapidly converge to a local minimum and do

not significantly improve predictive performance after the 10k sample mark. Despite

extensive tuning, we were unable to improve the performance of the DFO algorithm and

achieve nontrivial accuracy with this method.

4.4 Chapter Notes
The results from this chapter were first published in [59]. In addition to this work, there

have been a number of other papers studying the possibility of directly optimizing the

performative risk. [36] directly assumes convexity of the performative risk and proposes

solving for performative optima by zeroth-order gradient descent. This algorithm is later

extended to work in settings where the distribution is stateful and gradually adapts to the

latest deployed classifier [38].
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In a different line of work, [39] study bandit style online algorithms for optimizing the

performative risk in cases where the objective need not be convex. They illustrate how

performative prediction exhibits a distinctly richer kind of feedback that allows for faster

rates of optimization. [64] study analogous approaches towards finding performatively

optimal solutions in the multiplayer performative prediction setting. Lastly, [90] study

the possibilities of finding performative optima in places where the performative risk is

only weakly convex.

4.5 Supplementary Material

Background on Stochastic Orders
In this section we provide the necessary preliminaries from the literature on stochastic

orders.

First, we recall the notion of the convex order: for two random vectors 𝑧, 𝑧′ ∈ R𝑚 , we

say that 𝑧 is less than 𝑧′ in the convex order, denoted 𝑧 ≤𝑐𝑥 𝑧′, if for all convex functions

𝑔 : R𝑚 → R, it holds that

E𝑔(𝑧) ≤ E𝑔(𝑧′).
Using a slight abuse of notation, we will also write𝒟1 ≤𝑐𝑥 𝒟2 for two distributions𝒟1,𝒟2

when 𝑧 ∼ 𝒟1, 𝑧
′ ∼ 𝒟2 and 𝑧 ≤𝑐𝑥 𝑧′.

Therefore, an immediate way to satisfy condition (4.2) is to assume that the loss function

ℓ (𝑧;�) is convex in 𝑧, and to require 𝒟(𝛼� + (1 − 𝛼)�′) ≤𝑐𝑥 𝛼𝒟(�) + (1 − 𝛼)𝒟(�′). The

latter condition has been long studied in classical statistical literature and many equivalent

characterizations are known (see, e.g., [63, 72, 75]). This leads to the following corollary

of Theorem 4.1.1.

Corollary 4.5.1. Suppose that the loss function is 𝛾-strongly convex in � (2.3) and 𝛽-smooth in 𝑧
(3.1), and that the distribution map𝒟(·) is 𝜖-sensitive (2.2). Further, assume that ℓ (𝑧;�) is convex
in 𝑧 (4.1) and that 𝒟(𝛼� + (1 − 𝛼)�′) ≤𝑐𝑥 𝛼𝒟(�) + (1 − 𝛼)𝒟(�′). Then, the performative risk
PR(�) is (𝛾 − 2𝜖𝛽)-convex.

Now we discuss important families of distributions that satisfy the convex order con-

dition𝒟(𝛼� + (1 − 𝛼)�′) ≤𝑐𝑥 𝛼𝒟(�) + (1 − 𝛼)𝒟(�′).

Example 4.5.2. An obvious example where 𝒟 (𝛼� + (1 − 𝛼)�′) ≤𝑐𝑥 𝛼𝒟(�) + (1 − 𝛼)𝒟(�′)
is when𝒟(𝛼� + (1 − 𝛼)�′) = 𝛼𝒟(�) + (1 − 𝛼)𝒟(�′). An important setting which satisfies

this linearity property is when the probability of a positive outcome of a binary variable

is linear in �: 𝑧� ∼ Bern (𝑎 + 𝑤⊤�) defines 𝑧� ∼ 𝒟(�). In this case, 𝒟(𝛼� + (1 − 𝛼)�′) =
𝛼𝒟(�) + (1 − 𝛼)𝒟(�′).
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For further examples, we invoke a convenient characterization of the convex order

condition.

Lemma 4.5.3 ([62]). Two random vectors 𝑧 and 𝑧′ satisfy 𝑧 ≤𝑐𝑥 𝑧′ if and only if there exists a
coupling of 𝑧 and 𝑧′ such that E[𝑧′|𝑧] = 𝑧 a.s.

By applying Lemma 4.5.3, we show that the important case of location-scale families
satisfies the convex order condition. Therefore, if the loss function is additionally convex

in 𝑧, condition (4.2) follows.

Proposition 4.5.4. Suppose that𝒟(�) forms a location-scale family (4.3) such that Σ0+Σ(�) has
full rank for all � ∈ Θ. Then,𝒟(𝛼� + (1 − 𝛼)�′) ≤𝑐𝑥 𝛼𝒟(�) + (1 − 𝛼)𝒟(�′) for all �, �′ ∈ Θ.

Proof. We will construct a coupling (𝑧, 𝑧′) such that 𝑧 ∼ 𝒟(𝛼� + (1 − 𝛼)�′), 𝑧′ ∼ 𝛼𝒟(�) +
(1− 𝛼)𝒟(�′), and E[𝑧′|𝑧] = 𝑧. Let 𝑧 ∼ 𝒟(𝛼�+ (1− 𝛼)�′); then we define 𝑧′ in terms of 𝑧 as

𝑧′ = (Σ0 + Σ(𝐺))(Σ0 + Σ(𝛼� + (1 − 𝛼)�′))−1 (𝑧 − �0 − �(𝛼� + (1 − 𝛼)�′)) + �0 + �𝐺, (4.4)

where

𝐺 =

{
�, with probability 𝛼,

�′, with probability 1 − 𝛼

is independent of 𝑧. Notice that E[𝑧′ | 𝑧] is equal to

= E
[
(Σ0 + Σ(𝐺))(Σ0 + Σ(𝛼� + (1 − 𝛼)�′))−1 (𝑧 − �0 − �(𝛼� + (1 − 𝛼)�′)) + �0 + �𝐺 | 𝑧

]
= (Σ0 + E[Σ(𝐺)])(Σ0 + Σ(𝛼� + (1 − 𝛼)�′))−1 (𝑧 − �0 − �(𝛼� + (1 − 𝛼)�′)) + �0 + E[�𝐺]
= 𝑧,

which follows by linearity of � and Σ(·) and the fact that E[𝐺] = 𝛼� + (1 − 𝛼)�′.
We now only need to verify that 𝑧′ ∼ 𝛼𝒟(�)+(1−𝛼)𝒟(�′) in order to apply Lemma 4.5.3

and conclude that 𝑧′ ≤𝑐𝑥 𝑧. Indeed, with probability 𝛼 we have 𝐺 = �, and on that event

𝑧′
𝑑
= (Σ0 + Σ(�))𝑧

base
+ �0 + ��; a similar argument applies to �′. Therefore, putting

everything together we conclude that 𝑧 ≤𝑐𝑥 𝑧′. □

Proposition 4.5.4 implies that for all convex functions 𝑔 : R𝑚 → R,

E𝑧∼𝒟(𝛼�+(1−𝛼)�′)[𝑔(𝑧)] ≤ E𝑧∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)[𝑔(𝑧)].

We now show that for strongly convex 𝑔, this conclusion can be made even stronger.

Proposition 4.5.5. Let 𝑔 : R𝑚 → R be a 𝛾𝑧-strongly convex function (4.1) for some 𝛾𝑧 ≥ 0, and
let𝒟(�) form a location-scale family (4.3). Then,

E𝑧∼𝒟(𝛼�+(1−𝛼)�′)[𝑔(𝑧)] ≤ E𝑧∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)[𝑔(𝑧)]−
𝛼(1 − 𝛼)𝛾𝑧

2

E∥Σ(�−�′)𝑧
base
+�(�−�′)∥2

2
.
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Proof. Since 𝑔 is strongly convex, we can write 𝑔(𝑧) = 𝑔0(𝑧) + 𝛾𝑧
2
∥𝑧∥2

2
, where 𝑔0 is a convex

function. Thus, we want to prove

E𝑧∼𝒟(𝛼�+(1−𝛼)�′)
[
𝑔0(𝑧) +

𝛾𝑧
2

∥𝑧∥2
2

]
≤ E𝑧′∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)

[
𝑔0(𝑧′) +

𝛾𝑧
2

∥𝑧′∥2
2

]
− 𝛼(1 − 𝛼)𝛾𝑧

2

E ∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
.

By Proposition 4.5.4, we know that

E𝑧∼𝒟(𝛼�+(1−𝛼)�′)[𝑔0(𝑧)] ≤ E𝑧∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)[𝑔0(𝑧)].

Therefore, we only need to argue that

E
[
∥𝑧′∥2

2
− ∥𝑧∥2

2

]
≥ 𝛼(1 − 𝛼)E∥Σ(� − �′)𝑧

base
+ �(� − �′)∥2

2
.

Without loss of generality, we take 𝑧, 𝑧′ to be coupled as in equation (4.4). Then, we can

write

E
[
∥𝑧′∥2

2
− ∥𝑧∥2

2

]
= E

[
∥𝑧′ − 𝑧∥2

2
+ 2(𝑧′ − 𝑧)⊤𝑧

]
= E

[
∥𝑧′ − 𝑧∥2

2

]
= E

[
∥Σ (𝐺 − (𝛼� + (1 − 𝛼)�′)) 𝑧base

+ � (𝐺 − (𝛼� + (1 − 𝛼)�′))∥2
2

]
,

where the second steps follows by iterating expectations, because E[𝑧′|𝑧] = 𝑧.

By further taking an expectation over 𝐺, we get:

E
[
∥Σ (𝐺 − (𝛼� + (1 − 𝛼)�′)) 𝑧base

+ � (𝐺 − (𝛼� + (1 − 𝛼)�′))∥2
2

]
= 𝛼(1 − 𝛼)2E∥Σ(� − �′)𝑧

base
+ �(� − �′)∥2

2
+ (1 − 𝛼)𝛼2E∥Σ(�′ − �)𝑧

base
+ �(� − �′)∥2

2

= 𝛼(1 − 𝛼)E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
.

□

Proving Convexity of the Performative Risk
Proof of Theorem 4.1.1

We begin by writing out the gradient of the performative risk:

∇�PR(�) = ∇�
(∫

ℓ (𝑧;�)𝑝�(𝑧)𝑑𝑧
)
=

∫
∇�ℓ (𝑧;�)𝑝�(𝑧)𝑑𝑧 +

∫
ℓ (𝑧;�)∇�𝑝�(𝑧)𝑑𝑧

=

∫
∇�ℓ (𝑧;�)𝑝�(𝑧)𝑑𝑧 +

∫
ℓ (𝑧;�)∇� log(𝑝�(𝑧))𝑝�(𝑧)𝑑𝑧

= E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)] + E𝑧∼𝒟(�)[ℓ (𝑧;�)∇� log(𝑝�(𝑧))].
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By the first-order condition for convexity, we know that PR(�) is (𝛾 − 2𝜖𝛽)-convex if and

only if(
E𝑧∼𝒟(�)[∇�ℓ (𝑧;�) + ℓ (𝑧;�)∇� log(𝑝�(𝑧))]

)⊤ (�′ − �) +
𝛾 − 2𝜖𝛽

2

∥� − �′∥2
2
≤ PR(�′) − PR(�),

(4.5)

for all �, �′ ∈ Θ. By assumption (4.2), we know that for all �, �′, �0 ∈ Θ,

E𝑧∼𝒟(𝛼�+(1−𝛼)�′)[ℓ (𝑧;�0)] ≤ 𝛼E𝑧∼𝒟(�)[ℓ (𝑧;�0)] + (1 − 𝛼)E𝑧∼𝒟(�′)[ℓ (𝑧;�0)].

This assumption is equivalent to saying that 𝑔�0
(�) = E𝑧∼𝒟(�)[ℓ (𝑧;�0)] is a convex function

of �, for all �0. We can express this convexity condition using the equivalent first-order

characterization:

E𝑧∼𝒟(�)[ℓ (𝑧;�0)∇� log(𝑝�(𝑧))]⊤(�′ − �) ≤ E𝑧∼𝒟(�′)[ℓ (𝑧;�0)] − E𝑧∼𝒟(�)[ℓ (𝑧;�0)].

Since the mixture dominance condition holds for all �, �′ and �0, we can set �0 equal to �
in the inequality above to conclude that

E𝑧∼𝒟(�)[ℓ (𝑧;�)∇� log(𝑝�(𝑧))]⊤(�′ − �) ≤ E𝑧∼𝒟(�′)[ℓ (𝑧;�)] − E𝑧∼𝒟(�)[ℓ (𝑧;�)].

Going back to equation (4.5), we see that a sufficient condition for (𝛾 − 2𝜖𝛽)-convexity of

the performative risk is

E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)]⊤(�′ − �) +
𝛾 − 2𝜖𝛽

2

∥� − �′∥2
2
≤ E𝑧∼𝒟(�′)ℓ (𝑧;�′) − E𝑧∼𝒟(�′)ℓ (𝑧;�).

By the assumption that the loss is 𝛾-strongly convex in �, we know

E𝑧∼𝒟(�′)ℓ (𝑧;�′) − E𝑧∼𝒟(�′)ℓ (𝑧;�) ≥ E𝑧∼𝒟(�′)[∇�ℓ (𝑧;�)]⊤(�′ − �) + 𝛾

2

∥� − �′∥2
2
,

and thus we have further simplified the sufficient condition to

E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)]⊤(�′ − �) − E𝑧∼𝒟(�′)[∇�ℓ (𝑧;�)]⊤(�′ − �) ≤
2𝜖𝛽

2

∥� − �′∥2
2
.

Since the loss is 𝛽-smooth in 𝑧, we have that ∇�ℓ (𝑧;�)⊤(�′ − �) is 𝛽∥� − �′∥2-Lipschitz in

𝑧. Now, we can use the fact that the distribution map is 𝜖-sensitive to upper bound the

left-hand side by applying the Kantorovich-Rubinstein duality theorem:

E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)]⊤(�′ − �) − E𝑧∼𝒟(�′)[∇�ℓ (𝑧;�)]⊤(�′ − �) ≤ 𝜖𝛽∥� − �′∥2
2
. (4.6)

Therefore, we can conclude that the performative risk is (𝛾 − 2𝜖𝛽)-convex.
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Proof of Theorem 4.1.3.

Following the steps of Theorem 4.1.1, we know that PR(�) is �-convex if and only if

E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)]⊤(�′ − �) + E𝑧∼𝒟(�)[ℓ (𝑧;�)∇� log(𝑝�(𝑧))]⊤(�′ − �) + �
2

∥� − �′∥2
2

≤ PR(�′) − PR(�),

for all �, �′ ∈ Θ.

We now state a technical lemma which rephrases the conclusion of Proposition 4.5.5

in an equivalent way, deferring its proof to the end of this section.

Lemma 4.5.6. Suppose that

E𝑧∼𝒟(𝛼�+(1−𝛼)�′)[𝑔(𝑧)] ≤ E𝑧∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)[𝑔(𝑧)]−
𝛼(1 − 𝛼)𝛾𝑧

2

E∥Σ(�−�′)𝑧
base
+�(�−�′)∥2

2
.

Then,

E𝑧∼𝒟(�′)[𝑔(𝑧)] ≥ E𝑧∼𝒟(�)[𝑔(𝑧)]+(∇�E𝑧∼𝒟(�)[𝑔(𝑧)])⊤(�′−�)+
𝛾𝑧
2

E∥Σ(�−�′)𝑧
base
+�(�−�′)∥2

2
.

Therefore, by Proposition 4.5.5 and Lemma 4.5.6, we know

E𝑧∼𝒟(�)[ℓ (𝑧;�)∇� log(𝑝�(𝑧))]⊤(�′ − �) ≤ E𝑧∼𝒟(�′)[ℓ (𝑧;�)] − E𝑧∼𝒟(�)[ℓ (𝑧;�)]

− 𝛾𝑧
2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
,

where we take 𝑔(𝑧) = ℓ (𝑧;�).
Thus it suffices to show

E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)]⊤(�′ − �) + �
2

∥� − �′∥2
2

≤ E𝑧∼𝒟(�′)ℓ (𝑧;�′) − E𝑧∼𝒟(�′)ℓ (𝑧;�) +
𝛾𝑧
2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
.

By the assumption that the loss is 𝛾-strongly convex, we know

E𝑧∼𝒟(�′)ℓ (𝑧;�′) − E𝑧∼𝒟(�′)ℓ (𝑧;�)

≥ E𝑧∼𝒟(�′)[∇�ℓ (𝑧;�)]⊤(�′ − �) + 𝛾

2

∥� − �′∥2
2
.

With this, we have simplified the sufficient condition for 𝛾-convexity to

(E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)] − E𝑧∼𝒟(�′)[∇�ℓ (𝑧;�)])⊤(�′ − �) (4.7)

≤ 𝛾 − �
2

∥� − �′∥2
2
+ 𝛾𝑧

2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
. (4.8)
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We bound the left-hand side by applying smoothness of the loss together with the

Kantorovich-Rubinstein duality theorem; for this, we need a bound on 𝑊(𝒟(�),𝒟(�′)).
We will use the bound implied by 𝜖-sensitivity, as well as the bound implied by the

following lemma.

Lemma 4.5.7. Suppose that the distribution map𝒟(�) forms a location-scale family (4.3). Then,

𝑊(𝒟(�),𝒟(�′)) ≤ E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2.

Proof of Lemma 4.5.7. By definition,

𝑊(𝒟(�),𝒟(�′)) = inf

Π(𝒟(�),𝒟(�′))
E(𝑧� ,𝑧�′)∼Π(𝒟(�),𝒟(�′))[∥𝑧� − 𝑧�′∥2],

where Π(𝒟(�),𝒟(�′)) denotes a coupling of 𝒟(�) and 𝒟(�′). The simplest way to

couple 𝒟(�) and 𝒟(�′), or equivalently 𝑧� and 𝑧�′, is to sample 𝑧
base
∼ 𝒟, and set

𝑧� = (Σ0 +Σ(�))𝑧base
+ �0 + �(�) and 𝑧�′ = (Σ0 +Σ(�′))𝑧base

+ �0 + �(�′). With this choice,

∥𝑧� − 𝑧�′∥2 = ∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2, and hence

𝑊(𝒟(�),𝒟(�′)) ≤ E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2.

□

Therefore, the left-hand side in equation (4.7) can be bounded by

E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)]⊤(�′ − �) − E𝑧∼𝒟(�′)[∇�ℓ (𝑧;�)]⊤(�′ − �) ≤
𝛽E∥Σ(� − �′)𝑧

base
+ �(� − �′)∥2∥�′ − �∥2,

but also by applying 𝜖-sensitivity

E𝑧∼𝒟(�)[∇�ℓ (𝑧;�)]⊤(�′ − �) − E𝑧∼𝒟(�′)[∇�ℓ (𝑧;�)]⊤(�′ − �) ≤ 𝛽𝜖∥�′ − �∥2
2
.

Finally, to show � = max

{
𝛾 − 𝛽2/𝛾𝑧 , 𝛾 + 𝛾𝑧(𝜎2

min
(�) + 𝜎2

min
(Σ)) − 2𝛽𝜖

}
-convexity it suf-

fices to show both

𝛽E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2∥�′ − �∥2 (4.9)

≤
𝛽2/𝛾𝑧

2

∥� − �′∥2
2
+ 𝛾𝑧

2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
(4.10)

and

𝛽𝜖∥�′ − �∥2
2
≤

2𝛽𝜖 − 𝛾𝑧(𝜎2

min
(�) + 𝜎2

min
(Σ))

2

∥� − �′∥2
2
+ 𝛾𝑧

2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
.

(4.11)
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By the AM-GM inequality, we have

𝛽E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2∥�′ − �∥2

≤ 1

2

𝛽2

𝛾𝑧
∥�′ − �∥2

2
+ 𝛾𝑧

2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
,

and so condition (4.9) follows.

For condition (4.11), we observe that

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
= E∥Σ(� − �′)𝑧

base
∥2

2
+ ∥�(� − �′)∥2

2

= Tr

(
Σ(� − �′)Σ𝑧

base
Σ(� − �′)⊤

)
+ ∥�(� − �′)∥2

2

= ∥Σ1/2
𝑧

base

Σ(� − �′)⊤∥2𝐹 + ∥�(� − �′)∥2
2
.

Applying 𝜎min(Σ)∥� − �′∥2 ≤ ∥Σ1/2
𝑧

base

Σ(� − �′)⊤∥𝐹 and 𝜎min(�)∥� − �′∥2 ≤ ∥�(� − �′)∥2
completes the proof of the theorem.

Proof of Lemma 4.5.6. The proof follows the standard argument for proving equivalent

formulations of strong convexity.

First we show that E𝑧∼𝒟(�)[𝑔(𝑧)] − 𝛾𝑧
2
E∥Σ(�)𝑧

base
+ ��∥2

2
is convex in �. This follows

because the difference

E𝑧∼𝒟(𝛼�+(1−𝛼)�′)[𝑔(𝑧)] −
𝛾𝑧
2

E∥Σ(𝛼� + (1 − 𝛼)�′)𝑧
base
+ �(𝛼� + (1 − 𝛼)�′)∥2

2

is upper bounded by:

≤ E𝑧∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)[𝑔(𝑧)] −
𝛼(1 − 𝛼)𝛾𝑧

2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2

− 𝛾𝑧
2

E∥Σ(𝛼� + (1 − 𝛼)�′)𝑧
base
+ �(𝛼� + (1 − 𝛼)�′)∥2

2

= E𝑧∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)[𝑔(𝑧)] −
𝛾𝑧
2

𝛼2E∥Σ(�)𝑧
base
+ ��∥2

2

− 𝛾𝑧
2

(1 − 𝛼)2E∥Σ(�′)𝑧
base
+ ��′∥2

2

+ 𝛾𝑧
2

2𝛼(1 − 𝛼)E(Σ(�) + ��)⊤(Σ(�′) + ��′) − 𝛼(1 − 𝛼)𝛾𝑧
2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2

= E𝑧∼𝛼𝒟(�)+(1−𝛼)𝒟(�′)[𝑔(𝑧)] −
𝛾𝑧
2

𝛼E∥Σ(�)𝑧
base
+ ��∥2

2
− 𝛾𝑧

2

(1 − 𝛼)E∥Σ(�′)𝑧
base
+ ��′∥2

2

= 𝛼
(
E𝑧∼𝒟(�)[𝑔(𝑧)] −

𝛾𝑧
2

E∥Σ(�)𝑧
base
+ ��∥2

2

)
− (1 − 𝛼)

(
E𝑧∼𝒟(�′)[𝑔(𝑧)]

𝛾𝑧
2

E∥Σ(�′)𝑧
base
+ ��′∥2

2

)
.
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By the equivalent first-order characterization, this means that E𝑧∼𝒟(�′)[𝑔(𝑧)] is:

≥ 𝛾𝑧
2

E∥Σ(�′)𝑧
base
+ ��′∥2

2
+ E𝑧∼𝒟(�)[𝑔(𝑧)] −

𝛾𝑧
2

E∥Σ(�)𝑧
base
+ ��∥2

2

+ (∇�E𝑧∼𝒟(�)[𝑔(𝑧)])⊤(�′ − �) − 𝛾𝑧
2

2E(Σ(�)𝑧
base
+ ��)⊤(∇�(Σ(�)𝑧base

+ ��))⊤(�′ − �)

≥ 𝛾𝑧
2

E∥Σ(�′)𝑧
base
+ ��′∥2

2
+ E𝑧∼𝒟(�)[𝑔(𝑧)] −

𝛾𝑧
2

E∥Σ(�)𝑧
base
+ ��∥2

2

+ (∇�E𝑧∼𝒟(�)[𝑔(𝑧)])⊤(�′ − �) − 𝛾𝑧E(Σ(�)𝑧base
+ ��)⊤(Σ(�′ − �)𝑧

base
+ �(�′ − �))

= E𝑧∼𝒟(�)[𝑔(𝑧)] + (∇�E𝑧∼𝒟(�)[𝑔(𝑧)])⊤(�′ − �) + 𝛾𝑧
2

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
.

□

Remark 4.5.8. We note that the sensitivity parameter 𝜖 can be bounded in terms of the lo-

cation and scale parameters for location-scale families. In particular, in showing condition

(4.11), we saw that

E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
= ∥Σ1/2

𝑧
base

Σ(� − �′)⊤∥2𝐹 + ∥�(� − �′)∥2
2
.

If we then denote

𝜎max(�) = max

∥�∥2=1

∥��∥2, 𝜎max(Σ) = max

∥�∥2=1

∥Σ1/2
𝑧

base

Σ(�)⊤∥𝐹 ,

we can see that E∥Σ(� − �′)𝑧
base
+ �(� − �′)∥2

2
≤ 𝜎2

max
(�)∥� − �′∥2

2
+ 𝜎2

max
(Σ)∥� − �′∥2

2
.

Combining this result with Lemma 4.5.7 and Jensen’s inequality, we get that

𝑊(𝒟(�),𝒟(�′)) ≤
√
𝜎2

max
(�) + 𝜎2

max
(Σ)∥� − �′∥2,

and so 𝜖 ≤
√
𝜎2

max
(�) + 𝜎2

max
(Σ).

Distinguishing between Static and Performative Variables
In many natural examples, the performative effects are only present in a subset of the

variables that make up 𝑧. For example, in strategic classification, the performative effects

are often only present in the strategically manipulated features, and not in the label.

For simplicity of exposition, we suppress this distinction between performative and static
variables, that is, those whose distribution does not change for different 𝒟(�). However,

the reader should think of all assumptions on 𝑧, such as strong convexity or various

Lipschitz assumptions, as only having to apply to the performative variables, while the

static ones can be averaged out. To give one example, suppose that 𝑧 = (𝑧𝑠 , 𝑧𝑝), where 𝑧𝑠
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denotes the static variables and 𝑧𝑝 denotes the performative ones. Using this distinction,

the step in equation (4.6) would proceed as follows:

E(𝑧𝑠 ,𝑧𝑝)∼𝒟(�)[∇�ℓ ((𝑧𝑠 , 𝑧𝑝);�)]⊤(�′ − �) − E(𝑧𝑠 ,𝑧′𝑝)∼𝒟(�′)[∇�ℓ ((𝑧𝑠 , 𝑧
′
𝑝);�)]⊤(�′ − �)

= E𝑧𝑠

[(
E[∇�ℓ ((𝑧𝑠 , 𝑧𝑝);�)|𝑧𝑠]] − E[∇�ℓ ((𝑧𝑠 , 𝑧′𝑝);�)|𝑧𝑠]

)⊤
(�′ − �)

]
≤ E𝑧𝑠 [𝛽(𝑧𝑠)𝜖(𝑧𝑠)] ∥� − �′∥2

2
.

Here, 𝛽(𝑧𝑠) is the Lipschitz constant of ∇�ℓ ((𝑧𝑠 , ·);�), and 𝜖(𝑧𝑠) is the sensitivity parameter

of the distribution of 𝑧𝑝 , conditional on 𝑧𝑠 . As clear from the above example, stating

all conditions and proofs while emphasizing this distinction is fairly cumbersome, so we

opted for a simplified presentation. Similar calculations can be carried out for the rest of

the proofs of the structural results.

Deferred Details of Two-Stage Algorithm for Location Families
We carefully review the problem setup and introduce the remaining assumptions. The

distribution map𝒟 parameterizes a location family

𝑧� ∼ 𝒟(�) ⇔ 𝑧�
𝑑
= 𝑧

base
+ ��,

where 𝑧
base
∼ 𝒟0. We assume the base distribution 𝒟0 is zero-mean and subgaussian

with parameter 𝐾. The loss function ℓ (𝑧;�) is 𝐿𝑧-Lipschitz in 𝑧, 𝐿-Lipschitz and in �, and

𝛽-smooth in (𝑧, �) in the sense that ∇ℓ (𝑧;�) ∈ R𝑚+𝑑 is Lipschitz in (𝑧, �).
We also assume that � = max{𝛾 − 𝛽2/𝛾𝑧 , 𝛾 − 2𝜖𝛽 + 𝛾𝑧𝜎2

min
(�)} > 0, where 𝛾 and 𝛾𝑧

are the strong convexity parameters of the loss in � and 𝑧, respectively. By Theorem 4.1.3,

this implies that the performative risk is �-strongly convex.

We assume that the performative optimum �PO is contained in a ball of radius 𝑅, so in

the second stage we can set the domain of optimization to be Θ = {� : ∥�∥2 ≤ 𝑅}. Finally,

we assume that the minimizer of the perturbed performative risk at the population level,

�̂ ∈ arg min�∈Θ P̂R(�) is contained in the interior of Θ with probability 1.

Theorem 4.5.9. Under the preceding assumptions, if 𝑛 ≥ Ω(𝑑 + 𝑚 + log(1/𝛿)), then, with
probability 1 − 𝛿, Algorithm 4.1 returns a point �̂𝑛 such that

PR(�̂𝑛) − PR(�PO) ≤ 𝑂(
𝑑 + 𝑚 + log(1/𝛿)

𝑛
+ 1

𝛿𝑛
).

Before proceeding to the proof of this result, we first state four auxiliary lemmas, which

constitute the bulk of our analysis. The proofs of the lemmas are included in Section 4.5.

The first lemma is a standard result about ordinary least-squares estimation.
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Lemma 4.5.10. If 𝑛 ≥ Ω(𝑑 + 𝑚 + log(1/𝛿)), then with probability 1 − 𝛿,

∥� − �̂∥ ≤ 𝑂(
√
(𝑑 + 𝑚) + log(1/𝛿)

𝑛
).

The next lemma is a simple adaptation from Theorem 2 in [77] controlling the gener-

alization gap of the empirical risk minimizer for strongly convex losses.

Lemma 4.5.11. Suppose P̂R𝑛 is �̂-strongly convex. Then, with probability at least 1 − 𝛿,

P̂R(�̂𝑛) − P̂R(�̂) ≤ 4(𝐿𝑧 ∥�̂∥ + 𝐿)2

𝛿�̂𝑛
.

The next lemma controls the difference in gradients between the true performative risk

PR and the perturbed performative risk P̂R.

Lemma 4.5.12. For any � ∈ Θ,

∥∇PR(�) − ∇P̂R(�)∥2
2
≤ 𝑂(∥�∥2∥� − �̂∥2).

Finally, the last lemma shows that the smoothness assumptions on the loss ensure

smoothness of the performative risk. Here, by 𝛽�-smoothness we mean that ∇�PR(�) is

𝛽�-Lipschitz.

Lemma 4.5.13. Under the proceeding assumptions, the performative risk PR(�) is 𝛽� = 𝑂(∥�∥2)-
smooth.

With these lemmas in hand, we are now ready to prove Theorem 4.5.9.

Proof of Theorem 4.5.9. By assumption, the performative risk PR(�) is �-strongly convex,

for some � > 0. This implies

PR(�̂𝑛) − PR(�PO) ≤
1

2�
∥∇PR(�̂𝑛)∥2

2
.

Since �̂PO is an interior minimizer of P̂R, we know ∇P̂R(�̂PO) = 0. Using ∥𝑎 + 𝑏∥2 ≤
2∥𝑎∥2 + 2∥𝑏∥2,

1

2�
∥∇PR(�̂𝑛)∥2

2
=

1

2�
∥∇PR(�̂𝑛) − ∇P̂R(�̂PO)∥2

2

=
1

2�
∥∇PR(�̂𝑛) − ∇P̂R(�̂𝑛) + ∇P̂R(�̂𝑛) − ∇P̂R(�̂PO)∥2

2

≤ 1

�
∥∇PR(�̂𝑛) − ∇P̂R(�̂𝑛)∥2

2
+ 1

�
∥∇P̂R(�̂𝑛) − ∇P̂R(�̂PO)∥2

2
. (4.12)
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We bound each of these terms separately. For the first term, by Lemma 4.5.12,

∥∇PR(�̂𝑛) − ∇P̂R(�̂𝑛)∥2
2
≤ 𝑂(∥�∥2∥� − �̂∥2).

By Lemma 4.5.10, with probability 1 − 𝛿, we can bound ∥� − �̂∥2 ≤ 𝑂( 𝑑+𝑚+log(1/𝛿)
𝑛 ), and

thus

∥∇PR(�̂𝑛) − ∇P̂R(�̂𝑛)∥2
2
≤ 𝑂(

𝑑 + 𝑚 + log(1/𝛿)
𝑛

).

For the second term in equation (4.12), notice that � = max{𝛾 − 𝛽2/𝛾𝑧 , 𝛾 − 2𝜖𝛽 +
𝛾𝑧𝜎2

min
(�)} > 0 implies that P̂R is at least �̂ = � − 𝑂( 1√

𝑛
)-strongly convex. This follows

because |𝜎min(�)−𝜎min(�̂)| ≤ ∥�− �̂∥ by Weyl’s inequality (see for example Theorem 3.3.16

in [71]), and P̂R is 𝑂(∥�̂∥)-sensitive, so by Lemma 4.5.10, each term depending on 𝜖 or

𝜎min(�̂) is within 𝑂(1/
√
𝑛) or 𝑂(1/𝑛) of the corresponding values for the non-perturbed

risk PR.

Hence, when 𝑛 ≥ Ω(1/�2), the strong convexity parameter of the perturbed performa-

tive risk, �̂, is at least �/2.

With this, we can apply the fact that �̂PO is an interior minimizer of P̂R by assumption

to conclude that when 𝑛 ≥ Ω(1/�2),

∥�̂𝑛 − �̂PO∥2
2
≤ 4

�
(P̂R(�̂𝑛) − P̂R(�̂PO)).

Now, when P̂R is strongly convex, the finite-sample performative risk P̂R𝑛 is also strongly

convex because Theorem 4.1.3 does not depend on the base distribution 𝒟0, and P̂R𝑛 is

simply P̂R when the base distribution 𝒟0 is replaced with the uniform distribution on

{𝑧1, . . . , 𝑧𝑛}. Consequently, by Lemma 4.5.11, with probability 1 − 𝛿,

∥�̂𝑛 − �̂PO∥2
2
≤ 𝑂(P̂R(�̂𝑛) − P̂R(�̂PO)) ≤ 𝑂(

∥�̂∥2
𝛿𝑛
).

By Lemma 4.5.13, P̂R is 𝑂(∥�̂∥2)-smooth. Applying the previous display then gives us,

∥∇P̂R(�̂𝑛) − ∇P̂R(�̂PO)∥2
2
≤ 𝑂(∥�̂∥4∥�̂𝑛 − �̂PO∥2

2
) ≤ 𝑂( ∥�̂∥

6

𝛿𝑛
).

By the triangle inequality and repeated application of (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2
, ∥�̂∥6 ≤

128∥�̂ − �∥6 + 128∥�∥6. Therefore, the above term is 𝑂(∥�∥6/𝛿𝑛). Putting everything

together with a union bound, we have shown that with probability 1− 𝛿, if 𝑛 ≥ Ω(𝑑+𝑚 +
log(1/𝛿)), it holds that

PR(�̂𝑛) − PR(�PO) ≤ 𝑂(
𝑑 + 𝑚 + log(1/𝛿)

𝑛
+ 1

𝛿𝑛
),

as desired. □
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Proofs of Lemmas for Two-Stage Algorithm Analysis
The proof of Lemma 4.5.10 is essentially standard (see, e.g., [55]), but we include it for

completeness.

Proof of Lemma 4.5.10. Define𝑍 ∈ R𝑛×𝑚 with rows 𝑧𝑖 andΘ ∈ R𝑛×𝑑 with rows�𝑖 , 1 ≤ 𝑖 ≤ 𝑛.

Then, 𝑍 = Θ�⊤ + 𝑍0, where 𝑍0 ∈ R𝑛×𝑚 is a matrix with base samples from 𝒟0 as

rows. Temporarily assume that Θ⊤Θ is invertible; we will later condition on this event.

Separately optimizing over each row of �, we can write the least-squares estimator as

�̂⊤ = (Θ⊤Θ)−1Θ⊤𝑍.

Consequently, we can bound the estimation error as

∥� − �̂∥ = ∥�⊤ − �̂⊤∥ = ∥�⊤ − (Θ⊤Θ)−1Θ⊤(Θ�⊤ + 𝑍0)∥
= ∥(Θ⊤Θ)−1Θ⊤𝑍0∥

≤ 1

�min(Θ⊤Θ)
∥Θ⊤𝑍0∥.

Since �𝑖 ∼ 𝒩 (0, 𝐼), Θ ∈ R𝑛×𝑑 has i.i.d. 𝒩 (0, 1) entries, and so Θ⊤Θ is a standard Wishart

matrix. The standard bound on the minimum eigenvalue of a Wishart matrix (see Theorem

4.6.1 in [84]) gives, with probability 1 − 𝛿,√
�min(Θ⊤Θ) ≥ Ω(

√
𝑛 −
√
𝑑 −

√
log(1/𝛿)).

Therefore, if 𝑛 ≥ Ω(𝑑 + log(2/𝛿)), then, with probability 1 − 𝛿/2,√
�min(Θ⊤Θ) ≥ Ω(

√
𝑛/2). (4.13)

Control of the second term, ∥Θ⊤𝑍0∥, also follows from a standard covering argument

followed by the Bernstein bound. Write Θ⊤𝑍0 =
∑𝑛
𝑖=1

�𝑖(𝑧base
)⊤
𝑖

. Let ℬ𝑑 and ℬ𝑚 denote

the unit balls in R𝑑 and R𝑚 , respectively. Then,

∥Θ⊤𝑍0∥ = sup

𝑥∈ℬ𝑑 ,𝑦∈ℬ𝑚
𝑥⊤(

𝑛∑
𝑖=1

�𝑖(𝑧base
)⊤𝑖 )𝑦 = sup

𝑥∈ℬ𝑑 ,𝑦∈ℬ𝑚

𝑛∑
𝑖=1

(𝑥⊤�𝑖)((𝑧base
)⊤𝑖 𝑦).

Let𝒩𝜖, andℳ𝜖 denote 𝜖-coverings of ℬ𝑑 and ℬ𝑚 , respectively. A volumetric bound gives

|𝒩𝜖 | ≤ (1+ 2

𝜖 )𝑑 and similarly |ℳ𝜖 | ≤ (1+ 2

𝜖 )𝑚 (see Corollary 4.2.13 in [84]). Taking 𝜖 = 1/4,

|𝒩𝜖 | ≤ 9
𝑑

and |ℳ𝜖 | ≤ 9
𝑚

. Approximating the supremum over the 𝜖-nets gives

∥Θ⊤𝑍0∥ ≤ 2 max

𝑥∈𝒩𝜖 ,𝑦∈ℳ𝜖

𝑛∑
𝑖=1

(𝑥⊤�𝑖)((𝑧0)⊤𝑖 𝑦).
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Fix 𝑥, 𝑦 ∈ 𝒩𝜖 ,ℳ𝜖. Since�𝑖 ∼ 𝒩 (0, 𝐼) and ∥𝑥∥2 = 1, 𝑥⊤�𝑖 ∼ 𝒩 (0, 1), which has subgaussian

norm 1. Similarly, since (𝑧
base
)𝑖 is subgaussian with parameter 𝐾 and ∥𝑦∥2 = 1, the

marginal (𝑧
base
)⊤
𝑖
𝑦 is subgaussian with parameter𝐾. Since 𝑧

base
and� are independent and

zero-mean, the product (𝑥⊤�𝑖)((𝑧base
)⊤
𝑖
𝑦) is zero-mean and subexponential with parameter

𝐾. Since each term is subexponential, by the Bernstein bound (see Theorem 2.8.1 in [84]),

for any 𝑡 > 0,

P

{
𝑛∑
𝑖=1

(𝑥⊤�𝑖)((𝑧base
)⊤𝑖 𝑦) > 𝑡/2

}
≤ exp(−𝑐min

{
𝑡2

𝑛𝐾2

,
𝑡

𝐾

}
),

for some universal constant 𝑐. Taking a union bound over the 𝜖-nets,

P
{
∥Θ⊤𝑍0∥ > 𝑡

}
≤ 9

𝑑+𝑚
exp(−𝑐min

{
𝑡2

𝑛𝐾2

,
𝑡

𝐾

}
).

If 𝑛 ≥ Ω(𝑑 + 𝑚 + log(2/𝛿)), then with probability at least 1 − 𝛿/2,

∥Θ⊤𝑍0∥ ≤ 𝑂(
√
𝑛((𝑑 + 𝑚) + log(1/𝛿))). (4.14)

Combining equations (4.13) and (4.14) with a union bound, if 𝑛 ≥ Ω(𝑑 + 𝑚 + log(1/𝛿)),
then

∥� − �̂∥ ≤ 𝑂
(√
(𝑑 + 𝑚) + log(1/𝛿)

𝑛

)
.

□

Proof of Lemma 4.5.12. Under the location-family parameterization, we can write

PR(�) = E𝑧∼𝒟(�)ℓ (𝑧;�) = E𝑧0∼𝒟0
ℓ (𝑧0 + ��;�),

so the gradients are given by

∇PR(�) = E𝑧0∼𝒟0
∇ℓ (𝑧0 + ��;�) and ∇P̂R(�) = E𝑧0∼𝒟0

∇ℓ (𝑧0 + �̂�;�).

This representation allows us to write∇PR(�) − ∇P̂R(�)
2

2

=

[ E𝑧0∼𝒟0

∇ℓ (𝑧0 + ��;�) − ∇ℓ (𝑧0 + �̂�;�)

]2

2

.
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Applying the chain rule, together with the triangle-inequality, gives∇PR(�) − ∇P̂R(�)


2

≤
[ E𝑧0∼𝒟0

∇�ℓ (𝑧0 + ��;�) − ∇�ℓ (𝑧0 + �̂�;�)

]
2

+
[ E𝑧0∼𝒟0

�⊤∇𝑧ℓ (𝑧0 + ��;�) − �̂⊤∇𝑧ℓ (𝑧0 + �̂�;�)

]
2

.

We bound each of these terms separately. For the first term, 𝛽-smoothness in 𝑧 immediately

gives [ E𝑧0∼𝒟0

∇�ℓ (𝑧0 + ��;�) − ∇�ℓ (𝑧0 + �̂�;�)

]
2

≤ 𝛽∥�� − �̂�∥2 ≤ 𝛽∥� − �̂∥∥�∥2.

For the second term, adding and subtracting �⊤∇𝑧ℓ (𝑧0+ �̂�;�) and then using the triangle

inequality,[ E𝑧0∼𝒟0

�⊤∇𝑧ℓ (𝑧0 + ��);�) − �̂⊤∇𝑧ℓ (𝑧0 + �̂�;�)

]
2

≤ ∥�∥∥E𝑧0∼𝒟0
[∇𝑧ℓ (𝑧0 + ��);�) − ∇𝑧ℓ (𝑧0 + �̂�;�)]∥2 + ∥� − �̂∥∥E𝑧0∼𝒟0

[∇𝑧ℓ (𝑧0 + �̂�;�)]∥2
≤ 𝛽∥�∥∥� − �̂∥∥�∥2 + 𝐿𝑧 ∥� − �̂∥ ,

where the last line used 𝛽-smoothness in 𝑧. Combining both pieces, we have∇PR(�) − ∇P̂R(�)


2

≤ ((𝛽 + 𝛽∥�∥)∥�∥2 + 𝐿𝑧)∥� − �̂∥.

Using the trivial bound ∥�∥2 ≤ 𝑅, and then squaring both sides,

∥∇PR(�̂) − ∇P̂R(�̂)∥2
2
≤ ((1 + ∥�∥)𝛽𝑅 + 𝐿𝑧)2∥� − �̂∥2.

□

Proof of Lemma 4.5.13. By applying the location family parameterization as in the proof of

Lemma 4.5.12, we get

∥∇PR(�) − ∇PR(�′)∥2 = ∥E𝑧0∼𝒟0
[∇ℓ (𝑧0 + ��;�) − ∇ℓ (𝑧0 + ��′;�′)]∥2.

Using the chain rule and the triangle inequality,

∥∇PR(�) − ∇PR(�′)∥2 ≤ ∥E𝑧0∼𝒟0
∇�ℓ (𝑧0 + ��;�) − ∇�ℓ (𝑧0 + ��′;�′)∥2

+ ∥E𝑧0∼𝒟0
�⊤∇𝑧ℓ (𝑧0 + ��;�) − �⊤∇𝑧ℓ (𝑧0 + ��′);�′)∥2. (4.15)
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For the first term in equation (4.15), adding and subtracting ∇�ℓ (𝑧 + ��′;�) and using the

triangle inequality gives ∥E𝑧0∼𝒟0
[∇�ℓ (𝑧0 + ��;�) − ∇�ℓ (𝑧0 + ��′;�′)]∥2

≤ ∥E𝑧0∼𝒟0
∇�ℓ (𝑧0 + ��;�) − ∇�ℓ (𝑧0 + ��′;�)∥2

+ ∥E𝑧0∼𝒟0
∇�ℓ (𝑧0 + ��′;�) − ∇�ℓ (𝑧0 + ��′;�′)∥2

≤ 𝛽∥�∥∥� − �′∥2 + 𝛽∥� − �′∥2,

where we used Jensen’s inequality and the assumption that ∇�ℓ (𝑧;�) is 𝛽-Lipschitz in 𝑧

(for the first term) and 𝛽-Lipschitz in � (for the second term).

Now, for the second term in equation (4.15), similarly adding and subtracting�⊤∇𝑧ℓ (𝑧+
��′;�) and using the triangle inequality gives

∥E𝑧0∼𝒟0
[�⊤∇𝑧ℓ (𝑧0 + ��;�) − �⊤∇𝑧ℓ (𝑧0 + ��′;�′)]∥2

≤ ∥E𝑧0∼𝒟0
�⊤∇𝑧ℓ (𝑧0 + ��;�) − �⊤∇𝑧ℓ (𝑧0 + ��′;�)∥2

+ ∥E𝑧0∼𝒟0
�⊤∇𝑧ℓ (𝑧0 + ��′;�) − �⊤∇𝑧ℓ (𝑧0 + ��′;�′)∥2

≤ 𝛽∥�∥2∥� − �′∥2 + 𝛽∥�∥2∥� − �′∥2,

where we used ∇𝑧ℓ (𝑧;�) is 𝛽 Lipschitz in 𝑧 (for the first term) and 𝛽 Lipschitz in � (for the

second term). This completes the proof. □

Experimental Details
Lastly, we elaborate on the experimental setup for the simulations presented in this chapter.

Data generation. We use the same strategic classification simulator as in the previous

chapter. We consider two different values of the sensitivity parameter, 𝜖 ∈ {0.0001, 100},
and set the magnitude of the regularizer to be � = 0.002. We restrict the radius of the

optimization domain to be 10, Θ = {� : ∥�∥2 ≤ 10}. This choice of parameters ensures

that 𝜖 = 0.0001 is below the critical threshold
𝛾
2𝛽 , while 𝜖 = 100 is above the threshold.

Algorithms. We compare the same four algorithms as the previous section.

1. Two-stage procedure. In the first stage, we deploy random �𝑖 ∼ 𝒩(0, 𝐼) and perform

linear regression to estimate �,

�̂ = arg min

�

𝑛∑
𝑖=1

∥𝑧𝑖 − ��𝑖 ∥2
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Then, having collected samples from the base distribution, we solve the proxy logistic

regression objective offline by running gradient descent with a line search procedure

until a tolerance criterion is met. In particular, we solve,

arg min

�∈Θ

1

𝑛

2𝑛∑
𝑗=𝑛+1

ℓ (𝑧 𝑗 + �̂�;�),

where ℓ (𝑧;�), is the regularized logistic regression objective, until the improvement

between consecutive iterates is smaller than 1e-10.

2. DFO. We again run the derivative-free optimization procedure from Flaxman et

al. [25]. We initialize �0 = 0, use step-size sequence 1/𝑡, a batch size of 100 samples

per-step, and set 𝛿 = 1. We tried several other parameter configurations and found

this one to perform best on this problem setting.

3. Greedy SGD. We run the greedy SGD variant with initial point �0 = 0 and step-size

sequence as suggested by our earlier theoretical analysis (Theorem 3.2.2).

4. Lazy SGD. We use the lazy SGD algorithm with initial point �0 = 0 and 𝑘2
collected

samples in 𝑘-th update. As for greedy SGD, we use the step-size sequence suggested

by the theory in Theorem 3.2.3.

Evaluation. We ran each algorithm for 50 trials, and in Figure 4.2, we compare the

performative risk PR(�) of each algorithm as a function of the number of samples. For

each sample size 𝑛, we bootstrap 95% confidence intervals over the 50 trials.
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Chapter 5

In Search of Performative Optima II:
Embracing the Multiplicity of Objectives

Throughout our presentation so far, we have assumed that the system designer is able to

adequately encode the overarching goals of prediction into a single, fixed loss function ℓ

that we then optimize via the performative risk. That is, we assume that this normative

task of translating the subjective goals of prediction into a concrete, objective mathematical

object has been resolved a priori. In particular, this translation happens before the learner

has observed the data or begun to optimize their predictive model.

Often times, choosing the “right” objective may be a more challenging than finding the

optimal predictive model for a specific loss function. As discussed previously (Chapter 2),

a loss function is nothing but a way for people to express their preferences over (data,

prediction) pairs. In supervised learning, we often choose loss functions such as the

01-loss (i.e., 1{�̂� ≠ 𝑦}) or the squared loss (i.e., (𝑦 − �̂�)2) to indicate that we would like

to find a predictive model that is accurate: it’s predictions match future outcomes. This

drive towards accuracy makes perfect sense if predictions are merely a tool to foreshadow

future outcome and have no impact on the world.

In performative prediction, we are encouraged to think more broadly regarding the

power of predictions. The performativity thesis of machine learning posits that any

prediction that informs human decisions is an intervention that can actively change the

data we observe. Consequently, a prediction is not just a way to forecast future outcomes

accurately, but also to steer outcomes towards specific ends. In a medicine, risk predictions

determine interventions and shape behavior. Therefore, we might want to find models

that, for example, don’t just tell us whether a person will experience a heart attack, but

also minimize the likelihood that it occurs.

This distinction between steering and forecasting means that the process of translating
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between the high-level goals of prediction and a concrete loss function can be quite an open

ended process. The choice of loss in performative contexts is often inherently ambiguous

and challenging.

In this chapter, we attempt to find technical solutions that directly embrace the mul-

tiplicity of objectives in performative prediction. In particular, drawing upon an exciting

line of work in supervised learning [28, 29], we introduce the concept of a performative

omnipredictor and illustrate how these solutions can be learned efficiently. Intuitively, a

performative omnipredictor is a single predictive model that is simultaneously performa-

tively optimal for many, diverse objectives. By diverse, we mean that these omnipredictors

can be used to generate optimal predictions for qualitatively different, and possibly contra-

dictory goals. In particular, they can induce performative optimal models for a forecasting

loss (e.g, 01-loss) as well as for different steering losses (e.g., maximize the likelihood that

the outcome is 1, as minimize the likelihood that it is 1).

In other words, performative omnipredictors are an “efficient menu” of optimal deci-

sion rules that enable the system-designer to “learn once, and choose the right objective

later”. They address this previous limitation of performative prediction regarding the

choice of a single, fixed loss function and empower the decision-maker to flexibly decide

on the high-level goals of prediction.

At first glance, this idea of a single model that is optimal for many diverse objectives

seems like an impossibly strong goal. However, as we will now see, this concept can be

provably achieved by extending an elegant analysis framework initially pioneered in the

supervised learning context by [28]. The authors of this work establish a reduction be-

tween omniprediction and a notion of computational indistinguishability called Outcome

Indistinguishability [18]. This reduction gives way to a simple algorithm for learning

omnipredictors that requires only the simplest supervised learning primitives, such as the

ability to solve weak learning problems. In this chapter, we draw upon these ideas to bring

omniprediction into performative settings. And, in doing so, we establish a surprising

reduction showing that omniprediction in performative prediction is in fact not much

harder (computationally, or statistically speaking) than in seemingly simpler settings like

supervised learning.

We prove all these results in the outcome performativity setting, where predictions only

influence the distribution over outcomes 𝑦 and the marginal distribution over features 𝑥 is

unaffected. The outcome performativity setup is a natural restriction of the performative

prediction framework that matches the natural flow of time in prediction problems, as

we will soon describe in more detail. However, this restriction means that are results

regarding the possibilities of computing performative optima are generally incomparable

to those found in previous chapters.
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Remark 5.0.1 (a note regarding notation). So far throughout this thesis, we have consider

predictive models 𝑓� which are parametrized by a vector � ∈ R𝑑. This was in large part

motivated by the fact that we took a continuous optimization perspective on performative

prediction whereby we considered the properties of the loss function with respect � or

the behavior of gradient based algorithms which directly operate in �.

The results in this chapter are more “discrete” in flavor. We will consider predictive

models, or classifiers, that have outputs in a discrete set �̂� are not necessarily cleanly

parametrized by a vector � (e.g., decision-trees). In line with common practices in the

computational learning theory literature, we will refer to predictive models as decision-

rules or hypothesis functions ℎ belonging to some class ℋ . Consequently, ℎ will be the

input to the distribution map 𝒟(·) and we will use 𝒟(ℎ) to denote the joint distribution

over pairs (𝑥, 𝑦)when predictions are made according to the decision rule ℎ.

5.1 Outcome Performativity
To begin, we formally define a special case of the performative prediction setting, which we

call outcome performativity. Outcome performativity focuses on the effects of local decisions

on individuals’ outcomes, rather than the effect of broader policy on the distribution of

individuals.

For instance, early warning systems (which we will study in more detail in the second

part of this thesis) is well captured by the outcome performativity. For a given a student,

the EWS prediction they receive affects their future graduation outcome, but does not

influence their demographic features or historical test scores. In other words, we narrow

our attention to the performative effects of the prediction itself ℎ(𝑥) on the conditional

distribution over outcomes 𝑦, rather than the effects of the decision rule ℎ on the distribu-

tion as a whole𝒟(ℎ). This specialization of performativity still captures many important

decision-making problems, but gives us additional structure to sidestep some of the dif-

ficulties highlighted in previous chapters regarding the difficulty of finding performative

optima.

On a technical level, outcome performativity imagines a data generating process over

triples (𝑥, �̂�, 𝑦∗) where 𝑥 ∼ 𝒟 is sampled from a static distribution over inputs, then a

prediction or decision �̂� ∈ �̂� is selected (possibly as a function of 𝑥), and finally the true

outcome 𝑦∗ ∈ 𝒴 is sampled conditioned on 𝑥 and �̂�. Throughout this chapter, we focus

on binary outcomes 𝒴 = {0, 1}.1 In this setting, the outcome performativity assumption

1
In general, outcome performativity could be defined for larger outcome domains. Handling such

domains is certainly possible, but technical. We restrict our attention to binary outcomes to focus on

conceptual issues. Given this restriction, we use 𝑦 ∼ 𝑝(𝑥, �̂�) as shorthand for 𝑦 ∼ Ber[𝑝(𝑥, �̂�)].
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𝑥

�̂�

𝑦∗

Figure 5.1: Causal graphical representation of the outcome performativity data generating

process.

posits the existence of an underlying probability function,

𝑝∗ : 𝒳 × �̂� → [0, 1],

where for a given individual 𝑥 ∈ 𝒳 and decision �̂� ∈ �̂�, the true outcome 𝑦∗ is sampled

as a Bernoulli with parameter 𝑝∗(𝑥, �̂�). We refer to the true outcome distribution 𝑝∗ as

Nature.
By asserting a fixed “ground truth” probability function, the outcome performativity

framework does not allow for arbitrary distributional responses and limits the generality

of the approach. For instance, outcome performativity does not capture strategic classi-

fication. But importantly, by refining the model of performativity, there is hope that we

may sidestep the general hardness of learning optimal performative predictors.

5.2 Performative Omniprediction
We begin by observing that under outcome performativity, the true probability function 𝑝∗

suggests an optimal decision rule 𝑓 ∗
ℓ

: 𝒳 → �̂� for any loss ℓ . In our setting, 𝑝∗ governs the

outcome distribution, so given an input 𝑥 ∈ 𝒳, the optimal decision 𝑓 ∗
ℓ
(𝑥) is determined

by a simple, univariate optimization procedure over a discrete set �̂�:

𝑓 ∗ℓ (𝑥) ∈ arg min

�̂�∈�̂�
E𝑦∗∼𝑝∗(𝑥,�̂�)[ℓ (𝑥, �̂�, 𝑦∗)]. (5.1)

Note that the decision rule 𝑓 ∗
ℓ
(𝑥) minimizes the loss pointwise for 𝑥 ∈ 𝒳. Consequently,

averaging over any static, feature distribution 𝒟, the decision rule 𝑓 ∗
ℓ

is performative

optimal for any hypothesis classℋ , loss ℓ , and marginal distribution𝒟:

E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥, 𝑓 ∗

ℓ
(𝑥))
[ℓ (𝑥, 𝑓 ∗ℓ (𝑥), 𝑦

∗)] ≤ min

ℎ∈ℋ
E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)].2
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While the existence of 𝑝∗ implies the existence of optimal decision rules under outcome

performativity, we make no assumptions about the learnability of 𝑝∗. In general, the

function 𝑝∗ may be arbitrarily complex, so learning (or even representing!) 𝑝∗ may be

infeasible, both computationally and statistically.

Still, the above analysis reveals the power of modeling the probability function

𝑝∗ : 𝒳 × �̂� → [0, 1].

The optimal probability function 𝑝∗ encodes the optimal decision rule 𝑓 ∗
ℓ

for every loss
function ℓ . This perspective raises a concrete technical question: short of learning 𝑝∗, can

we learn a probability function �̃� : 𝒳 × �̂� → [0, 1] that suggests an optimal decision rule,

via simple post-processing, for many different objectives?

Recent work of [29] studied the analogous question in the context of supervised learn-

ing (without performativity), formalizing a solution concept which they call omniprediction.

Intuitively, an omnipredictor is a single probability function �̃� that suggests an optimal

decision rule for many different loss functions ℒ. The work of [29] and follow-up work

of [28] demonstrate—rather surprisingly—that omniprediction in supervised learning is

broadly a feasible concept. For a variety of choices of loss classes ℒ (e.g., Lipschitz losses

or convex losses), it is possible to learn an efficient predictor �̃� that gives optimal decisions

for any loss ℓ ∈ ℒ.

In this chapter, we generalize omniprediction to the outcome performative setting. As

a solution concept, performative omniprediction directly addresses the limiting assumption

in performative prediction that the loss ℓ is known and fixed. Given a performative

omnipredictor, a decision-maker can explore the consequences of optimizing for different

losses, balancing the desire for forecasting and steering, as they see fit.

Technically, given a predictor �̃�, we define 𝑓ℓ : 𝒳 → �̂� to be the optimal decision rule,

that acts as if outcomes are governed by �̃�.

𝑓ℓ (𝑥) ∈ arg min

�̂�∈�̂�
E�̃�∼�̃�(𝑥,�̂�)[ℓ (𝑥, �̂�, �̃�)]

We emphasize that, for any loss ℓ , the decision rule 𝑓ℓ (𝑥) is an efficient post-processing of

the predictions given by �̃�(𝑥, �̂�) for �̂� ∈ �̂�. A performative omnipredictor is a model of na-

ture �̃� : 𝒳×�̂� → [0, 1] that induces a corresponding decision rule 𝑓ℓ that is performatively

optimal over a collection of losses ℓ ∈ ℒ:

Definition 5.2.1 (Performative Omniprediction). For input distribution 𝒟, collection of

loss functions ℒ, hypothesis class ℋ , and 𝜖 ≥ 0, a predictor �̃� : 𝒳 × �̂� → [0, 1] is an

(ℒ ,ℋ , 𝜖)-performative omnipredictor over𝒟 if for all ℓ ∈ ℒ, the optimal decision rule 𝑓ℓ
is (ℓ ,ℋ , 𝜖)-performative optimal.
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Omniprediction is a very strong solution concept. Whereas the optimal decision

rule typically depends intimately on the chosen loss, an omnipredictor needs to encode

the optimal decision rule for every loss in ℒ, even if these losses encode very different

preferences over predictions. It is not hard to see that the optimal predictor (i.e, Nature’s

𝑝∗) is an omnipredictor for any hypothesis and loss class.

Corollary 5.2.2. For any input distribution𝒟, collection of loss functionsℒ, and hypothesis class
ℋ , the optimal predictor 𝑝∗ : 𝒳×�̂� → [0, 1] is an (ℒ ,ℋ , 0)-performative omnipredictor over𝒟.

This corollary follows directly from the fact that the optimal predictor 𝑝∗ gives the true

probability law governing the performative outcome distribution. Still, as we discussed

previously, the optimal predictor may be of arbitrary complexity and is generally inacces-

sible. The question remains whether efficient performative omnipredictors exist, and if so,

how to learn them. To attack this question, we introduce a generalization of the outcome

indistinguishability framework to the outcome performativity setting.

Performative Outcome Indistinguishability
Outcome Indistinguishability (OI) was introduced by [18] as an alternative paradigm for

supervised learning. Rather than focusing on loss minimization, OI formalizes learning as

a computational indistinguishability condition. In this view, a predictor should produce

outcomes that are indistinguishable from Nature’s outcome distribution. While OI can

encode classic learning goals like loss minimization, the abstraction is quite generic and

amenable to modern supervised learning desiderata, like fairness [34] and distributional

robustness [43].

Here, we propose an indistinguishability definition for the performative world. This

definition extends what [28] refer to as Hypothesis OI in the supervised setting. Here,

we propose an indistinguishability definition for the performative world.3 This definition

extends what [28] refer to as Hypothesis OI in the supervised setting.

Definition 5.2.3 (Performative OI). For input distribution 𝒟, collection of losses ℒ, hy-

pothesis class ℋ , and 𝜖 ≥ 0, a predictor �̃� : 𝒳 × �̂� → [0, 1] is (ℒ ,ℋ , 𝜖)-performative

outcome indistinguishable (POI) over𝒟 if for all ℓ ∈ ℒ and all ℎ ∈ ℋ ,��E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] − E 𝑥∼𝒟
�̃�∼�̃�(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), �̃�)]
�� ≤ 𝜖

3
In its original formulation, OI is a hierarchy of related notions. We generalize the framework to our

setting, focusing on notions of performative OI that will imply performative omniprediction. Understanding

a full generalization of the OI framework to the performative setting is an interesting question for future

investigations.
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In this definition, we fix our collection of distinguishers to be parameterized by a

collection of loss functions and a hypothesis class. The POI condition states that, even

when the outcome distribution can depend nontrivially on the hypothesis value ℎ(𝑥),
the outcomes 𝑦∗ and �̃� are indistinguishable, as measured by the expected loss of each

hypothesis. Note that the distinguishers take as input the individual 𝑥, the decision

ℎ(𝑥), and either Nature’s outcome 𝑦∗ or the modeled outcome �̃�. In particular, these

distinguishers do not receive access to the predictions �̃�(𝑥, ℎ(𝑥)) themselves.4

As a step towards obtaining omniprediction, we require indistinguishability between

�̃� and 𝑝∗, not just under the reference decision rules ℎ, but also under the optimal decision

rules 𝑓ℓ derived from �̃�. This motivates the notion of Performative Decision OI, which

extends the idea of decision calibration, introduced in [89], and decision OI, introduced

in [28], to the performative setting.

Definition 5.2.4 (Performative Decision OI). For input distribution 𝒟, collection of loss

functions ℒ, and 𝜖 ≥ 0, a predictor �̃� : 𝒳 × �̂� → [0, 1] is (ℒ , 𝜖)-performative decision

outcome indistinguishable (DOI) over𝒟 if for all ℓ ∈ ℒ,��E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥, 𝑓ℓ (𝑥))

[ℓ (𝑥, 𝑓ℓ (𝑥), 𝑦∗)] − E 𝑥∼𝒟
�̃�∼�̃�(𝑥, 𝑓ℓ (𝑥))

[ℓ (𝑥, 𝑓ℓ (𝑥), �̃�)]
�� ≤ 𝜖.

Operationally, DOI allows us to sample outcomes �̃� ∼ �̃�(𝑥, 𝑓ℓ (𝑥)) from our model of

Nature, evaluate the expected loss of ℓ (𝑥, 𝑓ℓ (𝑥), �̃�), and be confident that it is close to the

loss on outcomes sampled from Nature 𝑦∗ ∼ 𝑝∗(𝑥, 𝑓ℓ (𝑥)).
Note that, technically, the indistinguishability conditions in Performative OI and Per-

formative Decision OI look the same, but just refer to different hypothesis classes; that

is, (ℒ , 𝜖)-Performative Decision OI can be phrased as (ℒ , { 𝑓ℓ : ℓ ∈ ℒ}, 𝜖)-Performative

OI. We make a distinction between these notions because, semantically, the hypothesis

class { 𝑓ℓ : ℓ ∈ ℒ} is derived from the predictor �̃�, whereas ℎ ∈ ℋ is independent of

�̃�. As we will see later, this semantic difference manifests as a concrete difference in the

computational complexity of achieving each notion of indistinguishability.

Performative Omniprediction via OI
With these definitions in place, we can prove our first main result: performative om-

niprediction from performative outcome indistinguishability. One of the main benefits

of studying the problem from the indistinguishability lens is that it enables an especially

4
In the language of [18], this notion corresponds to the “No-Access” level of the OI hierarchy. In

principle, we could also extend the upper levels to the performative setting as well. We comment this issue

further within our discussion of performative calibration in Section 5.5.
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clean and simple analysis. The proof strategy we employ here follows the proof of om-

niprediction in the supervised learning world by [28]. Curiously, the proof only needs

one direction of the indistinguishability inequalities.

Theorem 5.2.5. Fix an input distribution𝒟, collection of lossesℒ, hypothesis classℋ , and 𝜖 ≥ 0.
Suppose that �̃� : 𝒳 × �̂� → [0, 1] is (ℒ , 𝜖)-performative decision OI and (ℒ ,ℋ , 𝜖)-performative
OI. Then, �̃� is a (ℒ ,ℋ , 2𝜖)-performative omnipredictor.

Proof. The proof exploits the fact that for each loss ℓ ∈ ℒ, 𝑓ℓ is the optimal decision rule for

ℓ under �̃�. Fix a loss ℓ ∈ ℒ. First, we upper bound the loss achieved by 𝑓ℓ on real outcomes

𝑦∗ in terms of the loss on modeled outcomes �̃�. Under (ℒ , 𝜖)-performative decision OI,

E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥, 𝑓ℓ (𝑥))

[ℓ (𝑥, 𝑓ℓ (𝑥), 𝑦∗)] ≤ E 𝑥∼𝒟
�̃�∼�̃�(𝑥, 𝑓ℓ (𝑥))

[ℓ (𝑥, 𝑓ℓ (𝑥), �̃�)] + 𝜖.

Next, we relate the expected loss achieved by 𝑓ℓ on modeled outcomes �̃� ∼ �̃�(𝑥, 𝑓ℓ (𝑥))
versus that of other decision rules ℎ. By its definition, 𝑓ℓ (𝑥) is the optimal decision over

any �̂� ∈ �̂� for the loss ℓ (𝑥, �̂�, �̃�) under �̃� ∼ �̃�(𝑥, �̂�). So, averaging over the distribution on

inputs 𝑥 ∼ 𝒟, the loss of 𝑓ℓ is upper bounded by the loss of any other decision rule ℎ, and

in particular those inℋ :

E 𝑥∼𝒟
�̃�∼�̃�(𝑥, 𝑓ℓ (𝑥))

[ℓ (𝑥, 𝑓ℓ (𝑥), �̃�)] ≤ E 𝑥∼𝒟
�̃�∼�̃�(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), �̃�)].

Finally, by (ℒ ,ℋ , 𝜖)-POI, we upper bound the loss achieved by ℎ on real outcomes 𝑦∗ by

that achieved on modeled outcomes �̃�.

E 𝑥∼𝒟
�̃�∼�̃�(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), �̃�)] ≤ E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] + 𝜖.

Combining these three inequalities,

E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥, 𝑓ℓ (𝑥))

[ℓ (𝑥, 𝑓ℓ (𝑥), 𝑦∗)] ≤ E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] + 2𝜖,

so �̃� is a (ℒ ,ℋ , 2𝜖)-performative omnipredictor. □

5.3 Universal Adaptability
In addition to minimizing expected risk, performative omniprediction can also be viewed

as a guarantee of robustness. So far, we’ve seen how a performative omnipredictor

induces optimal predictions �̂� even if these predictions lead to endogenous shifts in the
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distribution over outcomes 𝑦∗. In this section, we argue that with little additional work,

the OI framework can be adapted to yield performative omnipredictors that are robust to

exogenous shifts in the marginal distribution over individuals 𝑥.5

The results here build on the recent work of [43], who introduced a notion of universal
adaptability in the context of statistical inference problems. In our context, universal adapt-

ability may be interpreted as a guarantee that the performative omnipredictor properties

hold, not only on the original input distribution 𝒟, but also on a broad family of shifts

of this input distribution 𝒟. In particular, we show that by augmenting the class of loss

functions, we can learn an outcome prediction model �̃� that can handle exogenous shifts

in the input distribution, while still maintaining performative optimality.

We parameterize universal adaptability by a class of importance weight functions

𝒲 ⊆ {𝒳 → R≥0}. For a base input distribution 𝒟, we define a corresponding collection

of shifted distributions 𝒟𝒲 to be the set of distributions reachable after reweighting the

probabilities in𝒟 by some 𝜔 ∈ 𝒲.

𝒟𝒲 = {𝒟𝜔 : 𝜔 ∈ 𝒲 , supp(𝒟𝜔) ⊆ supp(𝒟)},
where ∀𝑥 ∈ supp(𝒟𝜔), 𝒟𝜔(𝑥) = 𝜔(𝑥) · 𝒟(𝑥)

Note that to yield a valid probability distribution 𝒟𝜔 it is necessary and sufficient that

the importance weight function 𝜔 have unit weight over 𝒟; that is, for any 𝜔 ∈ 𝒲,

E𝑥∼𝒟[𝜔(𝑥)] = 1.6 Given an importance weight class𝒲, we say that an omnipredictor is

universally adaptable if it is an omnipredictor over any𝒟𝜔 ∈ 𝒟𝒲 .

Definition 5.3.1 (Universal Adaptability). For input distribution 𝒟, weight class𝒲, col-

lection of losses ℒ, hypothesis class ℋ , and 𝜖 ≥ 0, a performative omnipredictor is

𝒲-universally adaptable over 𝒟 if �̃� is an (ℒ ,ℋ , 𝜖)-performative omnipredictor over

every𝒟𝜔 ∈ 𝒟𝒲 .

Note that universal adaptability guarantees robustness under exogeneous shifts in the

marginal distribution over𝒳, not under endogeneous shifts in the input distribution induced

by the act of prediction. The distributional robustness is with respect to shifts that are

defined in advance, independent of the chosen decision rule. Under the guarantees of

universal adaptability, the prevalence of various individuals may vary, but the response of

any specific individual 𝑥 to a prediction �̂�, as measured by the distribution 𝑝∗ governing

5
By endogenous we mean that the distribution shift is caused by the act of prediction itself, which is

considered in the outcome performativity framework. Exogenous shifts are not influence by predictions.

They refer to changes in the data distribution caused by factors like a change in external environment, or

the passage of time.

6
Other properties of𝒲 will affect whether universal adaptability is feasible, but not its definition. We

discuss these issues further in Section 5.4.
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the outcome 𝑦∗, remains the same. Intuitively, this type of robustness is the best that we can

hope for without explicitly modeling how the predictions �̂� ∈ �̂� change the distribution

over individuals 𝑥 ∈ 𝒳, which �̃� does not model. If predictions �̂� affect both 𝑥 and 𝑦∗, it

is not at all obvious to us what invariant property of Nature we should choose to model.

We believe these are important questions for future work.

One consequence of this adaptability definition is that any model �̃� that is an om-

nipredictor for a class of distributions𝒟𝒲 must also be an omnipredictor for any mixture

distribution with components drawn from this class. We say that a distribution 𝒟𝑚 is a

mixture distribution if for all 𝑥 ∈ 𝒳,

Pr

𝒟𝑚

[𝑋 = 𝑥] =
∑
𝜔

�𝜔 Pr

𝒟𝜔

[𝑋 = 𝑥]where𝒟𝜔 ∈ 𝒟𝒲 , �𝜔 ≥ 0 for all 𝜔 and

∑
𝜔

�𝜔 = 1.

We denote by mixt(𝒟𝒲) the set of all such mixture distributions𝒟𝑚 .

Proposition 5.3.2. Let 𝒟𝒲 be a set of distributions over 𝒳. If �̃� is a (ℒ ,ℋ , 𝜖)-performative
omnipredictor over every 𝒟𝜔 ∈ 𝒟𝒲 , then it is also a (ℒ ,ℋ , 𝜖)-performative omnipredictor over
every𝒟𝑚 in mixt(𝒟𝒲).

Proof. Fix a loss ℓ ∈ ℒ, a hypothesis ℎ ∈ ℋ and a distribution𝒟𝑚 in mixt(𝒟𝒲). Then,

E 𝑥∼𝒟𝑚

𝑦∗∼𝑝∗(𝑥, 𝑓ℓ (𝑥))
[ℓ (𝑥, 𝑓ℓ (𝑥), 𝑦∗)] =

∑
𝜔

�𝜔 · E 𝑥∼𝒟𝑖

𝑦∗∼𝑝∗(𝑥, 𝑓ℓ (𝑥))
[ℓ (𝑥, 𝑓ℓ (𝑥), 𝑦∗)]

≤
∑
𝜔

�𝜔 · E 𝑥∼𝒟𝜔
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] +
∑
𝜔

�𝜔𝜖

= E 𝑥∼𝒟𝑚

𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))
[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] + 𝜖

The first line follows by expanding the definition of the mixture distribution and the

second by the omniprediction guarantee on mixture components. In the last line we

again applied the definition of a mixture and the fact that the �𝜔 sum to 1. Because the

inequalities hold for every ℎ ∈ ℋ , it must be the case that �̃� is an (ℒ ,ℋ , 𝜖)-omnipredictor

for every mixture distribution . □

We establish universal adaptability for performative omnipredictors by augmenting

the loss classℒ using the weight class𝒲. Specifically, we define the augmented loss class

ℒ𝒲 as the class of losses ℓ ∈ ℒ reweighted by importance weight functions 𝜔 ∈ 𝒲.

ℒ𝒲 = {ℓ𝜔 : ℓ ∈ ℒ , 𝜔 ∈ 𝒲}
where ∀𝑥 ∈ 𝒳 , �̂� ∈ �̂� , 𝑦 ∈ 𝒴 : ℓ𝜔(𝑥, �̂�, 𝑦) = 𝜔(𝑥) · ℓ (𝑥, �̂�, 𝑦)

With this class of losses in place, we argue that universally-adaptable performative om-

niprediction is, again, a consequence of performative outcome indistinguishability.
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Proposition 5.3.3. For a base input distribution 𝒟, weight class 𝒲, collection of losses ℒ,
hypothesis class ℋ , and 𝜖 ≥ 0, if a predictor �̃� is (ℒ𝒲 ,ℋ , 𝜖)-performative OI and (ℒ𝒲 , 𝜖)-
performative decision OI over 𝒟, then �̃� is an (ℒ ,ℋ , 2𝜖)-performative omnipredictor that is
𝒲-universally adaptable over𝒟.

Proof. The proposition follows as a corollary of Theorem 5.2.5. The key observation is that

multiplying by the importance weight 𝜔(𝑥) allows us to switch from an expectation over

𝒟 to an expectation over𝒟𝜔. By the definition of 𝒟𝜔, we have that for supported 𝑥 ∈ 𝒳,

𝜔 is the odds ratio,

𝜔(𝑥) = 𝒟𝜔(𝑥)
𝒟(𝑥) .

Further, by the definition of ℓ𝜔, for any ℎ : 𝒳 → �̂� and any outcome probability model 𝑝,

the following equality of expectations holds

E 𝑥∼𝒟
𝑦∼𝑝(𝑥,ℎ(𝑥))

[ℓ𝜔(𝑥, ℎ(𝑥), 𝑦)] = E 𝑥∼𝒟
𝑦∼𝑝(𝑥,ℎ(𝑥))

[𝜔(𝑥) · ℓ (𝑥, ℎ(𝑥), 𝑦)] (5.2)

= E 𝑥∼𝒟𝜔
𝑦∼𝑝(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦)], (5.3)

where we rely on the identity that for any function 𝑔 : 𝒳 → R,

E𝒟[𝑔(𝑥) · 𝜔(𝑥)] = E𝒟[𝑔(𝑥) · 𝒟𝜔(𝑥)/𝒟(𝑥)] = E𝒟𝜔[𝑔(𝑥)].

The equality in Equation 5.2 immediately implies that if �̃� is (ℒ𝒲 ,ℋ , 𝜖)-POI over 𝒟,

then �̃� is (ℒ ,ℋ , 𝜖)-POI over every 𝒟𝜔 ∈ 𝒟𝒲 . That is, by applying the identity to the

expectation under Nature’s outcomes 𝑦∗ ∼ 𝑝∗(𝑥, ℎ(𝑥)) and separately to the expectation

under the modeled outcomes �̃� ∼ �̃�(𝑥, ℎ(𝑥)), (ℒ𝒲 ,ℋ , 𝜖)-performative OI imples that we

obtain indistinguishability for all ℓ ∈ ℒ , ℎ ∈ ℋ and𝒟𝜔 ∈ 𝒟𝒲 :��E 𝑥∼𝒟𝜔
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] − E 𝑥∼𝒟𝜔
�̃�∼�̃�(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), �̃�)]
�� ≤ 𝜖.

The corresponding statement for performative decision OI is a bit more subtle. Whereas

above, the decision rules ℎ ∈ ℋ do not depend in any way on 𝜔, the optimal decision rule

𝑓ℓ𝜔 based on �̃�, is allowed to depend on the specified loss and, thus, on 𝜔. Still, we argue

that for any 𝜔, 𝑓ℓ𝜔 = 𝑓ℓ . This equality follows by the fact that the optimal decision rule

is chosen pointwise, for each 𝑥 ∈ 𝒳. In particular, for all 𝑥 ∈ 𝒳, scaling the loss by 𝜔(𝑥)
changes the scale of the optimization, but not the minimizer:

𝑓ℓ𝜔(𝑥) = arg min

�̂�∈�̂�
E𝑦∼�̃�(𝑥,�̂�)[𝜔(𝑥) · ℓ (�̂� , 𝑦)] = arg min

�̂�∈�̂�
E𝑦∼�̃�(𝑥,�̂�)[ℓ (�̂� , 𝑦)] = 𝑓ℓ (𝑥).
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Thus, the same identities from above can be applied to prove that if �̃� is (ℒ𝜔 , 𝜖)-DOI for

a fixed distribution 𝒟, then it is also (ℒ , 𝜖)-DOI for every 𝒟𝜔 ∈ 𝒟𝒲 . The proposition

follows by applying Theorem 5.2.5 separately over each𝒟𝜔 ∈ 𝒟𝒲 . □

Before moving on, we highlight that designing omnipredictors requires the learner

to account for possible shifts in the distribution at training time, not at test time. At

test time, the learner simply chooses predictions �̂� according to the function 𝑓ℓ , without

needing to first infer what the underlying distribution 𝒟 may be. The decision rule 𝑓ℓ is

simultaneously optimal for all of them. This design choice shifts the burden of technical

sophistication and expertise from the user of the system to its designer. The user is free to

focus on the choice of loss function ℓ to balance between forecasting and steering knowing

that naive usage of 𝑓ℓ is guaranteed to work.

5.4 Learning Algorithms for Performative Omniprediction
In this section, we introduce a general purpose algorithm, POI-Boost, which provably

returns a performative omnipredictor �̃� for any class of hypothesis ℋ and collection of

losses ℒ. Our algorithmic approach is centered on establishing two reductions. First,

we prove that, similar to previous work in the OI literature, learning Performative OI

predictors reduces to the problem of auditing for outcome indistinguishability.

The auditing problems we reduce to involve determining whether the losses under

the decision rules in ℋ and { 𝑓ℓ } are the same for Nature’s outcomes and our modeled

outcomes under outcome performativity. While in the supervised learning setting we only

need to reason about a single outcome distribution, in our setting, different different

decision rules induce different distributions over outcomes, and we want to audit for

indistinguishability over each of these induced distributions. Despite this challenge, we

show that, given access to appropriately randomized data, we can reduce this performative

auditing problem to standard supervised learning primitives. In this second reduction,

we make use of computational and statistical assumptions: access to an appropriate

supervised learner (computational) and access to randomized control data (statistical).

While we instantiate our algorithm with specific computational and statistical assump-

tions, the framework for learning is completely generic and modular. In particular, any

solution to the auditing problem can be used to implement the algorithm. It stands to

reason that our assumptions could be relaxed in the future, or that in certain settings,

incomparable assumptions lead to more effective auditing, which in turn would lead to

more efficient learning of performative omnipredictors.
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Performative OI Boost (POI-Boost)

Input: Set of losses ℒ, hypothesesℋ , distribution𝒟, tolerance 𝜖 > 0

Initialize: 𝑞(1)(·) ← [1/2, . . . , 1/2] ∈ [0, 1]|�̂� |

For 𝑡 = 1, 2, . . .

• If: there exists a) (ℎ, ℓ ) ∈ ℋ × ℒ or, b) (ℎ, ℓ ) ∈ {( 𝑓ℓ ,𝑡 , ℓ ) : ℓ ∈ ℒ}

| E 𝑥∼𝒟
�̃�∼�̃�(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), �̃�)] − E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)]︸                                                                 ︷︷                                                                 ︸
err𝑡

| ≥ 𝜖 (5.4)

Then: Update the representation 𝑞(𝑡):

𝑞(𝑡+1)(·) ← Π

(
𝑞(𝑡)(·) − �(𝑡) 𝑣ℓ ,ℎ(·)

)
(5.5)

where �𝑡 = −𝜖 · sign(err𝑡) / ℓmax and

𝑣ℓ ,ℎ(·) =

(ℓ (·, �̂�1, 1) − ℓ (·, �̂�1, 0)) 1{ℎ(·) = �̂�1}

. . .

(ℓ (·, �̂�𝑘 , 1) − ℓ (·, �̂�𝑘 , 0)) 1{ℎ(·) = �̂�𝑘}

 ∈ R|�̂� | , �̂� = {�̂�1, . . . , �̂�𝑘} (5.6)

• Else: terminate and return the function �̃�(𝑥, �̂�) = 𝑞(𝑡)(𝑥)[ �̂� ]

Figure 5.2: Algorithm for generating performative omnipredictors. The algorithm pro-

ceeds by repeatedly verifying whether the intermediate predictors 𝑝(𝑡) satisfy the POI

definition, outlined in a), as well as the DOI definition, outlined in b). If neither is

violated, the procedure terminates. Otherwise, the algorithm implicitly updates the rep-

resentation 𝑞(𝑡) of the predictor 𝑝(𝑡). Given an input 𝑥, 𝑞(𝑡)(𝑥) is a vector of length |�̂� |
whose �̂� entry, 𝑞(𝑡)(𝑥)[ �̂� ], represents 𝑝(𝑡)(𝑥, �̂�). The operator Π clips entries of its input

vector to lie in [0, 1]. For the sake of clarity, here we present the simplest version of the

algorithm where the search outlined in Equation 5.4 is proper, however this condition can

be easily relaxed as discussed in Section 5.4.

Reducing Indistinguishability to Auditing
We start by establishing our first reduction. We prove that the POI-Boost algorithm

(Figure 5.2) returns a performative omnipredictor �̃� after a small, polynomial number
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of calls to an auditing subroutine (described in Equation 5.4 & Figure 5.3), without yet

describing the runtime or sample complexity of the auditing step itself. We address these

questions in the next subsection. The algorithm works for any outcome performative

problem where the number of predicted labels �̂� is finite and the loss functions are

bounded.

Representing Predictors. For the sake of our analysis, it is helpful to distinguish between

the predictor �̃� : 𝒳 × �̂� → [0, 1] as a function, and the implementation of �̃� in code. In

our learning algorithm, we represent the function �̃� in terms of vector-valued functions

�̃� : 𝒳 → [0, 1]|�̂� |. Given 𝑥 ∈ 𝒳, �̃�(𝑥) is a vector of length |�̂� | whose �̂� entry, 𝑞(𝑡)(𝑥)[ �̂� ],
represents �̃�(𝑥, �̂�).

Of course, there is a correspondence between these functions �̃� and �̃� where each �̃�

leads to a unique �̃� and vice versa. The key difference is that �̃�(𝑥) returns �̃�(𝑥, �̂�) for all

�̂� ∈ �̂� in a single function call, while computing the same information using the direct

�̃� representation would require |�̂� | functions calls. While this might seem like a minor

detail, these representations have meaningful differences in terms of the circuit complexity

of performative omnipredictors. Crucially, for any loss ℓ , to compute 𝑓ℓ (𝑥), we need the

value of of �̃�(𝑥, �̂�) for all �̂� ∈ �̂�, and this computation can be performed using a single

call to �̃�. In other words, we perform |�̂� | times the work per call to �̃� to avoid |�̂� | recursive
calls to the predictor within the construction. Avoiding further calls to these functions

avoids branching factors and an exponential blowup in the complexity of the resulting

predictors as we illustrate.

Algorithm Description. As outlined in Figure 5.2, POI-Boost is an iterative algorithm

which non-parametrically constructs a predictor �̃�, represented in terms of a vector-valued

function �̃�, by stringing together copies of circuits which compute losses ℓ and decision

rules ℎ. At each iteration, the algorithm first appeals to auditing subroutines to check

if there: is 𝑎) a pair ℎ, 𝑙 for which the current predictor 𝑝(𝑡), fails the performative OI

guarantee, or 𝑏) a loss function ℓ for which the decision rule 𝑓ℓ ,𝑡 fails the decision OI

guarantee. If neither condition is violated, then the algorithm terminates since 𝑝(𝑡) satisfies

both indistinguishability conditions and consequently must be an omnipredictor as per

Theorem 5.2.5.

On the other hand, if one of these conditions is violated, we perform an update to the

representation 𝑞(𝑡) of the current predictor 𝑝(𝑡). These updates nudge the predictor closer

to 𝑝∗ by essentially performing gradient descent in function space [54]. These updates

are done implicitly in the sense that we can update the representation 𝑞(𝑡) for all 𝑥 in

𝒳 simultaneously by simply adding a copy of the circuit computing 𝑣ℓ ,ℎ : 𝒳 → R|�̂� |
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(Equation 5.6) which is defined in terms of a loss ℓ and decision rule ℎ. By bounding the

total number of updates via a potential argument, we can ensure that we don’t add too

many copies of these functions so that the final predictor is computationally efficient.

Proposition 5.4.1. The POI-Boost algorithm described in Figure 1 terminates in at most |�̂� |ℓ2

max
/𝜖2

many iterations and returns a predictor �̃� that is (ℒ ,ℋ , 𝜖)-performative OI and (ℒ , 𝜖)-performative
decision OI. Consequently, �̃� is a (ℒ ,ℋ , 2𝜖)-performative omnipredictor.

Proof. The guarantee that �̃� is performative decision OI and performative OI follow directly

from the termination criterion. Therefore, the proposition follows from proving that this

termination criteria is met within the stated number of iterations.

The key insight is that if the indistinguishability constraint in Equation 5.4 is violated

for any ℓ or ℎ, then updating the representation 𝑞(𝑡) ensures that we will have made

nontrivial progress on a common potential function. Since this potential is bounded from

above and below, and we make nontrivial progress with every update, the total number

of updates must be bounded. In more detail, first, note that for any model 𝑝, loss ℓ ,

hypothesis ℎ, and𝒴 = {0, 1}:

E 𝑥∼𝒟
𝑦∼𝑝(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦)] = E𝑥E𝑦 |𝑥[ℓ (𝑥, ℎ(𝑥), 𝑦)]

= E𝑥[ℓ (𝑥, ℎ(𝑥), 0) + (ℓ (𝑥, ℎ(𝑥), 1) − ℓ (𝑥, ℎ(𝑥), 0)) · 𝑝(𝑥, ℎ(𝑥))].

From this rewriting, and the definition of 𝑣ℓ ,ℎ in Equation 5.6, the difference in performa-

tive risks between the predictors 𝑝(𝑡) and 𝑝∗ for a pair ℓ , ℎ can be expanded as,

E 𝑥∼𝒟
𝑦𝑡∼𝑝(𝑡)(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦𝑡)] − E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] (5.7)

= E𝑥 ⟨𝑞(𝑡)(𝑥) − 𝑞∗(𝑥), 𝑣ℓ ,ℎ(𝑥)⟩. (5.8)

Now consider the potential, written in terms of the representations 𝑞(𝑡),

E𝑥 ∥𝑞(𝑡+1)(𝑥) − 𝑞∗(𝑥)∥2.

By definition of the update rule in the algorithm, this potential is equal to:

E𝑥 ∥Π
(
𝑞(𝑡)(𝑥) − �(𝑡)𝑣ℓ ,ℎ(𝑥)

)
− 𝑞∗(𝑥)∥2.

Because the projection (or clipping) operator Π can only decrease the distance to 𝑝∗, if an

update is performed, the difference between potentials at adjacent time steps,

E𝑥 ∥𝑞(𝑡+1)(𝑥) − 𝑞∗(𝑥)∥2 − E𝑥 ∥𝑞(𝑡)(𝑥) − 𝑞∗(𝑥)∥2,
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is upper bounded by the sum of two terms,

− 2�𝑡E𝑥 ⟨𝑞(𝑡)(𝑥) − 𝑞∗(𝑥), 𝑣ℓ ,ℎ(𝑥)⟩ + �2

𝑡E𝑥 ∥𝑣ℓ ,ℎ(𝑥)∥2.

Using the identity from Equation 5.8 and the definition of 𝑣ℓ ,ℎ from Equation 5.6, this is

equal to:

− 2�𝑡err𝑡 + �2

𝑡E𝑥[(ℓ (𝑥, ℎ(𝑥), 1) − ℓ (𝑥, ℎ(𝑥), 0))2].

Because losses lie in [0, ℓmax], the second term is less than ℓ2

max
�2

𝑡 . Furthermore, from the

auditing guarantee, |err𝑡 | > 𝜖. By setting the step size �(𝑡) to be −𝜖 · sign(err𝑡) / ℓmax, we

conclude that the difference in potentials across adjacent time steps satisfies,

2�𝑡err𝑡 + �2

𝑡E𝑥[(ℓ (𝑥, ℎ(𝑥), 1) − ℓ (𝑥, ℎ(𝑥), 0))2] ≤ −2�𝑡err𝑡 + �2

𝑡 ℓ
2

max
≤ −𝜖2/ℓ2

max
.

Since the potential is nonnegative and bounded above by |�̂� |, the maximum number of

iterations until the termination criterion is met must be at most |�̂� |ℓ2

max
/𝜖2

. □

An important consequence of this result is that it reveals the existence of omnipredictors

�̃� that admit computationally efficient approximations. This result is subtle, even in

light of previous work on OI-style boosting algorithms. Intuitively, the final �̃� is built

out by stringing together copies of functions in ℋ , ℒ, and decision rules 𝑓ℓ ,𝑡 . Because

these decision rules 𝑓ℓ ,𝑡 are defined in terms of an optimization procedure involving the

intermediate constructions 𝑝(𝑡), which themselves depend on previous models 𝑝(𝑡−1)
, a

naive implementation of �̃� can result in a recursion that induces an exponentially large

circuit. Specifically, the naive implementation would make |�̂� | recursive calls to the prior

circuit in order to compute 𝑓ℓ ,𝑡 , resulting in a growth rate of |�̂� |𝑡 .
However, by carefully ordering the relevant computations and “caching” previous

work, we avoid this blow-up. The key insight is the following. By designing a circuit

that computes the value of �̃�(𝑥, �̂�) for every �̂� ∈ �̂� simultaneously, we can avoid recursive

calls to the circuit. By maintaining the intermediate computations of 𝑞(𝑡), we can avoid a

branching factor in the program and preserve efficiency.

Theorem 5.4.2. Assume that the functions inℋ and ℒ are computable by circuits of size at most
𝑠, then the predictor �̃� returned by the POI-Boost algorithm has size at most ℓ2

max
/𝜖2 ·poly(𝑠, |�̂� |).

Proof. The final predictor consists of a summation of the initial prediction, followed by the

update from each iteration. We bound the growth of the circuit computing the predictor

by induction. Formally, let 𝑆𝑡 be the circuit size for computing 𝑞(𝑡). Then, we show that

𝑆𝑡+1 ≤ 𝑆𝑡+poly(|�̂� |, 𝑠) for all 𝑡 ≥ 1. Thus, by the overall bound on the iteration complexity,

the final predictor can be implemented using a circuit of size 𝑆 ≤ ℓ 2

max
/𝜖2 ·poly(𝑠, |�̂� |). To
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begin, the initial constant predictor 𝑞(1) can be implemented using a circuit of size at most

𝑆1 = |�̂� | ≤ poly(𝑠, |�̂� |) by hard-coding the constant vector.

By the update rule, each update incorporates a function of the form,

𝑔(𝑡)(𝑥) := �(𝑡)𝑣(𝑡)
ℓ ,ℎ
(𝑥) = �(𝑡)


(ℓ (𝑡)(𝑥, �̂�1, 1) − ℓ (𝑡)(𝑥, �̂�1, 0)) 1{ℎ(𝑡)(𝑥) = �̂�1}

. . .

(ℓ (𝑡)(𝑥, �̂�𝑘 , 1) − ℓ (𝑡)(𝑥, �̂�𝑘 , 0)) 1{ℎ(𝑡)(𝑥) = �̂�𝑘}

 ∈ R|�̂� | , (5.9)

where ℓ (𝑡) and ℎ(𝑡) define the test function surfaced by the auditing subroutine at time step

𝑡. Within these updates, the function ℎ(𝑡) may a) come from ℋ due to a POI violation or

b) equal 𝑓ℓ ,𝑡 for some ℓ ∈ ℒ due to a DOI violation.

In the first case where ℎ(𝑡+1) ∈ ℋ , 𝑞(𝑡+1)(𝑥) can be computed by evaluating evaluating

𝑞(𝑡)(𝑥), and then evaluating ℎ(𝑥) and ℓ (𝑥, �̂�, 𝑦), for every �̂� and 𝑦. By assumption, the

latter operations require circuits of size at most poly(𝑠, |�̂� |). Paired with the inductive

hypothesis, the resulting circuit size can be bounded as 𝑆𝑡+1 ≤ 𝑆𝑡 + poly(𝑠, |�̂� |) ≤ (𝑡 + 1) ·
poly(𝑠, |�̂� |).

For the second case, we recall the definition of 𝑓ℓ ,𝑡(·), we can express its computation

as a minimization over �̂� of expected losses that depend on 𝑞(𝑡)(·)[�̂�] for each �̂� ∈ �̂�.

𝑓ℓ ,𝑡(𝑥) = arg min

�̂�∈�̂�
{ℓ (𝑥, �̂�, 0) + (ℓ (𝑥, �̂�, 1) − ℓ (𝑥, �̂�, 0)) · 𝑞(𝑡)(𝑥)[�̂�]}.

Importantly, to compute each term in the minimization, we only need to compute the

vector 𝑞(𝑡)(𝑥) once. The remaining terms, ℓ (𝑥, �̂�, 0) and ℓ (𝑥, �̂�, 1) (for every �̂�), can again

be computed by a circuit of size poly(|�̂� |, 𝑠). Since the minimization itself can be done by

linearly enumerating over �̂�, we again preserve the invariant that 𝑆𝑡+1 ≤ 𝑆𝑡 +poly(|�̂� |, 𝑠).
□

Reducing Auditing to Supervised Learning
Having shown how omniprediction reduces to an auditing problem, we now complete

our analysis of the POI-Boost algorithm by showing that auditing itself reduces to cost-

sensitive classification over a single, static distribution. In doing so, we address the

statistical and computational complexity of solving this auditing step.

From examining the auditing condition in Figure 5.3, perhaps the most obvious strategy

is to choose a decision rule ℎ, and to collect a dataset of triples (𝑥, �̂�, 𝑦∗)where �̂� = ℎ(𝑥) for

every 𝑥 and 𝑦∗ ∼ 𝑝∗(𝑥, ℎ(𝑥)). If the loss ℓ is bounded, a standard application of Hoeffding’s

inequality shows that empirical risk of the loss concentrates around its expectation:

1

𝑛

𝑛∑
𝑖=1

ℓ (𝑥𝑖 , ℎ(𝑥𝑖), 𝑦∗𝑖 ) ≈ E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)].
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Audit(ℋ ,ℒ , �̃� , 𝜖)

If: there exists (ℎ, ℓ ) ∈ ℋ × ℒ��E 𝑥∼𝒟
�̃�∼�̃�(𝑥,ℎ(𝑥))

ℓ (𝑥, ℎ(𝑥), �̃�) − E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

ℓ (𝑥, ℎ(𝑥), 𝑦∗)
�� ≥ 𝜖

Then: return ℎ, 𝑙

Else: return False

Figure 5.3: The key auditing step in the POI-Boost algorithm. In each iteration of the

algorithm, we run two auditing steps: once to check for the POI condition overℋ ×ℒ and

once to check for the DOI condition over {( 𝑓ℓ ,𝑡 , ℓ ) : ℓ ∈ ℒ}. See the proof of Corollary 5.4.8

for further discussion.

Therefore, one could implement the auditing step by enumerating over all ℎ, deploying ℎ to

collect a new dataset every time, and then nonadaptively computing the empirical perfor-

mative risk of ℎ on every ℓ ∈ ℒ. This procedure would however require �̃�(|ℋ |/𝜖2
log |ℒ|)

many samples.

On the other hand, if we have access to randomized predictions �̂�, we can estimate the

empirical risk of every pair ℎ, ℓ off of a single distribution by using inverse propensity scor-

ing. The following lemma is well-known within various communities, and, in particular,

the contextual bandits literature (see e.g. [3, 15]).7

We use the shorthand (𝑥, �̂�, 𝑦) ∼ 𝒟rct to denote the sampling process where inputs are

sampled from the base distribution 𝑥 ∼ 𝒟, decisions �̂� are assigned uniformly at random,

�̂� ∼ Unif(�̂�), and the outcomes are sampled according to Nature’s model 𝑦∗ ∼ 𝑝∗(𝑥, �̂�).

Lemma 5.4.3. Assume that �̂� is a finite set. Then, for any hypothesis ℎ : 𝒳 → �̂�,

E 𝑥∼𝒟𝑥

𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))
[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] = |�̂� | · E(𝑥,�̂�,𝑦∗)∼𝒟rct

[ℓ (𝑥, �̂�, 𝑦∗)1{ℎ(𝑥) = �̂�}].

Proof. We present the proof for the case where �̂� = {0, 1} is binary, but the general case

7
This result can be generalized to the case where for every 𝑥, �̂� ∼ 𝑞(𝑥) for some known distribution 𝑞,

where 𝑞 ≠ Unif(�̂�) but where 𝑞 has full support over �̂�.
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follows the same pattern. We expand out E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] as:

= E 𝑥∼𝒟
𝑦∗(1)∼𝑝

∗(𝑥,1),𝑦∗(0)∼𝑝
∗(𝑥,0)

[
ℓ (𝑥, 1, 𝑦∗(1))1{ℎ(𝑥) = 1} + ℓ (𝑥, 0, 𝑦∗(0))1{ℎ(𝑥) = 0}

]
= E 𝑥∼𝒟

𝑦∗(1)∼𝑝
∗(𝑥,1)

[
ℓ (𝑥, 1, 𝑦∗(1))1{ℎ(𝑥) = 1}

]
+ E 𝑥∼𝒟

𝑦∗(0)∼𝑝
∗(𝑥,0)

[
ℓ (𝑥, 1, 𝑦∗(0))1{ℎ(𝑥) = 0}

]
.

Reweighting the term on the right hand side, we observe our desired equality:

E 𝑥∼𝒟
�̂�∼Ber(1/2)
𝑦∗∼𝑝∗(𝑥,�̂�)

[ℓ (𝑥, �̂�, 𝑦∗)1{ℎ(𝑥) = �̂�}] = 1

2

E 𝑥∼𝒟
𝑦∗(1)∼𝑝

∗(𝑥,1)

[
ℓ (𝑥, 1, 𝑦∗(1))1{ℎ(𝑥) = 1}

]
+ 1

2

E 𝑥∼𝒟
𝑦∗(0)∼𝑝

∗(𝑥,0)

[
ℓ (𝑥, 1, 𝑦∗(0))1{ℎ(𝑥) = 0}

]
.

□

There are two main takeaways from this lemma. First, it shows that the statistical

complexity of auditing can be exponentially better than the the naive strategy outlined

previously.

Corollary 5.4.4. Let {(𝑥𝑖 , �̂�𝑖 , �̃�𝑖)}𝑛𝑖=1
be a dataset of 𝑛 i.i.d samples from𝒟rct. If

𝑛 ≥
2ℓ2

max
|�̂� |2 · log(2|ℋ ||ℒ|/𝛿)

𝜖2

,

then with probability 1 − 𝛿,

max

ℎ∈ℋ ,ℓ∈ℒ

��E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] − 1

𝑛

𝑛∑
𝑖=1

|�̂� | · ℓ (𝑥𝑖 , �̂�𝑖 , 𝑦∗𝑖 )1{ℎ(𝑥𝑖) = �̂�𝑖}
�� ≤ 𝜖.

Proof. From the previous lemma, we have that for any loss ℓ and decision rule ℎ,

E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] = |�̂� | · E(𝑥,�̂�,𝑦∗)∼𝒟rct
[ℓ (𝑥, �̂�, 𝑦∗)1{ℎ(𝑥) = �̂�}].

Because |�̂� | · ℓ (𝑥𝑖 , �̂�𝑖 , 𝑦∗𝑖 )1{ℎ(𝑥𝑖) = �̂�𝑖} is uniformly bounded by ℓmax |�̂� |, we can apply

Hoeffding’s inequality to argue that the probability that the empirical estimate is far from

the true expectation��E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)] − 1

𝑛

𝑛∑
𝑖=1

|�̂� | · ℓ (𝑥𝑖 , �̂�𝑖 , 𝑦∗𝑖 )1{ℎ(𝑥𝑖) = �̂�𝑖}
�� > 𝜖

is bounded as 2 exp

(
2𝜖2

𝑛(ℓmax |�̂� |)2

)
. The result follows by rearranging for failure probability

𝛿, and taking a union bound over all ℎ ∈ ℋ and ℓ ∈ ℒ. □
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Consequently, for a single iteration of the POI-Boost algorithm, the auditing step can

be implemented by enumerating over all ℒ and ℋ and non-adaptively evaluating their

empirical risks on a single dataset of size �̃�(ℓ 2

max
|�̂� |2/𝜖2

log(|ℋ ||ℒ|)).8 Typically, we think

of |�̂� | as a small constant and the class of decision rules ℋ as a rich collection. From

this result, we see that at least statistically, we can hope to design omnipredictors that are

optimal with respect to an exponential number of losses and decision rules.

Here, we present the simplest possible analysis of this result and state our bounds

for finite classes ℋ and ℒ. It is certainly feasible to achieve sharper results and to

state bounds in terms of VC-dimension or other sharper notions of statistical complexity.

However, the goal of our initial work on outcome performativity is not to establish the

tightest bounds, but to provide a broad overview of what is possible. We hope future

work will provide a precise understanding of the sample complexity of omniprediction in

outcome performativity.

The following proposition summarizes the sample complexity of omniprediction if the

auditing steps for the POI and DOI conditions are implemented via a naive learner that

linearly enumerates over all ℎ, ℓ and evaluates their empirical risk on a single dataset of

RCT samples.

Proposition 5.4.5. Given labeled data (𝑥, �̂�, 𝑦∗) ∼ 𝒟rct drawn from Nature and unlabeled samples
𝑥 ∼ 𝒟, the POI-boost can be implemented using at most:

• 𝒪(ℓ 2

max
|�̂� |2 log( |ℋ ||ℒ|𝛿 )/𝜖2 + ℓ 4

max
|�̂� |3 log( |ℒ|ℓmax |�̂� |

𝛿𝜖 )/𝜖4) labeled samples

• 𝒪(ℓ 4

max
|�̂� |3 log( |ℋ ||ℒ|ℓmax |�̂� |

𝛿𝜖 )/𝜖4) unlabeled samples

Proof. In each iteration of the POI-boost algorithm, we need to audit for the POI and DOI

guarantees (conditions 𝑎 and 𝑏). We can implement each of the auditing steps by explicit

enumeration.

For POI, at each iteration 𝑡 we enumerate over ℋ and ℒ and evaluate the empirical

counterparts of

E 𝑥∼𝒟
�̃�∼𝑝(𝑡)(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), �̃�)] and E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)]. (5.10)

By Corollary 5.4.4, the empirical versions of these quantities concentrate around their

expectations. To get an 𝜖 approximation, with probability 1 − 𝛿, we require at most

𝒪(ℓ 2

max
|�̂� |2 log(|ℋ ||ℒ|/𝛿)/𝜖2) many samples. At each iteration 𝑡, the expectation on the

left changes, since we update 𝑝(𝑡). However, to evaluate this expectation we only need

8
An analogous result applies if we replace 𝑝∗ by �̃�, which we assume that the learner can easily sample

from.
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unlabeled samples, since labels �̃� come from our own model 𝑝(𝑡). On the other hand, the

expectation on the right in Equation 5.10 does not depend on 𝑡, so we need not recompute

it at every iteration. Because the total number of iterations is bounded by ℓ 2

max
|�̂� |/𝜖2

,

applying a union bound on 𝛿, to achieve the POI guarantee we only need a total of

𝒪(ℓ 4

max
|�̂� |3 log(|ℋ ||ℒ|ℓmax |�̂� |𝜖−1𝛿−1)/𝜖4) unlabeled samples and

𝒪(ℓ 2

max
|�̂� | log(|ℋ ||ℒ|/𝛿)/𝜖2)

labeled samples.

For the DOI guarantee outline in condition 𝑏, we instead need to approximate

E 𝑥∼𝒟
�̃�∼𝑝(𝑡)(𝑥, 𝑓ℓ ,𝑡(𝑥))

[ℓ (𝑥, 𝑓ℓ ,𝑡(𝑥), �̃�)] and E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥, 𝑓ℓ ,𝑡(𝑥))

[ℓ (𝑥, 𝑓ℓ ,𝑡(𝑥), 𝑦∗)]. (5.11)

Note that both of these expectations now depend on 𝑡, because the decision rules 𝑓ℓ ,𝑡 can

change between iterations. Again, by Corollary 5.4.4, if we enumerate over all |ℒ| losses

and decision rules 𝑓ℓ ,𝑡 at each iteration, the empirical counterparts of these expressions on

a dataset of size 𝒪(ℓ2

max
|�̂� |2 log(|ℒ|/𝛿)/𝜖2) concentrates. Collecting a new dataset at every

iteration, we get that the total number of labeled (and unlabeled) samples is bounded by

𝒪(ℓ 4

max
|�̂� |3 log(|ℒ||�̂� |ℓmax𝛿−1𝜖−1)/𝜖4). □

Cost-Sensitive Classification. The second main takeaway from Lemma 5.4.3 is that au-

diting can now be rewritten as as the solution to a cost-sensitive multiclass classification

problem over |�̂� | many classes. This result completes our analysis showing how om-

niprediction can be reduced to basic supervised learning problems.

In light of previous results, the main benefit of this reduction is that it enabled the

design of oracle-efficient algorithms which can be faster than the naive learner used in

Proposition 5.4.5. We start by first defining what we mean by cost-sensitive classification.

Definition 5.4.6. Let 𝒳 be a feature space, �̂� be a finite set of 𝑘 classes, and 𝒟 be a

distribution over 𝒳 × [−1, 1]𝑘 . For (𝑥, 𝑐) ∼ 𝒟, we say that 𝑐 is a cost vector whose entries

𝑐(�̂�) denote the costs of predicting label �̂� on feature 𝑥. An algorithm 𝒜csc is an 𝜌-

cost-sensitive learner for a hypothesis classℋ if for any distribution 𝒟 over 𝒳 × [−1, 1]𝑘 ,
promised that there exists ℎ ∈ ℋ such thatE(𝑥,𝑐)∼𝒟𝑐(ℎ(𝑥)) ≤ −𝜌,𝒜csc returns a hypothesis

ℎ′ such that E(𝑥,𝑐)∼𝒟𝑐(ℎ′(𝑥)) ≤ −𝜌/2.

Cost-sensitive classification is a well-studied supervised learning problem for which

many, both passive and active learning algorithms, have been designed [1, 9, 20, 45, 46].

There are a number of software packages that can be used to solve applied cost-senstive

classification problems [68]. Like many problems in computational learning theory, cost-

sensitive classification is known to be hard in the worst-case, but can be solved effectively
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in practice. As such, our goal is to design oracle-efficient learning algorithms, that make an

small number of calls to cost-sensitive learner.

Here, we frame a “weak” version of the problem where the learning need not be exact,

but where the search is proper, in the sense that𝒜csc returns a hypothesis inℋ . This latter

condition can easily also be relaxed without changing the overall results. However, we

opt to keep it as is for the sake of simplifying the presentation. The following proposition

completes our reduction of auditing to supervised learning.

Proposition 5.4.7. Let𝒜csc be a cost-sensitive learner as per Definition 5.4.6. Then, given access
to RCT samples (𝑥, �̂�, 𝑦∗) ∼ 𝒟rct, we can solve the auditing problem outlined in Figure 5.3 using
2|ℒ| many calls to𝒜csc with parameters 𝜌 = 𝜖/(4ℓmax |�̂� |).

Proof. By Lemma 5.4.3 we have that the difference in performative risk between 𝑝∗ and �̃�,

E 𝑥∼𝒟
�̃�∼�̃�(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), �̃�)] − E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,ℎ(𝑥))

[ℓ (𝑥, ℎ(𝑥), 𝑦∗)],

is equal to:

|�̂� | · E 𝑥∼𝒟
�̂�∼Unif(�̂�)

�̃�∼�̃�(𝑥,�̂�),𝑦∗∼𝑝∗(𝑥,�̂�)

[1{ℎ(𝑥) = �̂�}(ℓ (𝑥, ℎ(𝑥), �̃�) − ℓ (𝑥, ℎ(𝑥), 𝑦∗))] .

Now, we note that terms inside the expectation can be written as entries in a cost vector 𝑐

where for every sample (𝑥, �̂�, 𝑦∗, �̃�)we define the corresponding vector 𝑐 to be,

𝑐𝜎(ℎ(𝑥)) =
{
𝜎 · (ℓ (𝑥, ℎ(𝑥), �̃�) − ℓ (𝑥, ℎ(𝑥), 𝑦∗)) if ℎ(𝑥) = �̂�

0 o.w

,

Here, 𝜎 ∈ {±1} and we set 𝜎 = 1 to get the desired equality. Hence, for a fixed loss

ℓ , we can transform RCT samples, 𝑥 ∼ 𝒟 , �̂� ∼ Unif(�̂�), 𝑦∗ ∼ 𝑝∗(𝑥, �̂�) to a cost sensitive

classification problem such that for every ℎ ∈ ℋ ,

E𝑥∼𝒟′[𝑐+1(ℎ(𝑥))] = |�̂� |E 𝑥∼𝒟
�̂�∼Unif(�̂�)

�̃�∼�̃�(𝑥,�̂�),𝑦∗∼𝑝∗(𝑥,�̂�)

[1{ℎ(𝑥) = �̂�}(ℓ (𝑥, ℎ(𝑥), �̃�) − ℓ (𝑥, ℎ(𝑥), 𝑦∗))].

To solve the auditing problem outlined in Figure 5.3, we need to check whether the

absolute value of the difference is larger than 𝜖. To do this, it therefore to suffices to run

𝒜csc twice (once with 𝜎 = 1 and once with 𝜎 = −1) for every loss ℓ ∈ ℒ to check if there

exists a decision rule ℎ ∈ ℋ such that:

E𝑥∼𝒟′[𝑐+1(ℎ(𝑥))] ≤ −𝜖 or E𝑥∼𝒟′[𝑐−1(ℎ(𝑥))] ≤ −𝜖.
Because we normalize the cost vectors to have entries in [−1, 1] in Definition 5.4.6, we

can scale the vectors 𝑐𝜎 by 1/(4|�̂� |ℓmax) and divide the tolerance parameter 𝜖 by the

corresponding amount to match the desired interface. □



CHAPTER 5. IN SEARCH OF PERFORMATIVE OPTIMA II: EMBRACING THE
MULTIPLICITY OF OBJECTIVES 101

End-to-End Analysis
Having now presented these reductions showing how omniprediction can be reduced to

cost sensitive classification, we now summarize our results so far and establish end-to-end

bounds on the runtime and sample complexities of achieving omniprediction.

Corollary 5.4.8. Assume that ℎ ∈ ℋ and ℓ ∈ ℒ can be evaluated in time poly(log(|ℋ |)) and
poly(log(|ℒ|)), respectively. Let 𝒜csc be a 𝜌-cost-sensitive weak learner for ℋ as per Defini-
tion 5.4.6. Assume that for any distribution 𝒟csc over pairs (𝑥, 𝑐) ∈ 𝒳 × [−1, 1]𝑘 , 𝒜csc runs
in time poly(log(|ℋ |), 1/𝜌) and uses at most poly(log(|ℋ |), 1/𝜌) many samples drawn from
𝒟csc.9 If the learner has access to samples drawn according (𝑥, �̂�, 𝑦∗) ∼ 𝒟rct, then, the POI-Boost
algorithm:

• runs in time 𝒪
(
|ℒ| · poly

(
1/𝜖, ℓmax, |�̂� |, log |ℒ|, log |ℋ |

))
• uses at most 𝒪

(
poly

(
1/𝜖, ℓmax, |�̂� |, log |ℒ|, log |ℋ |

))
many samples

Proof. To bound the runtime, we note that by Proposition 5.4.1, the maximum number

of iterations for POI-Boost is at most ℓ2

max
|�̂� |/𝜖2

. In each iteration, we solve the auditing

via two subroutines. One to check for the POI guarantee (condition 𝑎 in Figure 5.2)

and another routine to check the DOI guarantee (condition 𝑏 in Figure 5.2). To audit

for the POI guarantee, we call the cost-sensitive learner 2|ℒ| times with parameters 𝜌 =

𝜖/(4ℓmax |�̂� |) as per Proposition 5.4.7, using labels derived from calculating each ℓ ∈ ℒ and

evaluating 𝑝(𝑡)(𝑥, �̂�) in at most poly(log(|ℒ|)) + poly(log(|ℋ |), 1/𝜖, ℓmax, |�̂� |) time. With

the labels calculated, each of these calls has run time and sample complexity at most

poly(log(|ℋ |, 1/𝜖, ℓmax, |�̂� |)).
To audit for the DOI guarantee over the (ℎ, ℓ ) ∈ {( 𝑓ℓ ,𝑡 , ℓ ) : ℓ ∈ ℒ}, at each iteration, we

use the naive strategy outlined in Section 5.4 where we enumerate over all |ℒ| losses and

evaluate the performative risk of each pair ( 𝑓ℓ ,𝑡 , ℓ ) on a single dataset of RCT samples of size

𝒪(ℓ 2

max
/𝜖2 |�̂� |2 log(|ℒ|)) as per Corollary 5.4.4. Each auditing step for DOI therefore runs

in time |ℒ| · poly(1/𝜖, ℓmax, |�̂� |) and uses poly(1/𝜖, ℓmax, |�̂� |, log(|ℒ|))many samples. All

calls to the intermediate predictors 𝑝(𝑡) also run in polynomial time as per Theorem 5.4.2.

The final guarantees come from multiplying the sample and run time complexity of each

iteration of the POI-boost algorithm by the bound on the total number of iterations. □

9
Here, we have avoided discussion on the failure probability parameter 𝛿 for the 𝒜csc. However, it is

clear that the relevant complexity bounds should depend only on log(1/𝛿) and that applying a simple union

bound would not change the nature of the resulting analysis. We therefore assume that the algorithms

succeed with probability 1 for the sake of simplicity.
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The main take away from this result is that if the cost-sensitive classification problem

can be solved efficiently, in the sense that the the relevant statistical and computational

complexities scale as polylog|ℋ |, then the overall POI-Boost algorithm runs in time lin-

ear in |ℒ|, poly-logarithmically in the size of ℋ and with at most polylog|ℋ ||ℒ| many

samples. Therefore, we can hope to develop efficient omnipredictors that are optimal for

exponentially many decision rules, and polynomially many losses.

Note that, because of the result outlined in Proposition 5.3.3, this theorem also bounds

the statistical and computational complexity of achieving universally adaptable om-

nipredictors. More specifically, the number of samples and the runtime for achieving uni-

versally adaptable omnipredictors are also bounded by the quantities in Corollary 5.4.8

where we now replace the class ℒ by augment collection ℒ𝒲 as defined in Proposi-

tion 5.3.3. The main difference is that the relevant runtime and sample complexity bounds

replace dependence on |ℒ| by dependence on |ℒ||𝒲| and replace dependence on ℓmax by

ℓmax𝜔max. Here, 𝜔max is the the worst case density ratio for the class𝒲.

max

𝜔∈𝒲
max

𝑥∈supp(𝒟𝜔)
𝜔(𝑥) = 𝒟𝜔(𝑥)

𝒟(𝑥) .

This complexity measure capture the intuition that if individuals 𝑥 are poorly repre-

sented over the distribution 𝒟 we are learning over, then we need more samples (and

consequently runtime), to learn universally adaptable omnipredictors. We think of these

complexity parameters like 𝜔max as a first step. It is an interesting question for future

work to provide sharper notions of problem complexity and to find ways of designing

omnipredictors for exponentially large collections of importance weights𝒲.

5.5 Connections to Multicalibration
So far, we have studied how extensions of outcome indistinguishability definitions en-

able the design of omnipredictors for performative settings. In the world of supervised

learning, [18] established tight connections between outcome indistinguishability and

various notions of multicalibration [34]. Given the complementary relationship between

these two concepts in the supervised world, it is natural to speculate that generalizing

multicalibration to the outcome performative setting might be fruitful.

In this section, we begin to examine these questions and discuss analogues of multiac-

curacy and multicalibration for the performative setting. We start by showing that multi-

accuracy naturally, and efficiently, extends to performative contexts, and provides an effec-

tive way to achieve performative outcome indistinguishability in a loss-independent fash-

ion. Conversely, we illustrate how naive translations of multicalibration to performative



CHAPTER 5. IN SEARCH OF PERFORMATIVE OPTIMA II: EMBRACING THE
MULTIPLICITY OF OBJECTIVES 103

prediction result in definitions whose complexity blows up exponentially in the number

of predictions |�̂� |. We conclude with some discussion of alternatives to calibration-style

guarantees that could, in principle, be used to obtain efficient omnipredictors.

On Multiaccuracy. Theorem 5.2.5 shows how (ℒ ,ℋ , 𝜖)-performative omniprediction

arises as a consequence of (ℒ ,ℋ , 𝜖)-performative OI and (ℒ , 𝜖)-decision OI, where the

OI distinguishers explicitly account for the collection of loss functions ℒ. Here, we show

an efficient approach for obtaining POI for the class of all bounded input-oblivious loss

functions.

We say that a loss function is input-oblivious if it only depends on the input 𝑥 ∈ 𝒳 via the

decision ℎ(𝑥). That is, for all 𝑥 and 𝑥′ and pairs (�̂� , 𝑦), ℓ (𝑥, �̂�, 𝑦) = ℓ (𝑥′, �̂� , 𝑦). Equivalently,

these functions have domain �̂� × 𝒴 instead of 𝒳 × �̂� × 𝒴. We use

ℒio = {ℓ : �̂� × {0, 1} → [0, 1]}

to denote the class of all bounded input-oblivious loss functions. Our first result for this

section proves that a performative analogue of multiaccuracy [34, 41] implies POI for ℒio.

Definition 5.5.1 (Multiaccuracy). For a distribution 𝒟, hypothesis class ℋ , and 𝜖 ≥ 0, a

predictor �̃� : 𝒳 × �̂� → [0, 1] is (ℋ , 𝜖)-multiaccurate under outcome performativity over

𝒟 if for all ℎ ∈ ℋ and �̂� ∈ �̂���E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,�̂�)

[𝑦∗ · 1{ℎ(𝑥) = �̂�}] − E 𝑥∼𝒟
�̃�∼�̃�(𝑥,�̂�)

[�̃� · 1{ℎ(𝑥) = �̂�}]
�� ≤ 𝜖.

Here, we require that the expectation of our modeled outcome �̃� ∼ �̃�(𝑥, ℎ(𝑥)) is accurate

after deploying each ℎ ∈ ℋ , even when restricting our attention to the individuals 𝑥 ∈
𝒳 such that ℎ(𝑥) = �̂�. While seemingly simpler than performative OI, we show that

multiaccuracy in fact implies performative OI for all input-oblivious losses.

Lemma 5.5.2. If �̃� : 𝒳×�̂� → [0, 1] is (ℋ , 𝜖)-multiaccurate, then �̃� is (ℒio,ℋ , 2𝜖)-performative
OI.

Proof. The proof shows an approximate equality between the loss ℓ ∈ ℒio of any ℎ ∈ ℋ
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under �̃� ∼ �̃�(𝑥, ℎ(𝑥)) and 𝑦∗ ∼ 𝑝∗(𝑥, ℎ(𝑥)). For𝒴 = {0, 1}, E 𝑥∼𝒟
�̃�∼�̃�(𝑥,�̂�)

[ℓ (ℎ(𝑥), �̃�)] satisfies:

=
∑
�̂�∈�̂�

Pr

𝒟
[ℎ(𝑥) = �̂�] · E 𝑥∼𝒟

�̃�∼�̃�(𝑥,�̂�)
[ℓ (�̂� , �̃�) | ℎ(𝑥) = �̂�]

=
∑
�̂�∈�̂�

Pr

𝒟
[ℎ(𝑥) = �̂�] · E 𝑥∼𝒟

�̃�∼�̃�(𝑥,�̂�)
[�̃� · ℓ (�̂� , 1) + (1 − �̃�) · ℓ (�̂� , 0) | ℎ(𝑥) = �̂�]

≤
∑
�̂�∈�̂�

Pr

𝒟
[ℎ(𝑥) = �̂�] · E 𝑥∼𝒟

𝑦∗∼𝑝∗(𝑥,�̂�)
[𝑦∗ · ℓ (�̂� , 1) + (1 − 𝑦∗) · ℓ (�̂� , 0) | ℎ(𝑥) = �̂�] + 2𝜖

=
∑
�̂�∈�̂�

Pr

𝒟
[ℎ(𝑥) = �̂�] · E 𝑥∼𝒟

𝑦∗∼𝑝∗(𝑥,�̂�)
[ℓ (�̂� , 𝑦∗) | ℎ(𝑥) = �̂�] + 2𝜖

= E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥,�̂�)

[ℓ (ℎ(𝑥), 𝑦∗)] + 2𝜖.

The the third line follows under the assumption that �̃� is (ℋ , 𝜖)-multiaccurate and the

bound on the magnitude of |ℓ (�̂� , 𝑏)| ≤ 1 for all �̂� ∈ �̂� and 𝑏 ∈ {0, 1}. Given that an

identical argument can be used to show the opposite inequality, we conclude that �̃� is

indeed POI. □

Inspecting the performative multiaccuracy condition, we can see that it is similarly

possible to reduce the problem of auditing for multiaccuracy to supervised learning. This

auditing procedure can be viewed as a special case of the auditing step from Section 5.4

or as a generalization of previous auditing procedures from work on multiaccuracy in

the supervised learning setting [34, 41]. In more detail, the relevant auditing problem for

performative multiaccuracy is to determine whether there exists an ℎ ∈ ℋ and �̂� ∈ �̂�
such that ��E 𝑥∼𝒟

𝑦∗∼𝑝∗(𝑥,�̂�)
[(𝑦∗ − �̃�(𝑥, �̂�)) · 1{ℎ(𝑥) = �̂�}]

�� > 𝜖.

As before, this auditing step reduces to a cost-sensitive classification problem (Defini-

tion 5.4.6). Auditing over a hypothesis class ℋ can be done with 2|�̂� | many calls to a

cost-sensitive learner𝒜csc with tolerance parameter 𝒪(𝜖). We omit a formal statement of

this result since it follows the exact pattern from Proposition 5.4.7.

In other words, in order to achieve (ℒ ,ℋ , 𝑂(𝜖))-POI for any class of input-oblivious

losses ℒ ⊆ ℒio, it suffices to audit for and enforce (ℋ , 𝜖)-multiaccuracy. In this sense, for

input-oblivious losses, there is a single auditing procedure that works for all losses, so we

can replace |ℒ|-factors by |�̂� | factors in the auditing complexity for performative OI.
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On Multicalibration. Going beyond multiaccuracy, the original work of [29] established

omniprediction in the supervised setting as a consequence of multicalibration. As such,

we might wonder whether there exists an analogous notion of multicalibration for perfor-

mative prediction that enables a similar result. Defining an efficient notion of calibration

under performativity (let alone, multicalibration), turns out to be a subtle task.

In supervised learning, calibration requires that the expectation of �̃� is accurate, even

when we partition the inputs 𝑥 ∈ 𝒳 based on the predicted value �̃�(𝑥) = 𝑣. Specifically,

the constraints quantify over each supported 𝑣 ∈ supp(�̃�):

E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥)

[𝑦∗ · 1{�̃�(𝑥) = 𝑣}] ≈ E 𝑥∼𝒟
�̃�∼�̃�(𝑥)

[�̃� · 1{�̃�(𝑥) = 𝑣}] = 𝑣 · Pr[�̃�(𝑥) = 𝑣].

Such calibration-style constraints suffice to establish omniprediction because for any loss

ℓ , the optimal decision 𝑓ℓ (𝑥) is completely determined by �̃�(𝑥).
In performative prediction, quantifying over the supported values of �̃� requires consid-

ering the decisions �̂� ∈ �̂� as well. In particular, the optimal decision 𝑓ℓ (𝑥) is a function of

the vector of predictions �̃�(𝑥) ∈ [0, 1]|�̂� |, which gives the predicted probability �̃� ∼ �̃�(𝑥, �̂�)
for each �̂� ∈ �̂� (recall the 𝑞(·) notation from Proposition 5.4.1). Thus, using the naive

translation of the calibration constraints for omniprediction, we must partition 𝒳 based

on the vector-valued predictions, �̃�(𝑥) = −→𝑣 . The cardinality of this calibration partition of

𝒳 scales exponentially in the number of decisions |�̂� |, even for binary outcomes𝒴.

Still, we may consider more efficient calibration-style conditions that suffice to imply

omniprediction in the performative setting. Rather than aiming for full performative cal-

ibration, we focus on adapting the notion of decision calibration [89] to the performative

setting. Decision calibration was introduced to avoid exponential blow-up in the calibra-

tion constraints due to multi-class prediction. We show that the notion can equally be

adapted to the performative setting to deal with blow-up due to many actions �̂� ∈ �̂�. We

define decision calibration with respect to the class of input-oblivious losses.

Definition 5.5.3 (Decision Calibration). For a distribution 𝒟 and 𝜖 ≥ 0, a predictor �̃� :

𝒳 × �̂� → [0, 1] is 𝜖-decision calibrated under outcome performativity over𝒟 if for every

loss ℓ ∈ ℒio, and for all �̂� ∈ �̂�,��E 𝑥∼𝒟
𝑦∗∼𝑝∗(𝑥, 𝑓ℓ (𝑥))

[𝑦∗ · 1{ 𝑓ℓ (𝑥) = �̂�}] − E 𝑥∼𝒟
�̃�∼�̃�(𝑥, 𝑓ℓ (𝑥))

[�̃� · 1{ 𝑓ℓ (𝑥) = �̂�}]
�� ≤ 𝜖.

With this definition in place, the proof of Lemma 5.5.2 can be adapted to show that

decision calibration suffices to establish performative decision OI.

Lemma 5.5.4. If �̃� : 𝒳 × �̂� → [0, 1] is 𝜖-performative decision calibrated, then �̃� is (ℒio, 2𝜖)-
performative decision OI.
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As an immediate corollary of Theorem 5.2.5 and Lemmas 5.5.2 & 5.5.4, we obtain

sufficient conditions for omniprediction with respect to all bounded input-oblivious losses.

Corollary 5.5.5. Suppose �̃� : 𝒳 × �̂� → [0, 1] is (ℋ , 𝜖)-multiaccurate and 𝜖-decision calibrated
under outcome performativity. Then, �̃� is a (ℒio,ℋ , 4𝜖)-performative omnipredictor.

In other words, if we can obtain multiaccuracy and decision calibration under per-

formativity, then we have a direct pathway to obtain omniprediction for all bounded,

input-oblivious losses.

On Decision Calibration. Note, however, that unlike the case of multiaccuracy, the

decision rules that arise in the decision calibration condition are loss-dependent. That is,

the optimal decision rules 𝑓ℓ depend on ℓ ∈ ℒio.

Motivated by the strong guarantee, we consider the feasibility of auditing for decision

calibration. Note that for any ℓ ∈ ℒio, the loss is defined by the loss for each outcome

𝑦 ∈ {0, 1} and decision �̂� ∈ �̂�. Thus, to audit decision calibration over all input-oblivious

losses, it suffices to audit whether there exist a �̂� ∈ �̂� and 𝑤𝑎,0, 𝑤𝑎,1 ∈ [−1, 1] such that:��E𝑥[(�̃�(𝑥, �̂�) − 𝑦∗) · 1{arg min

𝑎∈�̂�
{𝑤𝑎,1 · �̃�(𝑥, 𝑎) + 𝑤𝑎,0 · (1 − �̃�(𝑥, 𝑎))} = �̂�}]

�� > 𝜖

where the weights 𝑤𝑎,0 and 𝑤𝑎,1 ∈ [−1, 1] represent the choice of ℓ (𝑎, 0) and ℓ (𝑎, 1) corre-

sponding to the choice of 𝑎 ∈ �̂�.

Naively, searching for such a violated loss might require time exponential in |�̂� |. For

instance, by explicitly enumerating over some appropriately-fine net of [−1, 1]2|�̂� |, then

we can simply consider “every” possible loss. Improving the computational complexity

of such a search is an interesting question, which may benefit from the techniques utilized

in [89].

Even without an improvement in the runtime complexity of learning, note that once

an auditor succeeds, and we have a violated loss function, there is an efficient update

to the prediction function. In particular, we simply need to record the chosen 2 · |�̂� |
parameters {𝑤𝑎,0, 𝑤𝑎,1} and the �̂� ∈ �̂�, then execute the update from POI-Boost. In all, we

can conclude that performative omnipredictors for ℒio exist in complexity independent

of the complexity of ℒio.

Corollary 5.5.6. Supposeℋ is a hypothesis class with size-𝑠 circuits. Then, for any 𝜖 > 0, there
exist an (ℒio,ℋ , 𝜖)-performative omnipredictor implemented by a circuit of size poly(𝑠, |�̂� |)/𝜖2.

This preliminary analysis leaves open the possibility of learning performative om-

nipredictors via techniques that are independent of the loss class, as in the original work
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on (ℒcvx,ℋ)-omniprediction fromℋ -multicalibration. We leave a more thorough inves-

tigation of these ideas to future work.

5.6 Chapter Notes
The material from this chapter is derived from [42]. The initial definition of omnipredic-

tion was introduced in [29], in which the authors proved how it could be achieved as

a consequence of multi-calibration [34]. Later work established a connection between

omniprediction and outcome indistinguishability [28], a perspective we extend in this

chapter.
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Part II

Empirical Investigations
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Foreword to Part II
In the second part of this thesis, we shift our focus from developing the theoretical

foundations of performative prediction to understanding how social prediction dynamics

play out empirically. On a personal note, the research presented in this next chapter

was initially motivated by our prior belief that educational predictions were strongly

performative and that we should be studying these prediction problems as such.

Needless to say, we were quite surprised to see that early warning systems in Wisconsin

are not performative at all, hence the title of the chapter. Due to an accumulation of social

and structural factors present in public schools, there is a large gap between developing

insightful predictions, and translating those predictions into interventions that meaning-

fully change the life trajectories of students in schools. We will exactly delve into exactly

why this is over the remainder of the thesis.

However, before getting into the results of this investigation, we pause to discuss how

the two parts of this thesis connect and our discuss views on the relationship between

theory and practice. Perhaps the biggest impact of our earlier theoretical work on these

empirical investigations is that it has provided a guiding lens to hopefully ask the right

kinds of questions. Mathematics on some level is nothing but the art of formal reasoning.

Although it may not always be transparent to see, the earlier theoretical investigations on

retraining and the comparisons between stability and optimality greatly helped inform

our views on prediction in public high schools and what were the things that we should

look out for.

Furthermore, while this particular example of social prediction may not have been

performative and some theorems may not apply, we believe that it is the job of the theorist

to be forward-looking. As computation and data become more a core part of our daily

lives, there will be more examples of feedback loops between prediction systems and

their encompassing environments. We sincerely hope that our efforts in developing the

theoretical foundations of performative prediction will guide future empirical research

into other problem domains where predictions do indeed have strong consequences on

the observed data.

Lastly, the connections between theory and practice go both ways. Not only has the

theory helped guide empirical inquiry, the empirical results have already started inspired

further theoretical research. While we weren’t able to include these latest results into

the thesis, we find that this collaboration with the Wisconsin DPI has been inspiring and

helped ground theoretical questions in concrete empirical applications.
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Chapter 6

Difficult Lessons on Social Prediction
from Wisconsin Public Schools

6.1 Introduction
A class of automated risk prediction tools known as early warning systems (EWS) has

recently become part of the de facto approach towards tackling low high school graduation

rates across the United States. EWS were built in part as a response to the so-called

“dropout crisis” of the early 2000s and are fueled by data collection efforts resulting from

the 2001 No Child Left Behind Act. These tools typically use data about students, schools,

and districts to predict each student’s dropout risk. After initial programs in Chicago and

Philadelphia during the late 2000s, EWS boomed in use across the nation [4, 8]. By 2015,

over half of US public schools had implemented some version of an EWS, according to a

survey by the Department of Education [82].

Early warning systems aim to identify potential high-risk students early to assist ed-

ucators in effectively targeting interventions to individual students [49]. Despite their

surge in popularity and significant financial investment by education departments across

the country, we lack conclusive evidence regarding the efficacy of predictive systems in

reducing student dropout. Challenges in setting up such empirical studies and time lags

involved in measuring the impact of early interventions on later high school graduation

rates pose key barriers. As a result, existing studies on EWS focus on short-term impacts,

are conducted on relatively small sample sizes, and present inconclusive results on the

bottom-line effect on graduation rates [7].

In this work, we evaluate the decade-long impact of an early warning system—Dropout

Early Warning System (DEWS)—designed by the Wisconsin Department of Public Instruc-

tion (DPI) and used throughout the state’s public schools. Using an order of magnitude
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more data than previous studies, we show that the system’s predictions are highly ac-

curate assessments of the true probability with which individual students will drop out

of high school. These findings hold even when limiting our analyses to students from

marginalized groups. Nonetheless, we find no evidence that DEWS has improved grad-

uation outcomes, even when we restrict ourselves to schools that are active users of the

system.

These two insights—high predictive accuracy on the one hand and non-effect on grad-

uation outcomes on the other—beg for an explanation. A reasonable conjecture is that

schools lack sufficient instructions on how to translate risk predictions into effective in-

terventions. DPI has certainly expended effort to increase the use of DEWS, as well as

to identify and implement educational interventions. Amongst other initiatives, DPI has

collaborated with organizations such as the Wisconsin Response to Intervention Center to

organize on-site DEWS training for districts throughout the state, as well as maintaining

an expansive set of online resources. However, there remains room for improvement in

providing comprehensive instructions about using DEWS as an intervention tool. This

conjecture is plausibly part of the picture. Yet it also calls for a deeper study of educators

in situ.

We show that a stronger force is at play that explains the observations we see. Specifi-

cally, we identify a robust statistical pattern that we summarize as:

Academic outcomes are essentially statistically independent
of individuals conditional on their environments.

Here, individual features are measurements that directly correspond to a specific student.

Examples include student test scores, socioeconomic status, misconduct records, and

days of absence. Environmental features, on the other hand, describe schools and districts

rather than a single student. Examples include school size, financial budget, and districts’

aggregate socioeconomic and demographic statistics. DEWS uses both individual and

environmental features to make predictions about individual students.

This statistical independence suggests an explanation of our observations about DEWS.

Because individual graduation outcomes are strongly correlated with the available set of

features (and in particular, the environmental features), a model that uses these statistics to

predict individual dropout is highly accurate when evaluated across the entire population

of students in Wisconsin public schools. However, conditioning on students belonging

to the same school, outcomes are largely independent of the available individual features.

Hence, predictions are not much better within each school than randomly guessing which

students are at risk of dropping out. Even if a particular school has effective educational

interventions, administering them on the basis of DEWS scores is no better than a random

allocation of the intervention.
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Summary of our Methods and Analyses
We first do a deep-dive into the prediction model to establish that the risk assessments

made by the system are highly accurate. Over the past decade, nearly 97% of students

identified as low-risk graduated from high school on time, while only 70% of students in

the high-risk group completed their degrees within four years. These gaps are significant

relative to the 90% high school completion rate for the state overall. This is in contrast

to work highlighting challenges in predicting such life outcomes [31, 73, 74]. Further,

contrary to several previous studies on prediction systems in social settings [obermeyer,
21, 27], DEWS scores are a more accurate assessment of the true dropout risk for students

from under-served and marginalized backgrounds (e.g., Black and Latino students).

We find, however, that these accurate predictions do not translate to effective inter-

ventions that increase on-time graduation. We establish this observation via a regression

discontinuity design: We estimate that assigning students into higher predicted risk cat-

egories improves their chances of graduation by less than 5%. Nevertheless, the 95%

confidence interval for this estimated effect firmly includes zero.

A primary concern resulting from these insights is whether and how schools use

the system. After its roll-out in 2012, schools quickly adopted DEWS. Tracking visits

to the online DEWS portal, we find that around two-third of schools regularly log onto

the platform. Furthermore, usage is concentrated amongst the more populated school

districts with below-average graduation rates and a higher percentage of students from

marginalized backgrounds. To the extent that we can test this with available data, usage

does not appear to provide an explanation for the above findings.

Our proposed empirical explanation for the non-effect results comes from examining

the mechanisms that make dropout predictable in the first place. In our analyses, we dis-

cover a robust statistical pattern pervasive throughout Wisconsin public schools. Namely,

environmental features that are defined at the level of schools and districts, contain sig-

nificant signal about dropout risk across the population. However, within the same school

environment, graduation outcomes are almost entirely unrelated to the extensive set of

individual student features, including race, gender, and test scores.

This empirical observation serves as a compelling explanation in part because it can

be tested and possibly refuted. First, if outcomes are approximately independent of in-

dividual features, including these individual features in a predictive model that already

uses environmental information should only lead to a negligible improvement in accu-

racy. We test this implication empirically and find that adding individual features to

an environment-based predictor improves mean squared error by around 10%. These

improvements are relatively minor within the student population at high risk of leaving

high school prior to earning their diplomas.
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Furthermore, the independence of individuals and graduation outcomes conditioned

on the environment guarantees that schools must be statistically homogeneous groups of

students with respect to their dropout risk. We test this second implication and find that

the predictor that uses individual features assigns all students within the same school a

near-identical probability of graduation. Our results show this is essentially the optimal

prediction given the available data, since schools have minimal variation in individual

features. For example, most variation in state-wide standardized exam scores comes from

students in different schools scoring very differently. However, students in the same

school tend to have similar test scores.

Implications
The fundamental empirical fact we discover takes precedence over questions about the

effectiveness and availability of educational interventions as the primary concern. Indeed,

DEWS, as a tool aimed at reducing dropout by targeting individual students, would con-

tinue to be ineffective regardless of the strength of educational interventions available to

schools. To see this suppose, as a thought-experiment, that all schools have an intervention

that perfectly mitigates student dropout in any student to whom it is applied. Suppose

that the intervention has a fixed cost and that schools have a fixed budget to spend. Finally,

suppose that schools allocate this hypothetical intervention at least as well as a random

allocation. Under these assumptions, our statistical finding implies that DEWS will not

make any improvement over the school’s current allocation of the intervention. The reason

is that, conditional on school, DEWS predictions are independent of dropout. As such,

the allocation of the intervention suggested by DEWS is is no better than random.

Our findings have immediate implications around the design of early warning systems

and viability of interventions assigned on the basis of statistical risk scores. First, they

challenge the extent to which dropout is an unpredictable life outcome versus a highly

foreseeable event. Contrary to the commonly-held belief that important life outcomes are

inherently unpredictable [73], the predictive strength of environmental, time-invariant

features proves that future graduation outcomes can be reliably forecast from the mo-

ment children enroll in kindergarten. This also suggests that additional resources can be

effectively targeted towards marginalized students at a young age.

Second, our findings dispel the belief that predictability implies improvement. Even

though DEWS scores are highly accurate forecasts of the true individual probability of

on-time graduation, there is no evidence that this predictability of future outcomes has

translated into more students in Wisconsin finishing their high school degrees.

Lastly, these results illustrate how sophisticated statistical algorithms may be of limited

value in settings where risk assessments are made at the level of individuals but outcomes
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are significantly driven by structural forces. In our case, the overarching goal of an early

warning system is to serve as an efficient targeting mechanism. An early warning system

should precisely answer the question: “which students need the most help?” One of our

central findings is that sophisticated prediction algorithms provide little additional insight

into this question beyond simply ranking students according to the average graduation

rate in their school district.

Combined, our findings provide a novel statistical and empirical backbone for a robust

qualitative insight from the education policy and advocacy community: The bottleneck

is not how to identify students at high risk of dropping out, but rather how to overcome

structural barriers to accessing well-resourced schools and neighborhoods. In the case of

Wisconsin, dropout is disproportionately concentrated in working-class, urban districts

where the overwhelming majority of students are Black or Latino. In fact, five schools

account for 10% of all dropouts in the state. Bringing graduation rates within these schools

to the state average would have an outsize impact on the dropout problem. Compared

to investing in other community-based social service interventions, the decision to fund

and implement sophisticated early warning systems without also devoting resources to

interventions tackling structural barriers should be carefully evaluated in light of these

school-level disparities.

6.2 Background

Early Warning Systems - History & Previous Research
Early warning systems emerged as a critical public response to the so-called “dropout

crisis” of the early 2000s. During this period, there was widespread, bipartisan recognition

of alarmingly high numbers of young adults without high school degrees, especially

amongst under-served populations [83]. These concerns led Congress to pass the No

Child Left Behind Act of 2001. NCLB is credited with increased data collection efforts,

often tied to school accountability.

Following this legislation and increased data availability, EWS boomed after the pub-

lication of two pilot program studies in 2007 [4, 8]. These papers demonstrated the

potential for the existence of high-fidelity dropout indicators amongst high-poverty, ma-

jority Black and Latino public schools in Chicago and Philadelphia. A primary outcome

of these studies was the creation of the so-called “ABC” indicators of dropout (attendance,

behavior, & coursework), which the authors argue are both simple to measure and can

accurately identify future dropouts [12]. Following these pilot programs, EWS quickly

became mainstream: 52% of respondents to a survey organized by the U.S Federal De-



CHAPTER 6. DIFFICULT LESSONS ON SOCIAL PREDICTION FROM WISCONSIN
PUBLIC SCHOOLS 115

partment of Education said that they had implemented some version of an EWS by the

2014-15 academic year [82].

Over the last decade, there have been various observational studies and randomized

control trials evaluating the effectiveness of EWS. In 2014, the U.S. Department of Edu-

cation conducted a randomized control trial with 73 schools containing roughly 38,000

students from three Midwestern states [24]. Approximately half of the schools were ran-

domly assigned to implement an EWS. After a year of “limited implementation,” the study

found that schools in the treatment group had a small reduction in chronic absenteeism.

However, they observed no effects across other measured outcomes such as number of

students suspended or the fraction of students with relatively low grade point averages.

[49] conducted a similar randomized control trial across 41 schools over two years and

reached similar conclusions.

Despite the lack of strong empirical backing, some experts remain consistently opti-

mistic about the efficacy of EWS, and several states have continued to invest heavily in

their development (e.g., Massachusetts). Summarizing a consensus in the field, [7] states

that given the short time horizons and small sample sizes, “overall, evidence gathering

is still in the early stages, promising but not fully confirmed.” Using state-wide data on

over 220,000 students from 2013 until 2021, our work addresses this gap in the education

literature as the first large-scale evaluation of the long-term relationship between the use

of EWS and the likelihood of on-time high school graduation.

Wisconsin Public Schools and the DEWS Program
Wisconsin has one of the highest high school graduation rates in the United States, with

around 90% of its students receiving their degrees within the expected four years. Despite

this high graduation rate, the state also has one of the largest gaps between demographic

groups. For instance, in the 2019-2020 academic year, over 94% of White students gradu-

ated from high school on time, but less than 75% of Black students completed high school

within four years, in part due to disparities in the quality of education available to Black

and White students.1 Addressing these educational disparities has been a significant focus

of the department. There are a total of around 65,000 students per grade in Wisconsin

public schools, with most of the Black and Latino populations concentrated within the

larger, urban districts.2

Launched in 2012 by the Department of Public Instruction, the Dropout Early Warning

System (DEWS) estimates the likelihood that each public middle school student (grades

5 through 8) in Wisconsin will graduate high school on time. Scores are generated at

1
See here for a complete breakdown of graduation rates by state and demographic groups.

2
More information on school demographics may be found on the DPI website.

https://www.doe.mass.edu/ccte/ccr/ewis/
https://nces.ed.gov/ccd/tables/ACGR_RE_and_characteristics_2019-20.asp
https://dpi.wi.gov/sites/default/files/imce/eis/pdf/schools_at_a_glance.pdf
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the beginning of each academic year by the DPI and published to an online platform

(WISEDash) where administrators can voluntarily log on to see the DEWS predictions for

all students in their district. As discussed previously, website visit statistics provided by

the DPI show that over two-thirds of districts regularly use the DEWS system. Further-

more, usage is higher amongst lower-income districts with higher percentages of Black

and Latino students. These districts also tend to have below-average graduation rates. For

further details on system usage, please see the supplementary material for this chapter.

Predictions are primarily used by school counselors in Wisconsin public high schools

as a means of triaging new student cohorts as they enter 9th grade (personal comm). The

department recommends, but does not mandate, that schools focus their resources on

students assigned to the high-risk category and then move on to evaluating lower-risk

students. Please see the DEWS action guide for a more comprehensive description of the

DPI recommendations regarding how to use and interpret DEWS predictions.

On an implementation level, the system generates predictions using over 40 student

features. These encompass a wide range of areas, including demographic and socioeco-

nomic information (e.g., race, gender, family income), academic performance (e.g., scores

on state standardized exams), as well as community-level statistics (e.g., percent of cohort

that is non-White and school size).3

The main outputs of the EWS are 1) the DEWS risk category (or label) and 2) the DEWS

score. The DEWS category takes one of three values: low, moderate, or high. It provides

a simple way to interpret a holistic assessment of dropout risk for individual students.

On the other hand, the DEWS score is an estimated probability of on-time graduation. It

takes continuous values between 0 and 1.

New models are trained every academic year for every grade. The models are en-

sembles of state-of-the-art supervised learning methods for tabular data, such as random

forests and gradient-boosted decision trees. Models are fit via empirical risk minimiza-

tion on a dataset of a historical cohort of students. These datasets consist of features and

outcomes for the five most recent cohorts of students in a specific grade and for whom

graduation outcomes have been observed. For example, the 8th-grade model for the

2020-2021 academic year is trained using data from the 8th-grade cohorts between the

2011-2012 and 2015-16 years.

For further background on the DEWS system, please see the initial white paper on the

program [44], or visit the Wisconsin DPI website.

3
Please see the supplementary material for a more comprehensive description of the features used by

the system.

https://dpi.wi.gov/sites/default/files/imce/dews/pdf/DEWS%20Action%20Guide%202015.pdf
https://dpi.wi.gov/wisedash/districts/about-data/dews
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Evaluation Framework
From an algorithms point of view, it is helpful to think of an EWS as a sorting procedure.

The system takes as input the population of students in the public school system and

outputs a sorted list (i.e., ranking) of these students according to their need for effective

educational interventions. In the case of the DEWS program, the probability of on-time

graduation, or DEWS score, serves as the concrete proxy for this subjective notion of

“need”.

Given this ordering, the second key component of an EWS is to choose a threshold.

The system prioritizes students whose probability of graduation is below this threshold to

receive effective interventions, while students above this threshold are relatively depriori-

tized. In the DEWS program, this thresholding is implemented by the DEWS label. As we

will explain later, thresholding the continuous DEWS score determines the DEWS label

(the low, moderate, and high risk categories). According to the DEWS action guide, the

DPI recommends that schools take immediate action on students who receive a high risk

prediction. In contrast, if capacity allows, students who receive a moderate risk prediction

should only be examined after the high risk students. Approximately 10% of students each

year across the entire state are labeled to be at high risk of dropping out, while only 6%

are predicted to be at moderate risk. The rest receive low risk predictions.

In light of these design choices, an effective EWS should have two main criteria for

success. First, it should accurately rank students according to their intervention needs.

Students with a lower probability of on-time graduation should be ranked before students

with relatively higher probabilities. Furthermore, this ranking should be accurate not just

overall but also for students from under-served and marginalized backgrounds. Second,

the thresholding, and subsequent assignment into different risk categories, should lead

to meaningful changes in the likelihood of graduation for individual students. In other

words, DEWS predictions should be strongly performative. Students whose scores lie

below the threshold are explicitly prioritized for additional attention by the school. Ideally,

high-risk predictions should therefore be self-negating prophecies. Bumping up the risk

prediction from moderate to high risk should increase the likelihood of on-time graduation.

We organize our analysis of the DEWS system according to this evaluation framework.

6.3 Does DEWS Accurately Identify Dropout Risk?
The hypothesized success of early warning systems is predicated on accurate identification

of future students at risk of leaving high school without a diploma. Consequently, we begin

our evaluation by understanding the extent to which DEWS predictions meaningfully

distinguish high and low risk students. As we noted previously, predictions are primarily

https://dpi.wi.gov/sites/default/files/imce/dews/pdf/DEWS%20Action%20Guide%202015.pdf
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Figure 6.1: Left: calibration curve for the 8th grade DEWS scores (predicted probabilities

of on-time graduation) from 2018-2021. Right: ROC curve for the same set of predictions

and outcomes. We see that the scores are a highly accurate assessment of the relative risks

of dropout for students in Wisconsin.

examined as students enter high school. Hence, we focus our analysis on the performance

of the 8th grade DEWS model.

Starting from the 2013-14 academic year, the first year for which DEWS scores are

available, until the last in 2021, there are 4 cohorts of 8th graders (roughly 215k students)

for whom predictions were generated in 8th grade and for whom graduation outcomes

were also observed. We focus our discussion on the extent to which DEWS has been

predictive for this population.

First, we find that there are stark differences in graduation rates amongst students

who were assigned into different risk categories. Nearly 97% of the students who were

predicted to be low risk finished high school on-time, while less than 70% of students in

the high-risk group graduated on-time. On the other hand, moderate risk students had

an 83% graduation rate. For context, the overall graduation rate in Wisconsin is around

90%. From these gaps, we see that DEWS labels non-trivially categorize students into

qualitatively meaningful risk groups.

Examining the continuous DEWS score provides a complementary perspective. In Fig-

ure 6.1, we present the calibration curve for these scores. Intuitively, calibration measures

whether predictions are accurate. The plot illustrates, for students who were predicted to

graduate on-time with a particular probability (measured on the 𝑥-axis), what fraction of

those students actually graduated (𝑦-axis). To give an example, a predictor is calibrated

if amongst the students who were predicted to graduate with probability .9, roughly 90%

graduate. Graphically, a predictor is perfectly calibrated if its calibration curve lies on the
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diagonal 𝑦 = 𝑥 line.

DEWS scores are as a whole miscalibrated; they consistently understate the true prob-

ability of on-time graduation. However, this miscalibration is mild in the sense that the

DEWS scores are rank preserving. Students with higher predicted probabilities have

higher graduation rates than those with lower predicted probabilities (the calibration

curve is a line with positive slope). Hence, while the continuous scores are a misleading

measure of absolute risk, they do provide an adequate assessment of relative risk. Again

thinking of DEWS as a sorting algorithm, relative risk is in many ways a more relevant

metric in education. The typical workflow for DEWS is that schools first rank students

according to their scores and, in theory, focus their resources on students who are pre-

dicted to be at highest risk. Having an accurate measurement of relative risk ensures that

students who need more help are more likely to receive attention.

Apart from their calibration curves, the predictive value of the continuous DEWS

score is also evident from their induced receiver operating characteristic (ROC curve).

These curves describe the entire set of possible true and false positive rates achievable by

thresholding the continuous DEWS score. From the plot in Figure 6.1, we see that there

exists a threshold such that predicting graduation outcomes from the DEWS score would

identify nearly two thirds of all dropouts, while maintaining a false positive rate of less

than 20%. The scores achieve a historical AUC (area under the curve) of .8. While lower

than the initial AUC estimate of .86 predicted by earlier work on DEWS [44], these statistics

further illustrate how DEWS scores are a non-trivial predictor of dropout.

Disparities in Predictive Accuracy
So far, we have established that DEWS scores are on average predictive when evaluated

over the entire population and output an overall, accurate ranking of students according

to their relative risks of dropping out. However, one of the stated goals of the system is

not just to improve outcomes overall, but particularly amongst students from historically

underserved groups [44].

To enable these improvements, it is crucial that predictions remain accurate when eval-

uation is restricted to students from marginalized demographic groups. Large disparities

in predictive accuracy can, in principle, lead to unfair allocations of scarce school resources

for mitigating dropout, thereby further exacerbating existing inequalities.

Our investigation into these concerns reveals mixed results. On the one hand, from the

plots in Figure 6.2, we see that predictions for various historically underserved groups have

lower calibration error than predictions for students in the majority. That is, the calibration

curve for non-White, or low income students is relatively closer to the main 𝑦 = 𝑥 diagonal.

Therefore, DEWS scores provide a more accurate assessment of the absolute risk of dropout
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Figure 6.2: Comparing calibration curves for DEWS scores amongst different student

groups. Top Left: comparison between white versus students of color. Top Right:
comparison between students who have been diagnosed with a disability versus those that

have not. Bottom Left: comparison based on qualifying for free or reduced lunch. Bottom
Right: calibration comparison between male and female students. Overall, students from

underserved groups tend to have lower calibration error.

for underserved students. On the other hand, from the perspective of relative risk, if

schools select students for intervention by ranking their scores and selecting those with the

lowest predicted probability of graduation, underserved students would be systematically

overlooked and de-prioritized.

To see this, consider for example the top left plot comparing predictions on White

versus non-White.4 Amongst the population of students whose true rate of on-time

4
The precise comparison here is between the group of students in the dataset that have a 1 in the column

indicating whether a student is White and the group for which this feature is equal to 0. As per DPI practices,

if this feature is 0, a student could be Black, Hispanic, Asian, Pacific Islander, Native American, or belong to

two or more races. For the sake of being precise, we use the term non-White throughout the manuscript to
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graduation was .8 (i.e 𝑦 value equals .8), White students were assigned a DEWS score

of around .35 while students of color had an assigned DEWS score closer to .6. Recall

that DEWS scores are predicted probabilities of on-time graduation: lower scores indicate

higher predicted risk. While both groups of students are equally at risk of dropping out

(they share the same 𝑦 value), if interventions are assigned on the basis of ranked DEWS

scores, White students would be systematically intervened on before students of color.

Furthermore, because the calibration curves for non-White students lie consistently below

the curves for students in the majority, this behavior holds across the entire risk spectrum,

not just for this 80% group.

As we will now see, DEWS scores have not had a significant impact on student grad-

uation outcomes. Therefore, we find it highly unlikely that the program has exacerbated

existing inequalities in academic achievement between demographic groups. However,

schools that do choose to use an EWS going forward should be mindful of these predic-

tive disparities when training their own predictors. We note that these can be easily fixed

using recent advances from the algorithmic fairness literature [34, 66].

6.4 Do DEWS Predictions Lead to Better Graduation
Outcomes? (Alternatively, Is DEWS Performative?)

So far, we have concluded that DEWS provides precise estimates of the future risk with

which individual students will leave high school without a degree. Next, we examine

whether this accurate sorting of students, and later thresholding into discrete risk cate-

gories, has translated into improved graduation outcomes.

Recall that predictions are generated with the very explicit intent of improving student

outcomes. As discussed previously, the ideal early warning system should therefore have

the property that high-risk predictions are self-negating. Students prioritized by the sys-

tem to receive additional attention should graduate at higher rates than in a counterfactual

world where they are predicted to be at low or moderate risk of dropping out.

Through a number of different analyses, we find no evidence that this is the case.

Examining these highly accurate predictions has not led to significant improvements in

the rate of on-time graduation for students in Wisconsin public schools.

We measure the causal impact of assigning students into higher risk categories via a

regression discontinuity design, or RDD. These are quasi-experimental methods that are

commonly used to estimate treatment effects within the econometrics and causal inference

literature [5, 35, 79]. The key insight which enables this approach is that the discrete DEWS

refer to students who had a 0 in the "is White" column.
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label, or risk category, is generated by thresholding a smoothly varying and continuous

variable. This sharp discontinuity serves as a “natural experiment” amongst the subset of

students whose relevant statistics lie close to the threshold.

In more detail, as part of its prediction pipeline, DEWS generates confidence intervals

around the predicted probability of on-time graduation (i.e. the DEWS score). If the

upper bound on this predicted probability is below a department-chosen threshold of

𝑡∗ = .785, then students are assigned a high risk label.5 On the other hand, if the lower

bound is above 𝑡∗, then students are predicted to be at low risk. Lastly, if 𝑡∗ is contained

within the confidence interval, then students are assigned into the moderate risk category.

The intuition behind the thresholding is that if the upper confidence bound on a student’s

probability of graduation is low, then students are unlikely to graduate on-time and should

hence be prioritized into the high risk category. The opposite rationale is true for low risk

predictions.

Regression discontinuity designs are motivated by the observation that risk categories

(i.e., the treatment) for students whose predicted confidence bounds are close to the

threshold are essentially random. By looking at students whose upper confidence bound

is just around this threshold, we can infer the expected difference in the likelihood of on-

time graduation that results from changing a student’s DEWS label from moderate to high

risk. Similarly, comparing students whose lower confidence interval is around 𝑡∗ reveals

the analogous impact of assigning students to the moderate versus low risk category.

To make this formal, we use notation from the potential outcomes framework. We

let 𝑌(𝑟) ∈ {0, 1} denote the indicator variable for on-time student graduation under

assignment into predicted risk category 𝑟, where 𝑟 can take values in the set {low, moderate,

high}, and let 𝑌 denote the observed historical outcome. We use 𝑥 to denote the vector

of student features and (ℓ (𝑥), 𝑢(𝑥)) ∈ [0, 1]2 to denote the lower and, respectively, upper

confidence bounds determined by the DEWS system for each student. We assume that the

conditional expectations of outcomes are smooth, continuous functions of these confidence

bounds:

Assumption 6.4.1. (smoothness of conditional expectations) For all values of 𝑟 in the set

{low, moderate, high} the functions E[𝑌(𝑟) | ℓ (𝑥) = 𝑐] and E[𝑌(𝑟) | 𝑢(𝑥) = 𝑐] are twice

continuously differentiable and smooth functions of 𝑐, for all values 𝑐 in an open set

containing 𝑡∗.

Under this mild technical condition, it is well-known that performing local linear

regression around the cutoff value estimates the desired causal effects up to a small bias

5
This particular 𝑡∗ = .785 threshold was chosen by the state at the beginning of the program to approxi-

mately balance the number of students assigned into each DEWS category.
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Figure 6.3: Visualization of RDD results. Purple dots correspond to the average grad-

uation outcomes for students within each confidence interval bin. Yellow lines indicate

fitted values from performing local linear regression. The gap between yellow lines at

the point when they intersect the threshold (blue dotted line) is the point estimate for the

treatment effect. Left: Treatment effect of increasing risk category from low to moderate.

Students on the left side of the threshold are assigned to the moderate risk bucket. Right:
Treatment effect of increasing risk category from moderate to high risk. Students on the

left side of the threshold are assigned into the high risk bucket.

term. In particular, consider the treatment effect 𝜏𝑚𝑜𝑑→ℎ𝑖𝑔ℎ of increasing the DEWS label

from moderate to high risk for students whose predicted upper confidence bound is equal

to the threshold:

𝜏𝑚𝑜𝑑→ℎ𝑖𝑔ℎ := E[𝑌(high) − 𝑌(moderate) | 𝑢(𝑥) = 𝑡∗].

This treatment effect is equal to the 𝜏𝑚𝑜𝑑→ℎ𝑖𝑔ℎ that solves the ordinary least squares

objective,

E1{|𝑢(𝑥) − 𝑡∗ | ≤ ℎ}(𝑌 − 𝛼 − 𝜏𝑚𝑜𝑑→ℎ𝑖𝑔ℎ · 1{𝑢(𝑥) < 𝑡∗} − 𝛽 · (𝑢(𝑥) − 𝑡∗) · 1{𝑢(𝑥) < 𝑡∗}
− 𝛾 · (𝑢(𝑥) − 𝑡∗))2,

up to bias that is order ℎ2
and statistical error that is order 𝑛−1/2

[35]. Here, ℎ > 0

is a bandwidth parameter which ensures that only points close to the cutoff enter the

regression and 𝑛 is the number of points within that bandwidth.

Likewise, if we let 𝜏𝑙𝑜𝑤→𝑚𝑜𝑑 be the average difference in graduation rates resulting

from increasing the predicted risk category from low to moderate,

𝜏𝑙𝑜𝑤→𝑚𝑜𝑑 := E[𝑌(moderate) − 𝑌(low) | ℓ (𝑥) = 𝑡∗], (6.1)
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Causal Effect Point Estimate 95% Confidence Interval 𝑝-value 𝑛

𝜏𝑙𝑜𝑤→𝑚𝑜𝑑: increasing risk from low to moderate 0.026 (-0.024 0.076) 0.31 2653

𝜏𝑚𝑜𝑑→ℎ𝑖𝑔ℎ : increasing risk from moderate to high 0.048 (-0.02, 0.116) .17 1888

Table 6.1: Causal effect estimates from regression discontinuity design. The 95% confi-

dence intervals are computed from using a Normal approximation. The 𝑛 values corre-

spond to the number of points that lie within the chosen bandwidth of the threshold.

We cannot reject the null hypothesis that the predicted risk category has no effect on the

average graduation outcome.

then this treatment effect is also 𝑂(ℎ2 + 𝑛−1/2) close to the value 𝜏𝑙𝑜𝑤→𝑚𝑜𝑑 that solves:

E1{|ℓ (𝑥) − 𝑡∗ | ≤ ℎ}(𝑌 − 𝛼 − 𝜏𝑙𝑜𝑤→𝑚𝑜𝑑 · 1{ℓ (𝑥) < 𝑡∗} − 𝛽 · (ℓ (𝑥) − 𝑡∗) · 1{ℓ (𝑥) < 𝑡∗}
− 𝛾 · (ℓ (𝑥) − 𝑡∗))2.

We present the results of this regression discontinuity analysis in Figure 6.3 and Ta-

ble 6.1. Overall, we do not find strong enough evidence that assigning students into

different risk categories changes their resulting probability of graduation. We estimate

that increasing the DEWS category from moderate to high risk increases like likelihood

of on-time graduation by less than 5%, while the analogous change from low to moderate

risk leads to an even smaller increase of around 3%. In either case, we cannot reject the

null hypothesis that the predicted DEWS category has no effect on graduation outcomes.

The 95% confidence interval for the moderate to high risk treatment effect ranges from -2%

to 11.6%. On the other hand, we can, with high probability, rule out that these changes

in predicted risk have a very large impact on their eventual probability of on-time gradu-

ation. The upper confidence bounds for either regression indicate that it is unlikely that

treatment effects are larger than 12% for the moderate to high risk comparison, or 8% for

the low to moderate comparison.

Going back to our early warning systems as sorting algorithms analogy, the finding that

DEWS predictions have no impact on graduation outcomes implies that it does not matter

where students are placed in the sorted list. Their resulting probability of graduation is

the same. While the list of students is accurately sorted according to dropout risk, the

thresholding into discrete risk categories does not lead to effective interventions that lead

to large changes in the likelihood of on-time graduation. This lack of impact on bottom-

line outcomes means that it is quite unlikely that the differences in predictive performance

amongst subgroups identified in Section 6.3 amplified, or in any way altered, existing high

school graduation gaps between students in Wisconsin.



CHAPTER 6. DIFFICULT LESSONS ON SOCIAL PREDICTION FROM WISCONSIN
PUBLIC SCHOOLS 125

Robustness Checks. In both cases, we restrict our regression analysis to the population

of students whose school districts log on at least once per year during the period for

which we have usage data and choose the bandwidth parameter ℎ to be .01. However,

the high-level conclusions are robust to the choice of bandwidth parameter. Furthermore,

similar conclusions are obtained if we restrict the analysis to just include the population

of students of color, or students who qualify for free or reduced lunch, amongst others.

Please see the supplementary material (Section 6.7) for a more comprehensive sensitivity

and robustness analysis of the regression discontinuity design.

Further Analyses. The regression discontinuity design tries to infer whether the choice

of risk category changes the likelihood of on-time graduation for a very particular subset

students who lie just on the margin of being assigned either label. However, this is only

one, of many possible ways in which DEWS predictions can impact outcomes. A necessary

and sufficient condition for DEWS predictions to causally influence graduation outcomes

is if there is any statistical dependence between these two variables, that is not explained

in the features.

Drawing upon recent work by [56], in the supplementary material (Section 6.7), we

present a different, “predicting from predictions” approach which directly tries to tackle

this question. However, the conclusions from those experiments match those of the

regression discontinuity design: there is no evidence that DEWS predictions have in any

way influenced the likelihood of on-time graduation.

6.5 Why DEWS is Accurate, but Ineffective
As described in the introduction, the accuracy but non-impact of the DEWS system can

be explained by a single, overarching empirical fact:

Outcomes⊥⊥ Individuals | Environment

That is, observed graduation outcomes are (approximately) statistically independent of

individual information, such as individual test scores or even demographic information,

conditioned on students’ academic and social environments.

We structure this section as follows. First, we develop the idea behind this conditional

independence statement. Then, before presenting the empirical evidence that led us to

this claim, we assume it holds, and outline how it explains the empirical findings on

DEWS presented so far. Finally, at the end, we present a number of different experiments

establishing how the major implications of the conditional independence statement are

all empirically consistent with the historical data. This statistical law of public education
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cannot be substantially refuted on the basis of a decade’s worth of detailed statistics from

the state’s public schools.

We start by describing the social thesis in more detail. Recall that DEWS uses over 40

different features in order to predict a student’s likelihood of on-time graduation. These

range from basic demographic statistics like race and gender, to socioeconomic status (e.g.,

qualifying for free or reduced lunch), as well as a number of features that do not pertain

to the individual student per se, but rather to their community (e.g., percent of their cohort

that is non-white). Conceptually, we can take this large set of features and partition them

into two main groups: environmental features and individual features.

We define a feature as individual if it measures information that directly corresponds

to a specific student. Examples of these features are variables like race, gender, or the

number of days a student attended school. On the other hand, we define environmental

features to be those which capture information about a student’s community. These are

variables like the size of a student’s cohort, the average math score in their school, or the

median income in their district.

The thesis is a claim about observed historical patterns in the data. It states that con-

ditioning on students belonging to a specific academic environment (i.e the full set of

environmental features), their academic outcomes (the binary indicator of on-time grad-

uation) is approximately statistically independent of the full vector of individual features.

That is, if we already know the environmental features, additionally knowing the vector

of individual features provides little additional information regarding the likelihood of

on-time graduation.

Importantly, the thesis is not a causal statement. From the point of view of interventions,

it does not rule out the fact that intervening on individuals can lead to drastic changes in

their educational outcomes. It also does not imply that individual level interventions are

any more, or less, effective than intervening on student’s environments. It is only a claim

about observed statistical patterns in the data. We return to this point in the discussion

section.

Next, we pause to consider how it can explain the behavior we’ve observed so far

within the DEWS system. As we presented in Section 6.3, DEWS predictions are highly

accurate. However, if environmental features are strongly correlated with graduation

outcomes, including these as part of the model should already lead to a highly accurate

predictor. Recall that the DEWS model does indeed incorporate a large swath of features

describing a students’ communities (see the table in Section 6.7 for a full list), and these

features vary significantly from district to district. Therefore, the independence thesis is

consistent with the accuracy displayed by DEWS.

More importantly, the conditional independence thesis could explain why assigning

students to different risk categories does not change their likelihood of on-time graduation
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(recall the results from the RDD in Section 6.4). If outcomes are independent of individual

features conditioned on the environment, within each school, DEWS predictions are essen-

tially random and unrelated to the true likelihood of on-time graduation. Counselors

and data teams examining the scores would notice that the DEWS predictions are not

particularly accurate for their students. Assuming that counselors are confident in their

ability to identify students at least as well as a random predictor, they would hence ignore

the DEWS score. If a significant fraction of counselors log onto the DEWS system, but

find that the system’s predictions are largely uninformative and should be disregarded,

it stands to reason that altering a student’s risk score would not lead to a large change in

their individual likelihood of graduation.

Note that this lack of within school signal does not contradict the fact that DEWS

predictions are accurate when evaluated across the state as a whole. Because schools

across the state have very different graduation rates, it can be simultaneously true that

predictions within each school are uninformative, but predictions across the entire state

(or for particular demographic groups) are very accurate.

Empirical Evaluations of the Independence Thesis
Given that the conditional independence of individuals and outcomes is a strong claim, in

principle, it can also be easily refuted empirically. In this section, we examine several of its

main implications and verify to what extent these are indeed consistent with the observed

data. More specifically, we evaluate two main consequences of the independence thesis

and find that they are by and large consistent with historical data.

First, the thesis implies that once we are aware of a student’s environment, the likeli-

hood of on-time graduation is uncorrelated with individual statistics like the number of

days a student attended school, their disciplinary history, or even their race. From the

point of view of prediction, including individual-level features in a predictive model that

already uses environmental-level covariates does not lead to better accuracy.

Second, it suggests that within a particular school (environment), all students should

have nearly identical probabilities of graduating from high-school on time. Any variation

in individual student features (e.g personal test scores) within a particular district should

not significantly change the probability that a student finishes school on time.

For these experiments, in addition to the features present within the DEWS system, we

incorporate additional environmental features with the hopes of gaining a more complete

understanding of exactly what predicts on-time graduation. In particular, we include

community-level statistics regarding students’ public school districts drawn from the US

Census Bureau’s American Community Survey and the National Center for Education

Statistics. These span areas like school expenditures per student and racial demographics
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Figure 6.4: Relative improvement in predictive accuracy gained by incorporating

individual-level features into a predictor that only uses environmental covariates. The

red dotted line indicates the percent improvement in squared loss that is achieved by

including all individual features. The blue bars denote the improvement achieved by

adding a single category of individual features to the model.

in the district. Please see the supplementary material for a full list of features and their

relevant categorizations.

Metric Squared Loss Log Loss 0-1 Loss AUC

Absolute .006 .03 .004 .09

Relative 10% 10% 6% 11%

Table 6.2: Relative improvement in performance achieved by including individual features

on top on environmental features. For each metric, we report both the absolute improve-

ment and the relative improvement, where relative is with respect to the performance of

the environmental predictor.
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Irrelevance of Individual Features for Prediction. We begin by testing the first claim that

including individual-level features in a predictive model that already uses environmental-

level covariates does not lead to better accuracy. Our statistical analysis closely relates

to a work by [32] who motivate a similar distinction between individual features and

background features in a prediction problem, and propose statistical methods to estimate

the degree to which a predictor relies on background features.

For our experiment, we take the entire dataset of 8th graders for which graduation

outcomes have been observed and assign 80% of them (≈160k) to a training set and

20% (≈40k) to a test set. On the training set, we fit two separate models: one model

that forecasts graduation outcomes just using the environmental features and a different

model that predicts on-time graduation using both individual features and environmental

features. Both training procedures are identical learning algorithms (i.e gradient-boosted

decision trees), use the same training data, and only differ in the subset of features that

they have access to. We evaluate both of these models on the held-out test set in order to

assess the marginal improvement achieved by including individual-level features.

In addition to analyzing the overall value of including the complete set of individual

features, we also consider the partial benefit of adding including particular subsets of

these features to an environmental-based predictor. In particular, we repeat the same

training procedure as before and produce models that predict on-time graduation using

all the environmental features plus a specific individual feature.

We present the results of these experiments in Figure 6.4 and Table 6.2. Adding

individual features improves the predictability of on-time graduation by roughly 10%

across a number of common metrics such as log loss, squared loss, or AUC. Amongst the

individual features, the single most important variable is attendance rate which improves

squared loss by 4%, followed by student’s scores on standardized exams.6

A 10% reduction in squared loss is not zero, hence the independence statement does

not hold exactly, but only approximately. Adding individual features leads to a marginally

better prediction. To get a better perspective of exactly how much better, we can examine

the calibration curves of both models (Figure 6.5).

As we can see, both the environmental predictor and the model that uses the entire

set of features generate almost perfectly calibrated predictions. The main qualitative

difference between these two is that the model that uses individual features does slightly

better at identifying students with very low graduation rates. From looking at Figure 6.5,

the predictor that includes individual features generates slightly better predictions near

the bottom left of the calibration curve. However, this difference is relatively minor since

6
These results are consistent with previous work on early warning systems that noted the predictive

value of attendance rate on future dropout [4, 8].
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Figure 6.5: Comparing calibration curves for the environmental predictor versus the full-

featured predictor, amongst different individually-defined student groups. Top Left:
comparison between white versus students of color. Top Right: comparison between

students who have been diagnosed with a disability versus those that have not. Bottom
Left: comparison based on qualifying for free or reduced lunch. Bottom Right: calibration

comparison between male and female students. Overall, student of color groups tend to

have lower calibration error.

less than 2% of students have predicted probabilities of graduation less than 40%.7

Even more surprisingly, both models remain calibrated even when evaluated on im-

portant subgroups. In Figure 6.5, we see that the predictions for this model also lie on the

𝑦 = 𝑥 diagonal when we restrict evaluation to students of color, or students that qualify for

free or reduced lunch. This is quite impressive. Note that these subgroups are defined in

terms of individual-level features. Therefore, the environmental predictor does not have

access to this particular piece of important information when generating the prediction,

yet its prediction is still well-calibrated for this group of students. Outcomes for these

7
See Figure 6.11 in the supplementary material for the full histogram of predicted probabilities.
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Figure 6.6: Left: Histogram of predicted probabilities generated by the model that uses

both environmental and individual features for a students belonging specific school in the

held-out test set. Right: Histogram of the standard deviation of predicted probabilities

within each school across all schools in the test set with more than 30 students.

specific students are still statistically largely largely determined by their environments.

Same School =⇒ Same Probability of Graduation. Naively, we might imagine that

within each school, there are above average students who have very high probabilities of

graduating on-time, a large number of people who graduate at about the school average,

and a tail of struggling students that are likely to drop out. However, this phenomenon is

ruled out under the independence thesis. The second implication we outlined previously

is that all students in the same school have nearly identical probabilities of graduating,

regardless of their individual features.

Empirically, this also turns out to be largely true. Schools are homogeneous popula-

tions composed of students that have nearly identical likelihoods of on-time graduation.

To see this latter point, on the left side of Figure 6.6, we plot the histogram of predic-

tions made by the model which uses the entire set of available features (both individual

and environmental features) for a specific school in the held-out test set. Even though

the model has the ability to assign different predictions to different students, in practice,

most students within this school have nearly identical predicted probabilities of gradua-

tion. Far from being an outlier, this particular histogram of within-schools predictions is

representative of schools throughout the state. On the right side of Figure 6.6, we present

the histogram of standard deviations of the within-school predictions made by this model
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across all schools in the test set with at least 30 students.8

The main insight from this histogram is that the distribution of standard deviations is

very concentrated on small values. For the vast majority of schools, most students within

the school receive almost exactly the same predicted probability of graduation.

This lack of within-school variation is in line with the initial experiment discussed

earlier demonstrating the relative similarities in predictive performance between environ-

mental and individual predictors. If there were large amounts of variation in the true

probabilities of graduation within each school, a model that uses informative individ-

ual features would significantly outperform the environmental predictor that outputs a

constant prediction. 9

This finding is also in line with the independence thesis which claims that within a

particular environment, the likelihood of on-time graduation is essentially constant across

students.

Same School, Same Individual Features. This last observation is not a direct conse-

quence of the conditional independence statement. However, it provides further insight

into the patterns observed within the DEWS system and the relative value of individual

features.

We find that the very notion of an “individual feature” is somewhat of a red herring.

Due to the high levels of socioeconomic and racial segregation between public school

districts, students within a particular district tend to have very similar “individual fea-

tures”. If all students within the same school have the same individual features, then

these features are largely meaningless for the sake of prediction. It becomes information-

theoretically impossible to disambiguate different levels of dropout risk amongst students

within the same school environment.

For example, one take away from the calibration plot in Figure 6.5 is that individual-

level statistics such as race and socioeconomic status are so strongly correlated to the

available environmental features, that it suffices to just know the environmental features

in order to recover these individual features. Within the context of Wisconsin public

schools, these two features are close to constant within a particular environment. This

8
That is, we group students in the held out test set according to their school IDs and compute the

standard deviation of the predicted probabilities for these students. The histogram displays the frequencies

of these standard deviations across all schools.

9
These conclusions are derived on the basis of the outputs on a predictor that was trained on finite

amounts of data and used limited amounts of computation. Therefore, it is possible that the learning

algorithm failed to pick up on existing variation in the true probabilities of graduation within specific

schools. This is however, quite unlikely. Methods like gradient-boosted decision trees are widely believed

to achieve Bayes’ risk for similar social science datasets where the number of data points far exceeds the

number of features.
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explains why the model that uses only environmental features can generated calibrated

predictions on subgroups defined in terms of individual-level features.

Further experiments confirm this view. On average 75% of the population in Wisconsin

is non-White. However, a predictor that uses environmental features to predict whether

a student is a person of color achieves a 0-1 error of .17, which is significantly better than

random prediction (random guessing gets .25). Similarly, 37.5% of the students in our

dataset qualify for free or reduced lunch. Yet, predicting free or reduced lunch status only

using the environment achieves a 0-1 loss of .28. Random guessing would only achieve a

misclassification error of .375 (lower numbers are better).

These experimental results are conducted in the same fashion as the previous ones.

We fit a predictor on the training set that only uses environmental features. However, in

this case the target variable is the indicator for being a student of color, or (in a separate ex-

periment) qualifying for free or reduced lunch. The accuracy of these models is evaluated

on the held out test set.

Statistically speaking, even things like test-scores are environmentally determined.

Standardized exams are explicitly designed to generate a Gaussian-like distribution of

scores that distinguishes between high performing students and low performing students.

However, most of the variance in this distribution comes from the fact that students in

different schools score very differently on the exam. Students within each school have

very similar scores.

More formally, 80% of schools have a within-school variance of math test scores that is

smaller than the state-wide variance in test scores. If schools were composed of identical

sub-populations of students, the within-district variance would be smaller than the state

average only 50% of the time. Furthermore, this is not true just for individual math scores,

if we consider the full vector of individual-features, 78.5% of districts have lower variance

than the state average.10

This relatively small variation of individual features within each school is in line with

the independence thesis. It is quantitative evidence that students within each district

are essentially identical to one other. There is lower than average diversity in terms of

academic performance, race, or socioeconomic status within the typical public school.

10
That is, if we denote the vector of individual features by 𝑥, the variance of the random vectorE[∥𝑥−E𝑥∥2]

is smaller when we take the expectation over 𝑥’s to be over students in a specific school rather than the state

as a whole.



CHAPTER 6. DIFFICULT LESSONS ON SOCIAL PREDICTION FROM WISCONSIN
PUBLIC SCHOOLS 134

6.6 Discussion: The Marginal Value of Prediction in
Education

Summarizing the main empirical results of our work, we find that over the past decade

the DEWS system has provided a highly accurate assessment of the risk that individual

students in Wisconsin will leave high school without a degree. However, despite this

high degree of accuracy, the availability of DEWS predictions has not translated into

improved outcomes. Both of these findings are explained by the fact that individuals and

graduation outcomes are largely independent statistically once we condition on students’

school environments.

These findings have several direct implications regarding the use of machine learning

in US public education and the design of early warning systems. Early warning systems

are intended as tools to help school administrators efficiently allocate scarce resources

amongst their students. In large districts, teachers and counselors cannot always spend

significant amounts of time with each individual student. They are forced to make difficult

choices regarding which students to help due to insufficient resources. Risk prediction

tools like early warning systems are meant to help with this decision-making process

by systematically ranking students according to their likelihood of leaving high school

without a diploma.

Due to the influence of environmental factors and the degree of racial and socioeco-

nomic segregation between school districts, the allocation suggested by an early warning

system is not significantly better than random guessing. If we assume that teachers and

counselors are already capable of allocating school resources at least as well as random

guessing, the marginal value of creating an early warning system is near zero. Since stu-

dents within each school have nearly identical probabilities of leaving high school without

a diploma, there is not much to be gained from a fine-grained ranking of these students.

Or, in more technical terms, there is no reason to optimize past the noise floor.

This does not mean that finding effective ways of allocating resources to schools is by

any means hopeless. In fact, our analysis establishes that the following targeting strategy

is near optimal: rank schools by graduation rate and intervene on the schools with the

lowest rates until resources are expended. There are five high schools (out of a total of over

500) in Wisconsin whose graduation rates are close to 70%. This 70% number is about

the same as the graduation rate amongst the students who were assigned a high-risk

prediction by the DEWS system. Over two thirds of students in these schools are Black

or Latino and over 90% qualify for free or reduced lunch. Taken together, these schools

generate 10% of all students who leave high school without a diploma in the state. Raising

graduation rates in these schools closer to the state average (90%) would significantly
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Figure 6.7: Visit statistics describing how often counselors from various public school

districts in the state log onto the WISEDash platform to examine DEWS scores. In blue,

we plot the fraction of school districts that log on at least once per year. In orange, we

weight visits statistics by the fraction of total students in that district to approximately

measure the fraction of students in the state whose DEWS scores are examined. See

footnote for a formal description.

reduce the dropout rate.

Evidently, identifying a large subset of students that needs help is in many ways a

trivial task. Not only can it be done without the use of individual student information, it

can also be done without any machine learning at all. This school based strategy requires

significantly less effort and technical sophistication than designing a well-functioning

machine learning system. The relevant question here is not who needs help?, but rather it’s
clear who needs help, what should we do about it?.

6.7 Supplementary Material

Investigations into DEWS System Usage
Predictions that are never looked at can never influence outcomes. Hence, as part of our

investigations into the impacts of the DEWS program, we first verified that the system had

been actively used. As discussed in the overview, the DPI issues credentials that school

administrators can use to log onto a department website and examine scores for students

in their district. Each set of login credentials is associated with a unique district id. Using
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this data, we were able to examine the number of times each district logs on to the DEWS

platform each month for the period from 2018 to 2021. Due to software changes, data

before 2018 is unfortunately not available.

In Figure 6.7, we plot in blue the fraction of districts that log on at least once per

year during the time frame in consideration. Because districts can directly download all

student scores after a single yearly visit, we opt to measure usage by whether districts log

on at least once, rather than the total number of visits. Using this statistic, we find that

around two thirds of districts regularly log to the WISEDash portal each year. Other than

a drop during the start of the COVID-19 pandemic in 2020, there are no clear trends in

usage across time. While DEWS may perhaps have seen lower usage in the period before

2018 as the system was less well-known, from this data we conclude that utilization has

been relatively consistent across time.

To gain better intuition of where the system may have been most effective, we also

evaluated whether there are any major differences between districts that regularly log on

and those that do not. In the orange dots in Figure 6.7, we plot an estimate of the total

fraction of students whose DEWS scores are examined. More specifically, we weight the

indicator variable of a school district logging onto the DEWS platform by the fraction of

the state’s student population that is in that district.11 Because we cannot disambiguate

between users from the same district but different schools, this statistic can overstate the

true fraction of students whose DEWS scores are acted upon. This bias is relatively minor,

however, since most districts have just one public school in them. With this caveat in

mind, our analysis shows that the larger districts use DEWS more often. This observation

is consistent with the fact that most of Wisconsin consists of small rural districts where

teachers get to know students personally. Schools in these areas have less use for a system

like DEWS.

Furthermore, using data from the American Community Survey, in Table 6.3 we look

11
If we let 𝑑𝑖 , 𝑗 denote the indicator variable for district 𝑖 logging on during year 𝑗 and 𝑛 𝑗 denote the the

number of students in district 𝑗 (which is roughly constant across years), in orange we plot (∑𝑖 𝑑𝑖 , 𝑗𝑛𝑖)/
∑
𝑖 𝑛𝑖

across all years 𝑗.

Median Household Income % Black Total Population Graduation Rate

% Years Visited -.01 .08 .20 -.16

Table 6.3: Correlation between the fraction of years a school district visited the WISEDash

portal between 2018 to 2021 and district-level socioeconomic statistics drawn from the

ACS 5 year community survey.
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at the correlation between the fraction of years for which a district logs on at least once

and other socioeconomic information from that district. From this, we see that districts

with lower graduation rates and higher poverty indices tend to log on most often. Sum-

marizing, the DEWS system has been actively examined by the majority of public schools

in Wisconsin. Furthermore, districts with the highest need also have the highest usage.

Description of System Features
In this subsection, we describe the entire set of features we use in our experiments and

analysis of the DEWS system. We divide these features according to the source they are

drawn from: DEWS, the 5-year American Community Survey, and the National Center

for Educational Statistics.
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DEWS Features

Below, we list all features included in the DEWS system. In addition to providing a short

description, we indicate the relevant partition it belongs to for the comparisons between

different feature sets discussed in Section 6.5.
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Feature Partition Description

Gender Individual, Non-Malleable Student’s gender, can be

male or female

Race Individual, Non-Malleable Race is coded as a com-

bination of 7 mutually

exclusive indicator vari-

ables for whether stu-

dent is White, Black, His-

panic, Native American,

Pacific Islander, Asian, or

belongs to two or more

races

Disability Status Individual, Non-Malleable Indicator for whether

student has been iden-

tified as having a dis-

ability. See DPI web-

site for background on

disability classifications.

Some classifications such

as the Emotional Be-

havioral Disability, are

strongly correlated with

race and socioeconomic

status

English Learner Status Individual, Malleable Indicator of whether En-

glish is the student’s na-

tive language. If the

student is a non-native

speaker, there are addi-

tional features describing

whether English skills

are low, moderate, or

high

Free or Reduced Lunch Status Individual, Non-Malleable Indicator variable for

whether the student’s

household income is

above or below a certain

threshold based off

of the federal poverty

line. This threshold is

uniform across the state

Retained Individual, Non-Malleable Indicator for whether a

student has failed a grade

in the past

Student Attendance Rate Individual, Malleable Fraction of days in school

https://dpi.wi.gov/sped/program
https://dpi.wi.gov/sped/program
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Feature Partition Description

Enrolled Days Individual, Malleable Number of days a student has

been enrolled in school over the

last year

Reading Score Individual, Malleable Reading score on state-wide

standardized exam

Math Score Individual, Malleable Math score on state-wide stan-

dardized exam

Full Academic Year - District Individual, Malleable Indicator variable for whether

student has been in the cur-

rent school district for the en-

tire academic year

Full Academic Year - School Individual, Malleable Indicator of whether student

has been in the current school

for the entire academic year

Disciplinary Incidents Count Individual, Malleable Number of disciplinary inci-

dents over the previous year

Days Removed Individual, Malleable Number of days suspended

from school

Removal Type Individual, Malleable Indicator of whether student

was expelled or suspended

from school

Disciplinary Descriptors Individual, Malleable Separate indicator for whether

the disciplinary incident was

assault, drug related, involving

a weapon, or other

School Count Individual, Malleable Number of unique schools en-

rolled in during the last year

District Count Individual, Malleable Number of unique school dis-

tricts enrolled in during the last

year

Enrollment Count Individual, Malleable Number of enrollment spells

during the last year



CHAPTER 6. DIFFICULT LESSONS ON SOCIAL PREDICTION FROM WISCONSIN
PUBLIC SCHOOLS 141

Feature Partition Description

Cohort Reading Scores Environmental, Non-Malleable Mean and standard

deviation of stu-

dent’s school cohort

reading scores on

state exams

Cohort Math Scores Environmental, Non-Malleable Mean and standard

deviation of stu-

dent’s school cohort

math scores on state

exams

Cohort Size Environmental, Non-Malleable Number of students

in cohort

Cohort Suspended Environmental, Non-Malleable Number of peers in

cohort who have at

least one suspension

% of Cohort with a Disability Environmental, Non-Malleable Percentage of peers

in student’s cohort

that have a disability

% of Cohort FRL. Environmental, Non-Malleable Fraction of cohort

qualified for free or

reduced lunch

% of Cohort Non-White Environmental, Non-Malleable Fraction of student’s

cohort that is non-

White

Cohort Attendance Environmental, Non-Malleable Mean and standard

deviation of atten-

dance rate for cohort

Features from the American Community Survey

We downloaded this data from the 2015 5-year American Community Survey using the

censusdata Python package. Data is aggregated at the public school district level and

matched to students via district IDs provided by the department. While student features
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are associated with a specific school year, we perform a many to one mapping and assign

all students from the same district (and across all available school years starting in 2013-14)

to the same ACS data. These community level statistics are, however, stable across time

hence the mismatch in years is relatively minor.

We list the ACS variable codes and names below. The interested reader can visit the

ACS website for a more comprehensive description regarding how these variables are

defined and measured.

https://www.census.gov/data/developers/data-sets/acs-5year.html
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Variable Code Name

DP02_0006P Percent of families with male householder, no wife present

DP02_0008PE Percent of families with female householder, no husband present

DP02_0151PE Percent of total households with a computer

DP05_0001E Estimate of total population

DP02_0152P Percent of total households with a broadband Internet subscription

DP02_0059PE Percent of population 25 years or older who did not complete 9th grade

DP02_0060PE Percent of population 25 years or older who completed 9th grade

DP02_0061PE Percent of population 25 years or older with a high school degree

DP02_0062PE Percent of population 25 years or older who attended some college,

but did not graduate

DP02_0063PE Percent of population 25 years or older with an associate’s degree

DP02_0064PE Percent of population 25 years or older with a bachelor’s degree

DP02_0065PE Percent of population 25 years or older with a postgraduate degree

DP02_0066PE Percent of population who completed high school or higher degree

DP02_0067PE Percent of population who has a bachelor’s degree or higher degree

DP02_0079PE Percent of population living in the same house as a year before

DP02_0087PE Percent of total population that is native born

DP02_0092PE Percent of total population that is foreign born

DP03_0005PE Unemployment rate for those 16 years of age or older

DP03_0062E Median household income (2015 inflation-adjusted dollars)

DP03_0096PE Percent with health insurance coverage

DP03_0119PE Percentage of families whose income is below the poverty level

DP05_0017E Median age

DP05_0032PE Percent white

DP05_0033PE Percent Black or African American

DP05_0039PE Percent Asian

DP05_0066PE Percent Hispanic or Latino (of any race)
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Features from the National Center for Education Statistcs

The National Center for Education Statistics maintains an online portal called the Ele-

mentary / Secondary Information System (ELSI) whereby one can access financial data

for public school districts in the US. Using their website, we pull the following set of fea-

tures, each of which is associated with particular district ID and school year. This allows

us to match the statistics with the dataset of individual student records. Please see the

ELSI webiste for a full glossary of terms. All of these features fall into the environmental

partition.

Variable Name

Total Current Expenditures: Other El-Sec Programs per Pupil12

Total Current Expenditures: Salary per Pupil

Total Revenue - Federal Sources per Pupil

Total Revenue per Pupil

Total Expenditures - Capital Outlay per Pupil

Total Revenue - Local Sources per Pupil

Total Expenditures per Pupil

Total Current Expenditures - Non El-Sec Programs per Pupil

Total Current Expenditures - Instruction per Pupil

Total Current Expenditures per Pupil

Total Current Expenditures - Support Services per Pupil

Total Revenue - State Sources per Pupil

Instructional Expenditures per Pupil

Total Current Expenditures - Benefits per Pupil

12
El-sec expenditures refers to total current expenditures for public elementary and secondary education

that are associated with the day-to-day operations of the school district.

https://nces.ed.gov/ccd/elsi/
https://nces.ed.gov/ccd/elsi/
https://nces.ed.gov/ccd/elsi/glossary.aspx?app=tableGenerator&term=11019,9546,25783,25789,25784,25790,25785,25778,25787,25791,25792,25793,25794&level=District&groupby=0
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Figure 6.8: Histograms of the predicted confidence intervals (running variables) around

the threshold for both RDD analyses. Left: lower confidence bound histogram for low

versus moderate comparison. Right: upper confidence bound histogram for moderate

versus high risk comparison.

Supporting Analysis: Do DEWS Predictions Lead to Better Graduation
Outcomes?
In this section of the supplementary material, we present additional analyses and robust-

ness checks supporting the claims presented in Section 6.4.

Regression Discontinuity Design: Robustness Checks

Inspecting Manipulation near Threshold A core assumption enabling regression dis-

continuity designs is that treatment assignment (in our case, the predicted risk category)

is essentially random near the threshold. For a small choice of bandwidth, we should

therefore observe that the histogram of the running variable (the upper or lower con-

fidence bounds) on which we regress outcomes, is approximately uniform around the

cutoff point.

As illustrated in Figure 6.8, we find that this is indeed the case. There is no evidence

of “bunching ” or manipulation for the population of students whose data is included

in the regression analysis. This uniformity of scores is consistent with the idea that

treatment (predicted DEWS label) is essentially determined by random assignment near

the threshold.

Evaluating Covariate Balance In addition to checking for bunching, a different way of

assessing whether there is indeed natural variation around the threshold is to compare
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Causal Effect Bandwidth ℎ Point Estimate 95% Confidence Interval 𝑝-value 𝑛

increasing risk from low to moderate

.005 0.0302 (-0.04 0.01) 0.39 1390

.02 .0185 (-.017, .055) .313 5264

increasing risk from moderate to high

.005 0.0574 (-0.04,.155) .25 952

.02 .0239 (-.025, .073) .337 3461

Table 6.4: Sensitivity of regression discontinuity design to choice of bandwidth. We find

that the conclusions derived from the regression analysis are largely insensitive to the

choice of bandwidth ℎ. Doubling or halving the bandwidth does not significantly the

results presented in Table 6.1.

the characteristics of students that fall within the bandwidth.

More specifically, we can verify that important covariates are balanced around the

threshold. In Figure 6.10, we plot the results of this comparison. We find that students

falling above or below the 𝑡∗ threshold have very similar characteristics: they have similar

attendance rates, demographic characteristics, and environmental features, amongst oth-

ers. These small differences in covariates are again consistent with the idea that there is

natural variation around the treatment threshold.

Sensitivity to Bandwidth Choice In the regression analysis presented in the main body

of the paper, we chose the bandwidth parameter ℎ to be .01. That is, we only included

students if their upper (or respectively, lower) confidence bounds where within .01 of the

𝑡∗ = .785 threshold. As discussed previously, the bandwidth parameter must be small to

ensure a consistent estimate of the the treatment effect. Yet, the exact choice “how small”

is somewhat arbitrary.

In Table 6.4, we present the results of performing the same regression analyses, but with

different bandwidth parameters. We find that halving (ℎ = .005), or doubling (ℎ = .02),

the bandwidth parameter, leads to qualitatively similar conclusions. There is no evidence

that the predicted DEWS category causally influences graduation outcomes. In short, the

high-level conclusions of the regression are stable under reasonable choices of bandwidth

parameters.

Understanding Effects on Subgroups So far, we have studied what is the treatment effect

of assigning students into different risk categories on average over the entire population

of students. For the sake of completeness, we also assess whether the treatment effect

of assigning students into different risk buckets is nonzero if instead of averaging over
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Causal Effect Subgroup Point Estimate 95% Confidence Interval 𝑝-value 𝑛

increasing risk from low to moderate

Female 0.001 (-0.075, 0.078) 0.97 1133

Non White .0124 (-.058, .082) .73 1298

Free or Reduced Lunch .0444 (-.013,.102) .131 2078

increasing risk from moderate to high

Female -.0007 (-0.1,.1) .989 782

Non White .0184 (-.07, .107) .683 1086

Free or Reduced Lunch .0281 (-.05, .106) .480 1476

Table 6.5: Evaluating Causal Effects of Prediction on Subgroups. The table contains the

results of rerunning the regression discontinuity design analysis presented in Section 6.4,

but only considering students with particular features. The number of data points in-

cluded in the regression is therefore smaller than that presented in Table 6.1. The main

conclusions are, however, identical. We find no evidence that increasing the level of

predict risk leads to a higher likelihood of graduation.

the entire population of students we restrict ourselves to looking at specific demographic

groups. If treatment effects are heterogeneous, it is in principle possible for the effects to

be zero on average over the entire population, but large over particular subgroups.

In Table 6.5, we present the results of running the regression discontinuity analysis

where the population of students is further restricted to specific demographic groups:

women, students of color (non-White), or students who qualify for free or reduced lunch.

We find no differences in the influence of prediction on outcomes over these specific

groups relative to the population as a whole. There is no evidence that the assigned risk

category in any way influences the likelihood of on-time graduation.

Assessing Statistical Independence between Predictions and Outcomes

Our regression discontinuity design analysis centers on the impact of the predicted DEWS

label on the likelihood of graduation for a particular subset of students whose confidence

intervals lie at a specific threshold. While this effect is close to zero, one might still wonder

whether DEWS predictions are influencing graduation outcomes ways that may not be

captured by the RDD.

If we denote the vector of student features by 𝑋, the DEWS outputs (both the label and

score) by �̂�, and the indicator variable of on-time graduation by 𝑌, a necessary and suffi-

cient condition for predictions to impact outcomes is that predictions and outcomes are not

statistically independent given the features: �̂� ⊥̸⊥ 𝑌 | 𝑋. In other words, there is a specific

subset of students with features 𝑋 such that the choice of prediction �̂� changes the dis-
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tribution over outcomes 𝑌. We can represent these independence statements graphically

as seen in Figure 6.9.

Note that if the treatment effects estimated via the RDD are nonzero, then this disproves

the conditional independence statement: predictions do change outcomes. However, the

converse is not true. Predictions and outcomes could be statistically dependent even if the

specific treatment effect estimated by the RDD is zero.

In this subsection, we directly tackle this question of detecting whether predictions and

outcomes are statistically dependent. To disprove a conditional independence statement,

it suffices to show that a predictor which predicts 𝑌 given 𝑋 and �̂� achieves higher

predictive performance than one that just uses the vector 𝑋. Intuitively, higher predictive

performance indicates that there is information about 𝑌 in �̂� that is not fully contained in

the features 𝑋. In order to identify dependence from this “predicting from predictions”

approach it is necessary for the predictions �̂� to be randomized functions of 𝑋.13

While the specific DEWS model for each year generates predictions �̂� as determin-

istic functions of 𝑋, there is slight variation in models across various years. Recall that

models are trained on a sliding window of the 5 most recent cohorts of students. Because

training sets differ year over year, the resulting models are also different. We treat this

variation between models as a natural source of randomness that enables this statistical

independence test.

Using the full dataset for 8th grade predictions described at the beginning of Section 6.3,

we perform an 80/20 train-test split as in the environmental vs. individual comparison

from Section 6.5. On the training set, we generate two binary prediction models, one that

predicts on-time graduation variable Y using the DEWS features 𝑋 and the predictions

13
See [56] for a more complete derivation of this approach and discussion of the relevant identifiability

conditions.

Model Squared Loss Log Loss 0-1 Loss AUC 𝑟2

Performative 0.052, (0.050, 0.054) .185, (.180, .190) 0.065, (.063, .068) .863 .184

Non-Performative 0.052, (0.050, 0.054) .185, (.180, .191) 0.066, (.063, .068) .862 .183

Table 6.6: Results for the statistical independence test comparing the predictive perfor-

mance of performative and non-performative models. Entries represent point estimates

and 95% confidence intervals derived from evaluating predictors on the test set. Confi-

dence intervals are computed by bootstrapping. The identical performance of both models

further illustrates how there is no evidence of predictions influencing outcomes.
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�̂� (DEWS score and label), versus one that just uses the features 𝑋. Following the

nomenclature from [65], we refer to the model that includes DEWS outputs as additional

covariates as the “performative” model. The predictions we train are again ensembles

of state-of-the-art supervised learning methods for tabular data such as gradient boosted

decision trees.

If there is no relationship between outcomes and predictions beyond that which is

captured by the features, then the predictive performance of these performative and non-

performative predictors should be identical on the held-out test set. This is exactly the

results we observe in the experiment. From Table 6.6, we see that the “performative” model

that includes DEWS predictions as features, has a statistically identical performance to a

model that just uses the covariates 𝑋 across a wide range of prediction metrics. These

findings match those of the regression discontinuity design analysis: there is no evidence

that DEWS predictions have in any way impacted on-time graduation. There is no stastisti-

cal evidence that DEWS data follows the causal model appearing on the right in Figure 6.9.

𝑋

�̂�

𝑌 𝑋

�̂�

𝑌

Figure 6.9: Causal diagrams illustrating possible relationships between features 𝑋, pre-

dictions �̂�, and outcomes 𝑌 in the DEWS system. Left: Predictions do not influence

outcomes: �̂�⊥⊥ 𝑌 | 𝑋. Right: Predictions change outcomes: �̂� ⊥̸⊥ 𝑌 | 𝑋. Because features

are collected before outcomes 𝑌 are observed, and since predictions are generated on the

basis of features, there are causal arrows 𝑋 → �̂� and 𝑋 → �̂�. An effective early warning

system should have data which follows the causal model on the right.
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Figure 6.10: Comparing the features of students on either side of the RDD threshold. Left:
Absolute difference between the average features for students on the left and right of the

threshold for the moderate to low risk treatment effect RDD analysis. Right: Analogous

comparison for the moderate to high risk RDD.Overall, we find that students on either

side of the threshold have similar features.
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Figure 6.11: Histogram of predicted probabilities on the test set generated by the model

from the experiments presented in Section 6.5 that uses the complete set of available

features. The predictions from this model are highly calibrated as seen in Figure 6.5. 10%

of students have predicted probabilities higher than .987 (that is, .987 is the 90% quantile).

10% of students have predicted probabilities lower than .85 (i.e. .85 is the 10% quantile).

The vast majority of students have predicted probabilities of graduation between .9 and 1.
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