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We report the first measurement of absolute hadronic branching fractions of A baryon at the
AFAL production threshold, in the 30 years since the AT discovery. In total, twelve Cabibbo-favored
A} hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567 pb~!
of eTe™ collisions at /s = 4.599 GeV recorded with the BESIII detector. A global least-squares



fitter is utilized to improve the measured precision. Among the measurements for twelve AT decay
modes, the branching fraction for A7 — pK 7" is determined to be (5.84 4 0.27 + 0.23)%, where
the first uncertainty is statistical and the second is systematic. In addition, the measurements of
the branching fractions of the other eleven Cabibbo-favored hadronic decay modes are significantly

improved.

PACS numbers: 14.20.Lq, 13.30.Eg, 13.66.Bc

Charmed baryon decays provide crucial information
for the study of both strong and weak interactions.
Hadronic decays of AT, the lightest charmed baryon
with quark configuration udec, provide important input
to A, physics as A, decays dominantly to AS @, ]
Improved measurements of the AT hadronic decays can
be used to constrain fragmentation functions of charm
and bottom quarks by counting inclusive heavy flavor
baryons [3]. Most AT branching fractions (BF) have until
now been obtained by combining measurements of ratios
with a single branching fraction of the golden reference
mode Af — pK~x", thus introducing strong correla-
tions and compounding uncertainties. The experimen-
tally averaged BF, B(AT — pK~77) = (5.0 + 1.3)% M,
has large uncertainty due to the introduction of mod-
el assumptions on A} inclusive decays in these mea-
surements ﬂﬂ] Recently, the Belle experiment reported
B(Af — pK—nt) = (6.84 + 0.247030)% with a preci-
sion improved by a factor of 5 over previous results [6].
However, most hadronic BF's still have poor precision [4].
In this Letter, we present the first simultaneous determi-
nation of multiple AT absolute BFs.

Our analysis is based on a data sample with an in-
tegrated luminosity of 567 pb~* ﬂﬂ] collected with the
BESIII detector B] at the center-of-mass energy of /s =
4.599 GeV. At this energy, no additional hadrons accom-
panying the A} A_ pairs are produced. Previously, the
Mark III collaboration measured D hadronic BFs at the
DD threshold using a double-tag technique, which re-
lies on fully reconstructing both D and D decays ﬂQ]
This technique obviates the need for knowledge of the
luminosity or the production cross section. We em-
ploy a similar technique HE] using BESIII data near
the AFA. threshold, resulting in improved measure-
ments of charge-averaged BF's for twelve Cabibbo-favored
hadronic decay modes: Af — pK2, pK— 7", pKr®,
ngF+7T_, pK w70, Ant, Arnta®, Anta—at, 207,
Y0, $trtr~, and tw [11]. Throughout the Letter,
charge-conjugate modes are implicitly assumed, unless
otherwise stated.

To identify the AF A, signal candidates, we first recon-
struct one A baryon [called a single tag (ST)] through
the final states of any of the twelve modes. For a given
decay mode j, the ST yield is determined to be

N;T = Ny+x- - B - ¢, (1)

where N,+7- is the total number of produced AFAZ
pairs and ¢; is the corresponding efficiency. Then we
define double-tag (DT) events as those where the partner
A} recoiling against the A is reconstructed in one of the

twelve modes. That is, in DT events, the AFA_ event is
fully reconstructed. The DT yield with Af — i (signal
mode) and A, — j (tagging mode) is

N = Nysx- - Bi Bj ey, (2)

where ¢;; is the efficiency for simultaneously reconstruct-
ing modes 7 and j. Hence, the ratio of the DT yield
(NZ-I?T) and ST yield (NJS’T) provides an absolute mea-
surement of the BF:
B= Vi e 3
= ©
Because of the large acceptance of the BESIII detec-
tor and the low multiplicities of A. hadronic decays,
€ij ~ g4¢;. Hence, the ratio aj/aij is insensitive to most
systematic effects associated with the decay mode j, and
a signal BF B; obtained using this procedure is near-
ly independent of the efficiency of the tagging mode.
Therefore, B; is sensitive to the signal mode efficiency
(€;), whose uncertainties dominate the contribution to
the systematic error from the efficiencies. According to
Egs. (@) and (@), the total DT yield with AT — 4 (signal
mode) over the twelve ST modes is determined to be

NPT = AFAZ ZBi B e, (4)
J

where ePT = % is the average DT efficiency
weighted over the twelve modes.

The BESIII detector is an approximately cylindrically
symmetric detector with 93% coverage of the solid an-
gle around the eTe™ interaction point (IP). The com-
ponents of the apparatus, ordered by distance from the
IP, are a 43-layer small-cell main drift chamber (MDC),
a time-of-flight (TOF) system based on plastic scintilla-
tors with two layers in the barrel region and one layer
in the end-cap region, a 6240-cell CsI(T1) crystal electro-
magnetic calorimeter (EMC), a superconducting solenoid
magnet providing a 1.0 T magnetic field aligned with the
beam axis, and resistive-plate muon-counter layers inter-
leaved with steel. The momentum resolution for charged
tracks in the MDC is 0.5% for a transverse momen-
tum of 1GeV/c. The energy resolution in the EMC is
2.5% in the barrel region and 5.0% in the end-cap re-
gion for 1 GeV photons. Particle identification (PID) for
charged tracks combines measurements of the energy de-
posit dE/dz in MDC and flight time in TOF and forms
likelihoods L(h) (h = p, K, ) for a hadron h hypothe-
sis. More details about the BESIII detector are provided
elsewhere [d].



High-statistics Monte Carlo (MC) simulations of ete™
annihilations are used to understand backgrounds and to
estimate detection efficiencies. The simulation includes
the beam-energy spread and initial-state radiation (ISR)
of the ete™ collisions as simulated with KKMC [12].
The inclusive MC sample consists of ATA; events, Dy
production ], ISR return to lower-mass ¢ states, and
continuum processes eTe” — qq (¢ = u,d,s). Decay
modes as specified in the Particle Data Group summary
(PDG) [4] are modeled with EVTGEN [14]. For the MC
production of ete™ — AFA_, the observed cross sec-
tions are taken into account, and phase-space-generated
AT decays are reweighted according to the observed be-
haviors in data. All final tracks and photons are fed into
a GEANT4-based ] detector simulation package.

Charged tracks detected in the MDC must satisfy
|cosf| < 0.93 (where 6 is the polar angle with respect
to the beam direction) and have a distance of closest ap-
proach to the IP of less than 10 cm along the beam axis
and less than 1 cm in the perpendicular plane, except for
those used for reconstructing K2 and A decays. Tracks
are identified as protons when the PID determines this
hypothesis to have the greatest likelihood (L(p) > L(K)
and L(p) > L(n)), while charged kaons and pions are dis-
criminated based on comparing the likelihoods for these
two hypotheses (L(K) > L(m) or L(m) > L(K)).

Showers in the EMC not associated with any charged
track are identified as photon candidates after fulfill-
ing the following requirements. The deposited ener-
gy is required to be larger than 25MeV in the bar-
rel (Jcosf| < 0.8) region and 50MeV in the end-cap
region(0.84 < |cosd| < 0.92). To suppress electronic
noise and showers unrelated to the event, the EMC time
deviation from the event start time is required to be with-
in (0, 700) ns. The 7° candidates are reconstructed from
photon pairs, and their invariant masses are required to
satisfy 115 < M (yy) < 150 MeV /c2. To improve momen-
tum resolution, a mass-constrained fit to the 7% nominal
mass is applied to the photon pairs and the resulting
energy and momentum of the 7° are used for further
analysis.

Candidates for K¢ and A are formed by combining
two oppositely charged tracks into the final states 77~
and pr~. For these two tracks, their distances of clos-
est approaches to the IP must be within +20cm along
the beam direction. No distance constraints in the trans-
verse plane are required. The charged 7 is not subject-
ed to the PID requirements described above, while pro-
ton PID is implemented in order to improve signal sig-
nificance. The two daughter tracks are constrained to
originate from a common decay vertex by requiring the
x? of the vertex fit to be less than 100. Furthermore,
the decay vertex is required to be separated from the
IP by a distance of at least twice the fitted vertex res-
olution. The fitted momenta of the 777~ and pr~ are
used in the further analysis. We impose requirements
487 < M(rTn~) < 511 MeV/c? and 1111 < M (pr~) <
1121 MeV/c? to select K9 and A signal candidates, re-

3000F

pKTt*

2000F
1000

Events/2.0 MeV/c?
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FIG. 1. Fits to the ST Mgc distributions in data for the
different decay modes. Points with error bars are data, solid
lines are the sum of the fit functions, and dashed lines are the
background shapes.

spectively, which are within about 3 standard deviations
from their nominal masses. To form ¥°, ¥t and w can-
didates, requirements on the invariant masses of 1179 <
M (Ay) < 1203MeV/c?, 1176 < M (pr¥) < 1200 MeV /c?
and 760 < M (rT7~ %) < 800 MeV/c?, are imposed.

When we reconstruct the decay modes pKgn?,
pK2rtm~ and STt~ possible backgrounds from A —
pr~ in the final states are rejected by requiring M (pm—)
outside the range (1110,1120) MeV/c?. In addition, for
the mode pK2n°, candidate events within the range
1170 < M (pr¥) < 1200 MeV /c? are excluded to suppress
3+ backgrounds. To remove K g candidates in the modes
Arntr—at, ¥t70 and Stat 71—, masses of any pairs of
7t~ and 7070 are not allowed to fall in the range (480,
520) MeV /c2.

To discriminate A, candidates from background, two
variables reflecting energy and momentum conservation
are used. First, we calculate the energy difference,
AFE = E — Eyeam, where E is the total measured en-
ergy of the A, candidate and Flean is the average value
of the e™ and e~ beam energies. For each tag mode,
candidates are rejected if they fail the AFE requirements
in Table [ which correspond to about 3 times the reso-
lutions. Second, we define the beam-constrained mass
Mgpc of the A, candidates by substituting the beam-
energy Epeam for the energy E of the A. candidates,
Mgcc® = \/E2,, . — p?>c?, where p is the measured A,
momentum in the center-of-mass system of the eTe™ col-
lision. Figure [l shows the Mp¢ distributions for the ST
samples, where evident A, signals peak at the nominal A,
mass position (2286.46-£0.14) MeV/c2 []. The MC sim-
ulations show that peaking backgrounds and cross feeds
among the twelve ST modes are negligible.



TABLE I. Requirement on AFE, ST yields, DT yields and
detection efficiencies for each of the decay modes. The un-
certainties are statistical only. The quoted efficiencies do not
include any subleading BF's.

Mode AE (MeV)| N7 |e;(%)| NPT |e2T(%)
pK3 (—20,20) |1243+37| 55.9 [ 97+ 10| 16.6
pK 7t (—20,20) |6308 + 88| 51.2 |420 +22| 14.1
pK3n° (—30,20) | 558 +33 | 20.6 | 47+8 | 6.8
pK2nTr| (=20,20) | 485429 | 21.4 | 3446 | 6.4
pK 7w Tn%| (=30,20) |1849 + 71| 19.6 |176 + 14| 7.6
Ant (—20,20) | 706 427 | 42.2 | 60+8 | 12.7
Arntr® (—30,20) |1497 + 52| 15.7 |101 +13| 5.4
Artroat] (=20,20) | 609431 | 12.0 | 534+7 | 3.6
¥t (—20,20) | 5224+27{29.9 | 384+6 | 9.9
DI (—50,30) | 309+24 | 238 | 25+5 | 8.0
Strta™ | (=30,20) [11564+49| 24.2 | 804+9 | 8.1
Stw (—30,20) | 157+£22| 99 | 13+£3 | 3.8

We perform unbinned extended maximum likelihood
fits to the Mpc distributions to obtain the ST yields,
as illustrated in Fig. [I In each fit, the signal shape
is derived from MC simulations of the signal ST modes
convolved with a Gaussian function to account for imper-
fect modeling of the detector resolution and beam-energy
spread. The parameters of the Gaussians are allowed to
vary in the fits. Backgrounds for each mode are described
with the ARGUS function [16]. The resultant ST yields
in the signal region 2276 < Mpc < 2300 MeV/c? and the
corresponding detection efficiencies are listed in Table [l

In the signal candidates of the twelve ST modes, a spe-
cific mode A} — i is formed from the remaining tracks
and showers recoiling against the ST A, . We combine
the DT signal candidates over the twelve ST modes and
plot the distributions of the Mpc variable in Fig. 2l We
follow the same fit strategy as in the ST samples to es-
timate the total DT yield NPT in Eq. @), except that
the DT signal shapes are derived from the DT signal MC
samples and convolved with the Gaussian function. The
parameters of the Gaussians are also allowed to vary in
the fits. The extracted DT yields are listed in Table [Il
The 12 x 12 DT efficiencies ¢;; are evaluated based on
the DT signal MC samples, in order to extract the BFs.

Main sources of systematic uncertainties related to the
measurement of BFs include tracking, PID, reconstruc-
tion of intermediate states and intermediate BFs. For
the AE and Mpc requirements, the uncertainties are
negligible, as we correct resolutions in MC samples to
accord with those in data. Uncertainties associated with
the efficiencies of the tracking and PID of charged par-
ticles are estimated by studying a set of control sam-
ples of eTe™ — ntrtr n~, KT K nts™ and pprtn—
based on data taken at energies above /s = 4.0 GeV.
An uncertainty of 1.0% is assigned to each 7% due to the
reconstruction efficiency. The uncertainties of detecting
Kg and A are determined to be 1.2% and 2.5%, respec-
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FIG. 2. Fits to the DT Mg distributions in data for different
signal modes. Points with error bars are data, solid lines are
the sum of fit functions, and dashed lines are background
shapes.

TABLE II. Summary of systematic uncertainties, in percent.
The total numbers are derived from the least-squares fit, by
taking into account correlations among different modes.

Source Tracking PID K% A #° ?riigi stMaS Qg%tsed Total
pKg 1.3 03 1.2 02 04 01 |20
pK 7t 2.5 3.2 0.2 3.9
pKor° 1.1 1.6 1.2 1.0 1.0 05 0.1 2.7
pK2ntn=| 28 5.4 1.2 05 05 0.1 5.9
pK~ntx®| 3.3 5.8 1.0 2.0 05 6.6
Arxt 1.0 1.0 2.5 05 05 08 | 24
Artr® 1.0 1.0 2510 06 06 08 |27
Artr—xt| 3.0 3.0 2.5 0.8 0.8 08 | 47
¥t 1.0 1.0 2.5 1.7 07 08 | 24
ntgl 1.3 03 20 1.7 0.8 01 | 25
State~ 3.0 3.7 1.0 08 04 0.1 4.7
Stw 3.0 3.2 20 71 10 08 | 45

tively. Reweighting factors for the twelve signal models
are varied within their statistical uncertainties obtained
from the ST data samples. Deviations of the resultant ef-
ficiencies are taken into account in systematic uncertain-
ties. Systematic uncertainties due to limited statistics in
MC samples are included. Uncertainties on the BF's of
intermediate state decays from the PDG [4] are also in-
cluded. A summary of systematic uncertainties are given
in Table [l

We use a least-squares fitter, which considers statistical
and systematic correlations among the different hadronic
modes, to obtain the BFs of the twelve AT decay modes
globally. Details of this fitter are discussed in Ref. ﬂﬂ] In
the fitter, the precisions of the twelve BF's are constrained
to a common variable, N, +7z-, according to Egs. @) and



TABLE III. Comparison of the measured BFs in this work
with previous results from PDG M] For our results, the first
uncertainties are statistical and the second are systematic.

Mode This work (%) | PDG (%)
pK3 1.52 4+ 0.08 +0.03|1.15 £ 0.30

pK~wT  |5.8440.27+0.23| 5.0+ 1.3
pK 970 1.87 4+ 0.13 4+ 0.05 | 1.65 + 0.50
pK9ntr™|1.534+0.11 +0.09|1.30 £ 0.35

pK ntn®|453+£023+0.30| 34+1.0
An™t 1.24 £ 0.07 £ 0.03|1.07 £ 0.28
7.01+0.37+0.19| 3.6 +£1.3
Antr~7nT]3.814+0.244+0.18| 2.6 £0.7

Ort 1.27 +0.08 + 0.03|1.05 £ 0.28
IR 1.18 +0.10 + 0.03|1.00 £ 0.34
StatarT [4.25+0.244+0.20| 3.6 +£1.0
Stw 1.56 £ 0.20 £ 0.07| 2.7+ 1.0

@. In total, there are thirteen free parameters (twelve B;
and N AjK;) to be estimated. As peaking backgrounds in
ST modes and cross feeds among the twelve ST modes are
suppressed to a negligible level, they are not considered
in the fit.

The extracted BFs of A} are listed in Table[[II} the cor-
relation matrix is available in the Supplemental Material.
The total number of A} A pairs produced is obtained to
be N+ = (105.9£4.840.5) x 10°. The goodness-of-fit
is evaluated as x?/ndf = 9.9/(24 — 13) = 0.9.

To summarize, twelve Cabibbo-favored Al decay rates
are measured by employing a double-tag technique, based
on a sample of threshold data at /s = 4.599 GeV col-
lected at BESIII. This is the first absolute measurement
of the A} decay branching fractions at the ATA; pro-
duction threshold, in the 30 years since the A} discov-
ery. A comparison with previous results is presented in
Table [Tl For the golden mode B(pK ~71), our result is
consistent with that in PDG, but lower than Belle’s with
a significance of about 2¢. For the branching fractions of

the other modes, the precisions are improved by factors
of 3 ~ 6 compared to the world average values.
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We present the correlation matrix of the branching
fraction fit. In total, there are thirteen correlated items;
one N,+x- and twelve branching fractions.



TABLE IV. Correlation coefficients among thirteen fit parameters, including both statistical and systematic uncertainties.

N+ B(pKY) B(pK 7)) B(pK3n") B(pK2nTn—) BpK nx0) B(AxT) B(ArTn0) B(AnTn—7T) B(X"nT) BETn0) BETrTr~) B(XTw)
Nytx- 1 —0.80 —0.71 —0.55 —0.42 —0.43 —0.68 —0.64 —0.48 —0.57  —0.46 —0.51 —0.21
B(;;Kg) 1 0.69 0.52 0.47 0.47 0.59 0.56 0.50 0.51 0.41 0.54 0.23
B(pK~mt) 1 0.57 0.73 0.84 0.64 0.61 0.70 0.54 0.42 0.80 0.37
B(pK%WO 1 0.42 0.47 0.43 0.43 0.40 0.37 0.32 0.47 0.21
B(pK%ntn—) 1 0.70 0.42 0.42 0.54 0.36 0.26 0.63 0.29
B(pK ~ntx0) 1 0.46 0.47 0.61 0.40 0.30 0.74 0.35
B(AnT) 1 0.65 0.57 0.57 0.34 0.49 0.21
B(Ant70) 1 0.56 0.57 0.36 0.50 0.22
B(Arta—zt) 1 0.50 0.28 0.59 0.27
B(2O07t) 1 0.28 0.42 0.18
B(xta0) 1 0.34 0.16
B(Stata—) 1 0.33

B(Etw) 1






