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Abstract

Advanced age is the most established risk factor for developing age-related macular degeneration 

(AMD), one of the leading causes of visual impairment in the elderly, in Western and developed 

countries. Similarly, after middle age, there is an exponential increase in pathological molecular 

and cellular events that can induce senescence, traditionally defined as an irreversible loss of 

the cells’ ability to divide and most recently reported to also occur in select post-mitotic and 

terminally differentiated cells, such as neurons. Together these facts raise the question as to 

whether or not cellular senescence, may play a role in the development of AMD. A number 

of studies have reported the effect of ocular-relevant inducers of senescence using primarily in 

vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. 

However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must 

be considered. Fewer studies have explored the presence and/or impact of senescent cells in in 

vivo models that present with phenotypic features of AMD, leaving this an open field for further 
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investigation. The goal of this review is to discuss the current thoughts on the potential role of 

senescence in AMD development and progression, considering the model systems used and their 

relevance to human disease.
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1. Introduction

Amongst the bevy of retinal degenerations, age-related macular degeneration (AMD) 

remains a major contributor to vision loss in the elderly in many parts of the World (Zhou 

et al., 2021). Since the first descriptive reports of the aging macula, in the middle of the 

19th century (de Jong, 2016), significant progress has been made in characterizing the 

pathobiology, and genetic, epidemiological, and environmental risk factors associated with 

the disease. And though drusen, extracellular material that accumulate outside the retinal 

pigment epithelium (RPE), characteristic of dry AMD, have also been identified in some 

young individuals (Pedersen et al., 2018), this is more often than not, an exception to the 

rule, as age is an established risk factor for the disease (Heesterbeek et al., 2020). That 

AMD is a neurodegenerative disease of the aging retina (Hadziahmetovic and Malek, 2020) 

raises the question as to whether or not senescence plays a defining role in its occurrence 

and progression. On first glance it would seem that senescence, a biological consequence 

of aging, would be central to AMD and therefore an established contributor to disease. 

However, how and the extent to which senescence may either impart a positive or negative 

affect in AMD remains an unanswered question and is currently the focus of investigation in 

many research groups. The goal of this review, written following the 2021 Stephen J. Ryan 

Initiative for Macular Research meeting by members of the sub-group focused on discussing 

“Cellular and Organelle Aging in AMD”, is to discuss the current state of the literature 

and begin to tease out the potential role of senescence in AMD. Throughout, we have 

embedded discussion points on impeding factors that have held up progress in this field, 

while focusing on identifying relevant future avenues of research to be pursued including 

targeting senescence as therapy for AMD, if justified.

1.1. Pathobiology of AMD

The pathobiology of AMD is complex and our knowledge of it has evolved with the 

emergence of new imaging modalities allowing evaluation of the retinal layers of patients in 

real time (Fleckenstein et al., 2021). AMD can largely be sub-classified into early dry AMD, 

intermediate AMD, geographic atrophy (GA), and non-exudative and exudative macular 

neovascularization (MNV) (Fleckenstein et al., 2021). The early stages of AMD, referred 

to as ‘early’ and ‘intermediate’ AMD, involve the accumulation of medium-or large-sized 

lipid- and protein-rich extracellular deposits to the RPE. Vascular changes at the level of 

the choriocapillaris also emerge at this stage and include choriocapillary dropout (Mullins et 

al., 2011). Capillary degeneration, along with photoreceptor and in particular RPE atrophy 

are hallmarks of GA, resulting in significant compromise to central vision. Finally, in some 
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patients, the invasion of vessels originating from the choroid into the outer retina results in 

MNV, and extensive vision loss.

Our initial understanding of the pathology of AMD was primarily based on examination 

of ocular tissues from donors, often collected with variable post-mortem times and sample 

processing methods, which impacted the quality of the tissue. Improved techniques and 

stricter tissue processing protocols have not only confirmed early findings but also identified 

new distinct pathological changes in the macula, including but not limited to sub-retinal 

drusenoid deposits/reticular pseudodrusen and outer retinal tubulations (Chen et al., 2020; 

Rudolf et al., 2008). Of importance, the overall clinicopathological picture of AMD supports 

the involvement of an assortment of cells in the different stages of the disease including 

the photoreceptors, microglial cells, RPE, and choroidal endothelial cells, all potentially 

vulnerable to aging associated events such as cellular senescence (Fig. 1) (Malek and Lad, 

2014; Tuttle et al., 2021).

1.2. Aging and cell senescence

The risk of developing AMD increases markedly with age. Likewise, pathological molecular 

and cellular conditions that can induce senescence also increase exponentially after middle 

age. Even though aging is difficult to precisely define, it corresponds to an overall decline 

in many physiological functions with age. In 2013, nine hallmarks of aging were proposed, 

including stem cell exhaustion, altered intercellular communication, genomic instability, 

telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, 

mitochondrial dysfunction, and increased cellular senescence (Lopez-Otin et al., 2013). 

These hallmarks often overlap, and of note, several are associated with cellular senescence 

potentially triggered by persistent DNA damage, mutations and/or oxidative stress (Campisi 

et al., 2019). In particular, oxidative stress, mitochondrial dysfunction, and impaired 

proteostasis are known to contribute to AMD development and progression (Ferrington et 

al., 2021; Fleckenstein et al., 2021; Paraoan et al., 2020) (Fig. 1).

Cellular senescence was originally described to entail an irreversible loss in the cells’ 

ability to divide concomitant with resistance to cell death-inducing stimuli (Hayflick and 

Moorhead, 1961). Consequently, these cells accumulate with age. More recently, cellular 

senescence phenotypes have been observed in post-mitotic neurons and brain tissue (Jurk 

et al., 2012; Musi et al., 2018; von Zglinicki et al., 2021). Senescent cells characteristically 

secrete many inflammatory factors, as part of the complex senescence-associated secretory 

phenotype (SASP) (Coppe et al., 2008), and can contribute to many pathologies, including 

pulmonary fibrosis (Chilosi et al., 2013; Wiley et al., 2019), atherosclerosis (Childs et al., 

2016), osteoarthritis (Jeon et al., 2017), type 2 diabetes (Aguayo-Mazzucato et al., 2019; 

Sone and Kagawa, 2005) and eye diseases including diabetic retinopathy (Crespo-Garcia et 

al., 2021; Oubaha et al., 2016), and glaucoma (Blasiak et al., 2017; Skowronska-Krawczyk 

et al., 2015). Senescent cells drive these pathologies largely by secreting pro-inflammatory 

cytokines, danger-associated molecular patterns (DAMPS) and chemotactic chemokines 

(Basisty et al., 2020). The SASP is dynamic and in some cases beneficial, such as during 

wound healing (Demaria et al., 2014). Here, we summarize the characteristics of senescent 

cells (Fig. 2).
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Two major tumor suppressive pathways, governed by p16INK4a/Rb and p14ARF (P19Arf 

in mice)/p53/p21CIP1, initiate and maintain the senescent growth arrest. Many stressors 

enhance the expression of p16INK4a, which inhibits a cyclin-dependent kinase (CDK) 

and phosphorylation of the retinoblastoma (Rb) tumor suppressor protein, thus preventing 

activation of the pro-proliferative transcription factor E2F. On the other hand, p21CIP1 

expression is regulated mainly by p53, which inhibits different CDK targets. The two 

pathways can act together synergistically to activate Rb proteins and arrest progression from 

G1 to the S phase of the cell cycle (Sherr, 1996; Wu et al., 2001). Increased expression of 

p16INK4a and/or p21CIP1 is commonly observed in senescent cells.

Genotoxic stress or oncogene activation can cause a senescence response, including the 

secretion of SASP factors; the SASP component includes pro-inflammatory cytokines such 

as interleukins (IL; e.g., IL-6, IL-8, IL-1α), chemokines (e.g., CXCL1 and CXCL10), and 

matrix metalloproteases (MMPs; e.g., MMP1, MMP3, MMP9) (Basisty et al., 2020; Coppe 

et al., 2008). These molecules are frequently associated with age-associated pathologies, 

including chronic inflammation. However, proteomic analyses of cultured human cells 

induced to senescence by different agents show that each SASP is unique, consisting of 

hundreds of largely distinct proteins (Basisty et al., 2020). Additionally, SASP components 

vary depending on species (e.g., human vs mouse) and cell type (e.g., epithelial vs stromal) 

(Coppe et al., 2008). On the other hand, certain core SASP factors, including growth 

differentiation factor-15 (GDF15), stanniocalcin-1 (STC1), Serpin Family E Member 1 

(SERPINE-1), and MMP1, are expressed by many types of senescent cells (Basisty et al., 

2020).

Oxidative stress, the overproduction of reactive oxygen species (ROS), can damage 

macromolecules, including nuclear and mitochondrial DNA. The primary sources of ROS 

are the mitochondrial electron transport chain and NADPH oxidases, enzymes in the 

plasma membrane and membranes of detoxifying organelles such as phagosomes. In all 

cases, ROS serve as either damaging or signaling molecules, and these divergent processes 

interact (Brennan et al., 2009; Dickinson and Chang, 2011; Finkel, 2003). For example, as 

ROS increases, it can sulfenylate cysteines on dynamin-related protein 1, the protein that 

initiates mitochondrial fission. This sulfenylation disrupts mitochondrial dynamics, resulting 

in cellular senescence in some cell types (Nishimura et al., 2018; Yu et al., 2020) potentially 

including RPE cells. Indeed, several studies show that mitochondrial dysfunction contributes 

to AMD pathology (Datta et al., 2017; Ferrington et al., 2016; La Cunza et al., 2021). 

Furthermore, a senescence response caused by mitochondrial dysfunction in the absence of 

genotoxic stress induces a distinct SASP lacking certain proinflammatory factors regulated 

by interleukin-1 receptor signaling. This mitochondrial dysfunction-associated senescence 

(MiDAS) (Wiley et al., 2016) may a good candidate to investigate further in AMD.

Finally, with regards to the retina and retinal diseases, early studies often used the terms 

aging and senescence interchangeably. The discovery of senescent characteristics has created 

a need to further review the literature in a more holistic way in an attempt to tease out the 

results of aging versus senescence with more clarity.
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2. Requirements and challenges for assessing senescence in in vivo and 

ex vivo models

Modeling of AMD using both in vitro and in vivo platforms remains a vital tool in exploring 

the contributions of pathways to disease development and progression. Each present with 

challenges and limitations.

2.1. Limitations to animal models of AMD as platforms to investigate senescence

The multi-faceted nature of AMD has made recapitulating phenotypic features of the disease 

challenging, with an overall perception that animal models of human AMD remain to be 

developed. Yet, a number of in vivo models have been characterized incorporating either 

known genetic and environmental risk factors for the disease (Malek et al., 2005; Storti et 

al., 2019; Toomey et al., 2015) or through the discovery of pathways compromised simply 

during the aging process (Choudhary et al., 2020; Hu et al., 2013; Yao et al., 2022). These 

models present with different phenotypic features of AMD, most frequently basal laminar 

deposits below the RPE, and RPE phenotypic and degenerative changes. Importantly, these 

models were developed taking age into consideration and as such may serve as platforms 

to investigate potential senescence. The observation of choroidal changes similar to that 

observed in dry human AMD have not been reported in animal models.

There are a limited number of spontaneously developed animal models that have been used 

to investigate different aspects of senescence including the senescence-accelerated OXYS 

rats, though their ocular senescence markers remain to be investigated (Kozhevnikova et al., 

2018), and the senescence-prone mouse strain 8 (SAMP8). Aged SAMP8 mice present with 

increased ocular autofluorescence, decreased scotopic retinal function, amyloid beta positive 

deposits below the RPE, RPE degenerative changes and increased p16Ink4a expression 

in the RPE, collectively supporting senescence mechanisms at play (Feng et al., 2016). 

Importantly, sub-retinal injection of an amyloid beta peptide in 5 month old C57BL/6 

mice has been reported to impact retinal function, specifically triggering a decrease in 

the amplitudes of the a-, b- and c-waves on electroretinography, RPE pigmentary and 

degenerative changes, and increased expression of p16 Ink4a in RPE cells (Liu et al., 2015). 

However, as noted in Section 4, these studies need to be confirmed using multiple measures 

of senescence because p16 expression is not solely associated with senescence but can also 

be a marker inflammation and general aging (Liu et al., 2019b).

The ocular pathology of non-human primates has also been described in some detail and 

though with advanced age some species develop lipid-rich deposits, the time investment 

to use them as animal models (over 25 years versus 2 years for mice) limit their broad 

use for therapeutic testing. However, examination of the pathology of retinal cross-sections 

from one 16- and one 29-year-old Rhesus monkey has been informative, demonstrating 

Senescence-associated beta-galactosidase (SA-βgal) staining in the RPE adjacent to small, 

hard drusen (Mishima et al., 1999), indicating that senescence may be a feature of retinal 

aging in the monkey eye. One caveat for these studies is that SA-bgal also labels older 

lysosomes, and can be a measure of lysosome aging, rather than senescence per se. Evidence 

for senescence in the best model for AMD available, namely human donor tissue from AMD 
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patients is fairly limited. Noteworthy has been immunolocalization of bone morphogenetic 

protein-4 (BMP4), capable of inducing expression p53 and p21CIP1 in RPE cells, within the 

RPE and Bruch’s membrane of patients with dry AMD (Zhu et al., 2009). In spite of this, 

there is a need to investigate senescence in current murine models that present with AMD 

phenotypes and more importantly human donor tissue, comprehensively, sub-classified 

based on clinical phenotype (Ferris et al., 2013) and ideally genotyped (at a minimum) 

(Fritsche et al., 2016; Pappas et al., 2021).

2.2. Limitations of existing in vitro models used to study senescence

The pros and cons of existing in vitro models to study important aspects of RPE cell biology 

have been recently discussed (Lakkaraju et al., 2020). Here, we will discuss the utility of 

these cell-based models to interrogate senescence in particular.

2.2.1 ARPE19, versus primary, versus stem cell derived RPE cells—Because 

the RPE is a terminally differentiated, postmitotic tissue, to accurately model non-replicative 

senescence in the RPE using in vitro models requires the use of non-dividing cell cultures. 

Many published studies on senescence in the RPE have used poorly differentiated cultures of 

the immortalized ARPE-19 cell line, which participates in the cell cycle and is susceptible 

to mitotic senescence. Therefore, conclusions regarding mechanisms or triggers that induce 

senescence in the RPE using immortalized RPE cell lines may have little relevance to 

RPE in vivo or to AMD. The minimum requirement to study senescence in RPE cell 

cultures is that the cells be well polarized, terminally differentiated, and express RPE 

differentiation markers (RPE 65, apical Na+,K+-ATPase, etc) to accurately reflect RPE in 

vivo. Well-characterized cell-based models include:

Primary RPE cultures established from freshly harvested retinas of mouse, porcine, or 

human donors recapitulate several features of RPE in situ. When grown on semi-permeable 

membrane supports (Transwell filters), these cultures form well-differentiated monolayers 

with tight junctions, trans-epithelial resistances (TER) greater than 300 ohm.cm2, and 

degrade photoreceptor outer segments with kinetics comparable to that found in vivo. For 

each of these models, there are established protocols that have been validated in multiple 

publications (Blenkinsop et al., 2013; Gibbs and Williams, 2003; Maminishkis et al., 2006; 

Samuel et al., 2017; Toops et al., 2014).

Primary RPE cultures have proven to be especially useful in understanding mechanisms 

of AMD pathogenesis. Long-term cultures of human fetal and porcine RPE have been 

shown to constitutively secrete apolipoprotein E (ApoE), a major component of drusen, 

and this could be further exacerbated by exposing the cultures to active complement 

components (Johnson et al., 2011). Adult human RPE cultures secrete osteopontin, an 

inflammatory mediator, in response to oxidative stress (Lekwuwa et al., 2021). These 

studies suggest that the RPE is sufficient to induce biogenesis of drusen constituents. But 

what could be the mechanism? Using porcine RPE cultures, recent studies demonstrated 

that complement activation and lipid dysregulation – two major pathways implicated in 

AMD – cause mitochondrial injury in the RPE. The resulting alteration of mitochondrial 

redox status drives the formation of ApoE biomolecular condensates as potential drusen 
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precursors (La Cunza et al., 2021). Noteworthy, studies using RPE cultures established from 

adult human donors have identified defective autophagy, mitochondrial dysfunction, and 

decreased expression of nuclear hormone receptors in AMD donors compared with cells 

from unaffected controls (Ferrington et al., 2017; Ferrington et al., 2016; Hu et al., 2013; 

Zhang et al., 2020) (Fig. 3).

The limited availability of human donor tissue and number of passages that maintain 

expression of RPE cell markers, are the main drawbacks of primary cultures. While this is 

not a limitation for cultures from mice or pigs, one caveat for their use is the species-specific 

expression of genes associated with AMD: for instance, cholesterol ester transfer protein 

(CETP) is not expressed in mice, and humans are the only species that express three 

isoforms of APOE.

ES- and iPSC-RPE (Embryonic and induced pluripotent stem cell-derived RPE) cultures are 

now widely used not only to study various aspects of RPE cell biology (Hazim et al., 2017; 

Maruotti et al., 2015) but also in clinical trials launched by the National Eye Institute, 

for slowing or reversing vision loss associated with AMD. Cultures established from 

patient fibroblasts are especially useful to model disease conditions. Studies on iPSC-RPE 

generated from AMD donors with AMD-associated genetic risk alleles showed that these 

RPE cultures secreted high levels of complement proteins and drusen components including 

ApoE and identified nicotinamide as a potential modifier of these disease phenotypes (Saini 

et al., 2017).

Although iPSCs can constitute a freely available source to differentiate into RPE, there are 

a few significant caveats to keep in mind while studying senescence. First, iPSCs retain 

epigenetic memory that reflects the tissue of origin, developmental stage, and sex that can 

impact the efficiency of reprogramming (Efrat, 2020). This complex epigenetic regulation 

could in turn impact senescence response pathways in iPSC-RPE.

Immortalized RPE cell lines currently used include the human ARPE-19, human RPE-1, and 

rat RPE-J lines. RPE-1 (hTERT) is a telomerase immortalized line that exhibits virtually 

no features of RPE in situ. The cells are poorly differentiated, flat, and are more often 

used to study the development of the primary cilium, and not RPE biology (Lakkaraju 

et al., 2020). The rat RPE-J line was established by simian virus 40 (SV40)-mediated 

transformation, which resulted in hypodiploid RPE (Nabi et al., 1993). Moreover, these cells 

do not exhibit the correct apical localization of Na+,K+-ATPase and neural cell adhesion 

molecule (NCAM), which are required for RPE and photoreceptor function.

By far the most commonly used RPE cell line is ARPE-19, which was established by 

spontaneous immortalization of RPE from a 19-year-old donor (Dunn et al., 1996). Many 

studies on senescence have used poorly polarized or actively dividing ARPE-19 cells. These 

cells are fibroblastic in appearance, do not express key RPE proteins such as RPE65, 

and clear photoreceptor outer segments with very slow kinetics. Pertinent to studies on 

senescence, these poorly differentiated ARPE-19 cultures are very susceptible to oxidative 

stress (Glotin et al., 2008) or AMD-associated insults such as complement attack, in contrast 

to the highly robust primary RPE cultures (Radu et al., 2014; Tan et al., 2016). Therefore, 
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using actively dividing ARPE-19 cultures to study senescence could identify pathways and 

mechanisms that would not be relevant for RPE in vivo.

Two recent protocols for culturing ARPE-19 cells have shown an improvement in cell 

phenotype and kinetics of outer segment clearance (Hazim et al., 2019; Samuel et al., 2017). 

These protocols involve growing the cells in high glucose with pyruvate for 3-4 months 

or in nicotinamide for 2 weeks. Using these protocols, ARPE-19 cells express RPE65 and 

other markers of differentiation. However, the TER is low, indicative of a leaky barrier, 

likely because ARPE-19 cells do not express claudin-19, which is a key component of 

the RPE tight junction in vivo. Because barrier function is directly linked to the ability 

of the RPE monolayer to withstand stressors such as complement and oxidative damage, 

this could potentially underlie the increased susceptibility of these cells to insults that 

induce senescence in dividing cells. Another caveat is that ARPE-19 cells also exhibit 

chromosomal abnormalities, which could be another confounder in their use for studies of 

RPE senescence. Researchers using ARPE-19 cells to study senescence should be mindful 

of these caveats and at the very least, culture the cells using protocols established by Hazim 

et al. It is important to establish that the cells express RPE markers and are not actively 

dividing before the start of the experiment. Because a feature of senescence in postmitotic 

cells is cell cycle re-entry, using mitotic cells could mask important mechanisms that could 

drive senescence in the RPE.

2.2.2 RF6A versus primary choroidal endothelial versus stem cell derived 
choroidal endothelial cells—Changes in the outer vasculature have been noted in all 

the sub-types of AMD, though the clinicopathological features are quite different. In early, 

intermediate AMD and GA, there is evidence of choriocapillary dropout, while in MNV 

the choroidal vasculature undergoes abnormal vessel growth. As such, studying the biology 

of the choroidal endothelial cells is paramount, yet understudied. This is in part because in 

vitro model systems for choroidal endothelial are limited. The most commonly used cell 

culture model system has been a spontaneously transformed cell line originally derived from 

a crude choroid-retina complex isolated from the fetus of the rhesus macaque monkey, called 

RF/6A, which originally was reported to expresses endothelial markers. Recent careful 

characterization of this cell line has identified low level expression of endothelial markers 

including von Willebrand factor, platelet endothelial cell adhesion molecule-1 (PECAM1), 

VE-cadherin and cadherin 5 in RF/6A cells (Makin et al., 2018). Additionally, functional 

assays using RF/6A cells, found these cells to be insensitive to VEGF-A stimulation as 

well as shear stress. Finally, when challenged with tumor necrosis factor alpha (TNFα), 

expression of the endothelial-specific protein E-selectin was prominently less than that in 

other endothelial cell lines. Collectively, these findings highlight limitations of this cell 

line (Makin et al., 2018). Alternative cell culture systems which may be used included 

primary cultures isolated from human donor eyes (Peavey and Malek, 2020; Peavey et al., 

2022; Stewart et al., 2011), which are convenient should there be accessibility to non-fixed 

donor eyes with short post-mortem times. Of relevance to AMD has been the creation 

of a conditionally immortalized choroidal endothelial cell line with decreased binding 

affinity for the AMD-associated 402H variant compared to 402Y (Loeven et al., 2018). 

An immortalized human choroidal endothelial cell line generated using lentiviral vectors 
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with endothelial-specific promoters to drive immortalization (Giacalone et al., 2019), and 

choroidal endothelial cells derived from mouse fibroblast iPSCs (Songstad et al., 2015), are 

also potential relevant cell culture models to incorporate in studies of AMD.

2.2.3 Senescence in spontaneously arising cell lines—Cells with a variety of 

phenotypes have been used to study age-related pathologies, including AMD. ARPE-19 

cells, discussed above, is a spontaneously immortalized human RPE line that is not 

pre-malignant or malignant. Spontaneous immortalization is rare for primary human 

cells, but more common for mouse cells. In mouse cells many of the spontaneous 

immortalization events occur due to loss of p53 function (Harvey and Levine, 1991). This 

is significant because p53 can also regulate the SASP (Coppe et al., 2008; Davalos et al., 

2013), Similarly human cells, particularly epithelial cells, are susceptible to losing p53 

function upon spontaneous immortalization (Yaswen and Stampfer, 2002). Of interest, gene 

expression profiling of human embryonic stem cell derived (ESC)-RPE cells demonstrates 

greater similarity to primary RPE than to ARPE-19 cells (Klimanskaya et al., 2004). 

Finally, because gene expression profiles can differ substantially between primary and 

immortalized cells, caution and in vivo validation should be considered for interrogating 

aging, pathological and senescent phenotypes in intact tissues.

3. Aging-related changes in the outer retina

Given the impact of age-related vision loss on quality of life many laboratories have been 

investigating the morphological, physiological, and molecular changes in the aging eye 

using human ophthalmic data, human post-mortem specimens and animal models [reviewed 

in detail in (Campello et al., 2021)]. Common age-related ocular changes include cataract 

and low-light vision sensitivity, and chronic ocular diseases such as diabetic retinopathy, 

glaucoma and AMD, in which the neural retina, RPE and choroid are affected.

3.1. Retina

A key feature of the aging retina is a decline in visual function reflecting a decrease in 

photoreceptor activity. Studies in mice, rats, and humans (Ferdous et al., 2021; Gao and 

Hollyfield, 1992; Kovacs-Valasek et al., 2021) show an age-related reduction of scotopic 

a- and b-wave amplitudes and total number of photoreceptors. Interestingly, photoreceptor 

loss in aging is not uniform, rather pronounced in the peripheral retina as rods are more 

vulnerable to loss than cones (Curcio et al., 1993; Eliasieh et al., 2007). Surprisingly, these 

changes are not dependent on the diurnal/nocturnal lifestyle of the studied organism.

Another phenotype of aging is retinal thinning. Systematic studies (Samuel et al., 2011) 

have described age-related changes in cell number and density of the mouse retina and 

provided elegant quantification of dendritic arbors for all retinal neurons. Spectral domain-

optical coherence tomography (SD-OCT) studies (Ferdous et al., 2021) have shown reduced 

thickness of the outer nuclear layer (ONL), which contains photoreceptor nuclei; confirmed 

by quantification of nuclei by histology. Interestingly, rod bipolar and horizontal cell 

dendrites extend into the ONL in aged animals suggesting changes in the extracellular 

matrix composition. Similar observations were made in examining the human aging retina 
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(Eliasieh et al., 2007) potentially indicating high levels of metabolic activity in aged bipolar 

and horizontal cells.

A third aging phenotype of the retina is reactive gliosis (Mansour et al., 2008; Ramirez et 

al., 2001) often associated with aberrant activation of Müller glia cells and astrocytes, and 

elevated levels of glial fibrillary acidic protein (GFAP) immunoreactivity. Glial activation is 

characterized by increased expression of VEGF, cytokines, extracellular matrix modifying 

molecules and several interleukins, which maintain the retinal inflammatory environment, as 

well as an overall decline in microglial functionality [reviewed in (Ma and Wong, 2016)].

Finally, the vasculature is also affected in the aging retina. Multiple studies using optical 

coherence tomography angiography (OCTA) have shown a decrease in vessel density in 

the aging human retina. Additionally, detailed mouse and human studies have found a 

significant drop in vascular density in age-related eye conditions including glaucoma (Yip 

et al., 2019), AMD (Toto et al., 2017; Vaghefi et al., 2020) and diabetic retinopathy (Liu 

et al., 2019a; Tonade et al., 2017). Of note, in larger animal models including canines, an 

evaluation of the retina, uvea, and lens revealed that the presence of tumors rather than age 

was associated with an increase in the senescent markers gH2AX and p21Cip1 (Merz et al., 

2019).

3.2. RPE

Like other postmitotic, metabolically active tissues, the RPE acquires specific functional 

deficits with age, which are exacerbated in AMD. One of the most important functions 

of the RPE is the daily phagocytosis and digestion of photoreceptor outer segment tips 

(Caceres and Rodriguez-Boulan, 2020). In the human eye, each RPE cell is in contact 

with ~40 photoreceptors, and the diurnal clearance of shed outer segments constitutes 

an enormous burden on the degradative machinery of the RPE. The importance of this 

process for photoreceptor health and vision is illustrated by the fact that mutations in 

specific phagocytic machinery are associated with inherited retinal degenerations: mutations 

in the MER tyrosine kinase (MERTK), which participates in outer segment ingestion, cause 

retinitis pigmentosa; whereas mutations in the actin motor protein myosin VIIa (MYO7A), 

which participates in phagosome transport in the RPE, result in Usher syndrome (Gal et 

al., 2000; Gibbs et al., 2003). However, there is to date limited evidence for defects in 

clearance of phagocytosed photoreceptor outer segments in the aging or AMD RPE. Studies 

on changes in RPE lysosomal hydrolase activities with age have yielded conflicting data, 

with one showing increased cathepsin D and acid phosphatase activities (Boulton et al., 

1994) and another reporting a specific decrease in alpha-mannosidase activity but not in 

acid phosphatase (Wyszynski et al., 1989). Although decreased expression of the lysosomal 

membrane protein LAMP2 has been reported in AMD donor RPE compared to unaffected 

controls (Notomi et al., 2019), how this impacts photoreceptor outer segment degradation is 

yet to be investigated.

Decreased LAMP2 expression could however interfere with autophagy, an evolutionarily 

conserved mechanism to clear damaged proteins and organelles. Efficient autophagy is 

essential for postmitotic tissues like the RPE where debris cannot be dispersed among 

daughter cells after cell division. RPE from AMD donors exhibit defects in autophagosome 
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biogenesis (decreased levels of lipidated LC3B) and autophagic flux (accumulation of 

long-lived proteins such as p62/SQSTM1) (Golestaneh et al., 2017; La Cunza et al., 

2021). Declining autophagy and the resulting accumulation of undegraded debris can place 

additional stress on the aging RPE (Fig. 3).

Another feature of aging and AMD is mitochondrial dysfunction. RPE from AMD 

donors show increased mitochondrial fragmentation and mitochondrial DNA damage, and 

decreased oxidative phosphorylation (Ferrington et al., 2017; Golestaneh et al., 2017; 

La Cunza et al., 2021). Because the RPE is highly reliant on oxidative phosphorylation 

(OXPHOS) as it spares glucose for the photoreceptors, mitochondrial dysfunction with age 

could induce the RPE to switch to glycolysis as an energy source, and ultimately starve the 

photoreceptors (Kanow et al., 2017).

3.3 Choroid

The choroid is a complex tissue located between the sclera and neural retina and its 

underlying RPE. Playing a central role in providing oxygen and nutrients to the overlying 

retina, it is heavily vascularized and can be broadly divided into the Haller’s layer, 
composed of large blood vessels, Sattler’s layer, composed of medium diameter blood 

vessels, and the choriocapillaris, a network of fenestrated capillaries. It is home to a high 

concentration of melanin, which may in part protect the choroidal micro and macro-vessels 

from light toxicity. It is also rich in fibroblasts, resident immune cells, extracellular matrix 

molecules including collagen and elastic connective tissue. The integrity of the choroid is 

paramount to vision, as any damage has the potential to lead to degenerative changes in 

the retina due to lack of vascular support or abnormal neovascularization or edema. Indeed, 

OCT evaluation of choroidal thickness in non-AMD individuals aged 21 to 86 years, has 

revealed thinning in the fovea with age by approximately 3 μm/year (Wakatsuki et al., 2015). 

Studies on blood flow and choroidal vascularity, in which luminal and stromal components 

of the choroid have been measured have also found a decline with increase in age (Emeterio 

Nateras et al., 2014; Nivison-Smith et al., 2020). The reported changes in melanocytes with 

age are less clear and dependent on method of analysis. When measured with fluorescence, 

a decrease in melanocytes was observed with age (Weiter et al., 1986), while biochemical 

measurements showed no changes with age (Hayasaka, 1989). Finally, fewer adrenergic 

fibers with less varicosities, a decrease in nerve fibers to the submacular region, and a 

decrease in hyaluronic acid in the choroid, have been measured with age in studies with 

relatively small cohort sizes (Jablonski et al., 2007; Nuzzi et al., 1996; Tate et al., 1993). 

These studies remain to be corroborated in larger populations.

4. Senescence

Replicative senescence, is an adaptive mechanistic response to prolonged stress, associated 

with dividing cells and cells challenged with a cancerous signal (e.g. ras-induced 
senescence). However, an increasing number of studies show non-replicative senescence 
can occur in post-mitotic cells including neurons. Senescent cells are rare at young ages, 

but are generally only a minor population (a few percent) even at old ages (He and 

Sharpless, 2017). Although several markers of senescent cells have been reported, no 
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single marker can confirm the presence and state of senescence in vivo. SA-βgal activity 

is a widely used marker and reflects the increase in lysosomal activities that generally 

accompany senescence-inducing stresses (Itahana et al., 2007). Therefore, SA-βgal staining 

is often used as a first step to identify senescent cells in culture and/or tissues. As a 

second step, expression of p16INK4a and/or p21CIP1 is also commonly used to identify 

senescent cells (Itahana et al., 2007; Lopez-Dominguez et al., 2021). However, upregulation 

of p16INK4a and p21CIP1 is not always caused by senescence. For example, a subpopulation 

of macrophages can express p16Ink4a and SA-βgal activity (Hall et al., 2016).

γ-H2AX and 53BP1 foci, markers of DNA double strand breaks, are also useful to identify 

senescent cells. Both often increase in primary cells from aged mice and humans, and 

skin of aged primates (Herbig et al., 2006). GATA Binding Protein 4 (GATA4) is a 

transcription factor that regulates SASP factors. It is usually degraded by autophagy, but, 

upon senescence, it is stabilized and activates nuclear factor kappa B (NF-κB), resulting 

in SASP secretion (Kang et al., 2015). High mobility group box 1 (HMGB1) typically 

resides in the nucleus but is expelled from the nucleus of senescent cells and secreted, where 

it functions as a damage-associated molecular pattern (DAMP) molecule (Davalos et al., 

2013). Finally, bioactive lipids including prostaglandins, leukotrienes and monounsaturated 

fatty acids, were recently shown to increase in senescent cells (Cormenier et al., 2018; Wiley 

et al., 2021). Thus, multiple markers are best used to detect senescent cells (Gorgoulis et al., 

2019). Collectively, these markers are appropriate endpoints and should be considered when 

evaluating senescence in the ocular space.

4.1 Evidence for senescence in the retina

Though there are no comprehensive reports on senescence in retinas of AMD donor tissues, 

several studies have investigated the presence of senescent markers in the retina of other 

ocular diseases including glaucoma and diabetic retinopathy, that may provide some insight 

relevant to AMD. In glaucoma, SA-βgal positive cells have been detected in the trabecular 

meshwork (Liton et al., 2005) and in retinal ganglion cells in the glaucomatous retina, 

concomitant with SASP expression (Skowronska-Krawczyk et al., 2015). In follow-up 

studies, the use of p16-3MR transgenic mice or administering a senolytic drug to remove 

senescent cells, induced by high intraocular pressure (IOP), has provided support for 

potential therapy (Rocha et al., 2020). Importantly, existing clinical data has shown that 

senolytic exposure as a treatment for other health complications, is not associated with 

decreased visual acuity, elevated intraocular pressure, or senolytic-related adverse ocular 

effects (El-Nimri et al., 2020). These data support the hypothesis that, when controlled for 

dosage and frequency, senolytic drugs might be applicable to treat ocular diseases including 

glaucoma.

In a mouse model of retinopathy of prematurity (ROP), cells devoid of oxygen become 

senescent and secrete SASP molecules, induce aberrant vasculogenesis (Oubaha et al., 

2016), trigger the unfolded protein response (UPR) with consequent activation of classical 

senescence associated factors including p53 and p16Ink4a (Crespo-Garcia et al., 2021). Of 

note, use of metformin decreased the expression of these markers and could thus be a 

potential therapeutic for further investigation. That said, in the context of AMD, recent 
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retrospective studies looking at the association between diabetic medication use and AMD 

risk, have not reached a consensus on the impact of metformin on AMD. A number of 

studies have found a decreased risk for AMD with metformin use (Blitzer et al., 2021; 

Brown et al., 2019) while others have reported no association and/or an increased hazard 

for AMD (Eton et al., 2022; Gokhale et al., 2022; Vergroesen et al., 2022). The study 

designs and cohorts used in these series of retrospectives varied, which may account 

for the different findings. Another therapeutic approach suggested to target senescence is 

intravitreal administration of small molecule inhibitors of senescence as well as removal 

of p16Ink4a-expressing cells, in retinal diseases associated with abnormal vascularization 

(Crespo-Garcia et al., 2021).

Certain markers associated with senescence have also been detected in aged retinas with 

microaneurysms (Lopez-Luppo et al., 2017). Systematic analysis of the retinal layers for 

the senescence phenotype found that neurons, but not glial cells, and blood vessels express 

senescence-associated markers. In an Alzheimer’s disease transgenic mouse characterized 

by amyloid beta immunoreactivity in the photoreceptor layer, rod degeneration concomitant 

with increased p16ink4a and p21 protein expression in the outer segments has been observed 

in 9-month-old mice, supporting a link between photoreceptor degeneration and senescence 

marker expression (Zhang et al., 2021). Interestingly, the Lopez-Luppo et al study found 

that cones rather than rods expressed the senescence marker p16Ink4a in retinas with 

microaneurysms. The finding that senescent cells are resistant to apoptosis, yet secrete 

SASP affecting surrounding cells, may explain why in several ocular diseases rod cell death 

precedes death of cones. These hypotheses and more detailed studies of senescence in the 

retina are critically needed, in order to move forward with a better understanding of the links 

between aging and senescence in retinal diseases including AMD.

4.2 Evidence for senescence in the RPE

Landmark studies in neurons conducted by Rita Levi-Montalcini in 1960 showed that as 

neurons mature, they undergo terminal differentiation and become resistant to apoptosis. 

In post-mitotic neurons, expression of cell cycle markers is accompanied by mitochondrial 

and endoplasmic reticulum stress, thought to be a prelude to cell death. However, because 

these post-mitotic cells are difficult to replace, it is likely that senescence may play a 

pro-survival role to preserve valuable cells. In postmitotic tissues like the RPE, the evidence 

for senescence is limited, and whether it plays a protective or detrimental role remains 

unclear (Sapieha and Mallette, 2018). Increased SA-βgal staining has been observed in 

aging human and non-human primate RPE. However, whether this is true senescence or 

increased immunoreactivity of long-lived lysosomes in postmitotic cells remains to be 

established. This distinction is especially important because SA-βgal activity has been 

detected in brain tissue independent of age or senescence.

As discussed earlier, the vast majority of published studies on senescence in the RPE have 

used the immortalized ARPE-19 cell line, which actively participates in the cell cycle and is 

susceptible to replicative senescence (Aryan et al., 2016). Therefore, conclusions regarding 

mechanisms or triggers that induce senescence in the RPE using poorly differentiated 

RPE cell lines might have little relevance to RPE cells in vivo or to AMD. Specifically, 
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undifferentiated RPE cultures grown on plastic have been noted to show an age-related 

increase in the expression of p53, p16INK4a and p21CIP1. Similarly, sub-confluent human 

fetal RPE cells when exposed to oxidants begin to express senescent biomarkers (Sreekumar 

et al., 2022). To what extent these studies are representative of the aging RPE cells in 

vivo must be further evaluated using additional culture models and/or in vivo models. 

One example of in vitro – in vivo confirmation studies worth noting involved determining 

the effect of amyloid beta, a molecular component of drusen (Dentchev et al., 2003; 

Johnson et al., 2002) in RPE cells. Cultured undifferentiated RPE cells when exposed to 

amyloid-beta display characteristics of senescence including SA-βgal activity, increased 

p16INK4a expression, along with an increase in expression of pro-inflammatory molecules, 

such as IL-8, IL-33, MMP9 and VEGF (Cao et al., 2013; Liu et al., 2012; Yoshida et al., 

2005). Amyloid-beta exposure also decreased tight junction-related proteins, such as ZO-1 

and occlusion (Cao et al., 2013). Though this study involved the use of undifferentiated 

RPE cells, interestingly, in vivo studies involving subretinal injection of amyloid-beta also 

triggered an increase in the expression of p16Ink4a in the RPE, upregulated IL-6 and IL-8, 

compromised the integrity of basal infoldings and increased the formation of autophagic 

vacuoles in the RPE (Liu et al., 2015). Because the expression of p16, IL6, and IL-8 is 

also increased in inflammatory conditions, whether or not amyloid beta exposure in vivo 

stimulates additional markers of senescence and how this is relevant to AMD remains to be 

determined.

A few studies have used the more physiologically relevant RPE cultures, harvested from 

human donor eyes, to study senescence (Chaum et al., 2015; Sreekumar et al., 2016; Yamada 

et al., 2020). Polarized RPE grown on transwells treated with strong oxidants lead to 

mitochondrial damage and increased expression of p16INK4a. This is significant since in 

AMD, mitochondria display focal loss of cristae, decreased electron density of the matrix, 

and more advanced mitochondrial alterations, reflecting mitochondrial dysfunction (Feher et 

al., 2006; Ferrington et al., 2016; Ferrington et al., 2021). In general, the senescent MiDAS 

phenotype, that has been observed upon mitochondrial dysfunction, has a distinct SASP 

profile that differs from the classical SASP profile (Wiley and Campisi, 2016; Wiley et al., 

2016). Future studies will need to determine whether or not RPE cells in AMD patients have 

a senescent MiDAS phenotype.

It is important to note, that in terminally differentiated neurons and cardiomyocytes, 

undigested lipids and proteins accumulate in the form of lipofuscin granules, which 

constitute a surrogate marker for aging. Lipofuscin also accumulates in RPE lysosomes 

with age; however, RPE lipofuscin is formed as a by-product of the visual cycle and 

almost entirely composed of vitamin A metabolites called bisretinoids (Sparrow, 2016). 

Whether RPE lipofuscin is a marker of aging or senescence, it is clear that it derails 

critical homeostatic functions and compromises RPE health. Bisretinoids in RPE lysosomes 

lead to a secondary accumulation of cholesterol, which activates acid sphingomyelinase. 

The resulting increase in ceramide interferes with microtubule based trafficking, leading to 

autophagic defects and makes the RPE susceptible to complement-mediated mitochondrial 

fragmentation (Kaur et al., 2018; Tan et al., 2016; Toops et al., 2015). Bisretinoids can 

also undergo photo-oxidation, leading to the production of free radicals and DNA damage 
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(Ueda et al., 2016). These pathways could directly or indirectly drive RPE dysfunction and 

dedifferentiation (Fig. 3).

Finally, an important in vivo study recently demonstrated the relationship between Serpinf1, 

necessary for RPE PEDF production and cell senescence, revealing that the absence of 

Serpinf1 in mice, resulted in increased SA-βgal activity in RPE cells and induced the 

expression of senescence-associated genes (Rebustini et al., 2022). Additional in vivo 

studies investigating the distribution of putative senescent cells in in vivo models that present 

with AMD-like phenotypes as well as in human AMD donor tissues would complement 

studies such as that of Rebustini et al. in supporting an active role for senescence in 

the development and progression of AMD. Should additional data emerge supporting 

senescent RPE cells in AMD, an important question will be if these cells remain functional. 

Multinucleated RPE cells, post-mitotic cells, retain levels of phagocytic activity comparable 

to proliferative single nucleated cells (Chen et al., 2016). Further research is needed to 

determine how senescent RPE cells modify the microenvironment of the retina and lead to 

AMD.

4.3 Evidence for senescence in the choroid

As mentioned earlier accessibility to bona fide choroidal endothelial cells has impeded 

research, with researchers often using the RF/6A cell line as a launching point to examine 

cell senescence in vitro. In one such study, replicative senescence in vitro was attempted 

using RF/6A cells, in which cells were passaged frequently for greater than 20 passages 

(Cabrera et al., 2016). Beta galactosidase staining was found to increase along with the 

expression of p21Cip1, an inhibitor of cyclin-dependent kinase expression, which collectively 

was used to demonstrate the state of senescence in these high passage endothelial cells. 

When compared to low passage cell, high passage cells were found to be significantly less 

flexible and considerably stiffer, correlating with higher cytoskeletal Rho activity and greater 

susceptibility to complement injury, potentially supporting senescence-associated choroidal 

endothelial cell stiffening as a contributor to choriocapillary atrophy, observed in early dry 

AMD. On the other hand, there are a number of in vivo studies that provide evidence 

for senescent cells in the posterior pole using the experimental laser-induced choroidal 

neovascularization mouse model, which on flat mount and in cross-sections stain positively 

with SA-βgal (Chae et al., 2021) and point to the involvement of myeloid cells (Schlecht et 

al., 2021).

5. Anti-aging therapeutics and AMD

Anti-aging therapy can be thought of in two ways. The first is to prevent the aging process, 

the other is to reverse it. Many large cohort studies are looking at prevention, including the 

Age-Related Eye Disease Study (AREDS), in which the long term effect of antioxidants 

and zinc significantly reduce the risk of AMD progression and associated vision loss 

(Age-Related Eye Disease Study 2 Research et al., 2014; Age-Related Eye Disease Study 

Research, 2001; Chew et al., 2013; Seddon et al., 2016). Slowing the progression of AMD 

from intermediate to advanced stages could save eyesight, and even decrease mortality 

(Clemons et al., 2004). However, once a normal cell enters senescence, it appears unlikely 
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to reverse. Recently, it was shown that many age-related pathologies can be improved 

by eliminating senescent cells, indicating that senescence-targeted therapy is a promising 

candidate for the treatment of specific age-related eye diseases associated with abnormal 

blood vessel growth (Crespo-Garcia et al., 2021; Rocha et al., 2020). Another consideration, 

for senescence targeted therapy is the density of senescent cells. Should a high density of 

senescent cells be observed, an important question to address prior to therapy is whether 

or not eliminating these cells would destabilized the existing tissue and potentially be more 

detrimental.

5.1. Pros and cons of senescence targeting drugs

Various molecules have been investigated to stop or at least slow aging. At least three major 

pathways regulate the SASP: the DNA damage response (DDR) pathway, the p38MAPK 

pathway, and the mTOR pathway. All these pathways converge on the NF-κB transcription 

factory, which drives the inflammatory phenotype. Persistent SASP expression produces 

a chronic pro-inflammatory microenvironment and can cause neighboring cells in tissues 

to function inappropriately. Some of these pathways could be inhibited by senomorphics: 

small molecules that can selectively inhibit certain aspects of the SASP and thus reduce 

some of the deleterious effects of senescent cells. Drug repurposing studies have shown 

that drugs such as rapamycin, an mTOR inhibitor, metformin, an AMPK activator, and 

ruxolitinib, a JAK inhibitor, block pathways that regulate the SASP and protect against 

age-related pathologies. However, when the treatment stops, the deleterious molecules are 

secreted again and pathologies triggered by senescent cells can recur (Crespo-Garcia et al., 

2021). Additional consideration for therapy is potential off-target effects that may result in 

untoward effects. For example, one study has shown that cones are functionally dependent 

on the mTOR signaling pathway, and that stimulation of this pathway can delay cone death 

in a mouse model of retinitis pigmentosa (Punzo et al., 2009).

Eliminating senescent cells (senolysis) may be a more promising approach to diminish their 

adverse effects. Caveat being if the density of senescent cell is not such that eliminating 

them would compromise the integrity of the tissue. Transgenic mouse models, in which 

senescent cells can be eliminated throughout the body have uncovered a surprising number 

of age-related pathologies that are due, at least in part, to the presence of senescent cells 

(Gorgoulis et al., 2019). In addition, a number of small molecules can have senolytic effects, 

including tyrosine kinase inhibitors coupled with a flavonoid (dasatinib and quercetin) (Zhu 

et al., 2015), a Bcl inhibitor (ABT263), (Chang et al., 2016), and a glutaminase inhibitor 

(Johmura et al., 2021).

Currently, a Bcl-xL inhibitor UBX1325, is being tested in a phase 2a human clinical trial as 

a senolytic to treat refractory diabetic macular edema and neovascular age-related macular 

degeneration (NCT04537884). As discussed above, diabetic retinopathy is associated with 

senescence and eliminating senescent cells can improve the avascular area (Crespo-Garcia 

et al., 2021; Oubaha et al., 2016). One potential problem with senolytics is tissue atrophy 

due to the removal of specific, albeit small, populations of cells. Cells with low proliferative 

capacity, such as retinal cells, including photoreceptor cells and RGCs, are mostly post-

mitotic and could be targeted by the drugs. Moreover, given this population of senescent 
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cells is generally small (He and Sharpless, 2017), losing a small population in exchange 

for the possibility of maintaining tissue function may be acceptable for many age-related 

diseases. However, the continuous removal of p16-positive senescent cells in vivo can 

result in systemic perivascular fibrosis (Grosse et al., 2020). Further research is needed to 

determine the appropriate duration and interval of senolytic treatments to effectively clear 

senescent cells in the context of AMD.

5.2. Tools available to study senescence in vivo, ex vivo, and in animal models

Several mouse models have been developed to study senescence, either by inducing 

senescence conditionally, reprograming epigenetic changes with age, or eliminating 

senescent cells. One informative model created a cell type-selective mouse to generate 

senescent cells by crossing a floxed Ercc1 knockout (Ercc1-/fl), selectively deficient in 

transcription-coupled DNA repair, with Vav-iCre+/− (Yousefzadeh et al., 2021) to localize 

DNA damage to hematopoietic cells. This model demonstrated accelerated aging in immune 

cells, notably B cells, T lymphocytes, natural killer T cells, macrophages and monocytes, 

which all expressed significantly higher levels of p16Ink4a and p21Cip1, similar to that 

of wild-type aged mice. Aging effects in other tissues, such as kidney, pancreas and 

intervertebral discs, were also accelerated cell non-autonomously in this model. Another 

strategy deployed to study age-related epigenetic changes specifically in retinal ganglion 

cells (RGCs) expressed Yamanaka factors (excluding MYC) to alter the DNA methylation 

signature with age. This reprograming reversed vision loss following glaucomatous damage 

(Lu et al., 2020). While cellular senescence was not assessed in this model, elevated 

IOP, sufficient to cause glaucoma and progressive RGC degeneration, was associated with 

elevated p16INK4a expression (Skowronska-Krawczyk et al., 2015), and early elimination 

of senescent cells, either by p16Ink4a-dependent expression of a viral thymidine kinase 

gene and treatment with ganciclovir (Demaria et al., 2014) or by senolytic treatment 

(desatinib), which restores RGCs and evoked visual potentials (Rocha et al., 2020). Of 

relevance to AMD, rapid expression of SA-βgal in RPE cells has been reported in the laser 

induced experimental mouse model of CNV, the outer retinal degeneration model created by 

injecting sodium iodate to ablate the RPE, and in 9-week-old mice treated with doxorubicin 

to induce senescence (Chae et al., 2021; Sreekumar et al., 2022). Interestingly, retinal 

degeneration in mice subjected to doxorubicin is more evident than RPE degeneration and 

the atrophy of the photoreceptor outer nuclear layer is alleviated by treatment with nutlin-3a, 

a murine double minute 2 (MDM2, p53 target gene and E3 ubiquitin ligase) antagonist. By 

taking advantage of existing tools and by continuing to generate new conditional animal 

models, it should be possible to better understand whether or not specific cell types are 

particularly deleterious when senescent, and to develop therapeutics to more specifically 

target the most deleterious cell types.

5.3. Therapeutic targeting of ocular tissues in AMD

Which tissue compartment should be targeted in AMD is a critical point of discussion when 

considering therapies. The retina, RPE, and choroid are all involved in the pathogenesis 

of AMD and as such drugs that may improve their cellular health and function should 

be considered. So far, in AMD patients, the presence of senescent cells in the retina, a 

complex multicellular tissue, housing the light sensitive photoreceptors as well as microglial 

Malek et al. Page 17

Exp Eye Res. Author manuscript; available in PMC 2023 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells, both compromised in disease, has not been reported. Targeting the compromised RPE 

cells is attractive, as the RPE regulates homeostasis of ions and pH between photoreceptors 

and metabolic waste products from the retina, and transports nutrients to the retina. RPE 

cells also converts retinol to 11-cis-retinal, regulate photoreceptor outer segments, and 

secrete neurotrophic factors to maintain photoreceptor integrity. Furthermore, the RPE 

forms the blood-retina barrier. All these specialized functions depend on the expression 

and polar distribution of receptors, transporters, channels and enzymes that are markers of 

a differentiated RPE. Understanding the role of senescent RPE cells during the progression 

of degenerative diseases such as AMD are central prior to targeting them with senolytic 

treatments. Finally,

degenerative changes to the choroid play an important role in the different clinical sub-types 

of AMD. Loss of choroidal endothelial cells or choriocapillary dropout is a classic hallmark 

of early dry AMD. Morphometric analysis of the choriocapillary density and vascular lumen 

to stroma ratio in the outer choroid of donor tissue from patients with geographic atrophy 

reveal an even larger loss of the choriocapillaris (Sohn et al., 2019). This finding combined 

with the known vascular changes in wet AMD, support choroidal changes are an underlying 

pathological event in all clinical sub-types of AMD and therefore a valid tissue site for 

testing therapeutics. A common denominator in targeting any of these tissues is the need 

for further studies demonstrating the extent to which senescence is a factor in AMD and at 

which cellular levels does it occur.

5.4. Evidence needed to support senescence does in fact play a role in AMD and where 
should the field go from here

Currently, the data on senescence markers in the posterior pole in AMD patients or models 

are not definitive enough to conclude the extent to which senescence plays a role in 

the etiology of the disease. However, the potential that senescence may contribute to the 

pathogenesis of AMD, necessitates pursuing this line of research, in a more comprehensive 

way. The most convincing data to support a role for senescence would begin with detailed 

phenotypic profiling of a large cohort of donor tissue from AMD patients versus non-AMD, 

classified based on their clinical sub-type, sex, and genotype. This is the necessary minimum 

given the multi-factorial nature of AMD. The next stages would include molecular profiling 

including single cell transcriptomics and cell cyle profiling to help clarify which populations 

of AMD vulnerable cells express senescent markers, vital information should therapeutics 

need to be considered.

With regards to treatment there are a number of important questions to contemplate when 

considering the use of senolytic drugs: 1. Which cells should be targeted, the whole retina, 

microglial cells, photoreceptors, RPE cells, choroidal endothelial cells? 2. Are the senescent 

cells still active and functional?; 3. If senescent cells are removed, is it possible for the 

missing neurons to regenerate to avoid tissue atrophy?; 4. If senescent cells that are still 

functional, are removed, how will it affect vision?; 5. What if most of the cells of a given 

type are senescent, should we treat the tissue with senolytic drugs and risk losing other cell 

types? Finally, until studies on a molecular level are done, whether all cells assume the same 
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type of senescence remains unknown; maybe some options could be specific to a given cell 

type.

6. Conclusions

The field of senescence is relatively young and new discoveries on its underlying 

mechanisms are published daily. Case in point, even though the fate of senescent cells 

involves resistance to death and secretion of SASPs, the phenotypic features, consequences, 

and triggers of senescence are cell and tissue specific, in part due to the diversity in the 

aging rate of organs throughout the body (Nie et al., 2022); adding to the complexity of this 

cellular process. It is therefore of great interest to understand the extent to which the retina 

and RPE undergo senescence in a manner similar to dividing cells, the degree to which the 

process differs, and/or if there are novel mechanisms underlying ocular senescence.

The discovery of senolytic factors has revolutionized the field of age-related conditions. 

Some of these compounds are safe for use in patients as they were previously FDA-approved 

drugs for other conditions. In addition, pre-clinical studies are promising (Boccardi and 

Mecocci, 2021). As an alternative, the use of senostatic/senomorphic drugs could be 

considered (Boccardi and Mecocci, 2021). These molecules quench the most deleterious 

segments of the SASP without removing the living cell. This type of approach most likely 

will require sustained treatment but might be the best option for now.

Since retinal neurons and RPE are largely non-dividing cells, removal will directly affect 

cell-cell connectivity with potential deleterious effects on activity. Although the technology 

is not there yet, one can imagine that replacement therapy or transdifferentiation approaches 

could be used to fill the space of missing cells. In particular, studies performed in lower 

vertebrates (Lahne et al., 2020) such as zebrafish are exciting, as it has been shown that 

Müller cells can undergo re-differentiation to the cell type that has been lost. Unfortunately, 

recent detailed studies have described an evolutionary change in the Muller glia’s ability 

to transdifferentiate in situ in response to damage (Hoang et al., 2020) and future work 

is needed to establish the feasibility of this approach in mammals (Eastlake et al., 2021) 

Current approaches including overexpression of cell-lineage specific transcription factors 

to transdifferentiate Muller cells into the specific neuron may prove to be more applicable 

(Todd et al., 2021) and further ideas are needed to fill this need in treating age-related eye 

conditions.

Finally, the degree to which senescence in the posterior pole may contribute to development 

and progression of AMD is of high interest. Hopefully, exploring the questions discussed 

along with studies in progress, including single cell transcriptomics and cell cycle profiling 

of donor retinal tissue in correlation with clinical stage of AMD, will provide much needed 

clarity and insight into the role of senescence in disease pathogenesis and provide support 

for senescent – associated ocular therapies, if indicated.
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OXPHOS oxidative phosphorylation

SA-βgal Senescence-associated beta-galactosidase

GATA4 GATA Binding Protein 4

HMGB1 High mobility group box 1

IOP intraocular pressure

RGC retinal ganglion cells

TBK1 TANK-binding protein 1
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IL interleukin
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PECAM1 platelet endothelial cell adhesion molecule-1

VEGF vascular endothelial growth factor

GDF15 growth differentiation factor-15
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TNFα tumor necrosis factor alpha
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GFAP glial fibrillary acidic protein

LAMP lysosomal membrane protein

OXPHOS oxidative phosphorylation

NF-κB nuclear factor kappa B

DAMP damage-associated molecular pattern

DDR DNA damage response

MDM2 murine double minute 2
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Highlights

• Advanced age is a major risk factor for developing age-related macular 

degeneration (AMD), a complex blinding disease.

• Age-related changes are seen throughout the posterior pole, at the level of 

the retina, retinal pigment epithelium, and choroid, impacting vision and 

contributing to disease development.

• The lack of therapies for AMD, necessitate further discovery of pathways that 

are affected in aging.

• Recent observation of a senescence-like phenotype in post-mitotic, terminally 

differentiated cells in aged mice, has led to the hypothesis that senescence 

may play a role in AMD.

• The extent to which senescent cells accumulate in the aged eye and the degree 

to which these cells may trigger AMD development needs to be investigated 

comprehensively in order to consider the use of senolytics and senomorphics 

for therapy.
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Figure 1. 
Overview of aging and AMD: The combination of aging (1st hit) and other stressors/

modifiers (2nd hit) can impact the integrity and function of ocular cells in the posterior 

pole triggering AMD. Cells affected include the retinal ganglion cells (yellow), microglial 

(green) and Müller cells (dark grey), photoreceptors (aqua/orange), retinal pigment epithelial 

cells (burgundy) and choriocapillaris/endothelial cells (light blue). Select consequences have 

been listed next to each cell. Figure modified from (Hadziahmetovic and Malek, 2020).
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Figure 2. 
Definition of senescent cells: Cellular senescence is a cell fate in which both intrinsic 

and extrinsic signals can cause an irreversible cell cycle arrest, accompanied by many 

phenotypic changes. These phenotypic changes have also been reported in non-replicative 

senescence. Senescent cells acquire a complex, often pro-inflammatory, secretory phenotype 

termed the senescence-associated secretory phenotype (SASP), which can cause chronic 

inflammation. SA-βgal: senescence-associated beta-galactosidase; HMGB1: high mobility 

group box protein 1; DAMPs: damage-associated molecular patterns; ROS: reactive oxygen 

species; GATA4: GATA binding protein 4; SAHF: senescence-associated heterochromatin 

foci; DNA-SCARS: DNA segments with chromatin alterations reinforcing senescence; TIF: 

telomere dysfunction-induced foci.
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Figure 3. 
RPE dysfunction and dedifferentiation in aging and AMD: Left panel: The retinal 

pigment epithelium (RPE) performs numerous functions critical for photoreceptor health 

and vision. These include the daily phagocytosis and clearance of photoreceptor outer 

segments (OS) and recycling retinoids and nutrients to photoreceptors. The RPE relies on 

oxidative phosphorylation (OXPHOS) for its high energy needs and spares glucose for the 

photoreceptors. Middle panel: Age-related accumulation of vitamin A metabolites in the 

form of lipofuscin in RPE lysosomes interferes with critical functions such as autophagy 

and OXPHOS. Declining mitochondrial function can lead to redox state-mediated phase 

separation of proteins, resulting in the nucleation of drusen-like aggregates. Right panel: 

Genetic and environmental risk factors in AMD (complement activation, lipid dysregulation, 

etc.) can act as “tipping points” to exacerbate these deficits, increase drusen formation, and 

eventual cause RPE atrophy and photoreceptor dysfunction. Figure adapted from (La Cunza 

et al., 2021).
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