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ABSTRACT OF THE THESIS

Revisiting Prediction of Credit Card

Chargebacks in the Live Events Ticket Industry

Using an Updated Tidymodels Framework

by

Angel Sierra

Master of Applied Statistics in

University of California, Los Angeles, 2023

Professor Frederic R. Paik Schoenberg, Chair

Fraudulent credit card chargebacks continue to be an ongoing issue in the live event ticket-

ing industry. Using past work in the field as a guide, logistic, random forest, and k-nearest

neighbor models are trained and evaluated using a Tidymodels framework. To address

the imbalanced nature of the data set, upsampling, downsampling, SMOTE, ADASYN, and

ROSE resampling techniques were applied to the data set. Findings suggest that past results

are consistent in that unsampled random forest models perform best for predicting charge-

back fraud. The potential to streamline more machine learning models using a tideymodels

framework seems possible and would have potential benefit for company use. Sales Amount

associated with the order stands out as an influential variable in predicting chargeback fraud.
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CHAPTER 1

Introduction

1.1 What is a Chargeback?

The credit bureau Experian defines a chargeback as “a consumer protection tool you can

use to dispute a charge and reverse a transaction” [1]. Chargebacks are meant to be used by

customers to correct billing errors or potential fraud. In unpacking this definition provided

by Experian, some realizations arise. The chargeback process is a “tool” for the customer

in mind, suggesting that the concerns of the company are less important than those of the

customer. This sentiment reveals that with respect to chargebacks, credit card companies

prioritize customers over companies. The definition then states that chargebacks are a tool

used to “dispute a charge.” The chargeback process a lengthy one. One that begins with a

dispute between the cardholder and the issuing bank. The merchant’s payment processor

then removes the transacted amount from the merchant’s account and informs the merchant

of the dispute claim. At this point the merchant is given the option to dispute that claim.

The merchant must provide evidence to dispute this claim. This is where the previously

mentioned sentiment has effect. It is the duty of the merchant to fight the chargeback, and

it is often the case that the bank will not find the evidence provided by the merchant as

sufficient to refund the amount removed from the merchant’s account. Chargebacks tend

to lean towards the customer. They are inevitable in every industry, but are particularly

an issue for live event ticketing. Credit card companies do not want to do business with

merchants with high rates of chargebacks. If chargeback rates exceed a certain percentage

of orders for an extended period of time, credit card companies will close their account with
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the merchant’s payment processor. These accounts are integral to a company’s survival.

There are three different types of chargebacks. There is merchant error, friendly fraud,

and true fraud. Merchant error chargebacks occur because of mistakes made on the part of

the merchant. For example, if a customer ordered five VIP tickets, but received five General

Admission tickets, they are within their rights to begin a chargeback dispute. While these

types of chargebacks are preventable and can be minimized, it is not the focus of this thesis.

Friendly fire are chargebacks that result from outside the power of the customer. They

are usually the result of an accidental purchase. These chargebacks will always occur and

are difficult to minimize. It is impossible to stop any customer from accidentally making

a purchase. True fraud are the chargebacks at the center of this thesis. These are the

chargebacks that are the result of credit card or account theft. These are chargebacks

that are difficult for companies to win in the chargeback process but can be minimized.

And because of the penalty associated with having too many chargebacks associated with a

payment processor’s account, there is an importance to minimize these occurrences.

The occurrence of true fraud chargebacks are rare. Less than one percent of all orders

are expected to be true fraud [2]. This is known as an imbalanced data set. There are known

approaches to address this issue, as will be discussed. Looking for details or aspects in these

true fraud chargebacks can be generalized so that when these details or aspects are seen

in other purchases, consideration from a non machine learning perspective can be taken to

decide whether these purchases may be fraudulent.

1.2 Past Work

In 2019, MAS alumni Kjell Sawyer implemented fifteen machine learning models on historic

ticket order data to predict which transactions could become fraudulent [3]. As a result of

the work, fraudulent chargebacks went down, and company time and money were saved. To

address the imbalanced nature of the data set, Kjell utilized four different resampling tech-

2



Figure 1.1: Modeling Technique Used by Kjell Sawyer

niques: upsampling, downsampling, Synthetic Minority Oversampling Technique (SMOTE)

sampling and Random Over-Sampling Examples (ROSE) sampling. With these four re-

sampled data sets and the unsampled data set, he applied three different models: logistic

regression, random forest, and k-nearest neighbors. This resulted in 15 models, as outlined

in Figure 1.1 [4]. 10-fold cross validation was used to help create metrics that could be

used to evaluate model performance. In his conclusion, the unsampled random forest model

performed the best.

1.3 Purpose

Since the completion of his thesis, there has been a change of payment processing accounts

within the company. An important feature with this new payment processor is the existence

of “risk score” associated with every purchase. This measure is designed to measure the

“likelihood that a payment is fraudulent” [5]. This will be added to new models. Instead of
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four resampling techniques, five will be utilized. Adaptive synthetic (ADASYN) sampling

will be included with the other four resampling techniques. Logistic regression, random

forest, and k-nearest neighbors were applied to all these samples, resulting in 18 different

models. Implementation of these models were done using tidymodels packages, with the

motivation to evaluate the ease of implementation. Easy implementation of these machine

learning models would allow for the streamlining of these type of models to similar data

sets. Recently, requests for checking orders for potential fraudulent transactions have gone

up. While the implementation of machine learning models is possible here, identification of

potentially fraudulent orders can also be done manually. This is done by examining details

of the orders. Kjell’s findings suggest that the quantity of tickets in an order is a significant

indicator of potential fraudulent orders. By examining current data with similar models,

past findings can be updated to determine what other factors may help signify chargeback

fraud.

The purpose of this thesis is 3-fold: to train new models on current data with a tidymodels

framework, to observe the effects of switching payment processors, and to attempt to update

current strategies for countering chargebacks.
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CHAPTER 2

Exploratory Data Analysis

2.1 Data Set

The data set is all orders made through an events ticketing company between the years 2021

through early 2023. It is important to note that COVID restrictions were lifted sometime

in 2021 [6]. The data set is very similar to the data set used in Kjell’s thesis. Both data

sets come from orders of the same type live event from the same geographic location. The

data set contains 59,581 orders, with 58,955 legitimate orders and 626 orders with fraudulent

chargebacks. Email address is recorded for every order, along with user birthday, full name,

and gender if filled in. Time and location of purchase are recorded and will be used as well.

Type of credit card used to make the purchase is also recorded. Models were trained using

19 predictor variables, with one outcome variable. Table 2.1 describes all variables used.

The correlation plot shows minimal correlation between the predictors. No data was

intentionally removed. This would include potential outliers. Because of how rare fraudulent

orders are, and because fraudulent orders may have extreme characteristics, outliers were

not removed from the data set.
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Variable Description

QUANTITY Number of Tickets in the Order

SALES AMOUNT Total Sales Amount of the Order

HOURS Difference between Purchase Time and Event Start Time

TIME Hour of the Day (24) of Purchase Time

LATITUDE User Latitude During Purchase

LONGITUDE User Longitude During Purchase

NCHAR Number of Characters in Email Address before @

EMAILNUMBERS Count of Numeric Characters in Email Address before @

RATIO Ratio of Numbers to Letters in Email Address before @

MONTH User Birth Month

DAY User Birth Day

YEAR User Birth Year

NAMELENGTH Number of Characters in User Full Name

PER.CONS Percent of Consonant Letters in User Full Name

CAP Number of Capital Letters in User Full Name

GENDER Stated Gender of User

DOMAIN Whether Email is .com Associated

OUTCOME RISK SCORE Risk Score Provided by Payment Processor

CARD BRAND Brand of Credit Card used by User

TYPE Outcome: LEGITIMATE or CHARGEBACK order

Table 2.1: Variable Description

6



Figure 2.1: Correlation Plot of the Predictors
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2.2 Descriptive Analysis

Smoothed density estimates of all variables were explored. QUANTITY represents the num-

ber of tickets in the order. Compared to the distribution of quantity of tickets between

fraudulent and legitimate orders, the density of legitimate orders decrease as number of tick-

ets increase, but with fraudulent chargebacks, the density increases slightly then decreases

as number of tickets increase. SALES AMOUNT represents the total sales of the order.

This differs from Kjell, which examined average price of tickets on the order. The average

price of an order with an associated chargeback is higher than that of a legitimate order.

HOURS represent the number of hours before the live event in which the order was placed.

Chargeback orders seem to occur more often closer to the date of the event than otherwise.

Less chargebacks seem to occur during the beginning and end of the 24 TIME hour cycle.

LAT and LONG represent the latitude and longitude of the location where the order was

made. There does not seem to a significant difference between legitimate and chargeback

orders in terms of geography. The number of characters in a user’s email, NCHAR, seems

to be smaller with chargeback orders than with legitimate ones. There does not seem to be

much of difference between the amount of numbers in the user email EMAILNUMBERS.

User birthday is broken into MONTH, DAY, and YEAR. The difference between chargeback

and legitimate densities seem to be similar. The densities of NAMELENGTH, the number

of characters in first and last name, seem to be slightly different between chargebacks and

legitimate orders. The same seems to be true for PER.CONS, the percent of consonant

letters in the user full name. The number of capital letters in the user full name seems to

skew towards having fewer for fraudulent orders. GENDER of user seems to be similar in

density between both kinds of orders. This variable is split into NA – 0, Male – 1, Female – 2,

Non-binary – 3, and Prefer-not-to-say – 4. DOMAIN is the domain of the email of the user.

It seems like being a chargeback is a subset of both coming from “.com” and not. CREDIT

CARD BRAND shows what brand of credit card was used for the purchase: Mastercard –

0, Visa – 1, American Express – 2, Other – 3. It seems that chargebacks are more likely to
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come from specific credit card brands. OUTCOME RISK SCORE indicates the likelihood

an order is fraudulent as provided by the payment processor, and it does seem that orders

with higher scores tend to chargeback. It can be noticed that in some of the graphs, the

chargeback curves are always smoother. This is in part due to the imbalanced nature of the

data set. Higher occurrences of specific values at specific ticket prices cause spikes at those

values, whereas for chargebacks, these value occurences do not occur at such frequencies,

and are not as well defined. All together, these density plot give a sense as to what variables

may be of interest in our machine learning models.
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Figure 2.2: Smoothed Density Estimate of Number of Tickets per Order. Chargeback orders

have a slightly higher mean number of tickets ordered.

Figure 2.3: Smoothed Density Estimate of Total Sales of Order. Chargeback orders have a

slightly higher mean total sales amount.
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Figure 2.4: Smoothed Density Estimate of Time Between Purchase Date and Event. Legit-

imate orders seem to occur earlier than chargeback orders, which seem to take place right

before the event.

Figure 2.5: Smoothed Density Estimate of Hour of Day Purchase was Made. Chargebacks

seem to occur at slightly different times of the day than legitimate orders.
11



Figure 2.6: Smoothed Density Estimate of Latitude of Purchase Location. Densitites seem

similar.

Figure 2.7: Smoothed Density Estimate of Longitude of Purchase Location. Densities seem

similar.
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Figure 2.8: Smoothed Density Estimate of Email Length. Chargeback orders seem to have

a fewer number of characters than legitimate orders.

Figure 2.9: Smoothed Density Estimate of Numbers in User Email. Chrageback orders seem

to have similar number of numbers in their emails.
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Figure 2.10: Smoothed Density Estimate of Email Address Number to Letter Ratio. Charge-

back orders seem to have a higher Ratio of Numbers to letters than Legitimate orders.

Figure 2.11: Smoothed Density Estimate of User Birth Month. Chargeback orders are not

as evenly distributed as legitimate orders.
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Figure 2.12: Smoothed Density Estimate of User Birth Day. There is more variation in User

Birth Day for chargeback orders than for legitimate.

Figure 2.13: Smoothed Density Estimate of User Birth Year. There is more variation in

User Birth Year for chargeback orders than for legitimate.
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Figure 2.14: Smoothed Density Estimate of User Name Length. Distributions seem similar.

Figure 2.15: Smoothed Density Estimate of Percent Consonants in User Name. Distributions

seem similar.
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Figure 2.16: Smoothed Density Estimate of Number of Capital Letters in Email. Distribu-

tions seem similar.

Figure 2.17: Smoothed Density Estimate of Reported User Gender. Distributions seem

similar.
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Figure 2.18: Smoothed Density Estimate of Domain. Densities seem similar.

Figure 2.19: Smoothed Density Estimate of Risk Score. Outcome risk scores for chargeback

orders seem higher on average than for legitimate orders.
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Figure 2.20: Smoothed Density Estimate of the Credit Card Brand. Chargebacks seem to

occur at higher rates with non Visa, Mastercard, and American Express credit cards.
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CHAPTER 3

Models

3.1 Logistic Model

When the predictor variable has a binary outcome such as 0 or 1, logistic regression is often a

reasonable approach. This is essentially a linear model that can predict the natural logorithm

of odds (log odds) which corresponds to a specific probability. Note that it is specifically the

natural log of odds as to maintain all values between 0 and 1. The corresponding relationship

between the log odds of any variable and the probability is shown in 3.1

px =
exp(x)

1 + exp(x)
(3.1)

The inverse can be taken to find the log odds given any probability with the logit function

as in 3.2

logit(p) = ln
p

1− p
(3.2)

The logistic regression model is a generalised linear model that uses the logit as a link

function [7]. A linear equation is used to predict the logit of a probability.

The lostistic regression function is often written as

p(x) =
1

1 + e−(β0+β1x1+...+βnxn)
(3.3)

20



This linear regressive model is then fit on the training data and is then fed the testing

data to output values between 0 and 1. Anything less than 0.5 would be classified as a

legitimate order and anything greater than 0.5 would be classified as a chargeback fraud.

3.2 Random Forest

Random Forests are ensembles of decision trees. Many decision trees are made for this

ensemble based on slight differences in the training data. The creation of these individual

trees encourages for a variety of differences between trees [7]. The collection of all these

decision trees results in a random forest. To classify with this random forest, votes are taken

from each tree and then the average is taken to determine the final classification of the given

sample. This can be seen in Equation 3.4

fprediction =
1

B

B∑
b=1

fdecision tree b(x) for b = 1, ..., B (3.4)

Because of the random nature of where the splits may occur for the decision trees, im-

purities may arise. For instance, if one tree splits on one variable and another tree splits

on a different variable, the variable of more importance can be determined, depending on

which variable allows for a more likely prediction. Given a total of T classes (the classifier is

binary in this case) and p(i) is the probability of picking a datapoint from class i, then the

Gini Impurity is in Equation 3.5

G =
T∑
i=1

p(i)(1− p(i)) (3.5)

This impurity allows for determination as to which variables serve more importance in

classifying the data.

21



3.3 k-nearest Neighbor

k-nearest neighbor takes in a training set knowing which orders are chargebacks and which

are not. Each order represents it’s own point in the model and the distance between the

points are measured using the values of the predictor variables [7]. For example, two orders

that were made by somebody who shares the same birthday will be close in distance in

terms of birthday variables, but may be further away with email characteristics. Note that

for this distance, chargeback orders are expected to be nearer to each other than to legitimate

orders. So given a testing point, the k-nearest neighbors can be examined to see if they are

chargebacks or not. If the majority are chargebacks, it is likely the test point is one as well.

The distance is measured often with a Euclidean manner (3.6).ˇ

d(x, y) =

√∑
(yi − xi)2 (3.6)

Due to the number of dimensions in the data, Manhattan distance (3.7) is chosen. Default

parameters were selected for this model.

d(x, y) =

√∑
|yi − xi| (3.7)

3.4 Accuracy Metrics

Table 3.1 refers to the confusion matrix. A is true positive, B is false positive, C is false

negative, and D is true negative. In this thesis, A is legitimate orders, D legitimate charge-

backs, C is legitimate orders classified as chargeback, and B is chargebacks but are classified

as legitimate orders.

10-fold cross-validation was used to measure the performance of the models. The follow-

ing metrics were used to evaluate the performance of a model: ROC accuracy, Accuracy,

Sensitivity, and Specificity. ROC accuracy is the area under the ROC curve comparing the
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Table 3.1: Confusion Matrix

Actual

Legitimate Chargeback

Predicted
Legitimate A B

Chargeback C D

relation between true positive rate and false positive rate. Accuracy is the percentage of

correct predictions made by the model. Sensitivity is the true positive rate (3.8), and here

represents the number of correctly identified legitimate orders.

Sensitivity =
A

A+ C
(3.8)

and Specificity is the true negative rate (3.9), and here represents the number of correctly

identified chargeback orders.

Sensitivity =
D

B +D
(3.9)

10-fold cross-validation allows for the assessment of model performance without entirely

predicting on the training set, as shown in Figure 3.1 [8]. A confusion matrix was also used

to evaluate each model. Because of the imbalanced nature of the data set, the true negative

rate is one of the most important factors to consider when measuring the performance of

the model. This represents the number of true fraudulent chargebacks that the model was

able to predict. Also worth noting, it is important to minimize false negative rates. Again,

legitimate orders are positive, and chargebacks are negative in our confusion matrix. These

would be orders that will not have any chargeback associated with them but will be predicted

by the model to have been fraudulent. If these orders were believed to be fraudulent, and

were stopped, they would represent lost money from legitimate orders.
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Figure 3.1: Resampling Procedure Schematic
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CHAPTER 4

Model Implementation

4.1 Resampling Techniques

The unsampled data set is simply the raw data. The goal of upsampling is to address the

imbalanced nature of the data set. Rows will be replicated in the data of the minority class

until they match the number in the majority class. Downsampling has a similar goal, but

will randomly remove rows of the majority class until they match the number of rows in the

minority class.

The ROSE samples are created from a sample of synthetic data that is created with the

aim of balancing the features of the minority and majority class. This technique based on

a smoothed bootstrap re-sampling is followed as outlined in ROSE (Menardi and Torelli,

2014) [9].

SMOTE sampling creates more rows of the minority class by using a nearest neighbor

algorithm. SMOTE sampling involves the over-sampling the minority class in a process

that creates synthetic minority class examples. A random chargeback is selected and then

a neighboring legitimate order is selected. The resulting synthetic data would be a value

between these two [10].

ADASYN sampling applies an adaptive synthetic algorithm instead of a nearest neighbor

algorithm to achieve the same feat [11]. The number of majority neighbors of each minority

group determines the number of synthetic rows of data to be generated from the minority

group. Essentially, for each non chargeback neighbor a chargeback has, a new synthetic
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chargeback neighbor is added, entirely based on the pool of preexisting chargebacks.

4.2 Tidymodels Framework

Implementation of all the models were done using a tidymodels framework, and done using

R version 4.2.1 in an RStudio IDE on an Apple M1 Pro[12]. The tidymodels framework

is a collection of packages for machine learning and model building that are all done using

tidyverse principles. The motivation for using this framework is to see how easy these

models are to create and manage for possible streamlining purposes. The data set is first

split between a training and testing set, with presence of chargebacks being stratified so that

a proportional number of chargebacks were present in the training and testing sets. 10-fold

cross-validation was performed on the training set to allow for resampling to be used for

model performance [13].

The first big step in the tidymodels framework is to build a “recipe.” This is a prepro-

cessing step that helps transform data sets into objects that can be taken into and fitted

by models. Data cleaning occurs in this step. Six different recipe objects were created at

this point, one for each sampling technique (unsampled, upsampled, downsampled, ROSE,

ADASYN, and SMOTE). In each of these recipes, the data was centered and scaled, and it

is worth noting that conversion of qualitative variables to indicator variables would happen

at this step.

Separately, model objects are created using certain specifications. Models are initiated

in this step, and specifications are loaded in using tidyverse principles, indicating which

“engine” to run – which package or system to be used to fit the model. Logistic models are

initiated with the “glm” package. Random forest specifications were set to use the “ranger”

package, and with 1000 trees. The nearest neighbor specifications were set the use the “knn”

package. All were set to be classification models. It is also important to note that tuning

parameters can be set at this step. The example in Appendix A helps outline tidyverse
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principles.

To help put everything together, “workflow” helper objects need to be created. These

helper objects help manage modeling pipelines that allow previously made pieces to be added

in. A workflow is created for each sampling technique and each created recipe is added to

these “workflow” objects using tidyverse syntax.

The final step for creating the models is to fit the resamples to the workflow helper

objects. Resamples and performance metrics are specified here. Models were performed

with parallel processing to speed run time. With six different workflow objects and three

different types of models to be fitted, 18 models were fitted and evaluated in total. As an

example, Appendix A contains code used to fit a random forest model on upsampled training

data.
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CHAPTER 5

Model Evaluation

5.1 Confusion Matrix and Accuracy Metrics

Accuracy, ROC accuracy, sensitivity, and specificity were all used to evaluate model perfor-

mance. These estimates are pulled from the resampling results of the 10-fold cross-validation

done on the training data. Because of this, confusion matrices are made with the resampled

data sets. Accuracy is an important metric, but it does not encompass everything to be are

examined. The goal is to not only find a model that accurately predicts which orders will

become fraudulent, but to also not inaccurately predict too many orders to be fraudulent.

Because of this, models will not not only look for high accuracy and ROC accuracy, but also

high specificity. The evaulation metrics for the logistic models are shown in Figure 5.1, for

the random forest models in Figure 5.2, and for the knn models in Figure 5.3.
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Figure 5.1: Accuracy, ROC Accuracy, Senitivity, and Specificity of Logistic Models
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Figure 5.2: Accuracy, ROC Accuracy, Senitivity, and Specificity of Random Forest Models

Figure 5.3: Accuracy, ROC Accuracy, Senitivity, and Specificity of knn Models
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The visualizations of the confusion matrices provide an intuitive sense as to which models

perform better. The models must not have too many false negatives - these being legitimate

orders that are predicted to be chargebacks. The models that follow these metrics include

the unsampled logistic regression model (Fig 5.4), the unsampled k-nearest neighbor model

(Fig 5.6), and all but the ROSE sampled random forest model (Fig 5.5). In looking at the

visualizations for the metrics used to evaluate the models, the unsampled logistic regression

model outperformed the other logistic regression models in terms of ROC accuracy and ac-

curacy. The unsampled k-nearest neighbor model also outperformed the other knn models

with the same metrics. For the random forest models, all but the ROSE and downsam-

pled models performed similarly. The unsampled models outperformed the other sampled

models. This is striking to note, as the purpose of sampling the data set is to address the

imbalanced nature of it. It is here that it is acknowledged that it seems that in trying to

adjust for this imbalance, the models tend to make more false positives. This was also seen

in Kjell’s thesis, where in the end, he selected the unsampled random forest as the best

model. Performance metrics and confusion matrices also suggest that the unsampled ran-

dom forest model performed the best. Examining the ROC curves between the unsampled

random forest model (Fig 5.7) and the upsampled random forest model (Fig 5.8) from the

cross-validation resamples would also further this conclusion.
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Figure 5.4: Visualization of Confusion Matrix for Logistic Models
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Figure 5.5: Visualization of Confusion Matrix for Random Forest Models

Figure 5.6: Visualization of Confusion Matrix for Random Forest Models
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Figure 5.7: ROC Curves for Unsampled Random Forest Model

Figure 5.8: Visualization of Confusion Matrix for Random Forest Models
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Figure 5.9: ROC Curve of Final Model Fitted on Testing Data

5.2 Final Fit

To assess the final model’s performance, the model was used to make predictions on the

original testing data. In tidymodels, this is done with the use of the “last fit()” function

that is added to the workflow object of interest. The model is fitted to the testing data and

is evaluated. The testing data contained 14,896 orders, of which 153 were chargebacks. The

model correctly identified 28 of these orders to be fraudulent, while incorrectly predicting 3

orders to be fraudulent. A ROC curve is provided of this model (Fig 5.9).
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CHAPTER 6

Conclusion

6.1 Model Discussion

The Unsampled Random Forest Model’s ability to correctly predict legitimate orders is very

impressive, and its ability to predict true chargebacks is much to be desired. Only a bit

more than 18% of fraudulent orders were detected with this model. It is important to note

here that this percentage could have easily reached 80% instead of 18%. For instance, the

downsampled random forest model correctly predicted 80% of chargeback orders as such,

but because of the restriction to minimize the number of false negatives, the prior model

was selected.

What then can be learned from this model? Recent inquiries for manual fraud checks

for events susceptible to high chargeback rates have gone up. The process of these manual

fraud checks involves examining ticket orders and finding patterns that could suggest possible

fraudulent behavior among the purchases. These manual checks are done without the use

of machine learning models. By knowing what variables are of importance to the model

for these predictions, possible insight can be gained that could influence how future manual

checks go.

The unsampled random forest model can accurately predict a subset of the chargebacks

without too many false negatives. Feature importance is based on the mean decrease in

impurity within each tree of the random forest. The importance of these features can be

graphed and examined. Fig 6.1 shows that for this model, outcome risk score, latitude,
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Figure 6.1: Most Important Features of Unsampled Random Forest Models

longitude, and sales amount of the order are significant factors in determining chargebacks.

In the manual checks for fraudulent orders, outcome risk scores, latitude, and longitude are

indeed factors that are considered, but not as much order sales amount. This suggests that

it may be of interest in future manual checks to use sales order amount as an indicator of

potential chargeback fraud.

The concern with selecting the unsampled random forest model as opposed to the down-

sampled random forest model is that the latter would have too much of a false negative rate.

In manual checks these are less of a concern, since doing these checks in a manual nature

allow for more of a control on falsely misidentifying chargebacks. Given this, features were of

importance can be exmanined in the downsampled random forest model and with caution,

consider them as well for future manual checks. With a similar graph, the most important

features are outcome risk score, sales amount, hours, and number of capital letters in email

of user. This confirms that sales amount may be a significant factor that is not currently

being used for manual checks. There may be some merit in checking the impact of when

37



Figure 6.2: Most Important Features of Downsampled Random Forest Models

the order was placed, but again caution should be used. Number of capital letters in a user

email is misleading. There could be many different reasons why an email may have capital

letters and discerning a fake email from a legitimate one would involve more than just the

number of capital letters in it.

6.2 Final Thoughts

In conclusion, the three main purposes of this thesis were accomplished. Firstly, new models

were trained with current data utilizing the tidymodels framework. Creation of these models

confirm the findings that unsampled random forests seem to perform best in predicting

chargeback fraud. Secondly, with the switch of payment processors, the implementation

of “outcome risk score” allows for significant aide in identifying and preventing potential

chargeback fraud. This can be seen with how “outcome risk score” ranks the highest in

terms of importance in both the unsampled random forest model and the downsampled
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random forest model. Lastly, updating current strategies for countering chargebacks will

include examining factors of interest that may be indicators of potential fraud that were not

previously being used. These would include sales amount of the order and the number of

hours the purchase occurred before the live event.

The tidymodels framework for implementing models does seem possible for streamlining

similar models with other datasets. The use of tidyverse principles allow for an intuitive

and straightforward implementation and evaluation of machine learning models. If one is

familiar with tidyverse syntax and grammar, these models can be made with ease. Another

advantage would be the ability to repeatedly use the same “recipe” objects for pre-processing

data sets. One recipe that details how to prepare data for models that can be used for any

data set is very convenient. The ability to use tidyverse principles also allow for changes to

any workflow, permitting the possibility to iterate through a variety of model designs and

parameters. The implementation of tidymodels for future model building seems like it would

be a worthwhile investment, but would require further commitment and initiation.
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APPENDIX A

R Code for Random Forest Model with Upsampled

Data

library(rsample)

library(recipes)

library(themis)

library(parsnip)

library(workflows)

library(tune)

#Split the data into training and testing

set.seed (123)

cell_split <- initial_split(df , strata = CHARGEBACK)

cell_train <- training(cell_split)

cell_test <- testing(cell_split)

#10 fold cross validation

set.seed (234)

cell_folds <- vfold_cv(cell_train)

#lets make the intial recipes

up_sample <- recipe(CHARGEBACK ~ ., data = cell_train) %>%

40



step_upsample(CHARGEBACK)

#lets make some models to test

rf_spec <- rand_forest(trees = 1000) %>%

set_engine("ranger",importance= "impurity") %>%

set_mode("classification")

#Workflows

glm_wf_up <- workflow () %>%

add_recipe(up_sample)

#Lets fit our models: random forests

doParallel :: registerDoParallel ()

up_rf <- glm_wf_up %>%

add_model(rf_spec) %>%

fit_resamples(

resamples = cell_folds ,

metrics = metric_set(roc_auc , accuracy ,

sensitivity , specificity),

control = control_resamples(save_pred = TRUE)

)

#Evaluate Random Forests Model with Metrics

collect_metrics(up_rf)

#Confustion Matrix

up_rf %>%
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conf_mat_resampled ()

#ROC curve

up_rf %>%

collect_predictions () %>%

group_by(id) %>%

roc_curve(CHARGEBACK , .pred_0) %>%

autoplot ()

#Final fit

final_fit <- glm_wf_down %>%

add_model(rf_spec) %>%

last_fit(cell_split)

#Important features

final_fit %>%

extract_fit_parsnip () %>%

vip(num_features = 10)
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