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PRIMER

Non-muscle myosins control the integrity of

cortical radial glial endfeet

Li Wang1,2, Arnold R. KriegsteinID
1,2*

1 The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of

California, San Francisco, San Francisco, California, United States of America, 2 Department of Neurology,

University of California, San Francisco, San Francisco, California, United States of America

* Arnold.Kriegstein@ucsf.edu

Radial glial cells, the stem cells of the cerebral cortex, extend a long
basal fiber that ends in basal endfeet. A new study in PLOS Biology

found that non-muscle myosins control basal endfoot integrity to
regulate interneuron organization.

Radial glial cells (RGCs) are neural stem cells in the developing cerebral cortex responsible for

producing neurons and glia. They have an elongated bipolar morphology that spans the thick-

ness of the developing cortex. RGC somata are located in the ventricular zone and connect to

the ventricle through apical endfeet (Fig 1). On the basal side, they extend a long basal fiber

that contacts the basement membrane in the pia matter through basal endfeet (Fig 1). Basal

endfeet are embedded in a unique niche between the marginal zone and the pia. They receive a

wealth of extrinsic cues, including retinoic acid and growth factors that regulate RGC prolifer-

ation [1]. Conversely, the basal fibers and endfeet provide physical and molecular guidance for

neuronal migration [2,3]. However, the molecular composition of these basal structures and

the mechanisms by which they are regulated are largely unknown.

In this issue of PLOS Biology, D’Arcy and colleagues determined the proteomic composi-

tion of basal endfeet in mice through a combination of microdissection and proximity proteo-

mics [4]. They identified 47 proteins that are abundant and enriched in basal endfeet relative

to the rest of the RGC. These include extracellular matrix proteins, microtubule-associated

proteins, and actomyosin components. Non-muscle myosin II heavy chain isoforms, including

MYH9 and MYH10, were among the most enriched proteins from the mouse endfoot prote-

ome. Interestingly, transcripts ofMyh9 andMyh10 are localized to basal endfeet with distinct

expression patterns, suggesting that they are locally translated and may serve different func-

tional roles during development.

To understand the possible importance of MYH9 and MYH10 for endfoot morphology and

function, the authors generated conditional knockout (cKO) mice to remove MYH9 or

MYH10 from RGCs. They found thatMyh9 cKO RGCs had fewer and less complex endfeet

that protruded abnormally through the basement membrane into the pia (Fig 1). In contrast,

Myh10 cKO RGCs gradually lost apical and basal endfoot attachment during late neurogenesis,

leading to their displacement from the ventricle (Fig 1). The divergent phenotypes ofMyh9
andMyh10 cKO RGCs highlight the distinct functions of each non-muscle myosin isoform in

controlling endfoot morphology and RGC integrity.
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Do the abnormal endfeet induced byMyh9 andMyh10 cKO impact surrounding cells? The

authors examined the general architecture of the marginal zone, which, among other func-

tions, serves as one of the major routes for interneuron migration to the cortex. They found

LHX6+ interneurons detached from the basement membrane in bothMyh9 andMyh10 cKO

mice (Fig 1). In addition, in theMyh10 cKO cortex, where basal endfeet detached from the

basement membrane, there was an approximately 40% increase in LHX6+ interneurons in the

marginal zone (Fig 1). Together, these results demonstrate that RGC endfeet are crucial for

both interneuron organization and number in the marginal zone of the developing cortex.

This study uncovered the proteomic composition of RGC basal endfeet and identified that

non-muscle myosins are not only enriched in the endfeet but are also required to maintain

RGC integrity. One question that naturally arises is how MYH9 and MYH10 regulate RGC

endfeet position and attachment, respectively. Non-muscle myosins can inhibit cellular pro-

trusions by modulating actin dynamics [5]. Thus, MYH9 may limit basal endfeet from crossing

the basement membrane through a similar mechanism. Adhesion molecules, including integ-

rins, are required for the attachment of RGC endfeet to the basement membrane [6]. MYH10

could be required for the interaction between actomyosin and adhesion molecules to promote

endfoot attachment. Future work is warranted to determine if these potential mechanisms

hold true. Interestingly, RGC endfeet normally detach toward the end of cortical development

as part of the transformation of RGCs into astrocytes [7]. One fascinating question would be

whether non-muscle myosins are also involved in this process and whether their removal

accelerates the conversion of RGCs to astrocytes.
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Fig 1. Non-muscle myosins MYH9 and MYH10 control RGC basal endfoot integrity to regulate interneuron organization. InMyh9 cKO cortex, RGCs are less

complex basally and have fewer basal endfeet; the basal endfeet protrude abnormally through the basement membrane; interneurons detach from the basement

membrane. InMyh10 cKO cortex, RGCs gradually lose apical and basal endfoot attachment; the number of interneurons in the marginal zone increases by ~40%. It

would be interesting to determine if migration and organization of cortical plate neurons are also affected by endfoot detachment. BM, basement membrane; cKO,

conditional knockout; CP, cortical plate; MZ, marginal zone; RGC, radial glial cell; SP, subplate; VZ/SVZ, ventricular zone/subventricular zone.

https://doi.org/10.1371/journal.pbio.3002032.g001
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D’Arcy and colleagues highlight the crucial role of RGC basal endfeet for interneuron orga-

nization in the marginal zone and point to developmental defects upon disruption of the end-

feet. These findings are consistent with previous human genetic studies indicating that both

MYH9 andMYH10 are associated with neurological disorders including microcephaly and

developmental delay [8,9]. In the future, it would be important to determine whether and how

RGC endfoot dysfunction caused by these mutations contributes to later neurological pheno-

types. This could be done by investigating the long-term impact ofMyh9 andMyh10 RGC

cKO in mouse cortex on cortical organization. Given the importance of radial fibers and end-

feet of RGCs for neuronal migration, the allocation of excitatory and inhibitory neurons in the

mature cortex may also be affected in the cKO mice. Indeed, the increase in the number of

interneurons in the marginal zone ofMyh10 cKO mice suggests a potential disruption of inter-

neuron radial migration from the marginal zone to the cortical plate, highlighting the possible

existence of more extensive cortical migration defects.
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