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ABSTRACT OF THE DISSERTATION 

Exposure, Vulnerability and Adaptation to Heat and Wildfire in the Southwestern United States 

by 

Noam Rosenthal 

Doctor of Philosophy in Environment and Sustainability 

University of California, Los Angeles, 2023 

Professor Alan Irwin Barreca, Co-Chair 

Professor Miriam Elizabeth Marlier, Co-Chair 

The dissertation presents three papers examining exposure to extreme heat and wildfire in 

the Western United States. In the first chapter, I develop a framework for analyzing transit 

passenger exposure to extreme heat in Maricopa County and then implement an optimization 

algorithm for minimizing wait times through the reallocation of buses across the transit network. 

In simulating the reconfiguration of buses, I find the potential for small adjustments to produce 

large reductions in wait time for vulnerable populations. This work also formulates a way to 

measure passenger vulnerability with an activity-based model that accounts for the distinct 

demographics of transit riders.  

In the second chapter, I study the prevalence of ground level wildfire smoke, specifically 

particulate matter 2.5µm in diameter, in California during the 2020 wildfire season - the most 

severe wildfire season ever recorded by the state. For the first time, I study how frequently 

extreme smoke levels at surface level coincide with extreme heat in space and time. These 
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interactions can influence adaptive behaviors and studies show evidence of increased 

hospitalizations when these hazards co-occur. I find that a majority of Californians experienced 

at least one day of concurrent heat and smoke in 2020 and that these events were concentrated in 

more rural areas of the State. This case study motivates the integration of multi-hazard 

frameworks in both public and private sector risk planning. 

In the final chapter, I examine wildfire risk factors for residential property in California. I 

leverage a dataset collected by CAL FIRE enumerators who record the features of a home and 

categorize the level of damage after every named incident. I enhance this dataset using remotely 

sensed detections of wildfire to impute the date when a home burned from which I then estimate 

time-varying weather risk factors like humidity, temperature and wind as well as fire intensity. I 

then use these features to train a predictive model to be used by homeowners or insurance 

carriers to better estimate the vulnerability of their property.  
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CHAPTER ONE: Introduction 

This dissertation presents new frameworks for climate risk management. The first chapter 

challenges conventional hardening of physical assets to withstand more extreme stressors 

through capital improvements. For example, instead of relying solely on shade structures or 

urban forestry to reduce heat exposure of bus passengers, I demonstrate how the revised 

operation of existing assets can realize similar benefits. Operational changes like the one I 

simulate offer flexible responses to new conditions and constraints, what is referred to as 

“adaptive resilience”. This framework differs from otherwise fail-safe strategies in which 

infrastructure is designed to withstand stresses for the most extreme, plausible scenario. These 

designs are considered “brittle” in that there are no contingencies if they fail. Furthermore, fail-

safe infrastructure often relies on physical reinforcement that risks obsolescence when the 

underlying dynamics of the earth system - such as temperature projections - change. In turn, 

large amounts of capital and time are needed to reverse course, rendering people and physical 

assets vulnerable. In contrast, operational changes such as the changes to bus routing and 

frequencies that I examine require less capital and time to implement. They are also amenable to 

changes in technology or human behavior - for example, shifts to remote work or budget cuts. 

Chapter one also demonstrates how high-resolution traffic data enables more equitable 

policy and planning. Specifically, my use of an activity based model where individual trips are 

modeled at the person-level with demographic details for each “passenger” allowed me to 

consider the age, car-dependency and income of ridership when modeling vulnerability. This 

improves on the standard application of resident population metrics to represent commuters who 

travel through an area and whose sociodemographics deviate from the population average. The 

advent of activity-based models augurs significant improvements in equitable city planning. 
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The results from my second chapter pose a new question to risk planners: can someone’s 

adaptive behavior to one climate stressor inadvertently increase their exposure or vulnerability to 

another? It is a particularly relevant question when two hazards affect the same location at the 

same time. To illustrate, if someone seeks shelter from extreme heat in their non-air-conditioned 

apartment by going to the beach, may they be exposing themselves to worse air quality? 

Interactions may also exist physiologically - for example, increases in blood pressure stemming 

from heat may cause respiratory sensitivity for someone inhaling wildfire particulate matter. 

Physiological interactions, while not a part of the dissertation, are examined in a follow-on study 

alongside researchers at University of California, San Diego.  

My final chapter specifies a model for insurers to estimate the likelihood of a wildfire 

damaging a building. Whereas existing studies quantify damage risk associated with topography, 

vegetation canopy and building construction, they overlook the effects of wildfire intensity, 

temperature, wind and dryness. Yet weather and fire intensity influence fire ember production, 

firefighter behavior and the combustibility of a structure. Unlike building modifications that rely 

on error-prone human data collection, fire intensity can be directly observed for historical events 

and used to train empirical models. Fire intensity can also be integrated with forecasting models 

to explore warming’s impact on the risk of building damage from wildfires.  

Notably, this model has practical implications for insurance availability and affordability 

in California. Empowering insurers to quantify avoided losses may enable discounts on 

insurance premiums as an incentive for private risk mitigation as well as more accurate 

underwriting. An efficient insurance marketplace helps homeowners protect their wealth and 

shelter while transmitting price signals to preemptively discourage high-risk land use.  
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Future Adaptation  

This dissertation highlights the risks of engineering infrastructure to withstand “worst-

case” scenarios when the intensity, frequency and duration of climate hazards are uncertain. I 

quantify heat-smoke co-occurrences to illustrate one source of such uncertainty. Through my 

simulation of fleet reallocation across Phoenix's Valley Metro bus network, I demonstrate an 

adaptation strategy that can operate under uncertainty by responding to changes in conditions 

(e.g., temperature) and resources (e.g., buses). I also study the predictability of wildfire damage, 

recognizing insurance as a critical tool for “adaptive resilience” because it allows for 

infrastructure failure (e.g. building destruction) while enabling physical assets to bounce back to 

a more resilient state (e.g. fire-resistant construction in a lower-risk location).   

The characteristics of exposure and vulnerability that I document point to key 

considerations in adaptation planning. First, where possible, policymakers should design 

infrastructure to render multi-functional benefits that can scale the returns of any investment. For 

example, cooling shelters that protect people from heat should be equipped with HEPA air filters 

that can remove pollutants since I find that heatwaves are often accompanied by reductions in air 

quality. Additionally, transit systems may provision face masks, water or hazard information as a 

service to passengers who are more vulnerable and exposed than “typical” residents due to their 

lower incomes and tendency to walk to stations.  

Second, public and private stakeholders must account for interactions between 

simultaneous events when forecasting climate impacts. For example, evidence of increased 

morbidity and mortality due to heat-smoke interactions can help inform hospital staffing to 

ensure the availability of care. Public notification systems informing the public of health risks 
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due to smoke or heat should also caution against behaviors with spillover effects. To wit, turning 

on a window-AC unit during a heat wave will exacerbate smoke exposure.  

Finally, democratizing information on climate risk can support private actions to mitigate 

vulnerability and promote adaptive capacity. My development of a model that predicts building 

damage from wildfires enables homeowners to take actions irrespective of federal investments in 

prescribed burning or mechanical thinning. Empowered homeowners can also change their 

behavior and implement new technologies more quickly and nimbly than systems that rely on 

institutional decision making. They may also incorporate local knowledge in ways that improve 

the efficiency and efficacy compared to public programs. 

It’s also worth noting that the above recommendations are embedded in systems of 

political and community governance. In the context of insurance, the application of any building 

vulnerability model will be subject to the state’s department of insurance, which under 

Proposition 103 has final authority over insurance premium rates that a carrier can charge. 

Officials who are elected by homeowners have few incentives to rule in an insurance company’s 

favor, even if the company proposes actuarially sound rates. 

Interdisciplinary Challenges in Measuring Vulnerability and Exposure 

My three chapters also highlight the importance and challenge of considering social, 

ecological and technological systems when quantifying exposure and vulnerability to extreme 

heat and wildfire. In the first chapter of this dissertation I focus on the potential for technology to 

reduce exposure by intelligently deploying buses in a transit network. Then, using an activity-

based model, I incorporate social factors like income, car ownership and age to capture 

vulnerability. However, there are many other ecological and social variables that could improve 
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my estimates of exposure and vulnerability, respectively. For example, mean radiant temperature 

would better approximate thermal comfort than the regular temperature values I used. 

Additionally quantifying the prevalence of air-conditioning in one’s home or workplace would 

help contextualize the contribution of transportation to one’s cumulative daily exposure. 

Fortunately, improvements in synthetic datasets and physical modeling of weather are enabling 

more comprehensive exposure and vulnerability assessments in these contexts. 

In the second chapter, I map the frequency, intensity and duration of extreme heat and 

extreme smoke individually and jointly. Notably, my measurement of exposure in this chapter 

accounts for ecological dynamics alone. Lacking additional data on social variables such as one’s 

awareness, work environment or housing type as well as data on technological interventions like 

air filters and air quality warning systems, an individual’s exposure cannot be precisely 

measured. Future improvements in the modeling of particulate emission and transport, including 

influences of the built environment and ownership of personal air filters, are critical for better 

measuring human exposure to extreme wildfire smoke. Additionally, efforts to quantify wildfire 

impacts in the future must account for hazard interdependencies; wildfire risk cannot just be 

measured in acres burned, researchers must also quantify the number of subsequent landslides, 

the amount of particulates emitted and, as I highlight, the intensity of heat that co-occurs. 

My final chapter focuses on the vulnerability of buildings to wildfire. To date, 

researchers have focused exclusively on technological aspects like building characteristics and a 

subset of ecological factors, like topography and canopy cover, to identify drivers of risk. I 

expand on these efforts, including fire intensity and weather variables. These factors improve our 

understanding of the ecological drivers of risk and indirectly reveal social drivers because of the 

influence of wildfire spread rate on firefighter behavior. Still, information on the exact locations 



 6 

of firefighting crews, hardening improvements in the form of vent meshes as well as data on 

homeowner occupancy, would all enhance the performance of my model. Additionally, higher 

precision weather models that can account for wildfire feedback on wind speed and precipitation 

would also improve my results.  

To summarize, this dissertation reveals three challenges that should inform future 

research. First, is the generation of data on human behavior and the indoor/outdoor environments 

they navigate. These data are critical for true estimates of exposure and adaptive behaviors. 

Smartphone tracking with appropriate privacy considerations, an expansion of existing transit 

and time use surveys and higher resolution information about the built environment can help 

bridge this gap. Second, is the complete, accurate and precise reproduction of natural hazard 

events. Better resolved, spatially contiguous data on heat and smoke, reported at the same 

spatiotemporal resolution with which human behavior and demographics vary can unlock natural 

experiments to elucidate human responses to environmental stressors. Finally, there is a need for 

social and political scientists to help translate new insights into effective policy, urban planning 

and ecosystem management. Despite the potential for rerouting to reduce passenger heat 

exposure or defensible space to reduce a home’s combustion likelihood, unions and agencies that 

represent bus drivers or municipalities that enforce brush clearance may have contravening 

interests, limited resources or lack the jurisdiction to unilaterally implement change. Without 

strong governance, even the best ideas will lie dormant.  

Final Remarks 

Accelerated warming portends rapid increases in the frequency and magnitude of wildfire 

smoke and extreme heat events. Meanwhile cities in the Southwestern United States are among 
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the fastest growing communities in the country. Their enduring appeal is a testament to the 

impressive technologies humans have crafted to stay cool in the desert sun, to insure one another 

when disaster strikes and to filter the air inside one’s home as wildfires rage. As these hazards 

intensify and become less predictable, society will need to respond in-kind with continued 

technical ingenuity, deeper understanding of natural systems and social structures to ensure that 

these communities can continue to coexist with the singular environments that define the 

American Southwest. 
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CHAPTER TWO: Adaptive transit scheduling to reduce rider vulnerability during 
heatwaves 

ABSTRACT 

Extreme heat events induced by climate change present a growing risk to transit 

passenger comfort and health. To reduce exposure, agencies may consider changes to schedules 

that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper 

develops a schedule optimization model to minimize heat exposure and applies it to local bus 

services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider 

characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by 

as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably 

characterized by diminishing returns, owing to skewed ridership and the inverse relationship 

between fleet size and passenger wait time. Access to spare vehicles can also ensure significant 

reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, 

presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure. 

INTRODUCTION 

It is widely believed that the sustainable growth of cities relies on increasing public 

transit use (Dulal, Brodnig & Onoriose 2011; Hodges 2010). However, increasing frequency, 

duration, and severity of heat waves and other extreme weather events caused by climate change 

threaten both engineered infrastructure that supports public transit as well as passenger comfort 

and health. Phoenix, Arizona, with average maximum daytime temperatures of 111°F during 

summer months, and the fastest growing population in the United States, is particularly 

vulnerable to extreme heat (Chow et al. 2012; Census Bureau 2020; National Oceanic and 

Atmospheric Administration 2020). As climate change advances, the frequency of extreme heat 
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events in Phoenix is projected to increase 14-fold from 2.0 to 24.4 annual events by the year 

2070 (Grossman-Clarke et al. 2010).  Importantly, lower-income communities that have less 

residential air conditioning, fewer cooling centers, and streetscapes lacking vegetation, are more 

susceptible to the impacts from extreme heat (Chow et al. 2012; Voelkel et al. 2018). Households 

residing in these areas are also more dependent on public transportation and may be 

disproportionately exposed to heat during travel (Taylor & Fink 2003). 

Existing studies show that seasonal changes in temperature and weather push would-be 

transit users to different modes of travel and may result in the delay or cancellation of non-

essential trips (Liu, Susilo, & Karlström 2017). The drivers of these behavior changes are 

numerous and complex. For one, the discomfort of waiting for transit is exacerbated under 

inclement weather conditions (Guo 2007, Singhal, Kamga & Yazici 2014). Additionally, the 

journey to the bus, usually made by foot, can be physically taxing during high temperatures, 

especially for the elderly and persons with a disability or a chronic illness. These responses are 

furthermore shaped by the culture, climate (average weather) and built environment of an area 

(Böcker, Dijst & Prillwitz 2013; Dijst, Böcker & Kwan 2013; Liu, Susilo & Karlström 2017). 

 Transit agencies are already equipped with a range of tools and actions to shield 

passengers during periods of unpleasant and potentially dangerous weather. These include 

investments in shading structures and tree cover in the surrounding areas of a bus stop (Lanza & 

Durand 2021). Air conditioning on vehicles and in nearby retail can also be critical for reducing 

exposure. Physical infrastructure investments are not the only tool available to agencies, 

however. 
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Adjusting transit schedules to reduce waiting times can lower the duration of exposure 

without needing additional engineered infrastructure and can be implemented quickly. When 

opting to adapt transit schedules, agencies may avoid the expenses of large capital investments, 

help maintain ridership levels, as well as limit health risks. Understanding the potential benefits 

of reallocation as a means of adapting to extreme weather and how disruptive such schemes 

would be to current fleet assignments could help agencies make informed decisions for their 

customers. This study develops and implements a rerouting model for minimizing passenger heat 

exposure for the regional transportation agency in Phoenix, Arizona. 

Heat, transit and human health 

Despite the extensive efforts to understand the effects of weather on travel behavior, the 

negative impact of heat on ridership has not been sufficiently integrated into existing transport 

planning processes (Liu et al. 2017). Moreover, these studies neglect the potential effects heat 

may have on riders who continue to use public transit (Dzyuban et al. 2021). There are likely 

many reasons individuals continue to travel during dangerous heat conditions including, but not 

limited to, modal captivity, weather indifference, and inelastic travel demand with respect to 

weather. Mode captives refers to people who have no other mobility options available to them 

and weather indifference refers to the subjective experience of adverse weather conditions and, 

in this context, one’s willingness to endure certain temperatures for a sustained period (Jacques, 

Manaugh & El-Geneidy 2013). Such willingness is likely informed by a traveler’s opportunity 

cost from canceling or postponing work travel, namely, their elasticity of demand (Liu, Susilo & 

Karlström 2015). 
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Exposure to heat extremes accounts for more weather-related fatalities than nearly all 

other extreme weather events combined and is a leading cause of weather-related deaths in the 

U.S. most years (Hyland 2016; Berko et al. 2014).   Heat stroke and the aggravation of existing 

medical conditions from heat exposure are common causes of emergency room visits, 

hospitalizations, and early mortality (Kenney, Craighead & Alexander 2014; Kovats & Hajat 

2008; Michelozzi et al. 2009). Globally, exposure to extreme heat was estimated to result in 

480,000 excess deaths per year (Zhao et al. 2021).  

Epidemiologic studies have identified demographic, economic, and community 

characteristics that are associated with increased mortality and morbidity during periods of 

extreme heat (Reid et al., 2009). Determinants of increased exposure and sensitivity to heat 

include: lower income, older age, higher population density, lower tree density, outdated 

construction, and lack of air conditioning (Aminipouri, Knudby & Ho 2016). Research has 

shown that these characteristics cluster spatially in urban areas where transit ridership is 

concentrated and where discriminatory redlining has resulted in historical underinvestment in 

infrastructure (Harlan et al. 2013; Hoffman, Shandas & Pendleton 2020; Reid et al. 2009).  

 The potential for prolonged exposure to extreme temperatures for transit riders is far 

greater than for drivers. In most cases transit use requires riders to expose themselves to the 

environment in three phases: ingress, waiting, and egress. Ingress and egress exposure are a 

function of the mode used and distance traveled to access transit stops and final destinations. 

Seeing as more than 75% of all transit riders walk to transit, the location of the nearest stop 

relative to a person’s origin is a critical factor in transit related exposure (Hess 2012). By 

contrast, waiting based exposure depends on the frequency of individual transit lines, their 

reliability, their capacity, and the physical characteristics of a station (Fraser & Chester 2017).  
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Early research around heat exposure and transit use combines simulated urban 

meteorology with transportation activity diaries to assess outdoor heat exposure during non-

motorized travel, including access trips to transit stops. In such studies, researchers find that 

socially disadvantaged groups are disproportionately exposed to transport-heat (Karner, Hondula 

& Vanos 2015). Additional research shows that transit stop location and transit schedules 

contributed to variable heat exposure across transit systems and that users from areas with low 

density, few high capacity roadways, and irregular street networks are more likely to experience 

prolonged exposure via transit access and waiting at transit stops (Fraser & Chester 2017).  

Adjusting bus transit schedules during heat waves 

Bus transit network design and scheduling is a complex process that balances service 

quality, coverage, and directness. In most cases, transportation agencies are not profit driven but 

their resources and operations remain constrained by available budgets (Desaulniers & Hickman 

2007). The primary competing alternatives are transit systems that offer a large service area with 

limited frequency and those with smaller service areas but high frequency. The public transit 

planning process is typically divided into five steps, (1) network design (route structure and stop 

placement), (2) route frequencies, (3) timetabling, (4) vehicle scheduling, and (5) crew 

scheduling and rostering (Guihaire & Hao 2008). This analysis focuses on step two, specifically 

increasing transit frequencies to reduce waiting times for passengers.  

Vehicle arrivals per hour along a given route is the most important factor affecting 

overall wait time. Traditionally, average waiting times at any stop have been estimated as half 

the “headway”, or the time between bus arrivals; on-board surveys, however, contradict this 

assumed uniform arrival distribution (Fraser & Chester 2017). Along infrequent routes, 
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passenger wait times are significantly less than half the headway indicating rider knowledge of 

existing transit schedules. Increasing frequencies along such routes without providing advanced 

notice to riders may not significantly reduce average waiting due to the passenger arrival 

behavior. Conversely, average wait times along frequent routes are typically greater than the 

times predicted by transit schedules. Thus, adding vehicles to routes with intermediate 

frequencies may represent the best opportunity to significantly reduce passenger waiting times.  

Transit frequencies are usually developed from demand estimates and agency standards 

for vehicle occupancy and minimum frequency (Ceder 2016). Such estimates are typically 

derived from travel demand models that draw from an area’s economic activity and population to 

produce top-down projections of trip generation and mode choice. Yet these models are 

incapable of “chaining” trips together nor do they attribute trips to specific households, limiting 

the ability for planners to fully measure the equity-impacts of bus scheduling. To address these 

and other shortcomings, agencies have, in recent years, begun implementing advanced activity-

based models (ABM); bottom-up estimations of travel demand that are generated from 

household attributes and an individual’s anticipated behavior in areas beyond their home and 

across different times of day (Hafezi et al. 2018).  

There are well-established models for determining transit frequencies to optimize 

economic and efficiency outcomes (Hadas & Shnaiderman 2012). Increased calls to consider 

equity in transit service, coupled with an ABM’s provision of disaggregated sociodemographic 

data at fine spatial resolutions, however, warrants the addition of new optimization criteria in 

planning models, not least, ridership’s exposure to extreme heat. This could either be 

accomplished by adding vehicles to service, as agencies already do for special events, or 

reallocating existing in-service vehicles from other routes. This paper develops an optimization 
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framework that reallocates existing vehicles and dispatches spare fleet capacities based on the 

heat vulnerability of riders and explores that framework using a case study of Valley Metro, the 

transit agency serving Phoenix, AZ. 

METHODS 

Optimization framework 

To minimize negative outcomes from extreme heat, an agency should maximize service 

to the areas that are most likely to rely on transit and most likely to suffer from prolonged 

exposure to high temperatures. In other words, an agency should minimize the combination of 

heat exposure and heat sensitivity, what the model hereinafter refers to as vulnerability. 

Individual exposure is assumed to be negatively correlated with  income and cars per household, 

as wealthier households will retain the option of driving or foregoing travel completely (He & 

Thøgersen 2017).  Regional vegetation abundance is also included as it offers cooling and 

shading for pedestrians (Lanza & Durand 2021). Heat sensitivity, on the other hand, is modeled 

by passenger age, which studies have identified as the primary risk factor for susceptibility to 

heat stress during physical activity (McGinn et al. 2017). The final component of passenger 

vulnerability in this model is the duration of exposure. Because agencies independently 

determine the frequency of bus arrivals, the optimization model described herein solves for the 

bus frequencies that will minimize wait times. Simply stated, the model aims to reduce wait 

times by as much as possible, for as many people as possible while accounting for each 

passenger’s sensitivity to heat and their dependency on travel. It uses a non-linear constrained 

optimization solver for the entire bus service area of Phoenix’s transit agency. The model is 

specified as: 
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Equation 2-1: Objective Function 

𝑀𝑖𝑛	%
!

%
"∈$!

	𝑊!(𝑓!)𝐷"𝑉"𝑆. 𝑇.				1)%
!

𝑓! < 𝐵			2)	𝑀 ≤ 	𝑓! ≤ 𝑁, 	 ∈ 𝑍	∀𝑖	𝑊ℎ𝑒𝑟𝑒: 𝑖

= 𝑇𝑟𝑎𝑛𝑠𝑖𝑡	𝑟𝑜𝑢𝑡𝑒	&	𝑗 = 𝑀𝑖𝑐𝑟𝑜𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠	𝑧𝑜𝑛𝑒𝑊!(𝑓!)

= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑤𝑎𝑖𝑡𝑖𝑛𝑔	𝑡𝑖𝑚𝑒	𝑓𝑜𝑟	𝑟𝑜𝑢𝑡𝑒	𝑖	 N
𝑟𝑢𝑛𝑡𝑖𝑚𝑒
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠	O 𝐶!

= 𝑀𝑖𝑐𝑟𝑜𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠	𝑧𝑜𝑛𝑒𝑠	𝑠𝑒𝑟𝑣𝑒𝑑	𝑏𝑦	𝑡𝑟𝑎𝑛𝑠𝑖𝑡	𝑟𝑜𝑢𝑡𝑒	𝑖𝐷"
= 𝑇𝑟𝑎𝑛𝑠𝑖𝑡	𝑑𝑒𝑚𝑎𝑛𝑑	𝑖𝑛	𝑚𝑖𝑐𝑟𝑜𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠	𝑧𝑜𝑛𝑒	𝑗	(#	𝑜𝑓	𝑇𝑟𝑎𝑛𝑠𝑖𝑡	𝑅𝑖𝑑𝑒𝑟𝑠)𝑉"
= 𝐻𝑒𝑎𝑡	𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑚𝑖𝑐𝑟𝑜𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠	𝑧𝑜𝑛𝑒	𝑗𝑓!

= 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑜𝑓	𝑟𝑜𝑢𝑡𝑒	𝑖	 N
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
𝑟𝑢𝑛𝑡𝑖𝑚𝑒O𝐵

= 𝑇ℎ𝑒	𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑏𝑢𝑠𝑒𝑠	𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑀

= 𝑁𝐼𝑂𝑆𝐻	𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	(
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
𝑟𝑢𝑛𝑡𝑖𝑚𝑒)𝑁

= 𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	(
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
𝑟𝑢𝑛𝑡𝑖𝑚𝑒) 

The model assumes exposure to primarily be a function of wait time 𝑊!(𝑓!), demand 𝐷", 

and vulnerability 𝑉", subject to two main constraints. The first constraint, 𝐵, represents the total 

agency fleet size, which provides an upper bound on the total number of buses that can be 

assigned across all routes. While total fleet size is typically a constant, Valley Metro, like many 

agencies, has the .capacity to dispatch spare vehicles to increase capacity. To observe the 

sensitivity of outcomes to the fleet size, 𝐵, the model is run for five different capacity multiples 

ranging from 0% to 20% increases in normal fleet capacity; the latter is the official spare fleet 

capacity reported in Valley Metro’s 2020-2024 Short Range Transit Program and is also the 

maximum spare fleet size allowed by the Federal Transit Administration (Valley Metro 2019). 

The second constraint, N, ensures that the number of vehicles servicing a route produces 

wait times that are below the National Institute of Occupational Safety and Health’s (NIOSH) 

heat exposure duration standards and above an impractical lower limit of five minutes. NIOSH’s 

standards were developed in 2016, with the Centers for Disease Control and Prevention, to 
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inform employers about heat safety standards. These are based on the Wet Bulb Globe 

Temperature, a holistic measure of “experienced” heat, the metabolic rate of an activity, and the 

availability of engineering controls to reduce heat stress (e.g. air conditioning, shade). In the 

absence of alleviating heat stress, the institute recommends “administrative controls”, or more 

simply stated, rest periods to allow for the body to cool. These guidelines are drafted separately 

for “heavy”, “medium”, and “light” forms of work. The administrative control guidelines for 

“light” work are used to parametrize maximum wait times in the above model for five different 

extreme temperature scenarios – 106°F, 107°F, 108°F, 109°F and 110°F. Finally, vehicle 

bunching, a reliability issue caused by excess vehicles, is known to occur on high frequency 

routes in high demand areas during peak periods (Camps & Romeu 2016). Adding vehicles to 

routes already experiencing bunching may exacerbate this problem. Accordingly, the minimum 

allowable headway in the model, or maximum allowable frequency 𝑁, is set to correspond to 

five minutes. 

To assess the optimization’s sensitivity to the two imposed constraints, the model was run 

for each possible combination of fleet size, 𝐵, and maximum headway, 𝑁, equaling 25 scenarios 

total.  The optimization problem was solved in MATLAB using the ‘fmincon’ function which 

implements an interior point algorithm to find a globally optimal fleet allocation. The model 

produces a non-integer value for bus vehicle allocation and therefore can be interpreted as either 

a theoretical representation of service capacity or buses servicing only a segment of the route.  

Transit schedule and data 

The geography, service frequencies, and current fleet allocations of individual routes are 

derived from the 2020 General Transit Feed Specification data for Phoenix’s regional transit 
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agency, Valley Metro (Valley Metro 2020). The number of vehicles needed to produce a certain 

headway on a given route, 𝑓!, is estimated by dividing the time it takes to complete a route, its 

runtime, by the route’s average headway. Conversely, the wait time for a given route can be 

determined by dividing the runtime by the route’s fleet allocation. For example, a route that on 

average takes half-an-hour to complete with buses arriving every 10 minutes, would require three 

buses. Given that headways and runtimes are not equal across all times of day nor all days of the 

week but rather fluctuate in response to demand across different stops at different times, 

estimates are based on the modal headway of weekday service.  

Transit demand 

Transit demand 𝐷" is determined using the output of Maricopa Association of 

Governments (MAG) ABM in 2018 (Maricopa Association of Governments 2018a). Activity-

based travel demand models capture household-level and person-level travel choices including 

intra-household interactions between household members across a wide range of activity and 

travel dimensions (Parsons Brinckerhoff Inc & Arizona State University 2010). The ABM used 

in this simulation is informed, in large part, by a 2017 household travel survey conducted by 

MAG that includes GPS activity-travel data from 6,073 surveyed households, as well as data 

from the American Community Survey (Maricopa Association of Governments 2018b).  

Importantly, transit trips in the ABM do not indicate the specific mode of travel (e.g. light-rail, 

bus); rather they are categorized between premium and conventional transit accessed by walking, 

kiss-and-ride, and park-and-ride. Premium transit traditionally includes express buses, bus rapid 

transit, light rail transit, and commuter rail whereas conventional transit typically refers to 

regularly scheduled local services. This model simulates heat exposure for all premium and 

conventional transit trips. 
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The ABM output details the daily travel movements of a simulated population of 3.8 

million agents and 18.4 million daily trips. Only a small fraction (~150,000) of the modeled daily 

trips in MAGs region occur by transit. In addition to the location of transit demand the model 

output also allows one to isolate the transit demand by time of day. The general movement of 

agents reflects a pattern of leaving residential areas during the morning peak period (6-9am) for 

employment locations and the opposite pattern during the afternoon/evening peak (3-7pm). 

 At its most resolved spatial scale, the ABM identifies the origin and destination 

microanalysis zones (MAZ) – the smallest transportation spatial unit used by the planning 

agency – for each transit trip. The open-source routing software Open Trip Planner (OTP) is used 

to translate origin-destination pairings –imputed to be the centroid of each respective MAZ - into 

a specific transit bus line. OTP is a graph-based multimodal routing system that operates on a 

unified graph including links representing road, pedestrian, and transit facilities and services 

(Hillsman & Barbeau 2011). Focusing on all MAZ with sizes below the 98th percentile, the trip-

weighted median MAZ area is 0.09km2 (µ = 0.38 km2), such that the “true” origin point of a trip 

within any single MAZ does not differ much from the centroid. Variance in size across the 8662 

unique MAZs that were routed by OTP, though larger, remains small in absolute terms with a 

weighted standard deviation of 0.9 km2. As MAZs are population weighted, the MAZs with the 

largest area and greatest potential error, account for only a small share of passenger trips.  

OTP routing assumes a maximum walking distance of one mile to reach a transit stop and 

accounts for all possible transfers. All routing requests were made at the nearest hour of 

departure based on weekday service for the agency in February of 2020. OTP routing produced 

transit routes for 99.5% of trips across 72 bus lines. Importantly, for the optimization model, 
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non-local and non-bus transit lines are excluded as they tend to be low-frequency, pre-scheduled 

commuter services, with predictable wait times.  

Passenger vulnerability 

Area population heat vulnerability indices 𝑉% were developed for each MAZ in Maricopa 

based on the ABM-reported characteristics of each transit rider who begins a trip from that MAZ 

as well as the area’s vegetation abundance. The formulation of vulnerability was adapted from 

relevant literature to develop an individual-scale, transit-specific metric. Specifically, 

standardized scores for income, cars per household, and age were combined with equal weight, 

given their correlations with transit dependency and health risk (Taylor & Fink 2003). The 

inclusion of transit dependency assumes that under extreme heat conditions there will be a 

decline in transit usage, specifically among passengers with alternative private travel options. 

Accordingly, this model prioritizes servicing areas with the greatest number of residents who 

lack such options. Finally, to estimate heat vulnerability from the physical environment, the 

normalized difference vegetation index (NDVI) was estimated for each MAZ by computing the 

median NDVI 30 meter pixel value from 2020 July and August LANDSAT 8 imagery in the one 

mile area surrounding the MAZ centroid. This area matches the maximum walking shed allowed 

by the routing algorithm for any single traveler. All social and physical variables mentioned were 

min-max normalized and added with equal weight to produce a vulnerability index. The product 

of the vulnerability index and the ridership demand for a given bus route can be interpreted as 

the weights that drive the prioritization of fleet allocation in the model.   
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Equation 2-2. Area population vulnerability index.  

𝑉" = %
!∈&!

	𝑁[𝑍(𝐼!) + 𝑍(𝐶!) + 𝑍(𝐺!)] + 𝑁`𝑁𝐷𝑉𝐼"a	

𝑊ℎ𝑒𝑟𝑒: 𝑖 = 𝑎𝑔𝑒𝑛𝑡	𝑎𝑛𝑑	𝐴! = 𝑠𝑒𝑡	𝑜𝑓	𝑎𝑔𝑒𝑛𝑡𝑠	𝑤𝑖𝑡ℎ	𝑡𝑟𝑖𝑝𝑠	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔	𝑖𝑛	𝑀𝐴𝑍	𝑗	

𝑍(𝑥) = 	
𝑥 − 𝜇(𝑥)
𝜎(𝑥) 	𝑤ℎ𝑒𝑟𝑒	𝜇	 = 	𝑚𝑒𝑎𝑛	𝑎𝑛𝑑	𝜎	 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	

𝑁(𝑥) =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)	

𝐼! = 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙'𝑠	𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑	𝐼𝑛𝑐𝑜𝑚𝑒	

𝐶! = 𝐶𝑎𝑟𝑠	𝑝𝑒𝑟	ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙					𝐺! = 𝐴𝑔𝑒	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	

𝑁𝐷𝑉𝐼" = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛	𝐼𝑛𝑑𝑒𝑥	surrounding	centroid	of	MAZ	j	

Our approach marks a noteworthy advancement in precision compared to current 

vulnerability estimations by using ABM household and person characteristics. That is, while 

traditional ridership characteristics are imputed from aggregated census data for residents in a 

spatial unit, our vulnerability estimates are based on traveler characteristics and, in turn, capture 

a more accurate sample that includes non-home-originating trips. 

RESULTS 

The ABM model counts 115,129 transit trips on an average weekday between the hours 

of 7 am and 6 pm, representing 0.79% of all trips completed during daytime hours, when the 

combination of sunlight and high air temperatures can be hazardous. According to the ABM, 

transit riders in Maricopa County are overall 11 years younger, with a median age of 25, and hail 

from households with median incomes of $56,500, which is approximately 15% less than their 
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non-transit counterparts. Cars per household for transit passengers is 1.77 compared with 2.14 

for non-transit travelers.  

Across all fleet capacity multiples, the mildest heat exposure of 106F, benefitted the most 

from rerouting, realizing reductions in the demand-headway weighted vulnerability of over 20% 

for the standard bus fleet capacity and up to 40% when the maximum available fleet is used. 

Improvements stemming from capacity increases tend to be linear (Figure 2-1), suggesting that 

routes served by additional bus capacity contribute equally to the objective outcome. By contrast, 

when keeping capacity fixed, there is a nonlinear decline in improvement as the temperature 

increases, i.e. maximum allowable wait time decreases. Notably, at the extreme temperature of 

110°F, there are not enough buses in the agency fleet to meet the wait-time constraint of 15 

minutes for all bus lines. Rather, the minimum headway that can be realized for the entire local 

bus network using its standard fleet is 25 minutes. It is at this temperature scenario that capacity 

increases produce the greatest benefit by reducing headways for the most vulnerable routes; 

specifically, a 5% increase in fleet size corresponds to a 15% improvement in the objective 

outcome.   
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Figure 2-1. Optimization objective function improvements and fleet change magnitude. The 
Y-axis is the percent reduction of the optimized objective outcomes relative to the baseline 
schedule’s unoptimized objective outcome. As the vertical spacing between points for a given 
capacity multiple illustrate, there is a nonlinear reduction in exposure as the maximum allowable 
wait time is reduced. As capacity increases, there is a linear reduction in risk – except for 
scenarios with most extreme heat, which exhibit non- linear improvements in the objective 
outcome. The minimum achievable wait time (maximum exposure duration) for all routes was 25 
minutes, for which there is no official corresponding NIOSH temperature. 

 

The observed results stem from both the uneven demand across the system and the 

inherent nonlinearity in headways which are inversely related to fleet size. Indeed, each 

incremental bus added to a route has a diminishing return on wait time equal to the inverse fleet 

size, squared. It follows then that a bus line with pre-existing small headways will see little gain 
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from fleet additions. By contrast, a line with large headways and moderate exposure, will see a 

large improvement from an increase in service. Simply stated, few lines carry most of the 

exposure and the model prioritizes those few lines with more buses to realize large reductions in 

riders’ heat exposure. Any subsequent service improvements will have more moderate effects on 

outcomes. Spare fleet capacity makes the greatest difference under extreme temperature 

scenarios when the requirements of NIOSH compliance overwhelm the network.   

Figure 2-2. Distribution of MAZ demand-weighted vulnerabilities. The optimization model 
aims to minimize the wait time for the routes with the highest demand and vulnerability. The 
demand- vulnerabilities for all routes are represented as weights to the variable of interest – fleet 
allocation – when running the optimization model. The frequency distribution of these weights 
represents the distribution of vulnerable demand, or the total person-minutes scaled by the 
vulnerability indices for all origin MAZs boarding a given bus route. The positively skewed 
distribution demonstrates that a small number of routes carry a disproportionate number of 
vulnerable passenger.
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NIOSH standards interact with the skewedness of passenger demand as well. This can be 

seen in Figure 2-2, which shows select few outliers in the objective function coefficients, i.e. the 

vulnerability index multiplied by the demand. When temperatures increase, the model’s 

requirement for meeting maximum allowable exposure time on all lines results in the diversion 

of buses from lines with high vulnerability and high ridership to lines with lower vulnerability 

and ridership. Furthermore, given that allowable heat exposure has nonlinear stringency for each 

incremental degree, there is a corresponding nonlinear reduction in objective outcomes for 

increasingly severe temperatures when capacity is fixed.  
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Figure 2-3. Map of Phoenix fleet reallocation. Background polygons correspond to 
transportation analysis zones (TAZ) – an MAZ’s parent spatial unit. Each zone’s vulnerability 
quintile is shaded in blue so that darker shades correspond to higher vulnerability. TAZ 
vulnerability is measured as the weighted average of all MAZ vulnerabilities subsumed by a 
TAZ and is used for visualization purposes only. Polylines correspond to the 72 local bus routes 
that were studied and are shaded according to the change in buses per runtime under the 
optimized scenario relative to baseline. Red colored lines experienced a reduction in service, 
with a maximum reduction of 1.7 buses per runtime. Orange shaded routes saw an increase in 
service with a maximum increase of 8.6 buses. For the few segments where routes overlap, the 
route with the highest frequency is shown. 

 

Of practical importance is the number of buses that would need to be reallocated to 

achieve the optimal schedule. On average, across all scenarios, rerouting would require the 

reassignment of approximately 13.5% of the bus fleet (SD=2.2%). Notably, 27 of the 72 lines see 

on average a 0.9 decrease in fleet size, based on the median outcome for each bus line across all 
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scenarios. The remaining lines all show median increases in bus allocations compared to the 

existing agency schedule, with a maximum increase of 8.6 buses per hour for Line 19 which runs 

through Downtown Phoenix. Compared to our GTFS estimates of the agency’s fleet sizes and 

assuming a bus capacity of 36 seats, the optimized model decreases the average load factor by 

27% from 1.07 to 0.78. This is unsurprising given the model’s emphasis on serving routes with 

large demand. Arterial lines, that traverse the downtown area as well as more densely populated 

neighborhoods to the east and west of the city center, are most served in the model’s output 

(Figure 2-3). This reflects the higher population density west of Downtown Phoenix and 

coincident lower median family incomes. These lines also serve areas with younger residents 

who are less likely to own vehicles, including affiliates of Arizona State University.  

DISCUSSION  

The model results highlight the context dependency of schedule optimization and 

rerouting to promote climate resilience in hot climates. Whereas under less extreme conditions, 

capacity increases confer proportional benefits to the objective, under more severe temperatures - 

when all routes must be equally serviced and baseline capacity is constrained -surplus vehicles 

offer significant benefits to reducing vulnerable exposure. Importantly, adding bus capacity to a 

line is limited by both a practical “minimum” headway and the diminishing returns of additional 

buses. And finally, no amount of fleet reallocation would be able to satisfy NIOSH guidance on 

maximum allowable exposure for temperatures exceeding 110°F, without a dramatic increase in 

fleet size. That is because the minimum number of buses per route needed to fulfill the maximum 

allowable wait time are so large, that the total number of required buses exceeds the total fleet 

size. Therefore, under the most extreme heat conditions, agencies would need to pursue 

alternative interventions that directly reduce heat exposure for a passenger and/or avoids the 
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need to commute and wait for a bus. These include, but are not limited to, cooled shade 

structures, improved tree canopy, first-last-mile micromobility connections, and on-demand 

transit services. 

It is important to note that as a demonstration, the model presented in this paper makes 

simplifying assumptions that would need to be addressed prior to any real implementation. For 

one, rerouting and the dispatching additional vehicles could increase an agencies’ operating 

expenses beyond allocated budgets. Further, many agencies have designated vehicles serving 

routes that are determined based on travel distance, terrain, and powertrain; by contrast, our 

model assumes that all vehicles can serve all routes. It may also be simplistic to assume that 

drivers would be amenable to sudden adjustments in route assignments and schedules. From the 

passenger standpoint, it is also worth noting that any changes to schedules would need to be 

communicated effectively, especially for the select routes that would experience a reduction in 

service.  

 The simulated scenarios also bear simplifying assumptions. For one, they assume 

uniform temperature throughout the study area, when the local built environment is known to 

cause variability in microclimates that impact human thermal comfort and health (Park et al. 

2017). Yet, even with complete temperature information an agency would unlikely be able to 

adapt service to account for such high spatial variability in temperatures. Using fixed-point 

weather station data, like those available from a regional weather station, seems more likely and 

practical. Additionally, NIOSH’s “light work” exposure thresholds while informative, are not 

directly based on travel activity. For this reason, the exposure thresholds introduced in the model 

should be interpreted as rudimentary benchmarks.  
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 Finally, there are several improvements that could be made to the model, pending data 

availability. The first would be to obtain empirical wait times for different routes and stops to 

accurately quantify exposure. Having additional information on the bus stop infrastructure and 

egress exposure would also enhance such measurements. Additionally, the estimates of fleet 

assignments in the model are based on expected wait times and runtimes derived from GTFS and 

as a result overlook day-to-day and hour-by-hour fluctuations in schedules. Lastly, cost 

simulations associated with each fleet reallocation could further demonstrate the feasibility of 

any adaptive scheduling in applied settings. 

 These challenges notwithstanding, the model presents an advancement in its use of an 

ABM model that offers unmatched precision in traveler behavior and characteristics. These data 

inform changes to service operation that might offer significant cost savings over traditional hard 

infrastructure. They can be implemented relatively quickly and they can be easily adapted to 

unanticipated changes in infrastructure, demand, and weather. Future areas of research that could 

advance these models include enabling the partitioning of routes, whereby certain segments 

would be served at a higher or lower frequency, as well as logistic considerations that include 

bus depot location and bus driver availability. It would also be worth replicating this analysis for 

an agency like Los Angeles Metro, which has a larger bus fleet and covers an area with more 

temperature variability across space and time.  

CONCLUSION 

Cities throughout the United States have tasked public transit systems with securing 

myriad social benefits that include alleviating automobile congestions, reducing carbon 

emissions, and providing mobility to lower-income residents.  To realize these goals, cities have 



 29 

invested heavily in the expansion of transit services and improving reliability. By comparison, 

the first-last-mile comfort of passengers prior to boarding and after alighting, especially as it 

relates to weather, has been overlooked. With climate change expected to increase temperatures 

in Phoenix and the nation, extreme heat has the potential to reverse hard earned improvements in 

service and safety.  

This paper presents one method for protecting passenger comfort and health, leveraging 

the flexibility of bus systems to better serve routes with more vulnerable riders. It highlights the 

complex interaction between allowable heat exposure and the effect of bus capacity on wait-

times – both of which follow nonlinear trends. The findings show that during milder summer 

heat (<110°F), agencies can achieve significant improvements with modest route adjustments 

and that during more severe heat events, the deployment of spare vehicles can secure large gains 

in passenger welfare. This is particularly true for agencies with skewed ridership, where a few 

lines carry most passengers. Given these findings, agencies might consider investments in 

building an adaptable workforce – training drivers for multiple routes and negotiating more 

flexible working arrangements– as well as ensuring the availability of spare vehicles before any 

extreme heat event. In doing so, agencies will both help protect the health and comfort of their 

customers as well as equitably enhance the resilience of their systems.  
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CHAPTER THREE: Population co-exposure to extreme heat and wildfire smoke pollution 
in California during 2020 

ABSTRACT 

Excessive warming from climate change has increased the total wildfire burned area over 

the past several decades in California. This has increased population exposure to both hazardous 

concentrations of air pollutants from fires such as fine particulate matter (smoke PM2.5) and 

extreme heat events. Exposure to PM2.5 and extreme heat are individually associated with 

negative health impacts and recent epidemiological evidence points to synergistic effects from 

concurrent exposures. This study characterizes the frequency and spatial distribution of co-

occurring extreme heat and smoke PM2.5 events in California during the record-setting wildfire 

season of 2020. We measure exceedances over extreme thresholds of modeled surface-level 

smoke PM2.5 concentrations and heat index based on observed temperature and humidity. We 

estimate that, during the studied period, extreme smoke and heat co-occurred at least once within 

68% of the state's area (∼288,000 km2) and an average 2.5 times across all affected areas. 

Additionally, 16.5 million people, mostly in lower population density areas, were impacted at 

least once in 2020 by such synergistic events. Our findings suggest that public health guidance 

and adaptation policies should account for co-exposures, not only distinct exposures, when 

confronting heat and smoke PM2.5. 

INTRODUCTION 

An increase in the frequency and severity of climate-related hazards has renewed interest 

in the distribution of multi-hazard events that can produce extraordinary risks (Field et al., 2012). 

Hazards may coincide in space and time by random chance, shared meteorological drivers or 

causal interdependency (Zscheischler et al., 2020). Examples include a flood after an earthquake; 
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the co-occurrence of extreme wind and flooding during severe storms (Nielsen et al., 2015); or 

the increased likelihood of landslides in wildfire-damaged areas, respectively (Mazdiyasni and 

AghaKouchak, 2015; Moftakhari et al., 2017). Whereas multi-hazard systems have been 

examined theoretically, empirical characterizations of their dynamics and drivers, not least in the 

wildfire pollution context, are more limited (Gill and Malamud, 2014).  

Wildfires contribute to increased trace gas and aerosol concentrations that are harmful to 

human health. Fine particulate matter contributed by fires (“smoke PM2.5”; particles smaller than 

2.5 microns in diameter) is particularly dangerous because it directly enters bloodstreams and 

alveoli, impairing cardiorespiratory functions (Brook et al., 2010; Guo et al., 2018) as well as 

other organs such as the brain (Weuve et al., 2021). Moreover, in comparison with PM2.5 from 

other sources, researchers have identified distinct mutagenic and oxidative stresses in humans 

from smoke PM2.5 (Aguilera et al., 2021; DeFlorio et al., 2019; Nakayama Wong et al., 2011). In 

the western United States and California, smoke PM2.5 was found to increase respiratory 

hospitalizations by as much as 7% and 3.3%, respectively, over a six-year period (Heaney et al., 

2022; Liu et al., 2017).  

While all-source PM2.5 concentrations declined in the Eastern United States from 2006-

2016, many areas in the West experienced an increase in PM2.5 attributable to summertime 

wildfires that offset declines in non-fire anthropogenic sources (O’Dell et al., 2019). Wildfire 

smoke accounted for as much as half of the overall PM2.5 exposure in the western United States 

in recent years, compared to approximately 20% on average in the mid-2000s (Burke et al., 

2021). Future climate scenarios project that, by 2100, wildfire smoke will account for more than 

50% of total PM2.5 across the entire continental United States (Ford et al., 2018).  
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Extreme heat often precedes fire ignition as high temperatures predispose vegetational 

fuels to ignite and burn (Goss et al., 2020). Heat presents a sizable health risk of its own; it 

elevates heart and respiratory rates as well as blood viscosity and cholesterol, which may 

aggravate pre-existing conditions (Cheng et al., 2019; Davies and Maconochie, 2009; Ebi et al., 

2021; Keatinge et al., 1986; Sherbakov et al., 2018). In California, select heat waves have been 

estimated to cause as much as a 6% increase in excess deaths (Hoshiko et al., 2010) and as much 

as a 39% and 47% increase in the likelihood of hospitalization for dehydration and renal failure, 

respectively (Schwarz et al., 2020).  

Rising global temperatures and more frequent extreme heat events are expected to 

increase wildfire size and intensity, signaling a growing public health threat from concurrent 

heat-smoke exposure (Abatzoglou and Williams, 2016; Perkins et al., 2012; Westerling, 2018). 

However, exposure inventories of heat-smoke co-occurrence (HSC) that include smoke PM2.5, 

which would help elucidate the drivers of hospitalization and death, are comparatively scarce. 

Austin et al. (2020) examined exposure to HSC among outdoor agricultural workers at the 

county level in Washington and found strong spatiotemporal variability in areas exposed to high 

heat and high levels of PM2.5, with the largest co-occurrences during the summer wildfire season 

(Austin et al., 2020). More recently, researchers examined the co-occurrence of heat, ozone and 

PM2.5 in the Western United States (Kalashnikov et al., 2022). These two studies, however, used 

concentration measurements that include all sources of PM2.5 (versus smoke-specific PM2.5) and 

relied on either unevenly distributed air quality stations or a coarse 10 km resolution, 

respectively. These spatially coarse measures of compound exposure constrain policymaking 

because they preclude investigation into the sociodemographic correlates of exposure (Schwarz 

et al., 2021). 
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In this study, we investigate the frequency, intensity and duration of individual and 

combined extreme heat and smoke PM2.5 exposures in California from June through November 

2020. During this time period wildfires burned over four million acres - the largest burned area 

in the State’s recorded history dating back to 1878 - and coincided with the fourth hottest 

summer since 1895 (CalFire, 2020; National Weather Service, 2022). Our analysis is done at a 3 

km spatial resolution and maps single and compound hazard exposures at surface level across 

different population characteristics, including race, ethnicity, income and health, to identify the 

communities most exposed to HSC. We contribute to the literature of compound climate 

exposures in California by: (1) modeling smoke PM2.5 rather than total PM2.5 to isolate fire 

contributions, (2) mapping compound exposures at fine spatial scale, and (3) identifying 

sociodemographic correlates of exposure.  

METHODS 

Smoke PM2.5 exposure 

We quantify smoke pollution exposure using NOAA's High-Resolution Rapid Refresh 

coupled with smoke (HRRR-Smoke) atmospheric model. Based on the Weather Research and 

Forecasting model coupled to Chemistry (WRF-Chem) model, HRRR-Smoke provides surface-

level smoke PM2.5 estimates across the United States in near real-time. Fire emissions estimates 

are based on satellite observations of fire radiative power (FRP) as detected by the VIIRS and 

MODIS satellites (Ahmadov et al., 2017). The model is initialized every 12 hours at a 3 km 

horizontal grid spacing; for this study, we utilize 48-hour forecasts initialized at 00 and 12 UTC. 

HRRR-Smoke PM2.5 estimates do not account for non-fire sources of pollution (from traffic, 

industry, etc.) and are therefore specific to fire contributions only. Previous validation of HRRR-



 38 

Smoke with all-source ground station measurements during the 2018 Camp Fire identified strong 

spatiotemporal agreement with observed progressions of smoke plume locations and magnitudes 

(Chow et al., 2021). 

We use the average of 24 individual hourly HRRR-Smoke forecasts to estimate daily 

smoke PM2.5. All hourly concentration forecasts are based on the most recent available 00 or 12 

UTC model initialization (n=364) given the increased accuracy of meteorological conditions 

closer to the forecast. In the event that an initialization is skipped (n=57) predictions from the 

most proximate initialization timestamp are used (i.e. the previous day’s forecasts). Following 

this correction there are 3 days, out of 182 total, that are missing data for all initializations. These 

gaps, resulting from computer outages during the model run, are omitted from our analysis.   

In the absence of smoke-specific observed PM2.5 mass concentrations, we compare 

HRRR-Smoke forecasts with a network of 166 ground station all-source PM2.5 measurements 

managed by the EPA’s Air Quality System (AQS) (Figure S4). This dataset is an imperfect 

validation dataset since it includes anthropogenic sources of PM2.5 in addition to wildfire smoke. 

However, during extreme smoke events when wildfire contributions dominate, AQS 

measurements may converge towards HRRR-Smoke estimates. AQS measurements are sourced 

from national, state and local air stations associated with parameter codes 88502 and 88101, 

providing daily average PM2.5 concentrations from all sources (US EPA, 2014). The point 

geometries of AQS stations are coupled with gridded HRRR-Smoke estimates based on their 

intersection. 
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Temperature exposure 

Extreme heat exposures are calculated from the Gridded Surface Meteorological dataset 

(GRIDMET) that includes daily surface measurements of maximum and minimum temperature, 

humidity and other meteorological variables across the contiguous United States (Abatzoglou, 

2013). We resampled the data from its original 4 km resolution to 3 km to align with HRRR-

Smoke output. Humidity and temperature are combined to estimate apparent temperature or heat 

index, a stronger correlate of biological heat stress that is referenced by the federal Occupational 

Safety and Health Administration in its exposure guidelines (Jacklitsch et al., 2016). We follow 

the National Weather Service’s Weather Prediction Center’s method, which adapts the Rothfusz 

regression model (Equation 3-1) to account for more extreme conditions and is reported in 

Fahrenheit (National Weather Service, 2014; Rothfusz, 1990).  

Equation 3-1. Rothfusz Heat Index.  

Daily	Maximum	Heat	Index	=	-42.379	+	2.04901523T	+	10.14333127R	-	0.22475541TR	-	
6.83783x10-3T2	-	5.481717x10-2R2	+	1.22874x10-3T2R	+	8.5282x10-4TR2	-	1.99x10-6T2R2	

Where:	T	=	Daily	Maximum	Temperature	(°F)	

					R	=Daily	Minimum	Relative	Humidity	(%)	

 

These heat index measurements are then used to identify “exceedances” for our 

population exposure analysis (see Section 2.3). Previous validation work found the median 

correlations between GRIDMET and a national sample of over 1500 remote automated weather 

stations to be 0.94–0.95 and 0.87–0.90 for maximum and minimum temperature, respectively, 

with median mean absolute error (MAE) between 1.7 and 2.3 °C. Daily maximum and minimum 
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RH featured median correlation values between 0.77 and 0.81 and median MAE between 6 and 

12% (Abatzoglou, 2013).   

Exceedance thresholds 

We define an extreme smoke exposure event as any day with 24-hour smoke PM2.5 

exceeding 20 µg/m3. Our threshold of 20 µg/m3 corresponds to the 98th percentile of smoke 

PM2.5 measured by a global atmospheric chemistry model across the western United States 

between 2004-2009 (Liu et al., 2017). Finally, we define a smoke wave, designed to be analogous 

to a heatwave, as two or more consecutive exceedances. This accounts for the potential risks of 

sporadic, yet persistent, exposure to high concentrations of smoke PM2.5 that are common during 

long-lasting conflagrations (Liu et al., 2017). 

For heat, we define an extreme threshold as the greater of two prespecified intensity 

values. First, we calculate the 85th percentile historical heat index for the months of July and 

August, within a grid cell, for 1970-2010 (US EPA, 2021). This location-specific threshold 

accounts for any local behavioral or physical adaptations to extreme heat. Second, we apply an 

absolute minimum heat index cutoff of 80°F for daily maximum temperatures, which 

corresponds to the National Institute for Occupational Safety and Health’s lowest “caution” heat-

index for worker safety (Jacklitsch et al., 2016). Accordingly, colder areas where the 

summertime 85th percentile corresponds to a mild temperature will instead be compared to an 

absolute cutoff. Conversely, to avoid “false negatives”, we also apply an absolute maximum heat 

index cutoff of 105°F for areas with extreme summertime 85th percentile historical heat indices; 

this threshold corresponds to the National Weather Service’s excessive heat warning trigger. 
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Finally, in addition to single event exceedances, we adopt a definition of heat wave as two or 

more consecutive exceedances in a given location.  

Using Google Earth Engine, a cloud-based geocomputation engine, we intersect both 

hazard exceedances to identify HSC at a daily interval at a resampled scale of 3 km (Gorelick et 

al., 2017). Since there are no standardized definitions for extreme heat or extreme smoke, we 

further analyze the sensitivity of our results to different definitions: for temperature we increase 

the threshold to the 95th percentile and for smoke we test an absolute cutoff of 35 µg/m3, which 

corresponds to the EPA’s 24-hour national ambient air quality standard for all source PM2.5 (US 

EPA, 2014). Finally, we test the differences between using daily maximum and minimum heat 

indices for temperature percentile thresholds as well as the impact of focusing only on persistent 

exceedances (smoke waves or heat waves). These alterations are informed by evidence of hotter 

evening temperatures and persistent heat exposure increasing morbidity and mortality (Rey et al., 

2007; Zhang et al., 2012). 

Population characteristics  

To quantify total human exposure and the density of affected areas, population data are 

taken from Gridded Population of the World Version 4.11, which is an interpolation of decennial 

census population counts at a 1 km resolution (CIESIN, 2018; OEHHA, 2021). Additionally, we 

use California’s Office of Environmental Health Hazard Assessment CalEnviroScreen 4.0 and 

the 2019 5-year American Community Survey to measure existing pollution burdens and 

socioeconomic characteristics for all census tracts across the State, respectively (U.S. Census 

Bureau, 2019) (Figure S5). We resolve spatial mismatch between the 3 km hazard layer and 
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variably sized census tracts by computing the aggregated hazard metrics within a 9 km radius 

(3x3 pixel window) of each census tract’s centroid.  

We also measure the correlation between each hazard’s magnitude and the prevalence of 

different sociodemographic variables. Each variable is first ranked and binned into deciles and 

then the mean magnitude exceedance is computed for each hazard in a given census tract’s 

vicinity for each bin. For analyses related to population exposure (incidence), where we compute 

the relative ratio between a group’s share of the HSC impacted population and their share of the 

total State population, we sum population counts for each census tract in proportion to the area of 

the tract affected at least once by HSC.  

RESULTS 

HRRR-Smoke model comparison 

In comparison with the EPA’s AQS network of ground stations, smoke PM2.5 

concentrations simulated by the HRRR-Smoke model were typically lower than all-source PM2.5 

station measurements; the median HRRR-Smoke grid cell estimate corresponding to each site 

was 0.4 µg/m3 versus 10.0 µg/m3 for AQS. This difference is expected since AQS accounts for 

all sources of PM2.5, most days do not feature any smoke pollution and a majority of the AQS 

stations are located in urban areas with heavier anthropogenic contributions. Indeed, biases 

between AQS and HRRR-Smoke were highest in less populated areas and lowest in urban areas 

where car exhaust and residential gas appliances, for example, dominate PM2.5 emissions (Figure 

S2). The correlation coefficient between both datasets, which was greatest for same day 

comparisons without lag, equaled 0.62, indicating sufficient temporal coherence.  When 

comparing all AQS measurements with the nearest HRRR-Smoke forecast, the normalized mean 
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absolute error (NMAE) equaled 77%; after filtering for “extreme” HRRR-Smoke forecasts (>20 

µg/m3) NMAE drops to 60%. These statistics match reported metrics for previous comparisons 

with smoke-enhanced aerosol optical depth measurements during the Williams Flats Fire in 2019 

(Ye et al., 2021).  

Spatiotemporal Trends 

 Both hazards co-occurred at least once across 288,505 km2 (~68%) of California during 

the 2020 study period (Figure 3-1). The statewide average of the season’s maximum observed 

exceedance over the baseline thresholds was 3.0℉ for the daily maximum heat index and 51.1 

µg/m3 for smoke PM2.5. The latter is more than twice the smoke event threshold and almost 

150% above the EPA 24-hour standard of 35 µg/m3. Notably, exceedance magnitudes during 

compounding events were lower for temperature, averaging 2.6°F. Smoke exceedances were also 

lower during HSC events, averaging 40.9 µg/m3.  

HSC occurred a maximum of seventeen times across four different grid cells in 

California’s Carmel Valley and for as long as nine consecutive days along the western edge of 

the Mojave Desert, southeast of Sequoia National Park. The Monterey Bay area was also one of 

the most frequently affected areas in the State. Most co-occurrences coincided spatiotemporally 

with season’s most severe conflagrations (Figure 3-2) including the August Complex, North 

Complex and Creek Fires that affected the Northern California coastline, Upper Sierras and 

Central Valley, respectively.  

We also identified trends across the four Level 1 North American ecoregions in 

California which are: Mediterranean California (Mediterranean), North American Deserts 

(Desert), Marine West Coast Forests (Marine) and Northwestern Forested Mountains (Forested). 
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These ecoregions delineate distinct ecologies and climates that can affect smoke production and 

temperature (Appendix 3A) (Omernik, 1987). California’s Marine and Forested ecoregions were 

the two most affected by HSC, with nearly equal frequency-weighted impacted areas of 1.2%. 

For extreme heat alone, using the baseline cutoff defined in Section 2.3, we find that 

Mediterranean coastal regions as well as Desert areas in the Mojave were most frequently 

affected (Appendix 3F). These areas, in addition to the Central Valley, a primary agricultural 

region, also experienced the most intense heat events. For smoke PM2.5, the season’s average 

exceedance over the baseline threshold was greatest in Northwestern Forested Mountains, at 84.1 

µg/m3, and these events also lasted longest, for an average of 4.5 days. The exceedance 

magnitude in Forested areas was significantly larger than the next-most impacted Marine 

ecoregion (μ =50.2 µg/m3).  

Time-series analysis shows peak heat and smoke PM2.5 during the months of August and 

September. The Pearson correlation coefficient between daily HSC and smoke areas (⍴=0.45) 

was smaller than for HSC and heat (⍴=0.63). There is also a discernible lagged trend between 

hazards. Time-lagged cross correlation, which identifies the offset (number of days) at which 

cross-correlation is maximized between variables, peaks at 6 days for maximum heat index and 

smoke (⍴=0.57). This suggests that an increase in the frequency of heat waves longer than six 

days may increase co-occurrences, assuming stationarity in heat-wildfire dynamics.  
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Figure 3-1. Spatial distribution of individual and co-occurring climate hazards. (a) The 
HSC map shows the frequency of HSC events in a given 3 km grid cell. Areas in white did not 
experience any event throughout the studied period. (b) The smoke magnitude displays the 
season's mean exceedance above 20 µg m−3 for each grid cell. (c) The smoke frequency displays 
the total number of days with smoke magnitudes exceeding the 'extreme' threshold of 20 µg 
m−3. (d), (e) The same definitions for magnitude and frequency apply relative to each grid cell's 
85th percentile historical heat index. 
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Figure 3-2. Area of California in extreme heat, smoke, and combined hazard categories for 
summer 2020. Dashed lines show the percent of California affected by individual hazard 
exceedances for the studied period. The solid blue line corresponds to the area of concurrent heat 
and smoke. Boxes with arrows indicate name and ignition dates of wildfires (±2 d). The inset 
line chart on the top left shows the cross-correlation between the daily area of heat and smoke 
exceedance at different time lags. 

Sensitivity 

There is a nonlinear decline in the frequency of HSC when we examine persistent smoke 

waves and/or heat waves. As Table 3-1 illustrates, applying a persistence threshold of two or 

more consecutive exceedances for both smoke and heat diminishes the total HSC-affected area 

by 27% from ~288,000km2 to approximately ~211,000km2 of the State. This decline in area 

corresponds to a slightly larger 33% decline in the total affected population. Our results are also 

sensitive to the extreme heat and smoke thresholds - an increase from the 85th to 95th percentile 

decreases frequency-weighted affected area by nearly 60% and an increase in the smoke 

threshold from 20 μg/m3 to 35 μg/m3 results in a drop of 47%. For reference, the average 85th and 

95th percentiles for maximum heat index in California correspond to 92°F and 95°F, respectively. 
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Finally, persistent events, namely heat waves and smoke waves, are associated with more intense 

magnitudes, exceeding non-persistent scenarios by an average 9.5% and 10.4%, respectively.  

Table 3-1. Sensitivity Analysis. (a) Frequency weighted area is the occurrence frequency of 
HSC in a given pixel, multiplied by the area of that pixel; (b) minimum extent is the percent of 
CA that experiences at least one HSC event in the studied timespan; (c) maximum pixel 
frequency is the maximum number of HSC events observed in a pixel, statewide; (d) HSC 
average frequency is the statewide average of all HSC counts among pixels with HSC counts 
greater than zero (i.e. unaffected areas are masked); (e) mean heat magnitude is the statewide 
mean of each pixel's seasonal mean exceedance above the heat threshold for days and locations 
with HSC; (f) mean smoke magnitude is the same as e but for smoke; (g) HSC maximum 
persistence is the largest observed consecutive run length of HSC events in a pixel throughout 
the state; (h) HSC average persistence is the same as g but the average; (i) population affected is 
the total number of people residing in locations that are within the minimum extent (see b). 

MAGNITUDE 
THRESHOLDS 

PERSISTENCE 
THRESHOLD HSC OUTCOMES (STATEWIDE) 

HEAT 
(%ile) 

SMOKE 
(µg/m3) 

HEAT 
METRIC 

HEAT & SMOKE 
(days) 

FREQUENCY 
WEIGHTED 
AREA (km2-

day) 

MINIMUM 
EXTENT 

(%) 

HSC 
MAXIMUM 

FREQUENCY  

HSC 
AVERAGE 

FREQUENCY 

MEAN HEAT 
MAGNITUDE 

EXCEEDANCE 
(℉) 

MEAN SMOKE 
MAGNITUDE 

EXCEEDANCE 
(µg/m3)  

HSC 
MAXIMUM 

PERSISTENCE 
(days) 

HSC 
AVERAGE 

PERSISTENCE 
(days) 

POPULATION 
AFFECTED 

(people) 

85 20 max 0 7.2E+05 68.1 17 2.5 2.6 40.9 9 1.6 1.7E+07 

85 20 min 0 1.7E+06 79.7 26 5.1 4.0 47.5 22 1.9 1.8E+07 

95 20 max 0 2.8E+05 35.8 13 1.8 2.2 29.9 8 1.4 8.4E+06 

95 20 min 0 8.2E+05 63.4 21 3.0 3.2 50.3 11 1.6 1.2E+07 

85 35 max 0 3.8E+05 48.6 12 1.9 2.3 54.9 8 1.4 8.9E+06 

85 35 min 0 1.1E+06 65.7 22 3.9 3.9 58.6 19 1.8 1.1E+07 

95 35 max 0 1.3E+05 20.0 8 1.5 1.8 44.5 6 1.3 3.4E+06 

95 35 min 0 4.8E+05 48.2 14 2.4 3.1 64.0 10 1.4 7.0E+06 

85 20 max 2 5.2E+05 49.6 12 2.5 2.8 46.8 9 2.0 1.1E+07 

85 20 min 2 1.4E+06 68.9 26 4.9 4.1 53.2 22 2.3 1.4E+07 

95 20 max 2 1.9E+05 21.8 9 2.0 2.4 32.5 8 1.7 5.7E+06 

95 20 min 2 6.1E+05 47.4 20 3.0 3.5 47.5 11 1.9 7.7E+06 

85 35 max 2 2.5E+05 31.0 8 1.9 2.6 63.4 8 1.8 5.4E+06 

85 35 min 2 8.5E+05 53.8 22 3.7 3.9 68.0 19 2.2 8.6E+06 

95 35 max 2 7.2E+04 10.1 6 1.7 2.3 54.2 6 1.6 1.4E+06 

95 35 min 2 3.3E+05 31.6 13 2.5 3.4 64.8 10 1.8 3.6E+06 

Population Exposure 

 Out of approximately 40 million residents, we estimate that 35.3, 30.2 and 16.5 million 

residents were affected by at least one occurrence of extreme heat, smoke and HSC, respectively 
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(Figure S3). Relative to the statewide average population density of 98.9 persons/km2, heat-

affected areas were denser (μ=102.43) and smoke-affected areas less dense (μ=86.5). Gridded 

areas with at least one HSC event had, on average, lower population densities (μ=67.5, 𝜎 = 

392.8, n=40,425) than unaffected areas (μ=171.3, 𝜎 = 771.7, n=17,735).   

Figure 3-3. Proportionality. Bar plots show the ratio above or below one at which different 
ethnicities and races in California were affected by individual hazard exceedances and HSC, 
relative to their share of the general population. Abbreviations: Black & AA—Black and African 
American; AI & AN—American Indian and Alaska Native; NH & OPI—Native Hawaiian & 
Other Pacific Islander; Latino—Latino or Hispanic. 

 

 

Proportionality tests show that certain populations are overrepresented in areas with HSC 

compared to their total statewide representation (Figure 3-3). Based on census demographic data 

from 2019, “White Alone” respondents were 1.05 times as likely to be exposed to HSC than 

would be expected based on their overall share of the population. Conversely, “Black or African 

American Alone” individuals, who represent 5.7% of the total population in California, 
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represented 5.2% of the population exposed to HSC. Hispanic and Latino populations were even 

less likely to reside in HSC affected areas - comprising 39.2% of the State’s population but only 

34.0% of the affected population (Appendix 3H).  

Last, we compare smoke and heat exceedance magnitudes with a series of 

sociodemographic and risk variables at the census tract level (Appendix 3G), namely the shares 

of the population that are White, Hispanic, African American and Native American; the percent 

of the population that suffers from cardiovascular illness; the level of poverty and linguistic 

isolation; summertime average 8-hour maximums of ozone concentrations from 2017-2019; and 

the OEHAA’s CalEnviroScreen score, a holistic score that combines an area’s pollution burden 

with its population vulnerability. Among variables that show non-zero linear trends (p<0.01), the 

largest observed magnitude was a decrease in the exceedance magnitude of temperature -0.1°F 

for each decile increase in the summertime maximum ozone and -0.06°F for each decile increase 

in the percent of the population that is White-identifying. Nearly all other variables’ associations 

with smoke were less than +/- 0.02 µg/m3 per decile increase or statistically insignificant. 

DISCUSSION  

Our study shows that 68% of California’s land area and 42% of the population 

simultaneously experienced hazardous smoke PM2.5 and extreme temperatures at least once in 

2020. While these results may represent an “upper bound” considering 2020’s wildfire season 

was the largest in California’s modern history, four million burned acres was in fact typical for 

the State prior to European settlements and concomitant fire suppression (Safford et al., 2022). 

These compound events peaked in August and lasted through October. The Forested ecoregion in 

northern California and neighboring Marine ecoregion, where large wildfires were observed in 
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2020, were most affected by HSC. These spatiotemporal patterns match findings from another 

smoke PM2.5 exposure assessment in earlier years which, using a coarser smoke-specific model, 

found peak concentrations in August concentrated in northern California (Koman et al., 2019). 

These patterns may be attributable to available fuel loads in these ecoregions, as well as 

differences in plant sensitivity to dryness that influence wildfire risk (McKinnon et al., 2021; 

Rao et al., 2022).  

Overall, persistent HSC events (at least 2 days) were found to be more intense than single 

day hazard extremes. Hazard magnitudes were also found to be lower during HSC events than 

for individual hazards. This is likely attributable to the relatively temperate climates in which 

smoke events were concentrated. Notwithstanding, previous studies have found that milder 

climates with less adaptive capacity are similarly vulnerable to heightened morbidity and 

mortality from persistent heat exposure (Knowlton et al., 2009). Finally, the average extreme 

smoke PM2.5 concentration during HSC events was more than double the EPA’s 24-hour 

standard (35 µg/m3) and presents a significant health risk to affected communities.  

We do not find many associations between the amount of threshold exceedance for 

location-specific “extremes'' for heat and smoke and the selected sociodemographic covariates at 

the census-tract level. That is to say that no population group or social pattern was associated 

with a disproportionate increase or decrease in the intensity of extreme events. The lack of 

meaningful trends, especially in the smoke context, are likely because wildfire ignition and the 

subsequent meteorological conditions that influence smoke transport are stochastic and affect 

broad regions. Yet, in line with previous work that finds minority groups to be less exposed to 

wildfire (Burke et al., 2021; Masri et al., 2021), we similarly find evidence that white individuals 
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are more likely to be exposed to concurrent heat and smoke. These predispositions are likely a 

result of certain groups’ propensity to live in rural areas nearer smoke emitting fires. 

There are several limitations to this analysis. Because there are no empirical datasets of 

surface-level smoke PM2.5 across the State, we relied on short-term forecasts that inherently 

feature some imprecision. However, unlike observed measurements from AQS that cover a small 

fraction of the State in mostly urban areas, HRRR-Smoke is spatially continuous and isolates the 

fire contribution to pollution. Although our case study of California in 2020 is instructive due to 

the State’s ecological diversity and size, our results cannot be directly translated to other 

geographies and years. Nonetheless, climate driven fire risk in California will only worsen 

through the middle of the century; seasons of similar intensity for both heat and smoke are 

therefore plausible, if not likely, to reoccur. Additionally, our heat index measurements, while 

based on observed temperatures, do not account for microclimate impacts or wind which are 

both known to shape heat stress during outdoor activities (Thorsson et al., 2014). Finally, 

because we lack a definitive understanding of people’s physiological and adaptive responses to 

varying intensities of heat and smoke, our analysis makes population-level assumptions about the 

magnitudes that may be considered hazardous.  

CONCLUSION 

We report population-level exposure for individual and co-occurring climate-related 

hazards and find that a majority of California’s land area, especially ecoregions in northern 

California with dense fuel loads, were affected by HSC. The location of these events are 

unassociated with social indicators of vulnerability, however, they tend to cluster in rural areas 

near observed fire perimeters (Appendix A). To our knowledge, this is the first study to describe 
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the spatiotemporal dynamics of HSC throughout California and to examine their disproportionate 

impacts on certain communities in the State. We advance previous work by examining exposures 

at a relatively high spatial resolution (3 km) with smoke-specific PM2.5 estimates to isolate 

wildfire contributions from other sources of air pollution.  

This study suggests several promising areas for future research. First, researchers can 

leverage this analysis to estimate the excess morbidity and mortality resulting from the 

interactions between heat and smoke PM2.5 while accounting for mediating sociodemographic 

factors that may otherwise be obfuscated at coarser spatial resolutions. Second, longer-term 

studies can examine the meteorological and geophysical drivers of heat and smoke to identify 

multi-year HSC exposures as well as the causal mechanisms behind HSC, and in turn, enable 

better prediction. This would require an expanded time series of smoke PM2.5 concentrations that 

is not currently available from the HRRR-Smoke model that became operational in 2020; 

therefore, other observational or modeling datasets are needed to backfill historical smoke 

patterns. Third, future climate change scenarios may alter HSC frequency and duration 

(Kalashnikov et al., 2022), but this was beyond the scope of this analysis. Finally, we can further 

investigate the social drivers of differential exposure between racial and ethnic groups including 

housing stock, urban tree canopy cover and occupation. 

With the intensity and duration of extreme heat events and wildfires projected to increase 

over the coming decades (Westerling, 2018, 2016), HSC is likely to become increasingly 

frequent. Accordingly, public health officials must account for hazard interactions in their 

planning efforts and their potential to incur harms on human health that exceed the sum of their 

parts.  
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APPENDIX 3 

Appendix 3A. Ecoregions of California. Each polygon corresponds to a level one ecoregion 
according to the EPA’s Ecoregions of North America. The North American Desert region 
contains the warm Sonoran and Mojave deserts as well as the colder Central Basin and Range. 
The Mediterranean California region spans regions with coastal sage, chaparral and oak 
woodlands, the State’s central valley as well as pine-oak mountain ranges. The Marine West 
Coast Forest is also known as the Coast Range, featuring highly productive, rain-drenched 
coniferous forests, including redwoods. Finally, the Forested Mountains contain the Sierra 
Nevadas, Cascades, Klamath Mountains and Eastern Cascade Slopes and Foothills. Overlaid are 
the footprints of the 20 largest fires in 2020 from CalFire’s FRAP perimeter database. 
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Appendix 3B. HRRR Validation. 

(Top) Interquartile ranges between AQS station daily mean PM2.5 measurement and the 
corresponding HRRR-Smoke forecasted smoke PM2.5 mass concentrations across bins of 
increasing population density (average within a 3 km grid cell). Population densities 
(persons/km2) are 1-10 (n=19), 11-100 (n=24), 101-1000 (n=52), 1001-2000 (n=28), >2000 
(n=43). Discrepancies between median and interquartile ranges increase with population density. 
(Bottom) Normalized mean biases between HRRR-Smoke and all daily AQS measurements per 
station; stations are binned according to the surrounding population density. Normalized mean 
bias is the total difference between HRRR-Smoke estimates and AQS measurements for a single 
station, normalized by the station’s total observed mass concentrations. Larger negative biases 
(model underestimation) are observed as population densities (i.e. anthropogenic aerosols) 
increase. Both plots are filtered for dates where HRRR-Smoke forecasts are non-zero (>1 
µg/m3). 
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Appendix 3C. Heat-Smoke Co-Occurrence Affected Populations. Purple and green areas 
correspond to areas that were affected and unaffected by heat-smoke co-occurrence, respectively. 
Color shading is the log scaled population density. White areas are not populated. The zoomed 
inset map of the Bay Area highlights the spatial variability in HSC across relatively small 
distances as well as the concentration of population in urban areas. 
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Appendix 3D. AQS Stations. Below is the spatial distribution of EPA’s ground air quality 
monitoring stations across California that were compared to HRRR-Smoke estimates. Coloring 
corresponds to the population density (persons/km2) within a 4 km buffer around the station. 
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Appendix 3E. California Population Maps. Each map displays the percent of each census tract’s 
population represented by Census respondents of each race or ethnicity “alone”. Estimates are 
based on the 5 year American Community Survey from 2019. Shared X and Y axes correspond 
to longitude and latitude, respectively.  
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Appendix 3F. Ecoregion Summary Statistics. “Ecoregion Area” is the total area of each national 
ecoregion within California. The “Frequency Weighted Area Affected Percentage” is the sum of 
all affected grid cell areas multiplied by their frequencies in each ecoregion, divided by the 
product of the total area of the ecoregion and the total number of days in the summer season 
(n=179). The “Average Maximum Exceedance” is the statewide average of all maximum 
exceedances for all affected 3 km grid cells in an ecoregion. 

Ecoregion Ecoregion 
Area (km2) 

Frequency Weighted 
Area Affected (%)  

Average Maximum 
Exceedance (ug/m3) | °F 

 HSC Smoke Heat Smoke Heat 

Northwestern 
Forested Mountains 

1.16e+5 1.17 17.54 7.56 84.06 2.03 

Marine West Coast 
Forest 

1.33e+4 1.17 5.00 12.10 50.19 3.62 

North American 
Deserts 

1.20e+5 0.87 6.34 10.53 31.69 2.78 

Mediterranean 
California 

1.60e+5 0.88 9.73 8.04 42.33 3.72 
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Appendix 3G. Population Exposure. Slope values, Pearson correlation coefficients, p-values and 
standard errors for all social indicator deciles and smoke or heat magnitude exceedances. Smoke 
and heat outcomes are the statewide average of each non-zero pixel’s seasonal average 
exceedance relative to the baseline threshold (85th percentile HI, 20 µg/m3).  

Variable Slope Correlation Coeff. P Value Std. Error 

Smoke Magnitude 

African American  -0.02 -0.95 0.00 0.00 

Ozone  -0.00 -0.06 0.87 0.01 

Linguistic Isolation -0.01 -0.89 0.00 0.00 

Cardiovascular -0.01 -0.48 0.16 0.00 

Hispanic -0.00 -0.42 0.23 0.00 

White 0.01 0.74 0.01 0.00 

CalEnviroScreen  -0.01 -0.74 0.02 0.00 

Poverty -0.00 -0.28 0.43 0.00 

Native American -0.00 -0.27 0.45 0.00 

Heat Magnitude 

African American  0.01 0.39 0.26 0.01 

Ozone  -0.10 -0.76 0.01 0.03 

Linguistic Isolation 0.04 0.94 0.00 0.01 

Cardiovascular -0.05 -0.94 0.00 0.01 

Hispanic 0.00 0.03 0.94 0.01 

White -0.06 -0.91 0.00 0.01 

CalEnviroScreen  -0.02 -0.55 0.10 0.01 

Poverty -0.05 -0.92 0.00 0.01 

Native American 0.01 0.16 0.65 0.02 
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Appendix 3H. Population HSC Exposure Proportionality. “Total Population” is the statewide 
share of the population represented by each race/ethnicity. “Affected Population” corresponds to 
the total population of each race/ethnicity in census tracts with non-zero HSC areas, proportional 
to the ratio of area affected and the total area of a tract. The “Affected Ratio” is the fraction of 
the affected population share relative to the total population share.   

  HSC Smoke Heat 

Race/Ethnicity 
Total 

Population 
(%) 

Affected 
Population 

(%) 

Affected 
Ratio  

Affected 
Ratio 

Affected 
Ratio 

Total Population: White Alone 59.70 59.70 1.05 1.00 1.00 

Total Population: Black or 
African American Alone 

5.79 5.79 0.92 0.97 1.00 

Total Population: American 
Indian and Alaska Native 

Alone 

0.77 0.77 1.05 1.04 0.99 

Total Population: Asian Alone 14.50 14.49 1.04 0.99 1.00 

Total Population: Native 
Hawaiian and Other Pacific 

Islander Alone 

0.40 0.40 1.25 1.05 1.00 

Total Population: Hispanic or 
Latino 

39.02 39.02 0.90 1.01 1.00 
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CHAPTER FOUR: Weather and Fire Intensity Predicts Building Damage from Wildfire in 
California 

ABSTRACT 

Increasingly large and intense wildfires have caused record-setting property loss in 

California over the last decade. Existing building vulnerability models study the effects of 

structural hardening on damage likelihood, but ignore the effects of time-varying weather and 

fire intensity. Yet, these variables influence the combustibility of structures and fire suppression 

tactics. Using a public database of home damages collected over a five year period by the 

California Department of Forestry and Fire Protection, we train a gradient boosted decision tree 

model to infer a home’s combustion risk in the event of a wildfire. Notably, we impute time-

varying risk factors using climate reanalysis data and remotely sensed detections of active 

wildfire to supplement more commonly studied building features. Our model is able to identify 

nearly 91% of homes that burned in a test sample of more than six thousand homes. Importantly, 

meteorological conditions, fire intensity and the recency of the wildfire ignition, had the largest 

influence on damage predictions. These findings suggest meteorology and wildfire behavior are 

more predictive than structural characteristics such as roof material and shape. Catastrophe 

models, like those used by insurers, should include dynamic, time-varying factors in wildfire risk 

modeling to improve property loss estimates. Our predictive model and performance metrics can 

support more accurate underwriting and empower individual homeowners to reduce their risk.  

INTRODUCTION  

Warming and expanded residential development in wilderness areas have resulted in 

unprecedented economic damages from wildfire in the United States (Westerling, 2016). The 

National Center for Environmental Information estimates $49 billion direct losses from 
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catastrophic wildfires in 2017 and 2018 - more than the preceding twenty-seven years’ losses, 

combined (Buechi et al., 2021; National Centers for Environmental Information, 2022). 

California is particularly affected by catastrophic wildfire: in 2018 the state’s insurance 

department reported a record-setting $12 billion in insured losses. These losses, stemming from 

larger, more-intense wildfires, have prompted increases in the premiums insurance companies 

charge and, in turn, have constrained access to critical protection from the damages of natural 

disasters (Nguyen & Noy, 2020). 

Short of transferring risk to an insurer or relocating, homeowners may invest in 

construction “hardening” and maintenance that reduce the likelihood of their home combusting 

in a wildfire (Hedayati et al., 2023). Structure and site-level risk factors include roof material and 

siding material; the topographic and vegetational features that influence spread; as well as the 

home’s location relative to firefighting crews and infrastructure (A. Syphard & Keeley, 2019). 

Studies have measured the marginal risk stemming from these different variables, however, 

many lack empirical data over a multi-year period. Additionally, these studies focus on small 

geographies that cannot be extrapolated to the diverse ecologies and building types in California, 

limiting their policy applications, for example the drafting of building codes and zoning maps 

(Hakes et al., 2017).  

Notably, there is no study that empirically examines the effect of fire radiative power 

(intensity) and weather (temperature, air dryness and wind) on an individual building’s 

vulnerability to combustion. The intensity of a fire is known to affect ember production, ember 

transport, the flame length and height as well as the likelihood of a fire’s containment – all of 

which have implications for property damage. Weather conditions, including high-speed winds 

and low air moisture content, also influence the likelihood of wildland fuel or building timber 
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combustion and subsequent ember production (Seager et al., 2015). Beyond its physical effects, 

extreme fire weather threatens firefighter safety which reduces suppression activity and, in turn, 

increases the risk of damage to a home (Butler, 2014; Penney et al., 2019).  

Since no empirical study measures risk response to changes in wildfire intensity or 

weather, current vulnerability assessments are, as we identify, omitting key interactions with 

weather and fire intensity that may cause them to misjudge risk. Moreover, these assessments 

premised on stationary variables related to building construction cannot capture changes in 

wildfire risk to building damage due to climate change. This study helps answer whether an 

increase in the frequency and intensity of hot and dry days and, accordingly, more intense 

wildfires will result in more property damage (McKinnon et al., 2021).  

We accomplish this by overcoming key data limitations. First, we impute the estimated 

burn date of a home using satellite thermal anomaly detections to obtain the prevailing weather 

when a structure was threatened by wildfire. Additionally, we enhance a dataset of building 

characteristics with a property’s historical canopy cover to train a prediction model that insurers 

and other public stakeholders can use to better understand home vulnerability throughout 

California. Finally, we describe how these insights can be integrated into current risk modeling 

frameworks for improved underwriting. 

Hardening and Building Risk  

To protect built structures from wildfire, mitigation experts recommend the use of fire 

resistant roofing and siding that “'harden” homes against induced heat or direct flame 

impingement, as well as meshes and screens that prevent embers from entering vents and eaves 

(CalFire, n.d.). Building codes now mandate many of these practices and researchers have 
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attributed code compliance with a 40% reduction in home ignition likelihood (Baylis & 

Boomhower, 2021). Beyond modifications to the structure itself, fire mitigation specialists target 

fuels within 100 feet of a building envelope that can ignite homes from conducted, radiated or 

convected heat. This “defensible space” not only reduces the likelihood of a home igniting from 

direct flame contact but also allows firefighters to set up safer tactical positions (A. D. Syphard 

et al., 2014). 

Understanding home risk has implications not only for safety but also property 

affordability and value. Recently, insurance carriers have increased premiums and policy non-

renewals in response to elevated fire risks and financial losses (California Department of 

Insurance, 2019; Dixon et al., 2018). These increased homeownership costs and risks have 

pushed some homeowners to relocate and reduce property values for both high and low income 

households (Chase & Hansen, 2021). To that end, the California’s Department of Insurance 

recently established rules requiring insurers to reduce premiums in exchange for hardening 

measures homeowners undertake.  

Quantifying risk reduction, no less translating these reductions monetarily, is difficult in 

practice, however. For one, myriad variables influence risk and researchers have yet to 

disentangle their interactions and heterogeneous effects. Furthermore, public data on property 

damage does not mention the burn date nor the prevailing conditions when a home was 

threatened by fire (CAL FIRE, 2023). Modeling to-date has leveraged historical claims data 

against different independent variables that influence the likelihood of a home igniting, albeit for 

small geographies over a short time window (Arrowsmith et al., 2021; Bhandary & Muller, 

2009; A. D. Syphard et al., 2014) or at the building cluster level (Alexandre et al., 2016). These 

studies confirm increases in risk when canopies overhang roofs or when there is abundant 
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vegetation within 100ft - the defensible space - of a home. Still, none of these studies account for 

the impact of weather and fire intensity in shaping combustion risk. Last, no study has leveraged 

decision tree machine learning models that, unlike linear regression models, can account for data 

missingness, nonlinear interactions and multicollinearity across predictors.  

METHODS 

Training data 

To build a model that can predict a home’s likelihood of combustion we require data on 

observed historical damages (and non-damages) for homes that were inside a wildfire perimeter. 

Our model can then map associations between these observed damages and a series of predictor 

variables, or features, that previous studies have determined to influence risk (Table 4-1). Since 

the record of observed damages does not report the date when a home burns and, in turn, the 

weather and wildfire conditions at that time, we impute the burn date from satellite detections to 

then derive weather conditions. The final result is a model that can intake any set of predictors 

and produce either a likelihood (probability) or prediction (classification) of damage (Figure 4-

1).  
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Figure 4-1. Modeling framework. Model training is performed on loss data enhanced with 
structure information documented by CAL FIRE, canopy cover from aerial imagery, “static” 
topography information as well as observed wildfire conditions. For inference, given any new 
home, similar datasets can be queried to obtain model inputs, including updated canopy 
conditions and, if applicable, forecasted fire dynamics. 

 

We obtain historical damage data from CalFire’s Damage Inspection (DINS) program 

spanning from wildfires spanning 2013 until 2022. This program, which began in the 1980s, 

dispatches trained inspection specialists to survey wildfire affected locations within the CAL 

FIRE reported perimeter on a daily basis according to a standardized protocol that includes post-

collection quality control (Hawks, 2020). Damage outcomes are categorized according to a 

qualitative criteria (Appendix A) set by enumerators as 'No Damage', 'Affected (1-9%)', 'Minor 

(10-25%)', 'Major (26-50%)’ and 'Destroyed (>50%)' (Wallingford, 2018). Notably there are few 

‘No Damage’ homes in years 2013-2017 which CalFire confirmed as a data collection error; we 

therefore restrict our analysis to post-2017 wildfire events. Additionally, we filter the fire-
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affected sites to structures with residential uses and exclude commercial facilities such as 

hospitals, churches, and schools given their unique structural characteristics and limited 

observational record. Finally, only four percent of our filtered data features intermediate levels of 

damage, we therefore group all non-zero levels of damage into a single “Damage” outcome and, 

in doing so, binarize the target variable.  

Additional Features 

Each outcome is trained against a series of covariates that previous studies and CalFire 

identify as correlating with home ignition. These include whether a building was wildfire code-

compliant (all new construction in state managed areas starting in 2017) (Miller et al., 2020); the 

aspect, slope and elevation of the home which correspond to fire spread rates and fuel dryness 

and were derived from the 30-meter SRTM digital elevation model; the proximity to a CalFire 

facility, a proxy for response times; and the population density in a one kilometer-squared area 

surrounding the site to reflect building density, road network density and firefighter resources. 

Population density is based on the 2020 Gridded Population of World Version 4 (GPWv4) which 

interpolates census population data at a one kilometer-squared resolution every 5 years.  

CalFire also records a series of structural characteristics based on forensic assessment, 

which include eaves treatments, fencing, roof material and siding material. Unfortunately, these 

fields have imbalanced coverage with respect to the outcome variable, and others, such as where 

and how a home ignited, have less than one thousand observations - we therefore omit these 

variables from the analysis. Instead, we use a dataset from Vexcel Imagery that extracts roof 

material and roof shape for homes within 10 meters of CAL FIRE’s reported coordinates using 
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7.5cm imagery from plane-mounted cameras. This dataset also reports the number of observable 

roof vents, chimneys and building footprints within 30 and 100 feet of a structure.  

We also calculate the defensible space around the home using the Vexcel Imagery where 

available and National Agricultural Imaging Program (NAIP) 60cm-1m resolution imagery 

everywhere else. Vexcel imagery is captured annually and NAIP imagery is captured every 3-

years throughout the continental United States. The near-infrared and red imaging bands from 

the most recent image that precedes the ignition date of the fire are used to derive the 

Normalized Difference Vegetation Index (NDVI) which is then classified as vegetation based on 

absolute threshold of 0.25 - this cutoff value has strong recall (0.89) against tree detections from 

a deep learning segmentation model for Riverside, Los Angeles, San Diego and the San 

Francisco Bay Area - regions that capture considerable variability in California land cover 

(Zhang et al., 2022). This cutoff showed lower precision (0.43) due to the misclassification of 

grasses and shrubs as tree canopy. Accordingly, our defensible space estimates reflect both tree 

canopy and surface fuels. For measures of defensible space, circular distance buffers (10m, 30m, 

100m) are drawn around the property’s coordinates, as reported by CAL FIRE. Regional 

vegetation dynamics are captured by the University of Wisconsin's SILVIS Wildland-Urban 

Interface map, which delineates areas where urban and wildland land cover are either intermixed 

or interfacing (Radeloff et al., 2018).   

The radiative power (megawatts) and location of a wildfire incident are based on 

NASA’s MODIS Active Fire Product (MYD14A1.061) and the date of a wildfire event is 

imputed based on the nearest fire pixel from the MODIS Burned Area (MCD64A1 Version 6) 

monthly data product at a 500 meter resolution (Giglio,  Louis et al., 2015). The difference 

between the estimated burn date and the CalFire reported ignition date is the presumptive day of 
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the incident in which a home burned. Two percent of the total dataset have estimated burn dates 

preceding the CalFire ignition date - in those cases, which average -1.6 days, the time elapsed 

was set to zero. There are also instances when the satellite pass-over occurs too late to detect a 

fire - in these cases fire intensity and weather variables are left null. 

Weather characteristics during a wildfire event are derived from GRIDMET’s daily 4 

km-resolution data (Abatzoglou, 2013). We include daily maximum temperature, daily specific 

humidity, vapor pressure deficit and 10-meter wind speed; increased intensities of these three 

variables have physical associations with fire ignition and fire spread. Notably this dataset does 

not account for fire-generated extreme weather conditions and may be biased in areas with steep 

spatial gradients (Abatzoglou & Brown, 2012). All weather variables were binned into quintiles 

to simplify interpretation and to capture possible non-linear effects. Weather and fire intensity 

data were retrieved and processed in Google Earth Engine. 

Gradient Boosted Model  

We employ an extreme gradient boosting model for predicting the likelihood of 

combustion. The XGBoost algorithm uses decision trees or flowchart-like algorithms that 

develop predictive skill based on observed patterns and interactions across historical 

observations. These algorithms have demonstrated success in spatial prediction problems and 

offer better interpretability than deep-learning methods (Li, 2022). Additional advantages include 

automated parallelization, handling of missing features and multicollinear variables to best 

leverage available data. We use the XGBoost library wrapper from scikit to test a binary hinge 

objective function to predict a binary target variable representing building damage.  
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Next, we iteratively test different model training parameter combinations to identify that 

which produces the best model performance according to the objective function. Example 

parameters include the maximum tree depth and learning rate which regulate the number of 

separating branches in a tree and the contribution of any single tree to the final model prediction. 

These hyperparameters were “tuned” using a grid search that evaluated 192 unique 

combinations.  

The model performance was trained using fire-incident-grouped four-fold cross 

validation and evaluated with an out of sample test set. That is, to assess the accuracy of the 

model’s predictions we present it with new samples that were not involved in the model training 

and we compare its predictions for these never-before-seen samples to the observed outcomes. 

Our group-based sample splitting ensures that any single wildfire event’s data is represented in 

either the training or testing datasets, but never both. This separation prevents overfitting where, 

for example, the algorithm could base predictions of new events based on their spatial correlation 

with outcomes it has already observed, not the underlying risk. An overfit model would 

overestimate the model’s accuracy. 
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Table 4-1. Model Features with Descriptions 

Continuous Description Source 

Aspect Degrees SRTM 30 meter 

Elevation Meters SRTM 30 meter 

Slope Meters / Kilometer SRTM 30 meter 

Population Density Persons per km2 GPW (Census) 

Tree Canopy Area (10m buffer) m2  NAIP 

Tree Canopy Area (30m buffer) m2 NAIP 

Minimum Distance to Fire Station  m CAL FIRE 

Mean Fire Intensity  Watts/km2 MODIS 

Day of Fire Count MODIS 

Year Built  Year CAL FIRE 

DSB 30/100 Percent of the region within (30/100) ft of the structure that is 
other buildings 

VEXCEL 

DST 30/100 Percentage of region within (30/100) ft of the structure that is tree 
coverage 

VEXCEL 

Area Building area (geographic coordinates) VEXCEL 

Structure Tree Cover Percentage of structure covered by trees VEXCEL 

Daily Maximum Temperature Celsius GRIDMET 

Specific Humidity Mass fraction GRIDMET 

Wind Speed (10 meter)  Meters per second GRIDMET 

Categorical  

WUI Classification  Intermix/Interface SILVIS 

Year Built >2008 Indicator Yes/No – 

Burn Month e.g. January MODIS 

Roof Shape  Hip: all sides slope down 
Gable: opposing sides slope down 

Flat: less than 2/12 slope 

VEXCEL 

Roof Material Shingle, Tile, Metal, Shake, Gravel, Membrane VEXCEL 
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RESULTS 

CalFire recorded 91,884 structures as being within or near 132 distinct wildfire 

perimeters between 2013-2022 - 60,665 of these structures were single family homes. After 

applying our filter criteria for residential structures that burned after 2017, a total of 49,810 

homes, or 82% of all residential structures remain, highlighting the increased frequency and size 

of wildfires in recent years (Figure 4-2). Almost half of the wildfire events in the CalFire dataset 

count zero unburned homes and only six events count zero burned homes. While imbalances are 

plausible for a majority of small fires (the median recorded wildfire contains 144 affected 

homes), the Woolsey and Carr wildfire, which both burned over 1000 homes, omit any unburned 

records and are therefore included in our descriptive analysis but excluded from the model 

training and validation. 

Figure 4-2. Damage Heat Map. Concentration of homes affected by wildfire (burned and 
unburned). Red regions show the highest density. As shown, the Camp Fire in Paradise 
(Northern California) is disproportionately represented in the dataset as the most destructive 
wildfire in California history. 
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Our imputation of a home’s actual burn date suggests that 72% of affected homes burned 

within the first day of a fire’s spread and approximately 94% within the first week. We also 

cross-tabulate damage outcomes against ordinal bins of weather intensity (Figure 4-3). The 

lowest quintile of specific humidity shows the largest ratio of “Damage” to “No Damage” 

homes; this ratio declines and then reverses as specific humidity increases. Wind speed also 

exhibits a clear positive trend between damage-to-undamaged ratio and intensity. Contrary to 

expectations, however, daily maximum temperature shows a general decline in the ratio of 

damaged homes, as do summer months.  
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Figure 4-3. Cross Tabulations. Damage versus no-damage outcomes as a function of quintile-
binned intensities for wind and specific humidity. Box and whiskers plot for the distribution of 
fire intensities across both damage groups.  

 

Almost half of the DINS homes (n= 22,906) were captured by Vexcel’s aerial imaging 

before the wildfire ignition date and featured a building within 10 meters of the CAL FIRE 

reported coordinates. Of these buildings, shingle roofs were most common (n=13,342), followed 

by metal (n=4430), tile (n=1596) and membrane (n=844). Metal roofs had a three-to-one ratio of 

undamaged to damaged homes, more than any other roof type. Other image-derived features, like 

the percent area occupied by buildings, show a strong positive correlation with population 

density (0.61) and negative correlation with vegetation abundance within the 100-foot defensible 

space (-0.4). 
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Our validation of the test set, comprising one-sixth of the data, for the XGBoost classifier 

using a binary hinge loss function produced a recall of damaged homes equal to 0.91 and 

precision of 0.89. That is, for our out-of-sample observations, the model correctly identified 91% 

of homes that actually burned and, of all its burn predictions, 89% of these were indeed correct 

(Figure 4-4). Conversely, 11% of the model’s “burn” predictions were falsely positive. The F1 

score, which measures the balance of precision and recall, was 0.90. This balance is important 

for ensuring that the model is neither too conservative nor too liberal in its prediction of damage. 

The model shows comparatively weaker recall and precision of homes that survive wildfires, 

equaling 0.60 and 0.64, respectively. The weaker performance is likely attributable to fewer no-

damage observations in our test sample. However, future model iterations can apply weights to 

prioritize performance for either outcome. 
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Figure 4-4. Confusion Matrix. Predicted labels axis corresponds to the model’s predicted class 
for each test set observation and true labels corresponds to the actual observed class in the 
historical data. Clockwise from the top left, quadrants show counts of true negatives, false 
positives, true positives and false negatives. 

 

To identify which features most influence predictions we compute Shapley values 

(SHAP) that measure the average marginal contribution of each feature to the prediction across 

many different ordered combinations of features (Figure 4-5). Global SHAP values can be 

interpreted as the average sensitivity of the prediction to a feature being added or removed from 

the feature set, relative to the expected target value (Appendix B) (Messalas et al., 2019). In this 

case, the global expected target value represents the ratio of damaged to undamaged homes 

(p=0.5).  
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Figure 4-5. SHAP Feature Importance. The relationship between features and SHAP values, 
in order of importance. Positive SHAP-values correspond to increased odds of home damage. 
Higher magnitude features are redder and lower magnitude features are bluer, while categorical 
features are either blue (zero) or red (one). Each point represents the value of the specified 
feature for a single observation in the test data and the marginal SHAP value for that 
observation. 

 

Out of 60 total feature values, our imputed, time-varying features of temperature, specific 

humidity, wind speed and fire intensity were all ranked among the ten most influential. The 

number of days that elapse post-ignition and the month of October, which are both correlated 

with extreme wind events, were the top two most influential features. The directional impacts of 

the top ten features match our original hypotheses (Figure 5) - dryer air, faster wind speeds and 

warmer temperatures increase the predicted likelihood of damage. Topographic variables of 

slope and elevation, which are correlated with weather, vegetation density, and fire spread 
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dynamics also influenced outcomes. Finally, as other studies report, more tree canopy within 100 

feet of a building’s envelope increases the predicted likelihood of damage. Notably these SHAP 

values do not imply causation nor do they imply prediction accuracy but instead measure the 

magnitude and direction of the feature’s addition on the observed prediction.  

DISCUSSION 

Based on our imputation of burn date, the greatest wildfire risk to a home is within the 

first day of its ignition - over eighty percent of homes burn within this window. This is 

significant given that the average California wildfire in 2020 lasted over thirty days. 

Accordingly, the gradient boosting model leveraged the day of fire variable more than any other 

in its predictions of damage. Heightened risk in the first day of a fire is likely attributable to the 

destructiveness of wind driven events that can both cause ignition (e.g. conductor line ignitions) 

and drive rapid spread that forces firefighters to prioritize the evacuation of local residents as 

well as their personal safety (Keeley et al., 2021). Potentially for this reason, October and 

December, fall months when Santa Ana and Diablo winds commonly occur, were influential in 

the model’s predictions. 

As in previous studies, we find that the amount of vegetation within 100-feet of a 

building increases damage likelihood. This signal was most salient in the Vexcel imagery dataset 

that measures pre-burn canopy cover at a 7.5cm resolution around the detected building 

envelope. Conversely, the greater the total area of neighboring buildings within 100 feet of a 

home, the lower the estimated likelihood of damage, likely due to increased impervious surface. 

Interestingly, this outcome contrasts a relatively strong positive correlation between census 

measured population density and predicted damage. One takeaway is the importance of spatial 
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scale in analyzing risk - at the 100 foot resolution density reduces risk, however, at a 1 km 

resolution, density may drive contagion effects. Correlates of population density that may 

mitigate risk, such as firefighting resources and road connectivity, may therefore need to be 

included explicitly. 

For the first time we include weather and wildfire intensity metrics in modeling home 

damage. Notably, our model assigned higher burn probabilities to homes near wildfire detections 

with strong radiative power and on days with lower specific humidity. This could be attributed to 

less effective firefighter suppression and/or increased risk to a home due to ember production 

and larger flame fronts. Importantly, none of the building structure characteristics that we 

included in our analysis - including roof vents, roof material and roof shape - were ranked in the 

top 10 most important features. Only the home’s construction year showed a meaningful 

negative correlation with damage likelihood, but even then, its contribution is one-tenth the 

marginal contribution of the most important feature, day of fire. Our argument is not that 

structural characteristics are unimportant - this study does not consider other meaningful 

variables like siding material and treatments to vents, eaves and gutters that limit ember 

intrusion. However, our results show a predominance of intense weather and fire dynamics over 

roofing in predicting damage. This should motivate further research on the interactions between 

hardening measures,  fire intensity and weather, and possible heterogeneity in their efficacy. 

There are several limitations to our approach. For one, we assume accuracy in the 

damage, building attributes and location that CalFire reports. Additionally, homes that are more 

accessible to enumerators may have certain characteristics that are correlated with susceptibility 

to damage. While our study is the first in the literature to leverage a statewide database of aerial 

imagery over a five year time period to improve the availability and accuracy of pre-burn 
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characteristics, there are still many homes for which imagery was unavailable or homes were 

undetectable; this may depress the feature importances of these variables. 

Our estimates of fire intensity, location and burn date are also prone to error in satellite 

measurement and imprecision stemming from the semi-daily overpass that may result in missed 

detections or deviations from the actual conditions that threatened a home, especially in areas 

with “light” fuels that extinguish quickly. Future studies can use burn scar or geostationary 

satellites to fill these gaps. Finally, our study does not explicitly consider regional wildfire risk 

mitigation like fuel breaks and forest thinning. However, these interventions would likely 

mitigate fire intensity and are therefore implicitly reflected in our model. 

CONCLUSION 

Here we present an extreme gradient boosting model that can predict home ignition with 

significant accuracy. Notably, weather and fire intensity are large contributors to the likelihood 

of home damage. We find suggestive evidence of firefighting resources and extreme wind events 

influencing outcomes through indirect measures of the time elapsed since ignition and the month 

of year in which a home burned, respectively. These features’ importances outweighed building 

variables related to roof material, shape, and year of construction, suggesting a dominating 

influence of fire and weather dynamics on the predictiveness of damage.  

Our results can be readily integrated into current Monte Carlo catastrophe modeling 

frameworks that rely on simulated wildfire footprints for estimating risk. When available, 

modeled weather and fuel conditions and the fire dynamics they influence should be inputted 

into models of building vulnerability to capture variation in home-level risk due to an area’s 

wildfire ecology. In doing so, models can begin to identify areas that are susceptible to intense or 
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rapidly spreading flame fronts and, furthermore, can predict how climate change will affect the 

vulnerability of buildings over the next several decades.  

By illustrating the possibility for damage prediction as well as the quantifiability of 

marginal risk reductions, our study can support market efforts to reward homeowners for 

hardening their home with policy renewals and possible premium discounts. As wildfire risk 

increases across California, precise underwriting will be critical for incentivizing private actions 

to reduce risk and for insurance carriers to continue operating and providing risk transfer to those 

in harm’s way.    
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APPENDIX 4 

Appendix 4A. Damage Criteria Published by CAL FIRE.  

'Affected 
(1-9%)'  

Minimal damage to the 
exterior and/or contents of 
the building. Building is 
habitable/usable and requires 
mostly cosmetic repairs. 

Partially damaged shingles or siding, but roof 
structure is intact. Cosmetic damages such as 
paint discoloration, blistering or melted siding. 
Broken windows. Gutter damage. Damage to an 
attached structure like a deck, porch, carport, or 
patio cover. 

'Minor (10-
25%)' 

Encompasses a wide range of 
damage that does not affect 
the structural integrity of the 
building. Building is not 
habitable/usable. 

Nonstructural damage to roof components (e.g. 
roof covering, fascia board, soffit, flashing, and 
skylight). Nonstructural damage to the interior 
wall components (e.g. drywall and insulation). 
Nonstructural damage to exterior components 
(e.g. door and windows. Substantial damage to 
exterior covering (e.g. siding, vinyl or stucco). 
Damage to mechanical components (e.g. furnace, 
boiler, water heater, HVAC, etc.). 

'Major (26-
50%)’ 

A building that has sustained 
significant structural damage 
and requires extensive 
repairs. Building is not 
habitable/usable. 

Failure or partial failure of structural elements to 
include rafters, ceiling joists, ridge boards, etc. 
Failure or partial failure to structural elements of 
the walls to include framing, sheathing, etc. 

'Destroyed 
(>50%)' 

The building is a total loss, 
or damaged to such an extent 
that repair is not feasible.  

Complete failure to major components 
(foundation, walls, roof, etc.). Two or more walls 
destroyed and roof substantially damaged. Only 
the foundation remains. The building will have 
to be torn down and rebuilt as it is unsafe. 
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Appendix 4B. Global SHAP Value for All Features 

Absolute Rank Feature SHAP Absolute 
1 Day of Fire 0.264 
2 October 0.206 
3 DST100 0.169 
4 Daily Maximum Temperature 0.125 
5 Specific Humidity 0.111 
6 Elevation 0.076 
7 Slope 0.066 
8 Wind Speed 0.060 
9 Mean Fire Intensity 0.057 
10 December 0.052 
11 Vapor Pressure Deficit 0.048 
12 Population Density 0.043 
13 November 0.037 
14 Construction Year 0.032 
15 NAIP Canopy 100m 0.029 
16 CAL FIRE Facility Distance 0.028 
17 DSB100 0.022 
18 NAIP Canopy 30m 0.010 
19 DST30 0.010 
20 Building Area 0.009 
21 Vegetation Height 0.007 
22 Vegetation Height NaN 0.005 
23 August 0.005 
24 July 0.003 
25 Roof Vent Count 0.002 
26 Pre-Code Construction 0.002 
27 Chimney Count 0.002 
28 Structure Tree Cover 0.002 
29 Aspect 0.001 
30 Low_Dens_Intermix 0.001 
31 WUI NaN 0.001 
32 Very_Low_Dens_Veg 0.001 
33 Med_Dens_Interface 0.001 
34 NAIP Canopy 5m 0.001 
35 DSB30 0.001 
36 September 0.001 
37 Tile Roof 0.001 
38 Med_Dens_Intermix 0.001 
39 High_Dens_Interface 0.000 
40 Low_Dens_Interface 0.000 
41 Gable Roof 0.000 
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42 Med_Dens_NoVeg 0.000 
43 Very_Low_Dens_NoVeg 0.000 
44 Uninhabited_Veg 0.000 
45 NaN Roof Material 0.000 
46 Hip Roof 0.000 
47 June 0.000 
48 Metal Roof 0.000 
49 Uninhabited_NoVeg 0.000 
50 Membrane Roof 0.000 
51 Shingle Roof 0.000 
52 Up-to-Code Construction 0.000 
53 Flat Roof 0.000 
54 Low_Dens_NoVeg 0.000 
55 Shake Roof 0.000 
56 Water 0.000 
57 High_Dens_NoVeg 0.000 
58 High_Dens_Intermix 0.000 
59 May 0.000 
60 Gravel Roof 0.000 
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Appendix 4C. Correlation matrix.  
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Appendix 4D. Spatial distribution of homes recorded by CAL FIRE. While many dots are 
overlapping, this points to the relatively equal spatial distribution of burned and unburned 
homes. 

 

 

Appendix 4E. Bivariate Plots of Neighboring Building Area and Fire Intensity Versus Damage  
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Appendix 4F. Roof Shape and Material Frequency Distribution 
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