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Observational studies reveal substantial variability in microbiome
composition across individuals. Targeted studies in gnotobiotic
animals underscore this variability by showing that some bacterial
strains colonize deterministically, while others colonize stochas-
tically. While some of this variability can be explained by exter-
nal factors like environmental, dietary, and genetic differences
between individuals, in this paper we show that for the model
organism Drosophila melanogaster, interactions between bacteria
can affect the microbiome assembly process, contributing to a
baseline level of microbiome variability even among isogenic
organisms that are identically reared, housed, and fed. In germ-
free flies fed known combinations of bacterial species, we find
that some species colonize more frequently than others even
when fed at the same high concentration. We develop an eco-
logical technique that infers the presence of interactions between
bacterial species based on their colonization odds in different
contexts, requiring only presence/absence data from two-species
experiments. We use a progressive sequence of probabilistic mod-
els, in which the colonization of each bacterial species is treated as
an independent stochastic process, to reproduce the empirical dis-
tributions of colonization outcomes across experiments. We find
that incorporating context-dependent interactions substantially
improves the performance of the models. Stochastic, context-
dependent microbiome assembly underlies clinical therapies like
fecal microbiota transplantation and probiotic administration and
should inform the design of synthetic fecal transplants and dosing
regimes.

microbiome | community assembly | Drosophila | ecological interactions

The microbiome that organisms initially acquire tends to be
stably maintained over time, with resulting physiological con-

sequences for animal growth, development, and health (1, 2).
There is also substantial variation in microbiome composition
between individuals: for example, the vast majority of bacterial
species found in the human population are not present in a
majority of humans (3, 4). It is not yet known the extent to which
this variability is driven by initial microbiome acquisition versus
the subsequent ecological dynamics that occur once a species is
stably colonized.

Colonization of the gut is stochastic; that is, exposure to a
bacterial species does not guarantee colonization. Consequently,
every time an organism encounters a bacterium, that bacterium
might successfully colonize and begin to proliferate or it might
not. These branching outcomes, generated continuously from
every bacterial encounter of every organism, contribute to a
baseline level of microbiome variability even among replicates
in identical environments (5, 6). The state of the microbiome
can subsequently affect the odds that an invader species will suc-
cessfully colonize—for example, with priority effects the estab-
lishment of one species may preclude or encourage subsequent
colonization by another—and such context-dependent feedbacks
further complicate the microbiome assembly process (7–9).

Although diverse microbiome compositions are consistently
observed in natural populations, there have been few attempts to
systematically study the assembly of complex microbial commu-
nities under defined biological conditions and with known strains

of bacteria (10–12). Especially in vertebrates, these bottom-up
experiments are difficult to perform due to the sheer bacterial
diversity of their gut microbiome, which can harbor on the order
of 1,000 bacterial species (as in the typical human gut) (2).
Invertebrates, by contrast, often have simpler gut microbial com-
munities: the microbiome of Drosophila melanogaster contains on
the order of 10 bacterial species with a core set of approximately 5
species (13, 14). As in other animals the fly gut microbiome tends
to be stable over time once initially colonized and has been linked
to development, fecundity, and life span (15, 16). Therefore, the
fly gut microbiome exhibits variability across individuals, affects
its host organism’s fitness, and constitutes a tractable experimen-
tal system that is representative of microbiome variability across
organisms at large.

To probe how probabilistic colonization affects community
assembly, we examined five core bacterial species of the
D. melanogaster microbiome: Lactobacillus plantarum (LP),
Lactobacillus brevis (LB), Acetobacter pasteurianus (AP), Ace-
tobacter tropicalis (AT), and Acetobacter orientalis (AO). The
genus Acetobacter consists of bacteria that metabolize various
carbon sources including sugars, ethanol, and lactate and excrete
acetic acid. Bacteria from the Lactobacillus genus metabolize
amino acids and sugars and excrete lactic acid (17–19). A diet
of autoclaved yeast supplies bacteria in the gut microbiome of
D. melanogaster with nutrients (20).

Significance

Individuals are constantly exposed to microbial organisms that
may or may not colonize their gut microbiome, and newborn
individuals assemble their microbiomes through a number of
these acquisition events. Since microbiome composition has
been shown to influence host physiology, a mechanistic under-
standing of community assembly has potentially therapeutic
applications. In this paper we study microbiome acquisition
in a highly controlled setting using germ-free fruit flies inoc-
ulated with specific bacterial species at known abundances.
Our approach revealed that acquisition events are stochastic,
and the colonization odds of different species in different con-
texts encode ecological information about interactions. These
findings have consequences for microbiome-based therapies
like fecal microbiota transplantation that attempt to modify
a person’s gut microbiome by deliberately introducing foreign
microbes.
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Fig. 1. Experimental schematic and modeling framework. (A and B) Germ-free flies were associated with all 31 combinations of a core group of five
bacteria, with 48 biological replicates per combination. Each fly was fed bacteria-laden food for 10 d, then crushed and plated to determine the bacterial
abundance (measured as CFUs) of each species. Each species in a diversity-N combination can colonize or fail to colonize, yielding a probability distribution
over 2N colonization outcomes. Data were previously published in Gould et al. (16). (C) Empirical distributions of colonization outcomes (Fig. 2) are modeled
assuming that the colonization of each species is independent, with species-specific colonization probabilities pi (also labeled p(i) in this schematic).
(D) Models with fixed marginal colonization probabilities explain the colonization outcomes of up to 20 out of 31 bacterial combinations (multinomial
test, p > 0.05). The two-species model performs nearly as well as the max-likelihood model but requires only a fraction of the data. (E) Models with context-
specific marginal probabilities outperform models with fixed marginal probabilities.

In this paper we characterize the microbiome assembly of
D. melanogaster and empirically show that these initial colo-
nization events lead to microbiome variability in flies that are
identically reared, housed, and fed. We took a combinatorial
approach and inoculated each of the 31 combinations of the five
core bacteria into separate groups of germ-free flies, with 48 fly
replicates per combination (Fig. 1). The bacterial abundance of
each species in each fly was assayed, and these abundance data
were converted into presence/absence data to create a distribu-
tion of colonization outcomes for each bacterial combination.
These data were previously published in Gould et al. (16), but
no analysis of stochastic microbiome assembly was performed at
that time. In this paper we first empirically characterize these
colonization outcomes, then reproduce them with a sequence of
increasingly complex mathematical models. We find that stochas-
tic microbiome assembly generates variability in the fly gut mi-
crobiome and that the colonization odds of each species are
influenced by the context of the other species with which they
are fed.

Results
Standardized Feeding Leads to Variable Colonization Outcomes.
When a bacterial combination of N species (called a diversity-
N combination) is fed to flies, 2N colonization outcomes can
result (corresponding to the presence/absence of each fed bac-
terial species). For each bacterial combination, 48 fly replicates
were fed bacteria-laden food in an identical manner, but some
bacterial species failed to colonize some fly replicates, which
led to variable colonization outcomes (Materials and Methods)
(16). Fig. 2 plots the empirical frequency of each colonization
outcome for each bacterial combination. The most common
colonization outcome (for nearly every bacterial combination) is
that all fed species colonize. Each additional fed species doubles
the number of possible colonization outcomes; accordingly, at
higher-diversity combinations, more outcomes were observed.

Collapsing the colonization outcomes for experiments of each
diversity yields the average number of species that successfully

colonize as a function of the number of species fed, shown in
Fig. 3A. Some species failed to colonize in some replicates for
experiments of every diversity. Furthermore, as demonstrated in
Fig. 3B, the proportion of species that successfully colonize is
relatively constant (ranging from 0.85 to 0.9) across combination
diversities. Since variable colonization outcomes occurred even

Fig. 2. Distribution of colonization outcomes for each combination of fed
species. Binary presence/absence data (detection limit of 100 bacterial CFUs)
from 48 biological fly replicates per combination, represented as probabil-
ities of colonization outcomes. Colonization outcomes are represented as
pies with the number of slices equal to the combination diversity, colorful
slices representing the presence of that bacterial species (as indicated in the
legend), and black slices representing the absence of that species. Outcomes
in which all fed species colonized are plotted as large pie markers. For each
combination, the probabilities of all colonization outcomes sum to 1. Error
bars indicate 95% confidence intervals of the mean.
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Fig. 3. Empirical characterizations of colonization odds. (A and B) Bulk colonization properties quantify variability in colonization outcomes. Distributions
of colonization outcomes (as in Fig. 2) are coarse-grained across species to yield (A) the average number of species that colonize and (B) the proportion
of species that colonize for each combination diversity, plotted as black circles. Gray triangles indicate perfect colonization of every fed species. (C) Single-
species colonization odds vary across combination diversities. For each bacterial species i, diversity-dependent colonization odds pN(i) were computed (across
all experiments of diversity N) as the number of times a species successfully colonized divided by the number of times it was fed. Colorful slices represent the
presence of that bacterial species (as indicated in the legend), and gray slices represent all outcomes for the other species. LB is less successful at colonizing
in more diverse combinations (p = 0.02, Cochran–Armitage trend test). Error bars represent the 95% confidence interval of the mean. (D) Colonization
odds depend on context. The deviation Δpj(i) in the colonization odds of species i in the presence of species j is defined as the probability that species i
colonized when fed with species j minus the probability that species i colonized (regardless of combination) and is plotted as a heat map. Acetobacter species
colonized more frequently in the presence of Lactobacillus species and less frequently in the presence of other Acetobacter species. Grouping the different
rows of the heat map by similarity yields the dendrogram at left, which accurately clusters bacterial species according to their genera (see SI Appendix for
details).

when flies were inoculated with bacteria at higher doses and in
more uniform conditions than are typically found in nature, these
findings suggest that stochastic colonization is a universal feature
of microbiome community assembly.
Colonization Odds of Bacterial Species Imply the Existence of Strong
and Weak Colonizers. The colonization odds of each bacterial
species—that is, the proportion of the time a bacterial species
colonized when it was fed—differ in general, revealing a distinc-
tion between bacteria that are strong colonizers and others that
are weak colonizers. Fig. 3C shows the colonization odds pN (i)
of species i in experiments of a given diversity N. These diversity-
dependent colonization odds demonstrate that LP and AO are
strong colonizers (colonizing more than 95% of flies they are fed
to), while AT and AP are relatively weak colonizers (colonizing
less than 80% of flies they are fed to). The colonization odds of
LB are 100% in single-species experiments but are significantly
lower in higher-diversity combinations, possibly reflecting com-
petitive exclusion of LB by other stronger colonizers when they
are present.

Species Colonization Odds Depend on Context. Bacterial species
colonized with different odds depending on which other species
were fed alongside. These context-dependent deviations in colo-
nization odds Δpj (i), defined as the colonization odds of species
i in the presence of species j minus the colonization odds of
species i regardless of combination, reflect interactions between
bacterial species. Fig. 3D shows a heat map of these context-
dependent deviations, indicating that Acetobacter species colo-
nize more frequently in the presence of Lactobacillus species and
less frequently in the presence of other Acetobacter species. The
colonization odds of LP and LB are basically unaffected by the
presence of other bacteria, while the colonization odds of AP, AT,
and AO are sensitive to the presence of other bacteria. Clustering
the rows of the heat map yields the dendrogram at left, which
correctly assigns bacterial species to their corresponding genera
(the similarity metric comparing rows i and j only considers
contributions from the three elements that are not i or j; Mate-
rials and Methods). Notably, this taxonomic clustering is entirely
based on distributions of colonization outcomes, meaning that in
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this case, observational presence/absence data are sufficient to
extract the functional similarity of species of the same genus.

Reproducing Empirical Colonization Outcomes with Probabilistic
Models in Which the Colonization of Each Bacterial Species Is an
Independent Stochastic Process. Flies fed a diversity-N com-
bination have 2N colonization outcomes, corresponding to
whether each species was able to colonize or not. We model
these colonization outcomes by assuming that each species’
colonization is an independent process. More concretely, an
independent colonization model posits that for a diversity-
N combination S, the probability of a colonization outcome
R ⊆ S is

P(R) =
∏

i∈R

pi
∏

j∈S\R

(1− pj ), [1]

where pi is the marginal colonization probability of species i.
Notationally, we use colonization odds to refer to empirical
quantities and colonization probabilities to refer to parameters
of the independent models.

The choice of pi entirely determines the expected distribution
of colonization outcomes of independent colonization models
for a given bacterial combination. We consider two families of
models: models with fixed colonization probabilities (i.e., models
in which pi does not depend on the bacterial combination) and
models with context-dependent colonization probabilities (i.e.,
models where pi can depend on the bacterial combination). We
evaluate model performance with multinomial tests, by examin-
ing the likelihood of generating the observed data with a given
model, and by computing the Bayesian information criterion
(BIC) of each model (Materials and Methods).

Independent Colonization Models with Fixed Marginal Colonization
Probabilities. We first consider four independent colonization
models in which the colonization probabilities pi of each species
are context-independent. Fig. 1D shows a heat map of pi in
each of the four models, named the uniform, single-species, two-
species, and max-likelihood models.

In the uniform model the colonization probabilities of each
species are set to be identical, equal to the average colonization
odds of single-species experiments. In the single-species model,
pi are set to the colonization odds of species i across the diversity-
1 experiments (the first column of Fig. 3C; SI Appendix); like-
wise, pi of the two-species model are set to the colonization
odds of species i across diversity-2 experiments (the second
column of Fig. 3C). The deviations Δp j (i) in colonization odds
act as higher-order corrections to the colonization odds pi but
are not directly related to the colonization probabilities of the

two-species model. Last, pi of the max-likelihood model are
chosen to maximize the likelihood across experiments of all
diversities, equally weighting the likelihood of generating the
colonization outcomes of each combination.

Independent Colonization Models with Context-Dependent Marginal
Colonization Probabilities. Next we consider a model in which the
colonization probability pi of species i depends on the combina-
tion S in which it is fed (i.e., pi = pi(S)). The form of this inter-
action model is motivated by the context-dependent colonization
odds in Fig. 3D. In the interaction model, when a Lactobacillus
species i is fed with another Lactobacillus species, its colonization
probability is adjusted so that pi → pαLL

i , where the interaction
parameter αLL captures the effect one Lactobacillus species has
on another’s colonization. If a Lactobacillus species i is fed with
an Acetobacter species, pi → pαLA

i , and if it is in the presence
of both Acetobacter and Lactobacillus species, pi → (pαLL

i )
αLA .

The same rules apply to Acetobacter species but with parameters
αAL and αAA. The fit interaction parameters recapitulate the
context-dependent deviations in colonization odds found in Fig.
3D (see SI Appendix for details). Exponentiation of colonization
probabilities ensures that they remain bounded between 0 and 1.
This particular model (with its relatively simple form) is rep-
resentative of the improved performance of context-dependent
colonization models broadly, although an infinite number of
alternative context-dependent models might also demonstrate
these properties.

Independent Colonization Models with Context-Dependent Coloniza-
tion Probabilities Reproduce Empirical Colonization Outcomes Better
Than Models with Context-Independent Colonization Probabilities.
The accuracy of independent colonization models is evaluated
in two ways in Fig. 4. First, Fig. 4A shows when a model
overestimates (green) or underestimates (pink) the probability
that all fed species colonize. Second, Fig. 4B indicates when
a model reproduces (white) or fails to reproduce (dark red)
the observed colonization outcomes, as determined by the P
value of a multinomial test. The residuals of Fig. 4A capture
model fits for the particular colonization outcome that all fed
species colonize, while the P values of Fig. 4B report deviations
based on the entire observed and model-predicted distributions
of colonization outcomes.

Fig. 4A makes apparent that the context-dependent interaction
models are better than models with fixed colonization probabil-
ities at predicting the probability that all fed species colonize
(i.e., the bottom two models in each panel have lighter heat map
values than the top four rows). This trend is reinforced in Fig.
4B, where the context-dependent interaction models have higher

A

B

Fig. 4. Evaluation of how independent colonization models reproduce empirical colonization outcomes. (A) Model residuals for the probability that
all fed species colonize, where PM(k) and PO(k) are the model-predicted and empirically observed probabilities that all fed species of combination k
successfully colonize, respectively. (B) The probability that a model reproduces the empirically observed distribution of colonization outcomes for each
bacterial combination k (multinomial test; SI Appendix). In A and B, lighter colors indicate improved model fit, and the four models with fixed colonization
probabilities are separated by a horizontal black line from the two models with context-dependent probabilities. The interaction model fit to all data is
labeled “interaction (all),” and the interaction model fit to diversity-2 experiments is labeled “interaction (div-2).”
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Table 1. Performance metrics for independent colonization models

Independent No. combinations reproduced Log-likelihood No. free model
colonization model (p > 0.05, multinomial test) (across all experiments) parameters BIC

Uniform 10/31 −583 1 1,169
Single-species 8/31 −1,023 5 2,063
Two-species 18/31 −331 5 680
Max-likelihood 20/31 −318 5 653
Interaction (div-2) 21/31 −293 9 616
Interaction (all) 24/31 −254 9 539

The uniform model had one free parameter, while the other models with fixed colonization probabilities had five free parameters. Both interaction models
had nine free parameters, consisting of five colonization probabilities and four interaction parameters. Models that better combine empirical fit with fewer
free parameters have smaller BIC scores. As a rule of thumb, if the BIC scores of two models differ by more than 10, there is strong evidence to support the
model with the lower BIC score over the other model (21).

P values (i.e., are better at reproducing the measured coloniza-
tion outcomes) than models with fixed colonization probabilities.
These models are not overfit, as determined by leave-k-out cross-
validation (see SI Appendix for details).

Table 1 compiles additional performance measures for each
model. The likelihood is defined as the probability of obtaining
the observed data with a given model, in this case the product of
the probabilities of 31 draws from multinomial distributions that
each correspond to a particular combination of fed bacteria. The
BIC is lowest for the interaction models. For two models i and
j with equal priors, the quantity exp((BICi − BICj )/2) roughly
equals the odds that model j generated the observed data divided
by the odds that model i generated the observed data (21). As
a rule of thumb, if the difference BICj − BICi > 10, then there
is strong evidence to support model i rather than model j (21).
Accordingly, there is strong evidence to support models with
context-dependent colonization probabilities over models with
fixed colonization probabilities and also to support models fit to
all data over models fit to a subset of the data.

Insights Gained from Model Failures. As is evident in Fig. 4B, the
empirical colonization outcomes of most bacterial combinations
are well approximated by the independent colonization models.
Nevertheless, these models fail to reproduce a few combinations
(characterized by dark red vertical strips in Fig. 4B), and the
models’ failure hints at an anomalous distribution of colonization
outcomes. In two of these combinations, AP/AT and AP/AT/AO,
the colonization odds of AP (45 and 33%, respectively) are
substantially lower than the average colonization odds of AP
across all experiments (67%). Additionally, for AP/AT the colo-
nization odds of AT (90%) are substantially higher than average
(80%). These deviations indicate interactions between bacteria,
in particular the exclusion of AP colonization by other Aceto-
bacter species. The interaction model penalizes the colonization
probabilities of Acetobacter species in the context of other Ace-
tobacter species, yet it still failed to reproduce the distribution
of colonization outcomes observed in AP/AT and AP/AT/AO.
Partially, the interaction model is not compatible with the empir-
ical observation that for the AP/AT combination the colonization
odds of AT are higher in the presence of AP. More generally, the
rich structure of the combinatorial colonization outcomes lays
bare the limitations of minimally context-dependent colonization
models and motivates the future development of more intricate
colonization models.

Colonization Odds Inferred from Diversity-2 Experiments Predict
Colonization Outcomes of More Diverse Experiments. In experi-
ments with multiple species the presence of bacterial interactions
can affect colonization, and these effects can be accounted
for with a more complex model. Taking these interactions into
account—either by using the two-species model rather than the
single-species model or by considering context-dependent colo-
nization probabilities—improves the explanatory power of the
associated independent colonization model. Of the independent

models with fixed marginal colonization probabilities, the two-
species model is nearly identical to the max-likelihood model,
with the colonization probability of each species differing by
≤ 2 percentage points between the two models. Accordingly,
these two models reproduce a similar number (18/31 and 20/31,
multinomial test p > 0.05) of bacterial combinations and have
similar log-likelihoods (–331 and –318). Notably, the single-
species model performs much more poorly: when fed in isolation,
LP, LB, and AO colonized perfectly, but their colonization odds
worsened significantly once they were fed in combination with
other species. Thus, considering bacterial context (and not using
exclusively single-species experiments) significantly improves
prediction. SI Appendix, Table 1 contains the log-likelihoods of
each model for experiments of each diversity, which provides
additional quantitative backing to this notion.

The context-dependent interaction model fit to diversity-2 ex-
periments also outperformed (i.e., reproduced the colonization
outcomes of more combinations, had a higher log-likelihood, and
had a lower BIC score) all models with fixed colonization odds,
including the max-likelihood model. The interaction model fit to
diversity-2 experiments is sufficient to predict the majority (9/16)
of high-diversity (diversity-3 and higher) colonization outcomes.
For comparison, the interaction model fit to all experiments
reproduces 11/16 of high-diversity colonization outcomes. There-
fore, interactions can be identified and accounted for based solely
on two-species experiments.

Applications to Sparse Experimental Designs. It is experimentally
challenging to perform all diversity-2 colonization experiments
for even a 20-species microbiome, which is comparable to the
bacterial diversity of gnotobiotic mouse microbiome experiments
(22). Here we generate synthetic data for a 20-species micro-
biome composed of four interacting, equally sized genera. Rather
than perform all 190 diversity-2 experiments, we instead consider
performing colonization experiments for N random, 10-species
subsets of this 20-species microbiome (with 24 experimental
replicates per combination). In this scenario, the convergence
of colonization probabilities pi and deviations Δp j (i) to their
ground-truth values as a function of N appears to follow a
power law with exponent −1/2, meaning that a twofold reduc-
tion in absolute average deviations requires a fourfold increase
in the number of combinations tested for sufficiently large N.
Empirically, we find that determining colonization probabili-
ties pi and deviations Δp j (i) within 2 percentage points of
their ground-truth values requires colonization experiments from
∼30 ten-species microbiomes. Additional details are provided in
SI Appendix.

Discussion
Stochastic Colonization Is a Universal Feature of Microbiome Assem-
bly That Produces Microbiome Variation across Individuals. Micro-
biome assembly begins at birth, and the ecological dynamics
that give rise to an individual’s microbiome can be separated
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into two sequential processes: probabilistic colonization by a
bacterial inoculum and subsequent internal dynamics (includ-
ing replication, death, shedding, and secondary colonization by
sloughed-off bacteria). By examining the stochastic colonization
process in detail in the fruit fly, we demonstrate that a baseline
level of microbiome variability exists among identically treated
experimental replicates. In nature, bacterial inocula are typically
less concentrated than they were in our experimental setup, so
natural colonization events will therefore occur with lower odds
than those that we observed, producing broader distributions of
colonization outcomes than in our experiments.

Stochastic Microbiome Assembly Underlies Bacteriotherapies Like
Fecal Microbiota Transplantation and Probiotics. Treatments like
fecal microbiota transplantation (FMT) and probiotics hinge
upon successfully engrafting a healthy microbial community into
a sick person’s microbiome (23). While FMT is capable of pro-
ducing long-term shifts in microbiome composition in some in-
dividuals, for others its effect can be muted or ineffectual (24).
Typical fecal transplants introduce hundreds of bacterial species
into a sick person’s gut microbiome, but the imperfect colo-
nization of these species might be partially responsible for the
variable success of FMT treatments (25–27).

Currently, fecal transplant engraftment is typically quantified
at a compositional level by examining how the donee’s micro-
biome changes over the course of a transplant (e.g., by measuring
the species richness), and also by examining whether the
donee’s microbiome becomes more similar (e.g., as quantified
by UniFrac) to the donor’s microbiome (28). Quantifying the
proportion of species from a fecal transplant that successfully en-
graft is complicated by the imperfect detection of low-abundance
species, but some analyses of this type have nonetheless been
performed. Le Roy et al. implanted a fecal transplant con-
taining 180 operational taxonomic units (OTUs; approximately
equivalent to bacterial species) into germ-free mice, and after
9 wk, 162 of these donor OTUs were found in the donee mice,
so 90% of transplanted species successfully colonized (29).
Maldonaldo-Gomez et al. found the probiotic Bifidobacterium
longum AH1206 in 30% of humans 6 mo after ingestion (30).
These two observations imply that bacteriotherapies like FMT
and probiotics are influenced by stochastic microbiome assembly.

Future predictive frameworks of FMT or probiotic efficacy
should take into account the stochastic nature of community
assembly. For instance, FMT superdonors (who provide fecal
transplants that engraft especially frequently) might harbor an
increased number of bacteria that are strong colonizers, as we
observed in our experiments (23). Additionally, given that some
bacterial species will fail to successfully engraft during FMT, our
framework points to the advantage of building synthetic fecal
transplants with functional redundancy in mind so that each
desired bacterial function can be performed by multiple types of
bacteria present in the transplant. Previous work found that once
a bacterial dose is high enough to saturate the dose–response
curve (as was the case in our experiments), simply increasing
the inoculation dose does not substantially affect that species’
colonization odds (5). Inoculating with several functionally simi-
lar bacterial species, on the other hand, takes advantage of the
independent colonization odds of each species to improve the
likelihood that at least one of the desired species will successfully
colonize. Prior work has demonstrated that the odds that a
bacterial species colonizes a fly can vary by up to 50 percentage
points depending on whether the bacterial strain was derived
from a wild fly gut, a laboratory fly gut, or a human gut (5);
we expect that the colonization odds of bacteria will be strain-
dependent in general, due to various mechanisms depending on
the strains.

Last, our framework can be straightforwardly extended
to predict the probability that sequential FMT or probiotic
administrations will be successful: for a bacterial species with
per-treatment colonization odds pi , the probability it colonizes
after N inoculations is 1− (1− pi)

N . For example, in this
study’s experiments, flies were provided food four times, but we
model the colonization odds pi as the probability that a species
colonized at some point during the entire time course of the
experiment. Assuming that species are equally likely to colonize
during each feeding, we can invert the previous equation to find
that the per-feeding colonization odds p̃i = 1− (1− pi)

1/4 for
species i, giving a simple relation between the directly observable
colonization odds and the more fundamental per-feeding odds.
Thus, this framework could inform FMT and probiotic dosing
regimens and lead to improved clinical outcomes.

Presence/Absence Data Reveals Ecological Interactions and Taxo-
nomic Structure. We inferred interactions between pairs of bacte-
ria by examining how the colonization odds of one species change
when it is fed with the other species. Notably, these interactions
were determined using only presence/absence data derived from
bacterial abundance data. In natural environments with unknown
exposures where organisms assemble their microbiomes from
an environmental bath of bacteria, interactions between bacte-
ria might be similarly identified using only this frequently col-
lected presence/absence data. For example, in cohoused mice the
context-dependent colonization odds of different species might
reflect facilitative or competitive interactions between different
species. However, future research is needed to clarify whether
estimates of colonization odds based on gnotobiotic model or-
ganisms are relevant for wild organisms (whose microbiomes
typically contain noncore species). Binary presence/absence data
offer a particularly accessible lens for examining complex inter-
actions in the microbiome.

Mechanisms for Stochasticity and Bacterial Interactions. In general,
the biological mechanisms that cause a bacterial species to prob-
abilistically colonize, or to promote or inhibit the colonization of
another species, are not yet known. Aspects of this colonization
process, however, may be deduced: the successful colonization of
a bacterial species requires it to adhere to the gut and proliferate
into a colony, and whether an adhered inoculum will grow into
a colony is determined by the bacteria’s fitness and by whether it
can overcome birth/death fluctuations that occur at low species
abundance. The local environment at a colonization site could
alter both the odds of bacterial adhesion and bacterial fitness.
Therefore, we expect that the observed context-dependent col-
onization odds are caused by changes in local environment due
to either the inoculation medium (e.g., within the bacteria-laden
food, metabolizing bacteria will locally alter metabolites and
pH) or occur because of priority effects (e.g., since flies are
fed fresh food every 3 d, a species that successfully colonizes
during the first feeding might affect the subsequent colonization
of other species). Future experimental studies that, for example,
probe how bacterial colonization odds vary as a function of pH
could further illuminate these mechanisms. In general, we expect
interactions to be highly species-specific.

The specific bacterial interactions that we observe in this
manuscript might be mediated by metabolite concentrations and
pH levels along the gastrointestinal tract. Lactobacillus species
metabolize carbohydrates into lactic acid, and Acetobacter
species produce acetic acid through fermentation of sugars (17).
Lactate, a by-product of fermentation by lactic acid bacteria, is
used by acetic acid bacteria as a substrate for their metabolism,
which could account for the facilitation of Acetobacter species by
Lactobacillus species (18, 19, 31). On the other hand, competition
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for a common resource or overacidification of the gut might
mediate the inhibitory interactions that we observe among
Acetobacter species.

Two-Species Experiments Predict Colonization Outcomes of High-
er-Order Experiments. Independent colonization models fit to
diversity-2 experiments performed nearly as well as models fit
to all experiments. Single-species experiments do not capture
bacterial interactions, which limits their ability to explain the
colonization behaviors of higher-order bacterial combinations.
The colonization patterns of higher-order combinations are ap-
proximated reasonably well by independent colonization models
in which the colonization odds of each species are determined
with pairwise experiments, which is consistent with recent work
studying multispecies synthetic soil microbiomes (10).

Conclusion
Stochastic microbiome assembly is a ubiquitous process that
occurs in all nascent microbiomes and has lasting consequences
for microbiome composition. Our results demonstrate variability
in colonization outcomes in the fruit fly that is driven both by
stochastic colonization and by ecological interactions that affect
the colonization process. That a bacterial species may fail to col-
onize an organism, even when ingested at high concentrations, is
an important and frequently overlooked phenomenon with ther-
apeutic relevance. Our experiments sidestep the complication
of historical contingency in community assembly (i.e., priority
effects) by simultaneously feeding germ-free flies all types of bac-
terial species (7). We find that context-dependent deviations in
colonization odds reveal interactions between bacterial species:
this method for inferring bacterial interactions is based on the
ensemble of colonization outcomes across biological replicates
and differs from other traditional inference methods that at-
tempt to infer interactions from compositional time series data
(32, 33). Context-dependent colonization could play a key role
in microbiome transmission between individuals, microbiome
succession from parents to offspring, and host–microbiome co-
evolution. For example, groups of species that facilitate each
other’s colonization might be more likely to colonize together
and persist through many host generations, while groups of
species that inhibit each other’s colonization might lead to spon-
taneous branching of microbial communities when exclusively
one or the other group colonizes. Probabilistic models fit with
low-diversity colonization data are capable of reproducing the
colonization outcomes of higher-diversity combinations, which
suggests that the acquisition of multispecies microbial commu-
nities can be coarse-grained in terms of the colonization odds of
individual species. Future efforts to deliberately drive an individ-
ual’s microbiome to a desired composition (the goal of personal-
ized microbiome healthcare) will benefit from taking stochastic
colonization into account when prescribing microbiome-based
therapies.

Materials and Methods
Additional details are provided in SI Appendix.

Procedure for Bacterial Inoculation in Germ-Free Flies. Data in this paper were
published in Gould et al. (16). Briefly, each of the 31 combinations of 5
core bacteria (LP, LB, AP, AT, and AO) were fed to 4 separate biological
replicates of 12 germ-free flies (48 total flies per combination for 1488
total flies). We did not distinguish between biological replicates in our main
analysis (SI Appendix provides quantification of the small interreplicate
variation). Forty-eight negative control flies were maintained germ-free.
Vials of initially germ-free flies were inoculated with 5 × 106 colony-forming
units (CFUs) of each bacterial species. Flies consumed the bacteria and were
transferred to vials with fresh bacteria-laden food every 3 d for 10 d.
Individual flies were then surface-sterilized with 70% ethanol, crushed, and
plated on agar plates to enumerate CFUs. SI Appendix, Fig. S1 plots the
distribution of CFUs for each species across all experiments. The abundance

of stably colonized bacterial species was substantially higher than the limit
of detection: median bacterial abundance of colonized flies was 152,000
CFUs; limit of detection was 100 CFUs. Therefore, while it is feasible that
this presence/absence dichotomy excludes some flies that were minimally
colonized, this occurrence appears to be relatively rare.

Bacterial Inoculation Doses Are at the Plateau of the Dose–Response Curve.
In the fruit fly, the probability that bacterial strains colonize follows a dose–
response curve that is an increasing function of the inoculum dose (5). In
the prior study by Obadia et al. (5), single bacterial species were fed to flies
in inoculum doses ranging from 101 to 108 CFUs: for example, a laboratory
fly-gut isolate of L. plantarum colonized 20% of flies when fed at a dose
of ∼5 CFUs, colonized 60% of flies when fed at a dose of ∼300 CFUs, and
colonized 70% of flies when fed at a dose of ∼3,000,000 CFUs. This logistic
shape—low colonization odds at low inoculum doses, with colonization
odds plateauing (not necessarily at 100%) for high inoculum doses—was
observed in all bacterial species (except for species that colonized 100% at
all doses). Therefore, the colonization odds of individual species strongly
depend on the inoculum dose and are an important factor in determining
colonization outcomes. To reduce the substantial variability in colonization
outcomes of the fruit fly, we standardized our experimental procedure by
fixing the inoculum size at 5 × 106 CFUs for each bacterial species, and
flies were permitted to feed continuously. This inoculum size saturates the
dose–response curve so that higher doses do not lead to better colonization
odds (5).

Calculation of 95% Confidence Intervals of Colonization Odds. To compute
the confidence intervals of Fig. 2, each colonization outcome was treated
as a binomial variable (in which success was defined as that colonization
outcome, and failure was defined as all other colonization outcomes), from
which binomial confidence intervals were computed. Binomial confidence
intervals do not take into account the covariance structure of multinomial
proportions and therefore are a conservative estimate of their confidence
intervals. The binomial confidence intervals of Figs. 2 and 3 A–C were
computed using the Jeffreys interval (derived from Bayesian statistics) as im-
plemented in the statsmodels.stats.proportion.proportion_confint Python
function. The scaling of confidence intervals with increasing sample size is
discussed in SI Appendix.

Multinomial Tests, Likelihood Calculations, and BIC Scores. Each of the inde-
pendent colonization models generates a predicted distribution of coloniza-
tion outcomes that can be compared to the empirical colonization outcomes
using multinomial tests, likelihood calculations, and BIC scores. For each
bacterial combination, multinomial tests use the multinomial distribution
of colonization outcomes generated by an independent model as a null
model and calculate how likely it is for this null model to generate the
observed multinomial distribution of colonization outcomes or a less likely
distribution (see SI Appendix, Fig. S1 for a schematic explanation). Exact
multinomial tests (used for diversity-1 and diversity-2 combinations) or
Monte Carlo multinomial tests (used for diversity-3 and higher combina-
tions) were computed with the XNomial package in R. Likelihood computa-
tions measure the probability that this same null model would yield exactly
the observed distributions of colonization outcomes, i.e., the probability
of drawing the empirical distribution of outcomes with that multinomial
null model. Last, the BIC is a metric that quantifies the trade-off between
increased model accuracy and increased complexity by rewarding models
with a high likelihood and penalizing models with more free parameters:
BIC = k log n − 2 log L, where k is the number of free parameters of the
model, n is the sample size, and L is the likelihood of the observed data
given the model.

Software Availability. The software and raw data used to perform analyses
and generate figures in this study are available online at GitHub (https://
github.com/erijones/stochastic_microbiome_assembly). Analyses were per-
formed with Python (version 3.9.7) and R (version 4.1.1).

Data Availability. Previously published data were used for this work
(https://doi.org/10.5061/dryad.2sr6316, in particular, FlygutCFUsData.csv)
(34).
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