UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Chunking in a Connectionist Network

Permalink
https://escholarship.org/uc/item/1zx791km]
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Author
Tourestzky, David S.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/1zx791km
https://escholarship.org
http://www.cdlib.org/

Chunking in a Connectionist Network

David S. Touretzky

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Incremental performance improvement with accumulated experience has been measured in human beings
for a wide variety of cognitive, perceptual, and motor tasks (Newell, 1987). “Chunking’ produces similar
performance improvements in symbolic computer programs, such as the SOAR production system (Laird
et al., 1987). Chunking takes place in SOAR by observing the working memory trace associated with
a sequence of rule firings, and abstracting from this trace a chunk which in the future will produce the
same results in a single step.

This paper presents a rule-following connectionist system that also improves its efficiency through chunk-
ing. It differs from symbolic production systems in several respects. Although connectionist networks
may exhibit rule-following behavior, they do not necessarily contain explicit symbolic rules (Rumelhart
& McClelland, 1986; Smolensky, 1988; Pinker & Prince, 1988). The system reported here leams its
initial set of behaviors by back propagation from examples. Chunks are then created by a mechanism that
observes input/output behavior as the network runs. The chunker is not told which features of the input
were responsible for a particular output. In SOAR terminology, it has no access to a working memory
trace.

The task the connectionist network is performing is string manipulation based on an abstract version of
generative phonology. It was while working on a connectionist approach to phonology that I hypothesized
chunking might play a role in the linguistic development of humans. Some speculations on the interaction
between a chunker and the Language Acquisition Device appear at the end of this paper.

A Rule-Following Connectionist Network

Figure 1 shows part of a connectionist network that manipulates strings according to context-sensitive
rewrite rules. The rewrite rules are an abstract version of classical generative phonology rules, and are
shown here using classical notation. Rule R1 below says “change C to E in environments where it
precedes a D.” Similarly, rule R2 says “change A to B when it precedes an E.”

Rl: € == E |} D

R2: A --> B / _ E

Application of R1 1o the string ABCD yields ABED. Figure 1 shows how this is accomplished. The
input buffer, rule module, and change buffer form a three-layer feed-forward network. Symbols are
sequentially shifted into the input buffer. Rule units read the buffer state and generate an output pattern in
the change buffer describing the changes that are to be made to the input. (Each input buffer segment has
a corresponding change buffer segment.) Three types of changes are possible: mutation of input tokens,
deletion of input tokens, and insertion of new tokens. A String Editing Network, not shown, reads the
input and change buffer patterns and generates an updated input patten in which the specified changes
have been made. The design of the String Editing Network is explained in (Touretzky, 1989).

1

TOURETZKY

6 5 4 3 2 1
(o] mut
MUT go s g N
O
Change —
Butter CEL O -
(o}
NS Oo S — —
%
o
Input o,
s | 38 s le ||
6 5 4 a 2 1

Figure 1: Parnt of a connectionist network for applying rewrite rules to strings.

The symbols from which strings are composed are binary feature vectors. The experiment reported here
uses a representation with five “phonetic” features organized as one group of two features and one of
three features. (In real phonology there are many more features; they encode the place and manner of
articulation of sounds.) Features within a group are mutually exclusive. There are a total of six legal
symbols, labeled A through F. The change buffer patterns use an eleven-element code for each segment:
one for signaling deletion, five for describing a mutation, and five for specifying an insertion. Symbols
are always inserted to the right of the corresponding input buffer segment.

Change buffer patterns are tri-state: 0 means “no change,” +1 means “tumn the corresponding bit in the
input buffer on,” and — 1 means “turn the corresponding bit off.” For deletion and insertion operations,
—1 is treated like zero. The use of tri-state patterns causes the change buffer units to adopt the “no
change” case as the default in the absence of input. Tri-state outputs are obtained using the symmetric
sigmoid activation function o(x) = 2/[1 + exp(—x)] — 1.

The initial rules are installed by applying backpropagation to a training set of input pattern/change pattern
pairs. The rule module serves as the hidden layer during leaming. Once the initial rule set has been
acquired, there is no supervised learning in the model. To acquire chunks, sequences of typical inputs are
run through the input buffer. As it applies its rewrite rules, the model formulates chunks when two rules
fire in succession, and trains itself using backprop to predict a chunked action in the appropriate context.
Chunking may therefore be regarded as ‘“‘self-supervised” leamning, since the model is serving as its own
teacher. The chunking mechanism is explained further after the next section.

Position-Independent Rules

Rules are always learned in “standard position,” where the rightmost element of the rule’s environment is

2

TOURETZKY

the rightmost element of the input buffer. However, downstream feeding relationships may require rules
to apply in other positions. Consider what happens when the string ACD is shifted into the input buffer
one segment at a time. The network does nothing with the initial substrings A and AC. After shifting
in the D, ACD is converted to AED by rule R1. R2 should then apply to produce BED, but the AE
environment for R2 is not aligned with the right edge of the input buffer; it is one segment downstream.

To allow rules to apply independent of position, we make several downstream copies of the primary rule
module and constrain the link weights in each copy to be equal to the corresponding primary module
weights, as shown in Figure 2. This way rules need only be leamed in standard position, but they can
apply anywhere they are needed. The reason for using a change description as the output representation
should now be clear: the outputs of all the rule modules can be superimposed by addition at the change
buffer units. If each rule module were to directly map the input string to an updated string, the outputs
of multiple rule modules could not be combined.

Change
Bufter

Input
Buffer

Figure 2: Link-equality constraints cause secondary rule modules to replicate the behavior of the primary
module at various positions downstream.

The Chunking Mechanism

Figure 3 shows how chunking is accomplished. The model has two change buffers. The a connections,
which control the Current Change Buffer, are created by back propagation leaming on an initial training
set supplied by the teacher. The J connections control the Chunked Change Buffer, which the network
uses to teach itself new chunks.

Chunking occurs continuously as the network processes patterns flowing through its input buffer. Each
time a symbol is shifted into the input buffer and a forward pass is performed, the a connections produce
a Current Change Buffer pattern. If the pattern is all zeros, meaning no a rule fired, the 3 connections are
taught to produce the same result. If the pattemn is non-zero, meaning some « rule did fire, the chunker
makes a note of the change buffer pattern, and the string editing network makes the requested change

3

TOURETZKY

chunked change:
cur: [change seg 310 "B"| Eenm

| change sag. 2 to "E" and
prev: [change seg 210 "E") change seg J10°8" |

|

Figure 3: Chunking of rules R1 and R2 by training 3 connections to produce the composition of the two
rules’ change buffer pattems.

and updates the input buffer. After a second forward pass, if no more a rules fire, there is no sequence
to be chunked. In this case the .J connections are taught to imitate the change pattern produced by the
single a rule. If an a rule does fire on the second forward pass, a chunk can be composed from the
remembered change buffer pattern of the first rule plus the change buffer pattern of the second rule. The
J connections are then taught to output this composite change pattern in the context that caused the first
a rule to fire.

This training regimen ensures that the 5 rules will be an essential superset of the a rules. The only a
rules not duplicated on the 3 side will be those that never fire in isolation, but only to feed another rule
or as a result of a feeding rule. These non-essential a rules will be replaced by chunks. More commonly,
chunked and unchunked versions of rules coexist on the J side.

A number of fine points in the training of the model need to be explained. In a chunking network the
connections to rule and change buffer units should remain plastic. Plasticity can be lost if units are
allowed to get too far out on the tails of the sigmoid, where the denivative goes to zero. Several steps
are taken to prevent loss of plasticity. In standard back propagation the error signal of an output unit
is defined to be the difference between the actual and desired outputs multiplied by the derivative of
the output function (Rumelhart et al., 1986). In the chunking network the derivative term is omitted for
output units.

In addition, weights must not be allowed to grow too large during training, as this can also hinder future
leaming. To keep the weights small and the rule units from getting too far out on the tails of the sigmoid,
the model uses output training targets of +0.5 and —0.5 rather than +1 and — 1. When updating the input
buffer, any change buffer value greater than +0.3 is treated as +1, and any value less than —0.3 is treated
as —1.

Although change buffer units use a symmetric sigmoid, rule units use the standard sigmoid. I conjecture

4

TOURETZKY

that rules may be leamed more easily this way. Rule units are feature detectors, so when a feature is not
present the unit’s output should be zero. This is easily achieved with the standard sigmoid by supplying
a substantial negative bias that can be counteracted only by an appropriate pattern of input features. With
tri-state units it is not possible hold the output steady at zero over the entire set of inputs that aren’t
supposed to trigger a rule.

Finally, it should be noted that in order to leam the environments in which new chunks apply, rule units
must modify not only their 3 output connections, but also their input connections. But this alters the
rule unit’s response 10 subsequent inputs, so it may interfere with the continued production of correct
patterns in the Current Change Buffer. To prevent the model from leading itself astray, it is programmed
to continually rehearse its a behaviors as it trains the J connections. Rehearsal is another instance of
self-supervised leaming. Each pattem the o units generate in the Current Change Buffer is “idealized”
by treating all values greater than +0.3 as +0.5, all values less than —0.3 as —0.5, and all other values
as 0. The difference between the actual @ outputs and the idealized outputs generates an error signal that
helps to readjust the input weights on each presentation, countering the disruptive effect training the 3
units has on the input weight pattern. The a and 3 sides of the model are thereby forced to compromise
on an input weight pattern that allows each side to do its job.

Complex Rule Interactions

Composing a chunk from two mutation rules is easy: one simply inclusive-or’s the change buffer patterns
(using tri-state logic), giving the second rule priority in the case of a +1/ — 1 conflict. Composing chunks
from other types of rules is slightly more complex. If the first rule inserts or deletes a segment, some
portion of the second rule’s change buffer pattern will need to be shifted to take this change into account
before inclusive-oring the two together. If the second rule mutates a segment that was inserted by the first,
the second rule’s mutation pattern must be combined (with priority) with the first rule’s insert pattern, not
its mutation pattern. If the second rule deletes a segment that was inserted by the first rule, the first rule’s
insertion must be suppressed in the composed chunk. This can be accomplished by setting the insertion
bits to zero.

In the simulation, chunked change buffer patterns were composed by a Lisp version of the above algorithm.
However, it would be easy to construct a connectionist network to do the same task. The input would be
the current and previous change buffer pattemns; the output would be the composed change.

A limitation of this particular rewrite-rule architecture is that only one symbol can be inserted between
each pair of symbols in the input buffer. Therefore one cannot chunk two rules if they both insert
something at the same input position. In practice this situation does not seem to come up in segmental
phonology, although there are multi-segment insertions at the morphological level.

Experimental Results

The initial chunker simulation used an input buffer of length six, and three rule modules, each of which
looked at three adjacent input segments. The primary rule module was taught rules R1 and R2 by
backpropagation on a small training set. (The training set consisted of some environments in which
the rules should apply, plus some additional environments in which no rule should fire.) The following
example shows the results of this training. R2 and then R1 applies, independently, in standard position,
as the string AEFCD is shifted through the input buffer. Underscores denote null segments (all zeros.)

TOURETZKY

* (demo '(a e f ¢ d))

Shift A into
Shift E into

Change due
Shift F into
Shift C into
Shift D into

Change due

input buffer:
input buffer:
te rule firing:
input buffer:
input buffer:
input buffer:
to rule firing:

o omowl

|

|

mmmo|

mOom™mmuo»|

oM mmP»P

(rule R2)

(rule R1)

We next consider an example of downstream feeding of R2 by R1, which never occurred in the training
data. Note that after the last symbol is shifted in, the input buffer changes twice. This is the condition
allowing a chunk to be composed.

* (demo ' (a c d))

Shift A into
Shift C into

input buffer:
input buffer:

Oooonw

a

Shift D into input buffer: _ _ A C
Change due to rule firing: _ _ A E (rule R1)
Change due to rule firing: B E (rule R2)

Running the network on sequences such as ACD allows it to lecam chunks in self-supervised mode, by
observing its own behavior. The chunk for tuming ACD into BED consists of R1 plus a shifted version
of R2, since R2 is applying one segment downstream. The rule units must learn to pay attention to the
third segment of the buffer, whereas for R1 and R2 in isolation only the first two segments are important.

The result of chunking is shown below for the string ACDCD. (To actually use the leammed chunks we
replace the o weights with the leamed 3 weights.) The ACD to BED portion of the example demonstrates
the existence of the R1-R2 chunk; the CD to ED portion that follows demonstrates the preservation of
R1 on the .J side as an independent rule. Other inputs verified that R2 was also preserved.

* (demo ‘(a ¢ d c d))
Shift A into input buffer:

Shift C into
Shift D 1into
Change due
Shift C into
Shift D into
Change due

input buffer:
input buffer:
to rule firing:
input buffer:
input buffer:
to rule firing:

w w|

Mmoo

DU mw

mOomAo>|

Oonnoonx

(chunk RI-R2)

(rule R1)

Additional experiments confirm that the network can chunk insertion and deletion rules as well as muta-
tions. It can also combine a Icamed chunk with another rule to form a bigger chunk.

As long as the model’s behavior is govemed solely by the a connections, it will not be able to apply the
chunks it has leamed. An initial, brute-force solution to this problem is to simply copy the 3 weights to
the a connections whenever the .J training error is low enough. But such a drastic, global weight change

6

TOURETZKY

is admittedly unnatural. We are currently exploring more fluid ways of exchanging knowledge between
the a and 3 sides. One scheme we have tried is to maintain running confidence levels for each side,
and with each new input symbol, stochastically choose either the @ or 3 change buffer patten based on
relative confidence values. Initially the 3 confidence is low. When the a side has successfully trained
the 3 side, the network begins to execute a mix of a and J actions, including some leamned chunks. As
the 3 side in tum tries to teach new chunks to the a side, the a confidence level drops and the [rules
take over until the new a chunks have been leamed.

Interesting Chunking Phenomena

A number of interesting questions are raised by this work. One is the order in which larger chunks should
be formed. Consider the feeding rule chain R1-R2-R3-R4. If the model builds at most one chunk before
shifting a new symbol into its buffer, the chain will be chunked in the order (((R1 R2) R3) R4). This
approach is compatible with the power law of practice cited by Newell. If the model builds a chunk
whenever any pair of unchunked rules fire in sequence, the order of chunk creation will be ((R1 R2) (R3
R4)). It is not yet known which order is more compatible with the way the leaming algorithm creates
rule representations.

A second question is what representation the model will develop for rules that participate in multiple
feeding chains. Consider a case where, for one class of inputs there is a chunk R1-R2-R3, and for
another class a chunk R1-R4-R5. Since R1 is shared by both chunks and may also apply in isolation, the
representations of the two chunks and the original rule should be similar, and will probably share units.

A related issue is the formation of variable-length chunks from self-feeding rules, such as this deletion
rule: R6: E-->0/ _F

R6 applies three times in succession to the string BEEEF to derive BF. After chunking, BF should be
obtained in a single rule firing. If the chunker is exposed to sequences of form {E}*F of varying length,
it should build a collection of related chunks. The degree and nature of the overlap in representations of
these chunks is worth investigating.

Finally there is the issue of variables appearing in rules. Variables serve either to narrow the domain of
application of a rule (when the same variable appears twice on the left hand side), or to copy a value
from one place to another (when the variable appears once on the left and at least once on the right hand
side.) In phonology it is not too expensive to expand a variable-containing rule into a set of variable-free
rules, because variables can take on only a few values. In more general symbol processing tasks this may
not be feasible. It may be possible to teach a backpropagation network 10 implement rules with variables
by encoding the value in the hidden layer activation pattemn. Such a scheme would probably require a
more complex hidden layer than in the present model.

Chunking and Language

The segmental phonology of any human language can be expressed by sequences of simple rewrite rules
on strings. These rules are highly constrained, so that, for example, reversing the segments of a word
is not possible in human phonology (Pinker & Prince, 1988). Another constraint is that there is no
metathesis (switching) of non-adjacent segments. The regularity and degree of constraint of phonological
processes is striking, and cries out for scientific explanation. The hypothesis motivating the work reported

7

	cogsci_1989_1-8

