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Abstract. System identification in the frequency domain plays a fundamental role in many aspects 
of mechanical and structural engineering. Frequency domain approaches typically involve 
estimation of a transfer function, whether it is the usual frequency response function (FRF) or an 
output-to-output transfer model (transmissibility). The field of structural health monitoring, which 
involves extracting and classifying features mined from in-sit structural performance data for the 
purposes of damage condition assessment, has exploited many features for this purpose that 
inherently are derived from estimations of frequency domain models such as the FRF or 
transmissibility. Structural health monitoring inevitably involves a hypothesis test at the 
classification stage such as the (common) binary question: are the features mined from data derived 
from a reference condition or from data derived from a different (“test”) condition?  Inevitably, this 
decision involves stochastic data, as any such candidate feature is compromised by “error”, which 
we categorize as (i) operational and environmental, (ii) measurement, and (iii) 
computational/estimation. Regardless of source, this noise leads to the propagation of error, 
resulting in possible false positive (Type I) errors in the classification.  As such, the quantification 
of uncertainty in the estimation of such features is tantamount to making informed decisions based 
on a hypothesis test. This paper will demonstrate several statistical models that describe the 
uncertainty in FRF estimation and will compare their performance to features derived from them for 
the purposes of detecting damage, with ultimate performance evaluated by receiver operating 
characteristics (ROCs). A simulation and a plate subject to single-input/single-output vibration 
testing will serve as the comparison testbeds. 

Introduction 
Frequency response models have been widely used for the important purposes of system 

identification and damage detection implementations. By means of vibration-based structural test 
such as percussion and/or shaker test, frequency response information is often provided via modal 
parameter extraction, resulting in natural frequencies, mode shapes, and modal damping. In the 
context of structural health monitoring (SHM) and damage assessment, a comparison between two 
stages of a structure is considered as one of the axioms [1], in which a test condition, potentially 
damaged, is compared to a reference condition, usually called baseline. As a result, all kinds of 
useful information (features) are extracted from frequency response information, and these features 
are subsequently used to indicate the state of structures in terms of the some damage assessment 
taxonomy. 

Although all sorts of SHM features are anticipated to be sensitive and specific, realistic feature 
extraction is always subject to different sources of in-situ uncertainty, such as operational and 
environmental variability and measurement noise. Moreover, frequency response estimations are 
also influenced by the estimation algorithm itself, known as the estimator. No matter how noise-
robust the estimator and the testing procedure are, the unavoidable variability will degrade SHM 
performance capability by confusing the decision process through false positives or false negatives. 



Therefore, exploring a good feature, meaning sensitive and robust, is a major concern in damage 
detection and SHM. 

Optimum frequency response feature selection involves quantification of estimation 
uncertainties, i.e., quantifying the statistical uncertainty of frequency response functions. For an 
input-output transfer function like the FRF, its uncertainty is quantified via Gaussian bivariate 
approach, and probability density function of magnitude and phase are both given [2]. For output-
output transfer function like the transmissibility, the variability is modeled via different approaches 
considering different transmissibility estimators [3, 4]. With all statistical models available, the 
damage detection process is thereafter deployed as a statistical significance detection problem. 

In this paper, two FRF-related features evaluated at different domains are introduced, and the 
uncertainty of feature estimations is quantified via a generalized extreme value distribution. For an 
optimal feature selection purpose, the performances of each feature with different evaluation 
domain are compared with respect to receiver operating characteristics (ROC), and optimum is thus 
determined in the sense of best trade-off between maximized detectability and minimized false 
alarms. 

FRF Estimations and Related Features 
 
Frequency response function measures the relative input-output gain in frequency domain. As a 

function of frequency, in Hz or discrete bin, it is mathematically approachable in Eq. 1: 

  
H ω( ) = F y t( )⎡⎣ ⎤⎦

F x t( )⎡⎣ ⎤⎦
,                                                                                                                       (1) 

 
in which x(t) and y(t) are the input excitation and output response respectively and F is the Fourier 
transform operator. Although input and output may be signals with any physical meaning, they 
usually refer to force, displacement, and/or acceleration in the context of system identification and 
SHM applications. In this paper, the excitation x(t) is force and system response y(t) is acceleration, 
and all the uncertainty quantification and feature selection is thus deployed without loss of 
generality. 

Because of non-periodicity and noise contamination, the transfer function in Eq. 1 is often 
evaluation through an estimator. For instance, Eq. 2 is the H1 estimator of the FRF: 

 
H ω( ) = Sxy ω( )

Sxx ω( ) ,                                                                                                                           (2) 

 
and Sxx and Sxy are the auto power density function of input x(t) and cross power density function 
between x(t) and y(t). Being a complex number, cross power spectrum is defined in Eq. 3: 

   
Sxy ω( ) = F x t( )⎡⎣ ⎤⎦

*
⋅F y t( )⎡⎣ ⎤⎦ ,                                                                                                      (3) 

 
in which the * sign denotes the complex conjugate. For the auto power spectrum, the definition has 
the same form as Eq. 3 and the product is real-valued. 

Using the estimation of the FRF as the basis for features, there are two types of features 
proposed and compared in this section, namely dot-product-difference (DPD in Eq. 4) and 
Euclidian distance (ED in Eq. 5): 



  

DPD = 1−
Hdamaged

Ω⎡⎣ ⎤⎦ ⋅Hbaseline
Ω⎡⎣ ⎤⎦

Hdamaged
Ω⎡⎣ ⎤⎦ ⋅ Hbaseline

Ω⎡⎣ ⎤⎦
, and                                                                                               (4) 

  
ED = 1

LΩ

Hdamaged ω( )− Hbaseline ω( )( )2

ω∈Ω
∑ ,                                                                                 (5) 

 
where the subscripts baseline and damaged denote the two different structural states. Both of the 
proposed features may be evaluated over the entire measured frequency bandwidth Ω, with size LΩ, 
or just within a selected frequency region Ωs.  

Eq. 4 illustrates the derivation of DPD in which the damaged transmissibility vector is projected 
to the baseline and cosine of the angle is calculated via dot-product. For normalization purposes, 
final form of DPD is defined as one minus the absolute value of cosine of the angle so that its range 
conveniently goes from 0 to 1. For zero-DPD evaluation, the measured (“test”) FRF vector is 
parallel to the baseline, while a unity DPD means perpendicularity. Eq. 5 defines feature of ED, 
which is the root mean square error between damaged FRF and baseline vector, and LΩ indicates the 
volume of the selected evaluation domain, i.e., the length of selected frequency band or number of 
frequency bins for discrete time signals. 

As mentioned above, all the FRF estimations are subject to certain level of uncertainty, which 
can be caused by environmental/operational variability and data acquisition noise. Therefore, both 
features in Eq. 4 and 5 are modeled as random variables. Even under strict external uncertainty 
control, when ambient excitation or other random inputs are used, feature evaluations still fall into 
stochastic bounds, and this further motivates uncertainty quantification. In the following sections, 
Gaussian white noise is applied as input excitation, and will also be used to model the external 
uncertainties. 

Statistical Modeling of FRF-related Features 

 
A shaker test is implemented on a lab-scale structure, as shown in Fig. 1, and corresponding 

responses are measured at the circled area. FRF between shaker excited location and the response 
measurement location is estimated via H1 estimator. For emulating a test (damaged) condition, an 
extra spring is placed underneath the structure, in order to change the dynamics of the original 
clamped plate. To be more realistic and stringent, a small amount (1% noise-to-signal ratio) of 
artificial white noise is added to the raw measurements, independent of the structural response and 
the input. 

 

 
Fig. 1 Plate structure for statistical modeling of features 

 
Fig. 2 shows the FRF estimation for both baseline condition and the damaged condition. With 

the influence of all sorts of uncertainty, it is not easy to distinguish one case from the other, except 



for the bounded area with red lines. As a result, feature evaluation domain Ω is defined as the entire 
frequency range from 0 to 500 Hz, while the selected domain Ωs, by visual inspection, is defined as 
the region in between red bounds. 

 
Fig. 2 FRF magnitude estimation of plate structure 

 
Assuming sufficient realizations, both DPD and ED features evaluated in Ω and Ωs (denoted as 

DPDs and EDs) fall into a generalized extreme value distribution, whose probability density 
function is listed in Eq. 6: 

  
p x |µ,σ ,ξ( ) = 1

σ
1+ ξ x − µ

σ
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−1
ξ
−1

e
− 1+ξ x−µ

σ
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
−1
ξ

.                                                                       (6) 

 
In Eq. 6, there are three variables governing location, scale and shape respectively, namely, Rµ∈
determines location of the distribution,  σ > 0  is the scale parameter, and  ξ ∈R controls the shape of 
PDF. 

 
Fig. 3 FRF magnitude estimation of plate structure 
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Fig. 3 illustrates the maximum likelihood estimation (MLE) of distributions for two features with 
two evaluation domains, overlapped with the actual histogram. For all the four cases, there is very 
good consistency between observation and the PDF curves obtained from MLE. In other words, 
there is substantial plausibility to model the uncertainty of feature evaluations via a generalized 
extreme value distribution framework. 

Damage Diagnosis 
 
Eq. 6 and Fig. 3 propose a statistical model to quantify the uncertainty of features as random 

variables. However, as mentioned previously, damage detection is actually a comparison between 
two states, subject to sources of uncertainty. If the features for baseline and damaged conditions 
distribute in an adjacent area and the tails from each condition overlap, there will be a 
misclassification of data for the purposes of SHM. More specifically, the overlapped feature 
distribution will not only cause false alarms (Type-I error), but also degrades the sensitivity and 
specificity of damage detection. 

To study the issue of separation of distributions, Fig. 4 introduces a simulation structure as an 
emulator to generate acceleration response. The structure is designed to be a simply supported 
beam, on which the Gaussian white noise excitation is applied at the position with 15% of total 
beam length to the left. Structural response is calculated analytically at 30% of total beam length to 
the left, and for the same reason, input and output are both contaminated by artificial noise to get a 
more realistic simulation.  In the simulation test, damage is defined gradually as loss of Young’s 
modules, and in this paper, three damage levels are included with 1%, 5% and 10% of loss. 

 
Fig. 4 Beam structure for damage diagnosis 

 
 

  
Fig. 5 FRF of beam structure for different damage levels 
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In Fig. 5, FRF magnitude for different damage levels are plotted in green and the reference 
(baseline) FRF is plotted in blue. Although the difference between test and baseline is hardly 
distinguishable, it is still consistently increasing as loss of stiffness goes higher. The last plot in Fig. 
5 shows the detail of FRF comparison for a 10% loss case, and the selected feature evaluation 
interval is therefore picked near the second resonance with a clear difference visually. 

Once the FRFs are available, the features are evaluated at both Ω and Ωs. Fig 6 plots the 
histogram of each feature for each damage condition. Compared to baseline distribution, all 
damaged features shift to the right more or less, indicating different differentiability for damage 
detection. 

 
Fig. 6 Histogram and PDF of different features under different damage levels 

 

 
Fig. 7 CDF of different features under different damage levels 
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In Fig. 6, the MLEs of generalized extreme value distribution PDF for features under different 
damage levels are plotted on top of histograms, and all corresponding CDFs are plotted in Fig. 7. 
Fig. 7 illustrates clear separation as damage level goes severe for both features and evaluation 
intervals. But for light damage, such as 1% loss, the CDF curves (red) are negligibly different from 
the baselines (blue), especially when features are evaluated at entire frequency domain. 

 

 
Fig. 8 ROC curves of different features under different damage levels 

 
To quantitatively compare the separation of distributions, a receiver operating characteristic 

(ROC) curve is a good tool, which compares true detection rate versus false alarm rate under any 
possible decision threshold. A good detection performance has a high detection rate independent of 
threshold with minimal false positives, i.e. a steep curve that goes to the upper right corner. On the 
other hand, a 45-degree line means performance akin to coin-flipping (a random guess), in which 
condition the number of false alarms is always equal to the amount of real detections on average. 
Fig. 8 shows the four clusters of ROC curves associated to the four cases. As damage level gets 
more severe, ROC curves goes to the upper right corner monotonically for all cases, but for features 
evaluated in a pre-selected frequency region, even better performance is achieved.  

 

 
Fig. 9 Definition of area-under-curve 
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Therefore, a metric called area-under-curve is defined as shown in Fig. 9 to describe how far the 
ROC deviates from the random guess line and to the corner of “small false alarm and high true 
detection”. The area between ROC and random guess line is normalized from 0 to 1, and the 
optimal feature is anticipated to have a close-to-unity AUC.  In Fig. 10, metric of AUC is compared 
among the two FRF-related features and two evaluation domains. As the Young’s modulus 
decreases, the performance of statistical significance detection improves, and for a fixed damage 
level DPD feature outperforms ED. And results in Fig. 9 suggest a pre-selection of feature 
evaluation domain, although the selection may be cursory, it helps improve the detectability 
especially when the damage is light. 

 

  
Fig. 9 A comparison of AUC for each feature being used for detection 

Summary 
This paper investigates an optimal FRF-related SHM feature selection paradigm, in which the 

optimization is achieved via maximizing the feature performance in terms of receiver operating 
characteristics (ROC), and under same damage severity, the optimal feature is chosen with the 
larger AUC. 

Considering the two features, each estimated over different domains, we conclude that pre-
selecting some "good" frequency intervals (usually those with optimal signal-to-noise) can improve 
the performance of detection problem dramatically, especially when damage is small and detection 
is more challenging.  
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