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| INVESTIGATION
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ABSTRACT Imidazolium ionic liquids (IILs) have a range of biotechnological applications, including as pretreatment solvents that
extract cellulose from plant biomass for microbial fermentation into sustainable bioenergy. However, residual levels of IILs, such as
1-ethyl-3-methylimidazolium chloride ([C2C1im]Cl), are toxic to biofuel-producing microbes, including the yeast Saccharomyces cerevisiae.
S. cerevisiae strains isolated from diverse ecological niches differ in genomic sequence and in phenotypes potentially beneficial for
industrial applications, including tolerance to inhibitory compounds present in hydrolyzed plant feedstocks. We evaluated .100 ge-
nome-sequenced S. cerevisiae strains for tolerance to [C2C1im]Cl and identified one strain with exceptional tolerance. By screening a
library of genomic DNA fragments from the [C2C1im]Cl-tolerant strain for improved IIL tolerance, we identified SGE1, which encodes a
plasma membrane multidrug efflux pump, and a previously uncharacterized gene that we named ionic liquid tolerance 1 (ILT1),
which encodes a predicted membrane protein. Analyses of SGE1 sequences from our panel of S. cerevisiae strains together with
growth phenotypes implicated two single nucleotide polymorphisms (SNPs) that associated with IIL tolerance and sensitivity. We
confirmed these phenotypic effects by transferring the SGE1 SNPs into a [C2C1im]Cl-sensitive yeast strain using CRISPR/Cas9
genome editing. Further studies indicated that these SNPs affect Sge1 protein stability and cell surface localization, influencing
the amount of toxic IILs that cells can pump out of the cytoplasm. Our results highlight the general potential for discovering useful
biotechnological functions from untapped natural sequence variation and provide functional insight into emergent SGE1 alleles
with reduced capacities to protect against IIL toxicity.

KEYWORDS Saccharomyces cerevisiae; yeast; ionic liquid; natural variation; major facilitator superfamily; biofuels; toxin tolerance

IONIC liquids are neutral salts that attain a liquid state at
temperatures mostly ,100� (reviewed in Welton 1999)

and have a broad range of biological applications from bio-
medicine (reviewed in Dias et al. 2017; Egorova et al. 2017)
to production of biochemicals and bioenergy. In renewable
bioenergy applications, ionic liquids, particularly imidazo-
lium ionic liquids (IILs) such as 1-ethyl-3-methylimidazolium
chloride ([C2C1im]Cl), 1-ethyl-3-methylimidazolium acetate
([C2C1im][OAc]), and 1-butyl-3-methylimidazolium chlo-
ride ([C4C1im]Cl) are effective in solubilizing plant biomass
for purification of cellulose through a process called pretreat-
ment (Binder and Raines 2010; Li et al. 2010; Elgharbawy
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et al. 2016). After pretreatment, cellulose is highly accessible
to cellulase enzymes that hydrolyze it into monomeric glu-
cose, which is then fermented into bioethanol or other bio-
fuels by industrial microbes. However, two disadvantages of
these solvents are their high cost (Blanch et al. 2011; Konda
et al. 2014) and toxicity to biofuel-producing microbes, both
of which impose a demand for IIL recovery after pretreat-
ment. Escherichia coli strains used in the industrial produc-
tion of biofuels and biochemicals are growth impaired in
laboratory media containing 200–270 mM [C2C1im]Cl
(Khudyakov et al. 2012; Ruegg et al. 2014). The dominant
biofuel-producing microbe, Saccharomyces cerevisiae, is even
more sensitive; 30–60 mM [C2C1im]Cl can inhibit growth
(Ouellet et al. 2011; Dickinson et al. 2016). After biomass
pretreatment and hydrolysis, up to 270 mM IIL may persist
during fermentation (Datta et al. 2010); IILs at these concen-
trations severely impair both yeast growth and biofuel pro-
duction. Thus genetically modified yeasts that better tolerate
inhibitory IIL concentrations are highly desirable to improve
the production of lignocellulosic biofuels and bioproducts.

Tocircumvent IIL toxicity, gene sequences fromIIL-tolerant
microbes can be inserted into biofuel-producing microbes to
improve tolerance to IILs. For example, two genes, eilA and
eilR, are determined to be primarily responsible for IIL toler-
ance in Enterobacter lignolyticus (Ruegg et al. 2014), an IIL-
tolerant rain forest bacterium (Khudyakov et al. 2012). A
member of the major facilitator superfamily (MFS) of pro-
teins, the inner membrane transporter EilA exports quater-
nary ammonium cations and is transcriptionally regulated by
EilR, which is induced by the [C2C1im]+ cation. Because of
this, when expressed in E. coli, the eilAR gene cassette in-
creases both cell growth and biofuel production in media
containing IILs (Ruegg et al. 2014).

In yeast, chemical genomics screening of S. cerevisiae mu-
tants determined that deletion of PTK2 increases cell fitness
and sugar metabolism in the presence of inhibitory IIL con-
centrations (Dickinson et al. 2016). PTK2 encodes a putative
serine/threonine protein kinase that activates the plasma
membrane H+-ATPase Pma1 (Eraso et al. 2006), and it was
suggested that deletion of PTK2 blocks Pma1 proton-coupled
import of IILs into the cytoplasm (Dickinson et al. 2016), where
IILs appear to affect mitochondrial function (Mehmood et al.
2015; Dickinson et al. 2016). Although deletion of PTK2 im-
proves IIL tolerance, the resulting reduction in Pma1 activity
and altered ion homeostasis also causes decreased strain fitness
in other conditions (Giaever et al. 2002; Qian et al. 2012).

Functional screening of homologous DNA libraries has
been an effective means to identify overexpressed genes in
yeast that confer tolerance to industrially relevant inhibitors,
such as ethanol (Anderson et al. 2012) and toxins inmolasses
fermentations (Ness and Aigle 1995). As an alternative ap-
proach, we explored the genetic variation in natural S. cere-
visiae isolates to identify additional genes or sequence
variants that enable IIL tolerance. The growth and fermenta-
tion phenotypes of numerous wild and domesticated S. cer-
evisiae strains have been examined across a wide range of

media conditions (Fay and Benavides 2005; Liti et al. 2009;
Schacherer et al. 2009; Strope et al. 2015), including media
that contained various inhibitory compounds generated from
biomass pretreatment (Parreiras et al. 2014; Sato et al. 2014;
Wohlbach et al. 2014; Kong et al. 2018). Individual strains
exhibited a wide range of growth tolerances, indicating that
some natural isolates contain genetic differences that are pro-
tective against toxins present in hydrolyzed plant biomass.
Here, we combined phenotypic and genotypic analyses with
functional screening to identify the MFS transporter SGE1
and an uncharacterized open reading frame (ORF) YDR090C
with important roles in IIL tolerance. Our results uncovered
the impact of natural genetic variation in IIL tolerance and
identified an SGE1 allele that offers a clear technological
application for biofuel production.

Materials and Methods

Media

Standard yeast laboratory media were prepared as described
elsewhere (Sherman 2002), with modifications. YPD (10 g/L
yeast extract, 20 g/L peptone, 20 g/L dextrose) and synthetic
complete (SC) media were adjusted to pH 5.0 with HCl. For
experiments described in Supplemental Material, Figure S4,
the pH was adjusted to the indicated values with HCl or
NaOH accordingly. Cationic compounds were purchased
from the following vendors: [C2C1im]Cl (catalog #272841,
Sigma Aldrich; or catalog #AC354080250, Fisher Scientific,
Pittsburgh, PA), [C4C1im]Cl (catalog#94128; Sigma Aldrich),
[C2C1im][OAc] (catalog #689483; Sigma Aldrich), and
Crystal Violet (CV) (catalog #NC9002731; Fisher Scientific).
Cationic compounds were added directly to YPD or SC
media and sterilized by passing through 2 mm filters. The
following concentrations were used to select for plasmid
and PCR product transformations in yeast and E. coli:
200 mg/ml Geneticin (catalog #10131027; Life Technolo-
gies), 100 mg/ml nourseothricin sulfate (catalog #RC-187;
G-Biosciences), 200 mg/ml hygromycin B (catalog #10687010;
GIBCO,Grand Island,NY), 200mg/mlZeocin (catalog#R25001;
GIBCO), and 100 mg/ml carbenicillin (catalog #00049; Chem-
Impex).

Yeast strain construction

Genotypes and sources of S. cerevisiae strains used in this
study are described in File S1 and Table S2. Deletion mutant
strains from the Yeast Knockout (YKO) Collection (Winzeler
et al. 1999) were obtained from Open Biosystems/Dharma-
con. Deletion of SGE1 and ionic liquid tolerance 1 (ILT1) were
performed by integration of PCR products generated from
LoxP-KanMX-LoxP and LoxP-hphMX-LoxP templates (Guldener
et al. 1996; Gueldener et al. 2002), primers containing 50–
60 bp of homology flanking the SGE1 or ILT1 ORF, and
Phusion DNA polymerase (New England Biolabs, Beverly,
MA). For deletion of ILT1 with KanMX4, strain 4025 from
the YKO Collection was used as the PCR template. PCR
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products were purified (PCR Purification Kit, QIAGEN,
Valencia, CA) and transformed into the appropriate
strains (Gietz and Schiestl 2007). Antibiotic selection
markers flanked by LoxP sequences were excised by Cre
recombinase as published (Guldener et al. 1996). Both
GLBRCY412 and GLBRCY490 were generated in the ho-
mozygous diploid 378604X (hereafter named 378)
strain background, thus requiring two gene deletions
to create the complete null mutants. To generate
GLBRCY412, one copy of ILT1 was deleted by replace-
ment with the bleMX4 selection marker, followed by a
subsequent replacement of the second ILT1 copy with
KanMX. Construction of GLBRCY490 was conducted by
deleting the first copy of SGE1 with LoxP-KanMX-LoxP
and the second copy with LoxP-hphMX-LoxP, followed
by Cre-mediated excision of both KanMX and hphMX se-
lection markers. SGE1 and ILT1 deletions were con-
firmed by Sanger sequencing (University of Wisconsin-
Madison Biotechnology Center DNA Sequencing Facil-
ity) of purified PCR products generated from purified
genomic DNA (gDNA) (Epicentre MasterPure Yeast DNA
Purification kit) and primers that annealed outside of the
homologous sequences were used for gene deletion.
In-frame, genomic insertion of MYC or green fluorescence
protein (GFP) (S65T) at the 39 ends of SGE1 or ILT1 were
performed by transformation of a PCR product generated
from the pFA6a-13Myc-KanMX6 or pFA6a-GFP(S65T)-
KanMX (Bähler et al. 1998) plasmid templates and the fol-
lowing primer pairs:

For SGE1 fusions: SGE1MycFOR, CTTTGGAATATTCACTTC
GAGTAAGAAAACAACAATATCAGCCAAAAAGCAACAA
cggatccccgggttaattaa;

SGE1MycREV, GTACTGTCTAGTTTTATCGAACTACGATAAG
TTAATTTATACGTTGGAAAATTGT gaattcgagctcgtttaaac.

For ILT1 fusions: YDR090MYCfor, TGTCCATGGAGTTGT
GGTTAGAACAGATCCTGATCGTTATTCGAGGCTAAGTGTG
cggatccccgggttaattaa;

YDR090MYCrev,
AAGCGTGCTATCAAAAAGAGATGAAAACGTGCTAACTAAAA

AGGACTCAGATTCG gaattcgagctcgtttaaac.

The uppercase nucleotides correspond to the sequences
used for homologous recombination at 39 ends of SGE1 and
ILT1. The lowercase nucleotides correspond to the annealing
sequences for the pFA6a plasmids. Sanger sequencing of PCR
products confirmed proper construction of allMYC- and GFP-
tagged strains. Strains are available upon request.

Plasmid construction

E. coli strains E. cloni (Lucigen), DH10B (New England Biol-
abs), and EPI300 (Epicentre) were used for bacterial trans-
formation, plasmid amplification, and assembly. Yeast genes
were amplified by PCR of gDNA or fosmid DNA and primer
pairs that annealed 1137 bp 59 and 180 bp 39 of the SGE1
ORF or 885 bp 59 and 96 bp 39 of the ILT1 ORF. SGE1 and
ILT1 PCR products were cloned into pRS416 and pRS415

plasmids (Christianson et al. 1992), respectively, by
sequence- and ligation-independent cloning (SLIC) (Li and
Elledge 2007). Gene splicing by overlap extension (SOE)
(Horton 1995) and SLIC cloning were used to generate mu-
tant SGE1PLL plasmids. For experiments in YPD medium,
SGE1 and ILT1 plasmids containing KanMX or hphMX anti-
biotic selection markers in place of URA3 or TRP1 auxotro-
phic markers, respectively, were used. Additionally, empty
vector controls (lacking SGE1 or ILT1) with KanMX and
hphMX selection markers were also generated. To generate
doxycycline-inducible SGE1 expression plasmids, the SGE1
ORF was amplified by PCR with primers containing 60 bp
of flanking sequence that were homologous to the CYC1
minimal promoter and 63 glycine linker/163 MYC tag in
pBM5155 (Alexander et al. 2016). Purified PCR product was
then cotransformed with NotI-digested pBM5155 into
BY4741 (BY) yeast for gapped plasmid repair (Muhlrad
et al. 1992). Plasmids were rescued from nourseothricin-
resistant yeast colonies as described elsewhere (Mülleder
et al. 2016) with modifications: cells were resuspended in
200 ml 1 M sorbitol with 20 units of zymolyase (Zymo Re-
search) and incubated at 37� for 1 hr. Zymolyase-treated
cells were then centrifuged at 3000 relative centrifugal
force for 3 min, supernatant was aspirated, and then they
were resuspended in P1 buffer for glass bead lysis. Rescued
plasmids were then transformed into E. coli, miniprepped
(QIAGEN), and fully sequenced to confirm proper in-frame
insertion of SGE1 into the pBM5155 plasmid. Plasmids are
available upon request.

CRISPR/Cas9-mediated genome editing

CRISPR/Cas9 editing was performed by modification of
plasmids published elsewhere (Kuang et al. 2018). In brief,
a protospacer adjacent motif single guide RNA (sgRNA) se-
quence (TTTCATTTTCTGTCATTATC) that targeted adja-
cent to the SGE1 SLS site along with an HDV ribozyme
were cloned between the SNR52 promoter and terminator.
This sgRNA expression cassette was then amplified by PCR
and cloned into the NotI site of the pXIPHOS vector (acces-
sion MG897154; GenBank), which contains a codon-opti-
mized Cas9 gene driven by the constitutive RNR2 promoter
and the NatMX selection marker by gapped plasmid repair.
SGE1 repair templates were generated by PCR amplification
of 378 sge1SLS, BY SGE1PLL plasmid, or BY SGE1PLS and BY
SGE1SLL sequences generated by gene SOE. Purified repair
templates were cotransformed in 20-fold molar excess with
the pXIPHOS-SGE1 sgRNA plasmid into the BY or 378 yeast
strain. Single nourseothricin-resistant colonies were
restreaked two times on YPD agar plates. SGE1 was ampli-
fied by PCR of gDNA from single colonies, purified, and se-
quenced to confirm the SGE1 allele swap. For the 378
sge1SLS/sge1SLS homozygous mutant strain, Sanger sequenc-
ing only identified the presence of the SLS allele. Confirmed
strains were also tested for loss of nourseothricin resistance,
which indicates that the strains also lost the pXIPHOS-SGE1
sgRNA plasmid.
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Fosmid library construction and screening

Ayeast fosmid library vectorwas prepared by adding the yeast
replicative origin and URA3 gene from the pRS416 yeast
shuttle vector into the pCC1FOS fosmid vector (Epicentre
Biotechnologies). Yeast maintenance regions were amplified
from pRS416 by PCR using the following primer pair:
GACGGGCGGCCACCTGGGTCCTTTTCATCA and GACGGGC
GGCTCTGTGCGGTATTTCACACC. The resulting �1.9-kb
fragment and the pCC1FOS fosmid vector were digested with
KasI restriction enzyme and ligated together using T4 ligase
(Thermo Fisher). Plasmids was transformed into E. coli and
sequence verified. The resulting plasmid, pDH219, was fur-
ther digested with PmlI to release a small unnecessary frag-
ment bordered by PmlI sites. The backbone was religated
together, transformed into E. coli EPI300 cells, and verified
by Sanger sequencing. The resulting plasmid (pDH241) was
digested with PmlI to yield a blunt linear vector for fosmid
library construction.

S. cerevisiae 378 gDNA was isolated as described else-
where (Hoffman and Winston 1987). The metagenomic li-
brary was constructed following the manufacturer’s protocol
for the pCC1FOS fosmid vector (Epicentre), with the modifi-
cation that PmlI-linearized pDH241 was substituted for the
pCC1FOS vector. E. coli transductions were plated on LB sup-
plemented with 12.5mg/ml chloramphenicol (henceforth cm
12.5), resulting in �3600 E. coli colonies. E. coli cells were
swabbed up, diluted into LB cm 12.5 with CopyControl Fos-
mid Autoinduction Solution (Epicentre), grown, and purified
by plasmid miniprepping (QIAGEN).

BY yeast-competent cells were prepared and transformed
(Gietz and Schiestl 2007)with the fosmid library. Yeast trans-
formants were selected on SC (pH 5) agar plates lacking
uracil and supplemented with 0 or 125 mM [C2C1im]Cl. A
total of 19 colonies that grew to large size on 125 mM [C2

C1im]Cl were restreaked to confirm IIL tolerance. Fosmids
were harvested from confirmed transformant yeast cells
and transformed into electrocompetent E. coli EPI300 cells.
Fosmid preparations were recovered from E. coli and se-
quenced from the fosmid backbone into the chromosome
inserts, which were subsequently mapped to the S288c yeast
genome sequence (Saccharomyces Genome Database).

Yeast growth assays

Toassess IIL toleranceofwild anddomesticatedyeast isolates,
total cell growth for each strain was determined as previously
described (Parreiras et al. 2014) with modifications. Individ-
ual strains were cultured aerobically at 30� in 96-well plates
containing YPD (pH 5), YPD (pH 5)with 250mM [C2C1im]Cl
and 250 mM [C2C1im][OAc]. Total cell growth for each
strain was determined by subtracting the OD600 measure-
ment after 24 hr of growth from the initial OD600 value.
Relative total cell growth was calculated by dividing the total
cell growth in YPD (pH 5) with 250 mM [C2C1im]Cl or [C2

C1im][OAc] by the total cell growth in YPD (pH 5) alone. For
BY strains transformed with pRS415-ILT1 or pRS416-SGE1

plasmids (Figure 1, B and C), triplicate cultures of S. cer-
evisiae were inoculated and grown to stationary phase in
SC 2 leucine or SC 2 uracil medium, respectively. Cells
were diluted to an OD600 of 0.05 in the appropriate SC
medium containing 0–250 mM [C2C1im]Cl or 125 mM [C2

C1im][OAc]. Cell growth was monitored by OD600 mea-
surements every 20 min at 30� with shaking using an
Infinite F-200, F-200 PRO, or Safire multimode reader
(Tecan).

Growth assays in 24-well plateswere similarly carried out
as described for 96-well plates with modifications. Yeast
strains were cultured overnight at 30� in tubes containing
5 ml of YPD medium and any appropriate antibiotic for
plasmid selection. The following morning, cultures were di-
luted in fresh medium and regrown to log phase (OD600 =
0.8, as measured in a 1-cm path length cuvette with a Beck-
man Coulter spectrophotometer). Cells were centrifuged,
washed with sterile water, and inoculated into 24-well
plates at an OD600 of 0.1 in 1.5 ml YPD (pH 5) media con-
taining serial dilutions of [C2C1im]Cl, [C2C1im][OAc], [C4

C1im]Cl, or CV and any appropriate antibiotics. Cell densi-
ties were determined from OD600 measurements taken ev-
ery 10–40 min for 24–70 hr with a Tecan Infinite M200Pro
multimode reader. Relative total cell growth was deter-
mined by dividing the total cell growth after 18–24 hr for
a strain in media containing specified concentrations of CV,
[C4C1im]Cl, or [C2C1im]Cl by the cell growth for the same
strain in media lacking those compounds in the same time
frame. For pH-dependency experiments, relative total cell
growth was determined by dividing the total cell growth
after 24 hr for each strain in 125 mM [C2C1im]Cl by the
total cell growth for the same strain in media lacking [C2

C1im]Cl at a specific pH. For experiments using tetracycline-
inducible SGE1-MYC, BY sge1D yeast transformed with
empty pBM5155, pBM5155-SGE1SLS, or pBM5155-SGE1PLL

were cultured in 1.5 ml YPD (pH 5), 0 or 125 mM [C2C1im]
Cl, 100 mg/ml nourseothricin, and 0–625 ng/ml doxycy-
cline hydrochloride (BP26535; Fisher Scientific). Relative
total cell growth was determined by dividing the total cell
growth after 24 hr for each strain by the total cell growth
for yeast with empty pBM515 in 0 ng/ml doxycycline
hydrochloride.

Aerobic and anaerobic growth experiments were per-
formed with tubes and flasks, respectively, as previously
described (Parreiras et al. 2014) with some modifications.
Cells grown to log phase in 10–30 ml YPD (pH 5) medium
containing the appropriate antibiotic for plasmid selection
were washed with sterile water and inoculated to a concen-
tration of OD600 = 0.1 in YPD (pH 5) medium containing
0–250 mM [C2C1im]Cl and the appropriate antibiotic for
plasmid selection. Cell densities were determined by OD600

spectrophotometer (Beckman Coulter) measurements as de-
scribed above. Extracellular glucose and ethanol concent-
rations were determined by high performance liquid
chromatography and refractive index detection (Keating
et al. 2014).
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SGE1 sequence analysis

Single nucleotide polymorphisms (SNPs) for the SGE1 gene
were extracted from a whole genome variant data set for the
strains phenotyped in this study (Sardi et al. 2018). Briefly,
whole genome Illumina sequences for S. cerevisiae strains
from publicly available sequencing projects (Skelly et al.
2013; Bergström et al. 2014; Hose et al. 2015; Strope et al.
2015) were mapped to reference genome S288c
[NC_001133 version 64 (Engel et al. 2014)] using bwa-
mem. Variants were identified using the GATK pipeline for
Unified Genotyper (McKenna et al. 2010) using default pa-
rameters with a -mbq of 25 to reduce false positives. Anno-
tation of variants was performedwith SNPEff (Cingolani et al.
2012).

Additional genome sequences from S. cerevisiae and non-S.
cerevisiae yeast strains were obtained as described in previous
publications (Scannell et al. 2011; Liti et al. 2013; Almeida
et al. 2014; Bing et al. 2014; Gayevskiy and Goddard 2016;

Gonçalves et al. 2016; Peris et al. 2016; Yue et al. 2017). SGE1
sequences from additional S. cerevisiae and non-S. cerevisiae
strains (File S3) were retrieved by using two approaches: (1)
BLASTing the S288c SGE1 gene sequence to a local database
(Altschul et al. 1990), and/or (2) downloading the Illumina
reads and mapping them to the reference SGE1 nucleotide
sequence to extract and assemble the SGE1 alleles using the
HybPiper wrapper (Johnson et al. 2016). Sequence align-
ment and amino acid comparisons were performed in Gene-
ious version 6.1.6 (Kearse et al. 2012).

Western blotting

Protein from whole cell lysates were prepared as previously
described (Zhang et al. 2011) with modifications. Yeast cells
were grown in 24-well plates as described above. After 24 hr
of growth, 1.5 ml of cell culture was transferred to tubes,
centrifuged, and the supernatant was aspirated. Cell pellets
were washed with sterile water and then resuspended in

Figure 1 SGE1 and YDR090C/ILT1 function in [C2C1im]+ tolerance. (A) Relative total cell densities for 136 wild or domesticated S. cerevisiae strains
cultured aerobically in 96-well plates containing YPD (pH 5) + 250 mM [C2C1im]Cl medium, relative to total cell growth in YPD (pH 5) alone. Red and
blue Y’s indicate the locations of the S288c laboratory and 378 wild strains, respectively. Average values and SEM were determined from independent
biological triplicates. (B and C) Representative aerobic growth of BY cells transformed with the indicated low-copy plasmids and cultured in SC (pH 5)
medium + 125 mM [C2C1im]Cl for 40–46 hr. Vector-specific growth differences were observed in (B and C). Rel., relative.
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67 ml of 2 M lithium acetate per OD600 of cells. LiAc-treated
cells were then centrifuged, the supernatant was aspirated,
and the cells were resuspended in 67 ml/OD600 of cells in
0.4 M NaOH and placed on ice for 5 min. Treated cells were
then centrifuged, the supernatant was aspirated, and protein
was extracted by lysing cells in 13 Laemmli sample buffer
with b-mercaptoethanol at 100� for 5 min.

Protein electrophoresis and Western blotting were per-
formed using the Mini-Protean system according to the man-
ufacturer’s protocol (Bio-Rad, Hercules, CA). Total protein
(30 mg) from each cell sample was loaded on the 4–15%
acrylamide gels, along with 5 ml chemiluminescent protein
standards (Precision Plus Protein WesternC Standards; Bio-
Rad). Blots were cut into two separate pieces along the
50-kD protein standard, with the top half used to for detection
of Sge1-Myc, and the bottomhalf used for actin. Sge1-Myc and
actin proteins were detected by incubation with anti-Myc
(9E10; Sigma Aldrich) or anti-actin (mAbGEa; Thermo Fisher
Scientific) mouse monoclonal primary antibodies at dilutions
of 1:1000 in TBST (Tris buffered saline + 0.2% Tween-20;
Bio-Rad) and 5% nonfat dried milk (TBSTM) or 1:5000 in
TBST with 3% bovine serum albumin (TBSTB), respectively.
After primary incubation, washed blots were incubated with
horseradish peroxidase (HRP)-conjugated goat anti-mouse
secondary antibody (Bio-Rad) and StrepTactin-HRP conjugate
(Bio-Rad) in corresponding TBSTM or TBSTB buffer. Sge1-
Myc and actin protein bands were visualized by enhanced
chemiluminescence (ClarityWestern ECL; Bio-Rad) and quan-
tified by densitometry (Quantity One Software; Bio-Rad).

Quantification of chemiluminescent signals for Sge1-Myc,
actin, and an�130-kD nonspecific (NS) band was performed
by densitometry (Quantity One Software; Bio-Rad). Volume
intensities for each were measured using identical areas for
each protein across replicate experiments. Actin and Sge1-
Myc/NS band signals were captured from 5 or 30–60 sec
exposures, respectively. Each Sge1-Myc chemiluminescent
signal was normalized relative to the NS or actin bands from
the same sample for three to five biological replicates. For
correlations, Sge1-Myc protein levels normalized to NS band
intensities were paired to relative total cell growth (see
above) from the same sample. Paired values were analyzed
by Spearman’s rank correlation in Spotfire (TIBCO).

Fluorescence microscopy

Yeast strains were cultured to exponential growth phase in
YPD at 30�. Cells were harvested by centrifugation and resus-
pended at a ratio of 1:5 in fresh YPD media. A total of 3 ml of
cells were then spotted onto a poly-L-lysine-coated glass slide
and covered with an 8 3 8 mm coverslip. GFP fusions were
visualized at 1003magnification using fluorescence (with an
EVOS GFP LED cube) or transmitted light sources, an EVOS
FL Auto 2 microscope (Invitrogen, Carlsbad, CA), and EVOS
FL Auto 2 Imaging System (Invitrogen). Contrast and bright-
ness for whole images were adjusted uniformly using Adobe
Photoshop in accordance with the journal’s image-manipula-
tion policy.

Data availability

All yeast strains and plasmids used in this study are available
upon request. Table S2 contains a list of the strains described
in this study. Data necessary to confirm findings of this article
are present within the article text and figures as well as
supplementalfiles,figures, and tables. Supplementalmaterial
available at Figshare: https://doi.org/10.25386/genetics.
6731201.

Results

Environmental isolates of S. cerevisiae display a range
of growth abilities in IIL media

To identify strains with innate tolerance to IILs, we measured
the growth of 136 wild and domesticated S. cerevisiae strains
cultured in media containing 250 mM [C2C1im]Cl (Figure 1A
and File S1), [C2C1im][OAc] (Figure S1 and File S1), or
lacking IILs. Strains displayed a wide range of maximum cell
growth in IIL-containing media relative to the control me-
dium lacking IILs, with more strains growing to lower cell
densities in [C2C1im][OAc] than [C2C1im]Cl (File S1). Weak
correlation (R2 = 0.27) in relative cell growth between the
different IILs indicated that the Cl2 and [OAc]2 anions syn-
ergize differently with [C2C1im]+ to inhibit yeast growth,
consistent with an earlier report (Ouellet et al. 2011). The
strain with highest relative growth in both [C2C1im]Cl and
[C2C1im][OAc] was 378, a clinical isolate from Newcastle,
United Kingdom. In contrast, the common laboratory strain,
S288c, achieved significantly lower relative cell growth in
[C2C1im]Cl and [C2C1im][OAc], suggesting that the 378
strain contains different genetic sequences that permit greater
cell growth in the presence of [C2C1im]+.

SGE1 and YDR090C/ILT1 function in ionic
liquid tolerance

Reasoning thatgenetic factors in the378strainare responsible
for its IIL tolerance, we used a selection scheme adapted from
our previous work with bacteria (Ruegg et al. 2014). Specif-
ically, we generated a fosmid library containing large (�30–
40 kb) fragments of gDNA from this IIL-tolerant strain and
transformed the library into an IIL-sensitive laboratory de-
rivative of S288c, BY (Figure S2). We then selected trans-
formants that grew normally on solid medium containing
125mM [C2C1im]Cl. Fosmid inserts from selected transform-
ants were recovered and partially sequenced onto the S. cer-
evisiae genome. We identified nine distinct inserts that
clustered in two genome regions. Five of these nine DNA
segments coincided in a core 14-kb region of chromosome
XVI that contained four genes: HPA2, encoding a histone
acetyl transferase (Angus-Hill et al. 1999); OPT2, an oligo-
peptide transporter (Wiles et al. 2006) that may also function
in drug detoxification (Aouida et al. 2009); SKI3, involved in
exosome-mediated messenger RNA decay (Anderson and
Parker 1998); and SGE1, an MFS multidrug efflux pump that
exports toxic cationic dyes out of the cytoplasm (Amakasu
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et al. 1993; Ehrenhofer-Murray et al. 1994, 1998; Jacquot
et al. 1997). Because we previously found that a bacterial
MFS efflux pump, EilA, functions in [C2C1im]+ tolerance
(Ruegg et al. 2014), we were immediately drawn to investi-
gate SGE1.

The remaining four fosmid inserts coincided in a core18-kb
region of chromosome IV containing nine genes: STN1, RRP8,
TVP23, AFR1, SSS1, RRP1, SLU7, YDR089W, and YDR090C
(Figure S2). Unlike SGE1, none of these genes had immedi-
ately obvious functions predicted to be relevant to IIL toler-
ance. Considering that deletions of IIL-tolerance genes would
sensitize yeast to [C2C1im]Cl, we examined five available
strains from the BY deletion library (Winzeler et al. 1999)
containing individual deletions in genes within this region of
chromosome IV; only ydr090cD displayed reduced growth in
medium with a subtoxic 31 mM [C2C1im]Cl concentration
compared to medium without IIL (Table S2). Based on these
results, we propose ILT1 as the standard name for the
YDR090C ORF. Protein structure and homology analyses
(Altschul et al. 1990; Claros and von Heijne 1994) indicated
that ILT1 encodes amembrane protein with seven transmem-
brane helices and has a putative PQ-loopmotif found in Ypq1,
Ypq2, and Rtc2/Ypq3, which are putative vacuolar mem-
brane transporters of cationic amino acids (Jézégou et al.
2012).

Next, we investigated whether specific expression of SGE1
or ILT1 could explain the tolerance phenotypes of the fosmid-
carrying strains. The individual promoters, ORFs, and termi-
nators for SGE1 and ILT1 from the tolerant 378 and sensitive
BY strains were cloned into a low-copy plasmid and
expressed in the BY strain (Figure 1, B and C, and Figure
S3). In media containing 125 mM [C2C1im]Cl, BY transform-
ants expressing the SGE1 and ILT1 ORFs from the tolerant
378 strain grew faster than BY containing the same plasmid
but lacking SGE1 (empty vector), providing evidence that
these specific genes contributed to IIL-tolerance effects from
the fosmid constructs. Expression of BY SGE1 and ILT1 alleles
also increased growth in 125 mM [C2C1im]Cl over the empty
vector control, indicating that additional copies of the iden-
tical BY SGE1 and ILT1 alleles granted IIL protection. How-
ever, expression of the 378 SGE1 gene conferred faster
growth than BY SGE1 in [C2C1im]Cl-containing media, sug-
gesting that differences in the BY and 378 SGE1 sequences
affect IIL tolerance. In contrast, there were no growth differ-
ences between cells expressing ILT1 from BY or 378.

The SGE1 sequences from the sensitive BY and tolerant
378 strains were examined for coding differences that could
explain the IIL-tolerance phenotypes. Two nonsynonymous
SNPs corresponding to amino acid positions Ser 282 and Ser
284 (hereafter denoted as the “SLS” sequence), which flank
Leu 283, in BY were found to encode Pro 282 and Leu
284 (the “PLL” sequence) in 378. Transmembrane prediction
models place these amino acid residues in the fifth cytoplas-
mic loop between the eighth and ninth transmembrane heli-
ces of Sge1p. To exclude any effects from promoter and
terminator sequence differences or silent mutations between

the BY and 378 strains, we generated site-directed S282P and
S284L mutations in our low copy plasmid-borne SGE1 from
the sensitive BY strain (BY SGE1PLL). Expression of the BY
SGE1PLL mutant in the BY strain enabled an equivalent
growth rate as 378 SGE1PLL (Figure 1B), indicating that the
Pro 282 and Leu 284 amino acid differences were specifically
responsible for the increased [C2C1im]Cl tolerance. There
were no differences in the ILT1 coding sequence between
the BY and 378 strains, explaining why no growth differences
were seen for strains expressing BY or 378 ILT1 (Figure 1C).

We next examined the requirements for SGE1 and ILT1 in
IIL tolerance by deleting SGE1 or ILT1 genes in the haploid BY
and homozygous diploid 378 strains. Both sge1D and ilt1D
deletion mutants were transformed with an empty vector or
plasmids containing the various SGE1 and ILT1 sequences
and examined for growth in media containing [C2C1im]Cl
(Figure 2). The BY sge1D and 378 sge1D/sge1D null mutant
strains grew to significantly lower cell densities in 125 mM
[C2C1im]Cl than strains expressing their corresponding wild-
type SGE1 sequences (Figure 2, A and B). Expression of the
BY SGE1PLL or 378 SGE1PLL alleles resulted in significantly
faster growth and higher cell densities than the BY SGE1SLS

allele in both BY sge1D and 378 sge1D/sge1Dmutant strains.
The BY ilt1D strain transformed with the empty control vec-
tor grew significantly slower than the deletion strain comple-
mented with the ILT1 sequence (Figure 2C). In contrast, no
significant differences in cell growth were seen between 378
ilt1D/ilt1D mutants transformed with empty or ILT1 plas-
mids (Figure 2D), suggesting that ILT1 has strain-specific
functions. Together, these results indicate that both SGE1
and ILT1 function in [C2C1im]+ tolerance, and that natural
sequence differences in SGE1 alleles can influence tolerance
levels.

Since some biofuels, such as ethanol, are industrially pro-
duced under anaerobic, fermentative conditions, we assessed
whether SGE1 and ILT1 were important for ionic liquid tol-
erance in the absence of oxygen. Consistent with the aerobic
results, both BY sge1D and ilt1D strains transformed with
empty plasmids grewmore slowly and fermented less glucose
to ethanol anaerobically than strains expressing their native
SGE1 or ILT1 sequences in media containing 250 mM [C2

C1im]Cl (Figure S4). BY sge1D mutants expressing the PLL
allele grew to higher cell densities and fermented more glu-
cose into ethanol in the presence of 250mM [C2C1im]Cl than
the BY strain expressing the native SGE1SLS allele (Figure S4,
A–C). Thus, swapping the SGE1PLL allele into the BY genome
enabled greater anaerobic bioethanol production in the pres-
ence of [C2C1im]Cl.

SGE1 and ILT1 confer resistance to multiple
cationic compounds

Previously, SGE1was identified for its role in resistance to the
toxic cationic dyes CV, 10-N-nonyl acridine orange, and ethi-
dium bromide in other S. cerevisiae strain backgrounds
(Ehrenhofer-Murray et al. 1994; Jacquot et al. 1997). We
wanted to determine if ILT1 functioned similarly in cationic
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dye resistance and whether the SGE1PLL allele conferred
greater resistance to other cationic dyes than the SGE1SLS

allele. Compared to the BY parent strain, we found that BY
ilt1D mutants grew to lower cell densities in 10 and 20 mM
CV (Figure 3A). In contrast, deletions of both ILT1 copies in
the 378 strain background, which retained two copies of the
SGE1PLL allele, had insignificant effects on tolerance to CV
(Figure S5A) and [C2C1im]Cl (Figure S5B), consistent with
results seen with plasmid-transformed strains (Figure 2D).
Additionally, BY and 378 strains containing SGE1PLL grew
to relatively higher cell densities than strains containing the
SGE1SLS alleles in 10 or 20mMCV (Figure 3B and Figure S5B)
and, as expected, in 125 or 250 mM [C2C1im]Cl (Figure
S5D). As a further test of specificity, we also compared
wild-type and mutant cell growth in media containing [C4

C1im]Cl (Figure 3, C andD), another IIL used in pretreatment
of plant feedstocks (Binder and Raines 2010), to growth in
media containing [C2C1im]Cl (Figure 3, E and F). Similar to
[C2C1im]Cl, deletion of ILT1 significantly reduced the growth
tolerance to [C4C1im]Cl, and expression of the BY SGE1PLL

allele conferred greater resistance to [C4C1im]Cl than the

SGE1SLS allele. These results indicate that ILT1 functions in
tolerance to a range of cationic toxins in the BY strain back-
ground, while the SGE1PLL allele enables greater tolerance
than the SGE1SLS allele across multiple cationic toxins in both
BY and 378 strains.

The Sge1PLL H+ antiporter maintains IIL tolerance across
a wider extracellular pH range than Sge1SLS protein

MFS proteinmember Sge1 is a Dha2-like, 14-span transmem-
brane H+ antiporter that couples the import of protons from
the extracellular medium with the export of toxins out of the
cytoplasm (Sá-Correia et al. 2009; Dos Santos et al. 2014). To
test whether the efflux of IILs by the Sge1 variants is coupled
with proton influx, we examined the interaction between
extracellular pH and IIL tolerance for both the SGE1SLS and
SGE1PLL alleles. Between pH 8 and 9, both the SGE1SLS and
SGE1PLL strains failed to grow significantly in the presence of
125mM [C2C1im]Cl (Figure S6). From pH 5 to 7, the SGE1PLL

strain grew to relatively higher cell densities than the
SGE1SLS strain, whereas both strains grew to similar cell den-
sities at pH 4. These observations indicated that the tolerant

Figure 2 SGE1 alleles from BY and 378 determine [C2C1im]+-tolerance phenotypes. Haploid BY or diploid 378 strains harboring (A and B) sge1D or (C
and D) ilt1D null mutations were transformed with plasmids containing the indicated SGE1 or ILT1 sequences. In (A and B), a plasmid containing site-
directed mutations in the BY SGE1 gene sequence (BY SGE1PLL) was included. Transformed strains were then cultured aerobically in tubes containing
10 ml YPD (pH 5), 125 mM [C2C1im]Cl, and the appropriate antibiotic. Average cell densities (OD600) 6 SD are reported from three independent
biological replicates.
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SGE1PLL allele enables greater IIL tolerance in a wider pH
range than the sensitive SGE1SLS allele.

The SGE1PLL allele is the ancestral sequence associated
with IIL tolerance across natural S. cerevisiae strains

The discovery that two different alleles of SGE1 conferred
differential tolerance to [C2C1im]+ prompted us to investi-
gate whether the tolerance phenotypes of 136 haploid or
homozygous diploid S. cerevisiae strains examined in Figure
1 correlated with the SLS and PLL genotypes. Using published

genome sequences (Sardi et al. 2018) and targeted Sanger
sequencing, we identified 37 strains containing the SGE1SLS

allele, 16 with an SGE1SLL allele, 25 with SGE1PLL, and
58 strains containing the SGE1PLL allele along with one or
more additional polymorphisms (see “SGE1PLL + Additional
SGE1 SNPs” in Figure 4A, File S1, and File S2). No sequenced
strains from our collection contained an SGE1PLS allele. In
media containing 250 mM [C2C1im]Cl (Figure 4A), the rela-
tive growth for strains containing only the SGE1PLL allele
(average relative growth = 0.7096 0.159) was significantly

Figure 3 SGE1 and ILT1 function in resistance to multiple cationic inhibitors. The sge1D or ilt1D mutants were transformed with empty vector or a
plasmid containing unmodified or mutant SGE1 or ILT1 from BY. Transformed strains were then cultured aerobically in YPD (pH 5) and the indicated
concentrations of (A and B) CV, (C and D) [C4C1im]Cl, or (E and F) [C2C1im]Cl. Relative growth was determined by measuring the total cell growth after
18 hr of culturing in YPD (pH 5) containing the cationic compound normalized to total growth in YPD (pH 5) alone. Average relative total growth 6 SD
was plotted from three independent biological triplicates. Statistical significance determined by paired Student’s t-test. * P , 0.05.
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higher (P , 0.05) than strains containing the SGE1SLS allele
(average relative growth = 0.386 6 0.155). We did not ob-
serve any statistically significant correlations between IIL tol-
erance and strains containing both the SGE1PLL sequence and
additional SGE1 SNPs, although the small number of repre-
sentatives limited our statistical power. These results indicate
that yeast strains containing SGE1SLS, SGE1SLL, and SGE1PLL

alleles persist in the natural environment and influence tol-
erance to cationic toxins.

The identification of the SGE1SLL allele along with the in-
ability to detect the SGE1PLS allele suggested that the SGE1SLS

or SGE1PLL allele was derived from an ancestral sequence
through two successive nucleotide changes. To ascertain
the order in which the derived alleles emerged, we identified
the ancestral sequence by aligning analogous Sge1 protein
sequences from other species within the genus Saccharomyces
(Scannell et al. 2011; Bing et al. 2014; Yue et al. 2017), which
diverged from S. cerevisiae up to 20 MYA (Figure 4B). Inter-
estingly, SGE1 from five different species of Saccharomyces
contained the SGE1PLL sequence, whereas the SGE1SLS allele

was not identified in any other sequenced non-S. cerevisiae
species.We also found that the genome sequences ofmultiple
S. eubayanus, S. uvarum, S. paradoxus, and even S. cerevisiae
strains lacked the SGE1 gene, and two strains of S. cerevisiae
also appeared to contain premature stop codons (File S3).
This suggests that SGE1PLL was the tolerant ancestral allele
and that the sensitive SGE1SLS allele was derived from an
initial P282S mutation followed by the secondary L284S
mutation.

To understand the emergence of the derived SGE1SLS-
sensitive allele, we determined the functional effects that each
individual sequence variant contributed to the IIL-tolerance
phenotypes. First, CRISPR/Cas9 and homologous recombina-
tion were used to precisely edit the BY genome to generate
strains containing specific SGE1SLL, SGE1PLS, or SGE1PLL muta-
tions. When cultured in 125 mM [C2C1im]Cl, BY strains har-
boring the single SGE1SLL or SGE1PLS mutations displayed
growth rates and total cell growth phenotypes that were in-
termediate from the tolerant SGE1PLL and sensitive SGE1SLS

strains (Figure 4, C and D). Furthermore, the phenotypes of

Figure 4 The SGE1PLL allele confers
greater tolerance to [C2C1im]Cl than
the SGE1SLS variant. (A) The individual
S. cerevisiae strains were grouped based
on their SGE1 genotype and plotted
according to their relative growth in
250 mM [C2C1im]Cl. For strains contain-
ing SGE1PLL and additional SGE1 SNPs,
the amino acid changes in each strain
are relative to S288c reference sequence.
The numbers of strains for each geno-
type are listed in parentheses. Statistical
significance of growth differences be-
tween strains containing the SGE1PLL

alone and SGE1SLS alleles was deter-
mined by unpaired Student’s t-test. *
P , 2e210. (B) Sge1 protein sequences
encompassing the region surrounding
the Sge1SLS/Sge1PLL variants from differ-
ent strains and species from the genus
Saccharomyces were aligned to display
the amino acid sequences at the corre-
sponding SLS/PLL residues. For each spe-
cies, their locations of isolation as well as
common strain identifiers are listed. (C)
Average 6 SEM aerobic cell densities of
BY SGE1SLS cells or the indicated SGE1
mutations introduced into the genome
by CRISPR/Cas9 from three biological
replicates are shown. (D) Average total
cell growth + SD was normalized relative
to growth for BY SGE1SLS strain after
10 hr of culturing and plotted with SD
from three independent biological repli-
cates. Statistical significance determined
by paired Student’s t-tests. * P , 0.05.
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the SGE1SLL and SGE1PLS strains were statistically indistin-
guishable, indicating that both P282S and L284S changes
were needed to derive the SGE1SLS phenotype. These results
further suggest the order of the P282S and the L284S muta-
tions were interchangeable in the context of cationic toxin
tolerance.

Sge1PLL protein is present at higher abundance than
Sge1SLS in cells

One potential explanation for the increased tolerance to ionic
liquids is that the Sge1PLL protein is more abundant in cells
than Sge1SLS protein, resulting in greater export of toxic IILs
from the cytoplasm. We investigated this possibility by com-
paring Myc-tagged Sge1SLS and Sge1PLL protein levels in the
BY strain background by Western blotting. A Myc epitope tag
was inserted in frame at the 39 end of wild-type SGE1SLS,
mutant SGE1SLL, SGE1PLS, and SGE1PLL sequences generated
in the BY genome by CRISPR/Cas9. Strains containing the
various Sge1-Myc fusions grew similarly to the untagged
strains in the presence of 125 mM [C2C1im]Cl (Figure 4C
and Figure S7), confirming that the fusion of Myc tags did
not significantly alter Sge1p function. Equal amounts of total
protein from strains expressing the variant Sge1-Myc protein
fusions were electrophoresed and blotted with anti-Myc and
anti-actin antibodies. The normalized Sge1PLL-Myc protein
signal was significantly greater than that of Sge1SLS-Myc
(Figure 5, A and B). Moreover, both Sge1PLL-Myc and Sge1SLS

-Myc proteins appeared to separate into more than one band,
suggesting that Sge1 protein may be post-translationally
modified. These results indicate that the SGE1PLL allele may
confer greater tolerance to IILs and cationic dyes due to
greater protein abundance and stability than the SGE1SLS

variant.
If SGE1 SNPs determine IIL tolerance primarily by affect-

ing Sge1p abundance, rather than by affecting transporter
activities, we hypothesized that yeast strains expressing
equivalent levels of Sge1SLS and Sge1PLL protein would dis-
play similar IIL tolerance. To test this model, we cultured the
sge1D mutant strain transformed with a plasmid containing
SGE1-MYC under the control of a doxycycline-inducible pro-
moter in a range of doxycycline concentrations. Increasing
doxycycline concentrations did not affect the growth of cells
containing the empty control vector in the presence of
125 mM [C2C1im]Cl (Figure S8A) or the growth of cells con-
taining SGE1-MYC in the absence of [C2C1im]Cl. In contrast,
strains harboring the Tet-inducible SGE1-MYC plasmid dis-
played doxycycline-dependent increases in cell growth and
Sge1SLS-Myc (Figure S8B) and Sge1PLL-Myc (Figure S8C)
protein levels in the presence of [C2C1im]Cl. We then com-
pared the normalized Sge1-Myc protein signal coupled to the
relative total cell growth for each strain across multiple doses
of doxycycline (Figure 5C). By Spearman rank analysis (not
including data from PTet-On-Empty samples), we found that
Sge1-Myc protein levels significantly correlated with relative
total cell growth (R2 = 0.6, P , 3.2e213), regardless of the
Sge1 protein sequence. Together, these results support a

Figure 5 Increased Sge1 protein abundance correlates with increased toler-
ance to IILs. (A) A representative Western blot of different alleles of Myc-
tagged Sge1 or actin protein from total cell lysates harvested from the indicated BY
strains. Chemiluminescence signal for Sge1-Myc was normalized to actin signal
from the same sample. (B) Average normalized Sge1-Myc signals + SEM were
plotted from five independent biological replicates. Statistical significance was de-
termined by paired Student’s tests. * P, 0.05. (C) sge1D mutant cells containing
a plasmid with SGE1-MYC alleles driven by a tetracycline-inducible promoter were
cultured in YPD (pH 5) medium containing 0–625 ng/ml doxycycline and 125mM
[C2C1im]Cl for 24 hr. Total cell growth was recorded and cells were harvested for
total cellular protein lysates after 24 hr. Sge1-Myc protein was quantified with anti-
Myc antibodies and normalized for protein loading (see Figure S7 and Materials
andMethods). Normalized Sge1-Myc signal from each strain conditionwas plotted
against the total cell growth relative to sge1D cells transformed with PTet-On-Empty
plasmid and grown in 0 ng/ml doxycycline and 125 mM [C2C1im]Cl.
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model in which the natural SGE1SLS and SGE1PLL alleles pri-
marily affect Sge1 protein abundance, which in turn deter-
mines cellular IIL tolerance.

Sge1PLL and Ilt1 proteins function independently at the
plasma membrane

Sge1 protein has been proposed to function at the plasma
membrane to extrude cationic toxins from the cytoplasm
(Ehrenhofer-Murray et al. 1998). Given this, we predicted
that increased abundance of Sge1PLL protein could also result
in greater localization to the plasma membrane than the
Sge1SLS variant protein. We tested this prediction by insert-
ing GFP in frame at the carboxyl termini of chromosomal
SGE1 and ILT1. Strains containing these gene fusions did
not grow significantly differently from strains containing
the untagged genes (Figure S8). By fluorescence microscopy,
both Sge1PLL-GFP and Ilt1-GFP fusion proteins localized
to the plasma membrane, whereas the Sge1SLS-GFP fusion
appeared to localize weakly to the plasma membrane and
to internal organelles (Figure 6A). This suggested that, in
the BY strain background, the PLL sequence promotes greater

Sge1 abundance at the plasmamembrane than the IIL-sensitive
SLS sequence.

The localization of both Sge1PLL and Ilt1 protein to the
plasma membrane suggested the possibility that Ilt1 func-
tionally interacts with Sge1 in IIL tolerance. To examine this
possibility, we compared the growth of BY strains containing
deletion mutations in ILT1 in medium containing [C2C1im]Cl
(Figure 6B). The BY sge1PLL ilt1D double mutant strain was
similarly tolerant to [C2C1im]Cl as the sge1PLL strain contain-
ing wild-type ILT1. This indicated that sge1PLL function does
not require ILT1 for IIL tolerance in the BY strain background.

Discussion

In this investigation of natural variants of S. cerevisiae, we
discovered novel functions for YDR090C/ILT1 and two alleles
of the SGE1 efflux pump in tolerance to IIL solvents and
cationic toxins. Our genetic and biochemical analyses support
a model in which Sge1 and Ilt1 function in resistance to
cationic toxins (Figure 7A). The H+ antiporter Sge1 presum-
ably exports toxic IIL cations from the cytoplasm through the

Figure 6 Plasma membrane-localized Sge1PLL pro-
tein functions independently of ILT1. BY strains con-
taining GFP fused to the indicated genes were
cultured in YPD medium. (A) GFP fluorescence from
representative cells was visualized with 1003 mag-
nification. Insets in the bottom right corners display
a single representative cell with an additional 50%
higher magnification. (B) ILT1 was deleted from BY
strains containing SGE1SLS or sge1PLL alleles. Result-
ing strains were cultured in YPD (pH 5) medium
containing 62.5 mM [C2C1im]Cl. Cell growth is re-
ported as average cell densities 6 SEM from three
independent biological replicates.
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plasma membrane in a similar manner as has been shown for
cationic dyes (Ehrenhofer-Murray et al. 1994). The greater
abundance of Sge1PLL protein at the plasma membrane likely
enables greater extrusion of IILs and cationic toxins from the
cell over the less abundant Sge1SLS protein. Ilt1 may also
function at the plasma membrane and through a mechanism
distinct from Sge1, but whether it directly exports ionic liq-
uids and cationic compounds out of the cell remains unclear.
Ilt1p shares homology to the paralogs Ypq1p, Ypq2p, and
Rtc2p/Ypq3p, solely through a PQ-loop domain (Ponting
et al. 2001) which is present on vacuolar/lysosomal tran-
sporters of cationic amino acids (Cherqui et al. 2001;
Jézégou et al. 2012), suggesting the possibility that Ilt1
may also function in transport. Additional studies are needed
to better understand the role of Ilt1p function in IIL tolerance.

The existence ofmultiple SGE1 alleles encoding proteins of
differing stabilities suggests that these sequence variations
are tolerated in specific genetic backgrounds or environmen-
tal contexts. Since the tolerant SGE1PLL allele is ancestral
(Figure 7B) and has been conserved across millions of years
of evolution, man-made cationic toxins, such as IILs and CV,
cannot be invoked as recent selective agents for adaptation at
this locus. The SGE1SLS allele likely increased in frequency
due to a bottleneck or reduced selective pressure to maintain
higher levels of Sge1p expression. For example, there may
have been reduced exposure to natural cationic toxins in the
environment, or some genetic backgrounds may have con-
ferred partly redundant mechanisms for coping with these
toxins. Interestingly, several strains of multiple different
Saccharomyces species lack the SGE1 gene entirely (File
S3), further suggesting the importance of its function may
be conditional. Although the derived alleles are most likely
conditionally neutral or slightly deleterious, the observation
that many S. cerevisiae strains contain the sensitive SGE1SLS

and intermediate SGE1SLL sequences could suggest their im-
portance in some natural environments. The Sge1SLS or
SgeSLL proteins may have altered specificity for unknown
natural toxins, causing fitness trade-offs in reduced resis-
tance to man-made IILs and cationic dyes. Alternatively, the
differences in protein abundances between natural variants
suggest that Sge1 protein stability is regulated. Sge1 is ubiq-
uitinated in vivo (Swaney et al. 2013), which could affect

Sge1 stability by targeting Sge1 protein for endocytosis and
delivery to the vacuole for degradation (Piper et al. 2014).
Further molecular and genetic studies are needed to better
understand the roles of each allele in Sge1 function across
a broad range of ecologically and industrially relevant
conditions.

To make cost-effective and sustainable biofuels and bio-
products, microbial catalysts will need to metabolize ligno-
cellulosic sugars efficiently in the presence of inhibitory
compounds such as ionic liquids, which are necessary for
deconstruction of lignocellulosic feedstocks into fermentable
sugars. Our results suggest that CRISPR/Cas9-based gene
editing or engineered overexpression of SGE1 sequences in
industrial yeast strains may enable wider use of ionic liquid-
pretreated biomass for biofuel production. Genetic modifica-
tions of other MFS transporters have been shown to improve
biofuel production (Farwick et al. 2014; Li et al. 2016), fur-
ther adding to the idea that exploring natural or experimen-
tal variation in MFS sequences may enable phenotypes for
industrial applications. Our approach to screen and identify
allelic sequences is not limited to the ionic liquid tolerance
trait, but can be applied to phenotypes gathered from a large
number of wild and domesticated S. cerevisiae strains cul-
tured across a variety ofmedia conditions (Fay and Benavides
2005; Liti et al. 2009; Schacherer et al. 2009; Parreiras et al.
2014; Sato et al. 2014; Wohlbach et al. 2014; Strope et al.
2015). Through this approach, distinct phenotypes can be
assigned to specific genetic variants within the same species,
thus providing a better understanding of how sequence dif-
ferences among strains can be used to improve production of
industrial biofuels and products.
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