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Abstract

Quantum Evolution: Black Holes, Gravitational Dressing, and General Backgrounds

by

Julie Perkins

The full theory of Quantum Gravity (QG) that unites gravity and quantum me-

chanics has not yet been discovered. One of the pressing issues is to correctly account

for unitarity in quantum mechanical processes, even on a static curved spacetime. The

presence of black holes in particular leads to profound issues with unitary evolution and

locality. Though Hawking radiation and gravitational interactions are well studied in

the Heisenberg picture, this work uses the Schrödinger picture to examine their evolu-

tion. Through the ADM decomposition and the associated Hamiltonian we can study

the Schrödinger picture, and define the unitary time evolution operator, as in regular

quantum mechanics. By carefully examining the Schrödinger picture, we aim to provide

a clearer understanding of QG, and defer the study of changes needed to unitarize the

theory to later work. This thesis focuses in particular on massless scalar fields propagat-

ing on curved spacetimes of dimension D ≥ 4. The simplicity of the scalar field is a useful

test case, and we expect to be able to generalize to other, more complicated fields. First,

Hawking radiation is studied for Schwarzschild black holes in the Schrödinger picture.

Using the ADM decomposition, “nice slices” are introduced, which are smooth foliations

of the spacetime that are regular across the horizon, rather than the more typical singu-

lar ones involving tortoise coordinates. The role of ultra high energy Hawking modes is

discussed, and these are found to be a result of the choice of singular coordinates used

near the horizon, rather than an indication of transplanckian physics occurring on the

horizon scale. In addition, the constraint equations, which are the ADM decomposition
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of the Einstein equations, are expanded to second order in κ =
√
32πG in an arbitrary

background spacetime. Observable operators are “dressed” in their gravitational fields,

in analogy with the description from quantum field theories, and the creation of such

an operator makes an associated field which extends to infinity. A general form for the

gravitational dressing is found to leading order using the expansion of the constraint

equations.
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Chapter 1

Introduction

The full theory that unites gravity and quantum mechanics has been the subject of

research and debate within the theoretical physics community for more than 50 years.

Though thoroughly experimentally tested in separate regimes, strong gravitational forces

operating on very short scales require novel physics to describe, the exact nature of which

is still unsettled. The existence of Black Holes (BHs) in particular provides an area

of study that leads to mutually exclusive predictions and paradoxes involving the two

theories. Resolving the tensions surrounding BHs and their dynamical evolution presents

not only a theoretical, but also an experimental problem, as these are astrophysical

objects present in our universe.

Significant progress was made when BHs began to be viewed as thermodynamic ob-

jects, with temperature and entropy defined by the physical quantities associated with

the BH: mass (or area), charge, and angular momentum. The notion of BH entropy

was essential to their modern description; otherwise the usual laws of thermodynam-

ics would be violated by objects falling beyond the event horizon [1]. This realization

led to the development of the laws of BH thermodynamics, in analogy with the laws of

thermodynamics of macroscopic systems introduced in the preceding century.
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Introduction Chapter 1

Hawking’s famous contribution to the development of BH thermodynamics [2] was to

associate a temperature with the surface gravity of a BH, which implied that BHs must

radiate through the mechanism of pair production, in which a particle is produced on

each side of the event horizon. One of these particles is constrained to fall into the BH,

while the other may escape to infinity as thermal radiation. Because the role of energy

and momentum are switched inside the horizon, the infalling Hawking partner particle

with negative momentum decreases the overall mass of the BH.

In the language of Quantum Field Theory (QFT), this simple example of a quan-

tum field propagating on a classical BH background leads to the information paradox.

The above process of pair production can continue unabated until the BH completely

disappears.1 An observer stationed at infinity with a detector collecting the radiation

which escapes will find that it is featureless, thermal graybody radiation,2 and will con-

tain no information about the BH interior. This leads to a major problem for quantum

mechanics. When the BH completely evaporates, all the quantum information stored in

the interior also vanishes, with no seeming way for an outside observer to reconstruct it.

In technical terms, this leads to a pure state (representing the outside system and the

BH) evolving into a mixed state, where the radiation in the exterior is entangled with

an object that no longer exists. Any successful theory of quantum gravity will be able

to sensibly relate the entropy of the black hole to a precise counting of the quantum me-

chanical microstates of the system, and it is our view that the correct theory will restore

unitarity.3

The problems associated with unitarity and the construction of the theory of Quan-

tum Gravity (QG) are deep and involve more than a single paradox. For example, it

1For a summary of other ideas on BH formation and end states, see section IV of [3].
2The BH does not radiate as a perfect black body, as the surrounding gravitational potential causes

some Hawking particles outside the horizon to scatter back into the interior.
3For arguments against this view, see [3].
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has been shown in the last century how to quantize fields on flat backgrounds, uniting

special relativity and quantum mechanics. This lead to the discovery of quantum field

theories and, in particular, Quantum Electrodynamics and Quantum Chromodynamics,

and eventually the construction of the Standard Model of particle physics. However, in

general relativity the background is not fixed and flat, but curved and dynamic, making

it difficult to introduce quantization and incorporate time evolution of the system as

a whole. Much work in the field, such as the preceding example of Hawking radiation

shows, is done using the semiclassical description, where quantum fields are allowed to

propagate on fixed classical backgrounds. This is a useful approximation to study in

many cases, but in a quantum theory we expect spacetime itself to be quantized, not a

continuous manifold. All of these challenges must be incorporated and explained in a

full theory of QG.

Hawking radiation has been extensively studied in the Heisenberg picture since its in-

ception [2]. The simplest case is of a massless scalar field propagating on a spacetime with

a Schwarzschild BH [4], but can be extended to other types of fields, including those of

charged particles [5], and also for spacetimes with rotating and/or charged BHs [6, 7], and

with different spacetime dimensions and alternative boundary conditions [8, 9]. Although

it has not been detected, Hawking radiation and BH evaporation has been predicted to

exist in a wide variety of physical situations, including some relevant to our universe.

Unfortunately, it is expected to be extremely hard to experimentally verify the exis-

tence of Hawking radiation, since for large BHs the effect is predicted to be very small

compared to the temperature of the cosmic microwave background radiation temperature

of ∼ 3 K. Indeed, for a BH of one solar mass, which is smaller than any astrophysical

BH that has yet been detected, the radiation temperature is TH ∼ 6 ·10−8 K. Astrophys-

ical BHs are relatively young, and not near the point of evaporation where the Hawking

temperature would be high enough to observe experimentally. On the other hand, there

3
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have been numerous searches for primordial BHs which formed in the early universe and

are near the point of evaporation. These BHs have not been directly detected so far, but

it has been argued that there is some observational evidence for such objects [10].

Recently there has been much new progress in experimental gravitational physics. The

Laser Interferomator Gravitational Wave Observatory (LIGO) has achieved the historic

detection of gravitational waves [11]. This experiment studies the mergers of BHs and

tracks the emission of gravitational waves as they inspiral, merge, and ringdown into a

single BH. LIGO has so far confirmed the classical picture of gravitational waves, and has

not discovered any quantum effects. Other gravitational wave detectors, which are space

based interferomators, such as LISA [12] and DECIGO [13] will also begin operation

in the next decade, and will study the mHz and dHz frequency ranges, respectively,

while LIGO is most sensitive in the ∼ 102 Hz range. Additionally, BHs have also been

studied for the first time using imaging techniques when the Event Horizon Telescope

(EHT) captured the first image of a BH [14], and has also taken an image of the super

massive BH at the center of our galaxy [15]. The EHT has not identified any quantum

corrections to the description of BHs from classical gravity, but these collaborations and

future planned detectors will continue to operate and search for new physics in the coming

years.

With the growing experimental community studying BHs and gravitational waves, it

is crucial to develop a full understanding of the current predictions from QG, and explore

its unitarization from the theoretical perspective. Perhaps the most notable development

in the field of QG over recent years has been the Anti de Sitter/Conformal Field Theory

(AdS/CFT) correspondence conjecture [16]. This proposal states that there is a direct

relationship between a CFT on the timelike boundary of an AdS space and the physics

in the bulk of the spacetime. This correspondence is defined by the “dictionary” between

correlators and other quantities calculated on the boundary and states in the bulk. In

4
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such dual theories, the unitary nature of the CFT indicates that the gravitational theory

in the bulk is also unitary, including processes like BH evaporation. Similarly, there have

been attempts to find holographic theories for other boundary conditions, although the

lack of a timelike boundary in other spacetimes makes it difficult to describe the evolution

of the CFT. Nevertheless, there have been proposals for both flat space [17] and dS space

holography [18].

Another idea which will be suited to the work in this thesis is adding nonlocal modi-

fications to the semiclassical description of BH evaporation [19]. These nonlocal interac-

tions between the BH interior and the exterior transfer information outside of the horizon

so information is conserved during the process of BH evaporation. These effects are ex-

pected to occur on a length scale outside of the BH of roughly the size of the horizon

radius, rather than the Planck scale very near the horizon, where the underlying physics

is poorly understood. Crucially, this does not modify the physics far from the BH, which

has been thoroughly experimentally verified to match with the classical description of

gravity. The mechanism to implement these departures from the semiclassical descrip-

tion is to add an interaction term to the Hamiltonian theory. Such modifications could

potentially be seen by experiments such as LIGO and particularly EHT, as they occur on

the scale of the size of the horizon radius and may distort the light rays around the BH.

As in the previous example, this thesis will examine the Hamiltonian evolution, and

work in the Schrödinger picture to study quantum fields propagating on the spacetime.

This is not as natural in general relativity as the covariant description provided by the

Lagrangian approach, but allows one to use the familiar quantum evolution of systems

in terms of the generator of time translations, at the cost of treating the space and time

coordinates differently. We will make use of the ADM decomposition [20],4 where each

time slice is a spacelike hypersurface with an associated induced metric. The choice of

4For a useful pedagogical introduction to the ADM decomposition, see [21].
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the time coordinate and the resulting embedding is highly nonunique; different choices

amount to a change of coordinates.

The above procedure is well defined in stationary spacetimes, but there are subtleties

when it comes to the Schrödinger picture for time-dependent cases, or indeed, even

flat space when reparameterized in certain coordinates in greater than two spacetime

dimensions [22, 23, 24]. The Schrödinger picture unitary operator, which is dependent on

the Hamiltonian, is not always well defined, particularly for time-dependent spacetimes.

There are many calculations that do not produce the result from the Heisenberg picture,

and predict contradictory outcomes, such as infinite particle production. This hinders

any discussion of BH formation and evaporation in the Schrödinger picture, but also

more generally, any cosmological or non-stationary spacetime.

This work will focus mostly on fixed backgrounds and neglect the effects of back reac-

tion for BH evaporation or dynamical spacetimes. In the Schrödinger picture, Hawking

radiation has been studied most extensively in two dimensions. The lower dimensional

spacetime simplifies the equations significantly, but can also lead to insights in higher

dimensional settings, since the spacetimes under study are spherically symmetric. One

troubling aspect of the original derivation of Hawking radiation is the role of ultra-high

energy modes, which are produced near the horizon and depend on the singular coor-

dinates traditionally used there. Coordinates that are regular both for incoming and

outgoing modes can be constructed which replace this singular description [25]. In the

regular basis, the dominant contribution to Hawking radiation occurs at wave number

k ∼ O(1), while the transplanckian modes are shown to be an an artifact of the coor-

dinates rather than essential to the description of the Hawking process. Additionally,

Hawking radiation is shown to be produced in an atmosphere extending around the BH

approximately the size of the horizon radius, which further supports the introduction of

nonlocal interactions on this scale as in [19].
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The study of the Hawking process most closely focuses on the quantum evolution of

fields propagating on the spacetime, but on the other hand, a physical spacetime should

eventually be described as part of the quantum system. One approach to begin to account

for this is to perturbatively expand the spacetime around a classical background. There

have been several attempts using the ADM decomposition in different cases, including

asymptotically flat [26], AdS [27], and for spacetimes with black holes [28]. These works

seek to expand the constraint equations, that is, the ADM decomposition of the Einstein

equation, which relates the curvature of the spacetime to the matter fields. Enforcing

the constraints is equivalent to requiring that the Einstein equation be satisfied.

The gravitational interactions for matter fields propagating on a curved spacetime

have been studied in particular through the technique of gravitational dressing. Devel-

oped in the context of QFT, the operators associated with free particles in the local QFT

are “dressed” in their gravitational (or electromagnetic) fields, which are the mechanisms

for introducing interactions [29]. For gravitational particles, the fields are diffeomorphism

(gauge) invariant, so these dressed operators dependent on the fields must commute with

the constraints. Creating a dressed particle necessarily constructs a gravitational (elec-

tromagnetic) field which extends to infinity, and is inherently nonlocal.

In the electromagnetic case, the infinite dressing field does not contradict the local

structure of the quantum theory, as factorized Hilbert spaces can still be defined [30].

Charged particles in a region can be screened by charges of the opposite sign. Thus,

dressed operators will commute at spacelike separation and an algebra of observables

which respects locality can be constructed. The situation is more complicated for grav-

itationally dressed fields. While the gauge symmetries of, e.g., QED, are independent

of the spacetime coordinates, the gauge symmetries of gravity are not, which precludes

this type of screening and the associated quantum mechanical structure. For gravita-

tionally dressed operators, the algebraic structure differs from the approximate structure
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expected from the local QFT limit, which matches with experimental observation, due

to the nonlocal effects of the dressing fields.

This result can be summarized in the “Dressing Theorem”, proved both for asymp-

totically flat and asymptotically AdS spaces [30, 31]. In the expansion of gauge invariant

operators around small κ =
√
32πG, the nonlocal effects from the gravitational dressing

necessarily arise at first order. The nonlocal effects deviate significantly from the results

local operators, which has profound implications for the way information is discussed and

the BH information problem. If information is not localized and quantum subsystems

cannot be defined, information inside a BH is not screened by the event horizon for gravi-

tationally interacting particles. In other words, a particle inside a BH has a gravitational

dressing which extends to infinity at first order in κ, so an observer at infinity may be

able to collect non-trivial information about the particle even while it is behind the BH

horizon.

The above would be a major violation of the usual structure of local operators in

QFT. However, locality can be restored by introducing “gravitational splitting”, which

is an approximate notion of a subsystem [32]. Such dressings are insensitive to the

precise details of the state, and have been constructed to leading order in κ [33]. For an

appropriate dressing, an observer at spacelike separation would be able to discern the

total gravitational charge in a region, but not information about the configuration or

state of the particles, which restores the notion of locality which agrees with experiment.

The main developments of this thesis are split into two parts. First studied is the

Schrödinger picture of quantum evolution of Hawking radiation, and secondly, gravita-

tionally dressed fields and gauge invariant observables. Both are done in D ≥ 4 spacetime

dimensions for the simple case massless scalar fields, but are expected to generalize. The

Schrödinger picture for Hawking radiation will closely follow the work of [25], which is

the D = 2 case. The ADM decomposition is used, and smooth embeddings, called “nice

8
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slices,” which are regular across the BH horizon are the foliations introduced to study the

system. The case of energy eigenmodes for the scalar field, and also arbitrary regular co-

ordinates, are both considered. In each case, the Hamiltonian governing the evolution of

the quantum system is calculated, and for regular modes, it is shown that transplanckian

excitations do not play a significant role in the emission of Hawking radiation. Finally,

the results are generalized to BHs in asymptotically AdS spacetimes.

The constraint equations are also expanded to second order in κ for a massless scalar

field propagating on an arbitrary spacetime. Enforcing the constraints results in a Hamil-

tonian which depends only on the boundary term. A novel quantization is introduced,

called “gauge-invariant canonical quantization,” which creates non-trivial physical states

built from the vacuum which is annihilated by half the constraints. Gravitational ob-

servables are taken to be the observables defined in local QFT which are gravitationally

dressed. Such observables are gauge-invariant operators, and thus these gravitationally

dressed operators must commute with the constraints. The dressing functions are found

order by order in κ in terms of highly nonunique Green’s functions by evaluating the

commutators with the expansion of the constraint equations.

Chapter two of this thesis will examine the Schrödinger picture for a massless scalar

field propagating on a Schwarzschild BH background and Hawking radiation. Chapter

three deals with the constraints and gravitational dressing for a massless scalar field in

an arbitrary background spacetime. Finally, several appendices follow outlining the use

of confluent Heun functions in regular coordinates, Kruskal coordinates, the QED case of

gauge-invariant canonical quantization, and gauge transformations and diffeomorphisms.

9
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1.1 Permissions and Attributions

1. The content of chapter 2, Appendix A, and Appendix B is the result of a collab-

oration with S. Giddings, and has previously appeared in Physical Review D [34].

Additionally, the content of chapter 3, Appendix C and Appendix D is the result of

a collaboration with S. Giddings, and has previously appeared in Physical Review D

[35]. These works are licensed under the Creative Commons Attribution 4.0 Inter-

national license (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/.

10
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Chapter 2

Quantum evolution of the Hawking

state for black holes

2.1 Introduction

Hawking radiation [2] is apparently one of the most mysterious phenomena in the

world of physics. While it appears to follow straightforwardly from the basic principles

of local quantum field theory (LQFT) extended to curved spacetime backgrounds, its

ultimate implications include an apparent internal contradiction among the basic princi-

ples of physics. This “black hole information problem,” or perhaps more aptly, “unitarity

crisis,” seems to point to the necessity of revising fundamental principles, in connection

with understanding the foundations of quantum gravity.

While black holes (BHs) thus may play a key role in understanding these principles,

the phenomenon of particle production in a nontrivial gravitational background is also

important because of its role in the very early Universe, and in particular during a possible

phase of inflationary expansion, which is believed to have created the fluctuations that

lead to the large-scale structure in the visible matter distribution in the cosmos. The

11
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seed fluctuations can be derived by methods closely parallel to those used to describe

production of Hawking radiation.

In investigating the unitarity crisis, a lot of recent thought has focussed on the view

that a more basic understanding of quantum information and its evolution in quantum

gravity is important. In particular, an important question is whether it is possible to

think of a black hole and its environment as quantum subsystems, at least to a good

approximation, of a larger quantum system, which evolve together in time.1 This does

appear to be the correct leading order picture, with possible small modifications that

ultimately lead to a description consistent with unitarity.

The original derivation [2] of Hawking radiation was based on an asymptotic descrip-

tion, analogous to that of the S-matrix: it analyzed the asymptotic state of the radiation,

but didn’t directly describe the time evolution of the quantum state of the BH and its

surroundings. Thus, its connection to a description of an evolving quantum system is not

direct. Rederivations of the Hawking effect have largely followed in this vein, though var-

ious approaches have provided some additional information about the evolving quantum

state.

A goal of this paper is to give a direct and more complete treatment of the evolving

quantum state of a BH and its surroundings. We will focus on this in the approximation

where it is described within LQFT, and thus will not attempt to describe the more

complete dynamics that is ultimately believed to be unitary. However, this approximate

evolution plays an important background role in describing this unitary dynamics, if

the latter is a correction to this evolution that is in certain regimes a small correction.

Another role for the present description is in treating Hawking radiation for interacting

theories; treatment of interactions in Hawking’s original derivation is problematic due to

its reliance on evolution via free mode propagation.

1For further discussion of this question, see [36].
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Specifically, we will describe the time-dependent evolution in a picture analogous to

standard Schrödinger picture, by making a choice of time slices that is regular across the

horizon, and deriving the resulting evolution of the quantum wavefunction. This was

previously done for two-dimensional black holes in [25, 37]; earlier work on dynamical

evolution on such slices includes [38, 39, 40, 41]. Description of this evolution also relies

on choosing coordinates on the time slices, and a basis of modes.

In outline, we begin in the next section by paremeterizing such slicings, and describing

the corresponding Arnowitt-Deser-Misner (ADM) parameterization of the metric. The

following section then derives the hamiltonian for scalar matter in such a slicing, and the

canonical quantization of the theory. A choice of modes leads to a Fock construction of

the Hilbert space, and construction of the evolution operator acting on it. In fact, there

are many such descriptions of the evolving quantum state, which depend on the specific

choice of slices, coordinates, and mode basis; these are analogous to different “pictures”

of the evolution (and are expected to be equivalent).

In a free theory, this evolution can be simplified by in particular using energy eigen-

states for the mode basis. Section four describes such modes (and Appendix A finds an

explicit form of them in D = 4 spacetime dimensions in terms of Heun functions) and

outlines their important properties. While the evolution is simplified in such a basis, the

basis is singular. This connects to Hawking’s and related derivations, where modes are

traced back to ultraplanckian wavelengths near the horizon. The resulting transplanck-

ian behavior has served as a source of concern and confusion in the literature, but from

this viewpoint just arises from choice of a singular basis to describe the state.

These issues may be avoided, as in the next section, by instead working with a regular

basis. This does lead to a more complicated description, but one that in principle exhibits

evolution without any explicit reference to transplanckian excitations. This section in

particular finds the form of the resulting hamiltonian.

13
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Section six then puts the previous treatments together to give a description of the evo-

lution of the quantum state, which we call the Hawking state, resulting from a collapsing

BH. Again, this can be done in terms of a regular mode basis, but at the price of a more

complicated evolution law. We can, however, learn about its structure by comparing it

to the singular and simpler description in terms of energy eigenmodes. In particular,

one can see the familiar behavior of asymptotic Hawking excitations, as well as of the

internal partner excitations and pairing between inside and outside excitations. We also

discuss the internal evolution on “nice slices,” and exhibit a “frozen” description of the

internal state, in a picture that results from particular choices of internal coordinates.

The final section outlines the extension of these results to interacting theories, and to

situations with different asymptotic metrics besides that of Minkowski. It in particular

discusses the case of anti de Sitter space. Here, the same quantization procedure is argued

to yield a hamiltonian and evolution that furnishes, in AdS/CFT language, a leading

order large-N description of quantum evolution of a BH, as well as 1/N corrections

arising from interactions. Here, again, this is not expected to yield evolution that is

ultimately unitary, connecting to the question of the form of additional corrections needed

to unitarize the dynamics.

2.2 Geometry and time slicings

We begin by describing the geometry of a BH, and time slices of that geometry.

2.2.1 Schwarzschild parameterizations

The standard form of the Schwarzschild metric is

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2 (2.1)

14
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where for D > 3 dimensions

f(r) = 1−
(
R

r

)D−3

; (2.2)

here R is the horizon radius. Both for describing field propagation and for giving a

smoother description of the geometry, it is useful to introduce conformal coordinates for

the t, r plane, by defining r∗(r) =
∫
dr/f(r) so that

ds2 = f(r)(−dt2 + dr2∗) + r2dΩ2. (2.3)

For example in D = 4,

r∗ =

∫
dr

1−R/r
= r −R +R ln

( r
R
− 1

)
, (2.4)

up to an overall additive constant. Then, for the exterior of the horizon, we can define

left/right moving Eddington–Finkelstein coordinates

x± = t± r∗ . (2.5)

While the Schwarzschild coordinates (2.1) and the definition of r∗ are clearly singular

at the horizon, the latter definition can be extended to r < R; for example in D = 4

r∗ = r −R +R ln
(
1− r

R

)
± πiR . (2.6)

The sign reversal of f in (2.3) indicates that r∗ plays the role of a time coordinate for

r < R, and left/right moving coordinates for the interior are

x̂± = r∗ ± t . (2.7)
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The metric (2.1) is of course smooth across the horizon, and this can for example be

exhibited by working in the incoming Eddington–Finkelstein coordinates, (x+, r). This

gives

ds2 = −f(r)dx+2 + 2dx+dr + r2dΩ2 (2.8)

which smoothly covers the region r > 0. The time translation invariance is also inherited

by this form of the metric, and becomes invariance under

x+ → x+ + constant . (2.9)

This invariance plays an important role in the dynamics.

2.2.2 Slicings and ADM description

In order to describe dynamical evolution, we can provide a foliation of the geometry

(2.1), (2.8) by time slices. Such a foliation can in general be parameterized as

xµ = X µ(t, xi) (2.10)

where now t labels slices of the foliation, and xi is a spatial coordinate. In a Schwarzschild

background, the description is simplest for a foliation respecting the spherical symmetry,

so that

x+ = X+(t, x) , r = X r(t, x) , (2.11)

independent of angles, with general radial coordinate x, and using the standard angular

coordinates. We also can anticipate some simplifications for slicings that respect the

16



Quantum evolution of the Hawking state for black holes Chapter 2

translation symmetry (2.9), and these take the general form

x+ = t+ s(x) , r = r(x) , (2.12)

which we refer to as a “stationary slicing” [19, 25]. Their specification particularly

simplifies if we use r as the radial coordinate,

x+ = t+ S(r) . (2.13)

Figure 2.1: Shown in an Eddington-Finkelstein diagram are different kinds of slices.
In addition to the familiar Schwarzschild slices, there are nice slices, asymptoting to a
constant r = Rn, and natural slices which reach r = 0. These slices all asymptote to
constant Schwarzschild time slices at r =∞. The full family of slices of the geometry
is found by translating one of these slices vertically in the figure, corresponding to a
time translation in Schwarzschild time.

This family of slicings unifies various descriptions of the Schwarzschild spacetime, and

the form of the “slice function” S(r) plays a key role. For example, from the coordinate

definition (2.5), we see that S(r) = r∗(r) gives the Schwarzschild time slicing, relevant
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for observers who stay outside the horizon. Slicings that cross the horizon – for example

describing observations of a family of observers, some of whom enter the BH – arise from

slice functions that are smooth at the horizon. Freely falling such observers will reach

r = 0, and that is naturally described by a family of “natural slices” for which S(r)

is finite there. A very simple example is S(r) = r, corresponding to “straight slices,”

which lead to some simplifications. However, such natural slices do not give good Cauchy

slices, since they cease to describe excitations that have reached r = 0, in the absence

of a supplementary description there. Cauchy slices can, however, be specified by using

an S(r) that asymptotes to minus infinity at some finite r = Rn < R. This gives an

example of the construction of “nice slices,” such as were described by [42, 43]. These

different kinds of slices are shown in Fig. 2.1.

Evolution over a general slicing is conveniently described by using ADM variables [20]

for the metric,

ds2 = −N2dt2 + qij(dx
i +N idt)(dxj +N jdt) . (2.14)

The lapse N , shift N i, and spatial metric qij are dependent on the spatial coordinates,

and we also define Ni = qijN
j. For the Schwarzschild metric in a stationary slicing

described by (2.13), these functions become [19]

N2 =
1

S ′(2− fS ′)
, Nr = 1− fS ′, qrr = S ′(2− fS ′) , (2.15)

with S ′ = dS/dr, and with the remaining components qij of standard angular form. This

is also readily generalized for a more general stationary radial coordinate, (2.12). It is

also useful to have the unit normal to the time slices, which takes the general form

nµ = (1,−N i)/N. (2.16)
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2.3 Schrödinger Description

2.3.1 Canonical quantization

Our goal is to describe the evolution of the quantum state of a BH. Of course, emitted

Hawking radiation changes the mass of the BH, making the geometry non-stationary.

However, the average time to emit a Hawking quantum of energy ∼ 1/R is R. This

means that the fractional change in the mass over the characteristic emission time is

RdM/Mdt ∼ 1/RM ∼ 1/SBH , where SBH is the Bekenstein-Hawking entropy. This

small parameter justifies using the stationary approximation over times ≪ RSBH for

large BHs. We will focus on this approximation and describe evolution of quantum

fields on the stationary BH background, leaving treatment of quantum backreaction for

future work. For simplicity, we consider evolution of a free massless scalar field ϕ in

a D ≥ 4 dimensional Schwarzschild background. Working in ADM variables, with a

general slicing, the action takes the form

S = −1

2

∫
dDx

√
|g|(∇ϕ)2 = 1

2

∫
dtdD−1x

√
qN

[
(∂nϕ)

2 − qij∂iϕ∂jϕ
]
, (2.17)

where we have defined the normal derivative ∂nϕ = nµ∂µϕ. The canonical momentum is

then defined by

π =
1
√
q

δS

δϕ̇
=

1

N

(
∂tϕ−N i∂iϕ

)
= ∂nϕ . (2.18)

Using this, we can write the canonical form of the action

S =

∫
dtdD−1x

√
q
(
πϕ̇−H

)
, (2.19)
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where the hamiltonian is

H =

∫
dD−1x

√
qH =

∫
dD−1x

√
q

[
N

2

(
π2 + qij∂iϕ∂jϕ

)
+ πN i∂iϕ

]
. (2.20)

Quantization proceeds via the equal time canonical commutation relations

[π(xi, t), ϕ(xi′, t)] = −iδ
D−1(x− x′)
√
q

. (2.21)

Note that the hamiltonian (2.20) depends on the choices of both foliation and spatial

coordinate in the general expression (2.10), through the dependence of N and N i on

these choices. This results in what can effectively be described as different “pictures”

for the evolution, generalizing the choice of Heisenberg or Schrödinger picture, as also

discussed in [37]. In a given such Schrödinger picture, we take the field and momentum

operators to be time independent, and all evolution to be in the state.2

Description of the evolution also depends the choice of a mode basis, given by spec-

ifying a complete set of pairs of functions γI(x
i) = (ϕI(x

i), πI(x
i)). Such a pair gives

Cauchy data for a solution ϕI(x
i, t). For quantization, one also specifies a choice of

complex structure [47, 48, 24] that separates these into “positive frequency” modes

γA(x
i) = (ϕA(x

i), πA(x
i)) and conjugate “negative frequency” modes γ∗A(x

i). The in-

ner product of two such sets of Cauchy data is

(γ1, γ2) = i

∫
dD−1x

√
q(ϕ∗

1π2 − π∗
1ϕ2) , (2.22)

2In a time-dependent background, there are further subtleties with Schrödinger picture discussed in
[23, 44, 45, 24, 46]. The present work avoids these with the time-independent background and slicing.
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and extends to an inner product between solutions,

(ϕ1, ϕ2) = i

∫
dD−1x

√
qnµϕ∗

1

←→
∂µϕ2 , (2.23)

which is conserved by the equations of motion. Different such choices of modes also lead

to different pictures.

The Schrödinger picture field operators, in a given such picture, can be expanded as

ϕ(xi) =
∑
A

[
aAϕA(x

i) + a†Aϕ
∗
A(x

i)
]

, π(xi) =
∑
A

[
aAπA(x

i) + a†Aπ
∗
A(x

i)
]
. (2.24)

If the mode basis is orthonormal,

(γA, γB) = δAB , (γA, γ
∗
B) = 0 , (2.25)

the canonical commutators imply the commutation relations

[aA, a
†
B] = δAB , [aA, aB] = [a†A, a

†
B] = 0 . (2.26)

A Fock space basis for the Hilbert space then arises by acting with the creation operators

a†A on the vacuum |0⟩ annihilated by the aA.

Schrödinger picture evolution is then described by the action of the time evolution

operator,

U(t2, t1) = exp

[
− i

∫ t2

t1

Hdt

]
, (2.27)

determined by the hamiltonian (2.20), on the state. And, for example, if initially the

state is the vacuum state |0⟩ (in a particular basis), it will not necessarily remain in that

state, since the hamiltonian in general creates additional excitations.
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2.3.2 Hamiltonian and pictures

The hamiltonian (2.20) can be written in other forms which are useful in describing

evolution. We begin by using the explicit definition of the momentum to obtain from

(2.20)

H =

∫
dD−1x

√
q

[
1

2N
(∂tϕ)

2 +
N

2
gij∂iϕ∂jϕ

]
. (2.28)

We can rewrite this in terms of a vector ξ = ∂t, which connects points on neighboring

slices with equal spatial coordinates. In component form, this becomes from (2.10)

ξµ =
∂X µ

∂t

∣∣∣
xi
, (2.29)

at fixed spatial coordinate xi. Then, using the stress tensor for the minimally coupled

scalar field, the Hamiltonian becomes

Hξ =

∫
dD−1x

√
qnµξνTµν , (2.30)

where nµ is the unit normal (2.16).

This form of the hamiltonian also exhibits the dependence both on the slicing and

on the choice of spatial coordinate xi along the slices; for example a redefinition xi′(xj, t)

changes ξµ and thus Hξ. The different choices of ξ define different Hamiltonians and

Schrödinger pictures, which lead to distinct descriptions of the evolution. In particular,

the Hamiltonian Hξ is conserved when ξ is a Killing vector, since the stress tensor is also

conserved. Such a Killing vector is present after the matter has collapsed to form a BH.

The expression (2.30) can alternately be derived in the covariant canonical formalism;

see e.g. appendix B of [30] for a review.

Another useful expression can be found by putting the hamiltonian (2.28) in a form

which resembles the conserved inner product (2.23). We will connect to the inner product
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by introducing the canonical momentum π = ∂nϕ into (2.28). Replacing one of the time

derivatives using (2.18), the Hamiltonian becomes

H =

∫
dD−1x

√
q

(
1

2
∂tϕ∂nϕ+

1

2
∂tϕ

N i

N
∂iϕ+

N

2
gij∂iϕ∂jϕ

)
. (2.31)

Integrating the last two terms by parts with respect to xi, and neglecting the boundary

term, the expression becomes

H =

∫
dD−1x

√
q

[
1

2
∂tϕ∂nϕ−

ϕ

2
√
q
∂i
(√

qNgiµ∂µϕ
)]
. (2.32)

Finally, using the equation of motion to rewrite the second term,3 the Hamiltonian takes

the simplified form

H =
1

2

∫
dD−1x

√
q

(
∂tϕ∂nϕ− ϕ∂t∂nϕ− ∂nϕϕ

∂tq

2q

)
. (2.33)

Comparing the above equation to (2.23), we see that for time-independent metric coeffi-

cients it reduces to the inner product i(ϕ∗, ξµ∂µϕ)/2. This will be useful in the following

analysis, particularly when considering special choices of modes.

2.4 Energy eigenmodes and their evolution

The time-translation symmetry (2.9) suggests expanding in a basis of modes that

correspond to eigenstates of the time translation generator, which is ∂x+ , or ∂t in the

3At the quantum level this is allowed since the field operators are expected to satisfy the equation of
motion.
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slice coordinates. We begin by separating off the angular coordinates using4

ϕ(x) ∼ ul(x
+, r)

Ylm(Ω)

rD/2−1
. (2.34)

Then ul(x
+, r) obeys the equation

∂r (2∂+u+ f∂ru)− Vl(r)u = 0 (2.35)

with potential

Vl(r) =

(
D

2
− 1

)2
RD−3

rD−1
+
l(l +D − 3) + (D − 2)(D − 4)/4

r2
; (2.36)

e.g. in the case D = 4,

Vl(r) =
R

r3
+
l(l + 1)

r2
. (2.37)

Eigenfunctions of the time translation symmetry then take the form

e−iωx+

uωl(r)
Ylm
rD/2−1

, (2.38)

or in the t, r coordinates arising from a stationary slicing (2.13)

e−iωtUωl(r)
Ylm
rD/2−1

, Uωl(r) = e−iωS(r)uωl(r) . (2.39)

Again, the special case of a Schwarzschild slicing corresponds to S(r) = r∗(r), and

the equation (2.35) can be simplified by defining

gωl(r) = e−iωr∗uωl(r) (2.40)

4For spacetime dimension D > 4, the spherical harmonics involve multiple angular quantum numbers
mi; for notational simplicity, we use the four-dimensional notation Ylm in the following discussion.
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and becomes

d2gωl
dr2∗

+
[
ω2 − f(r)Vl(r)

]
gωl = 0 . (2.41)

At large r, or near the horizon, the effective potential fVl vanishes, and we have

gωl ∼ exp{±iωr∗} . (2.42)

Solving for gωl becomes a well-known barrier penetration problem. Inside the horizon, we

also find the behavior (2.42) near the horizon, r∗ → −∞. The general internal solutions

are difficult to find, but one indicator of their behavior is their WKB approximation,

which has the form

gωl ∼ e±i
∫
dr∗
√

ω2−fVl . (2.43)

This approximation in particular fails as r approaches zero (r∗ → −R), but does illustrate

the rapidly varying nature of the solutions.

The behavior of energy eigenmodes can be further understood by examining the

differential equation (2.35). The equation has regular singular points at 0 andRe2πin/(D−3)

for integers n = 0, 1, ..., D−4, and an irregular singular point at infinity (see Appendix A).

The solutions are not known in general, however, in D = 4 (2.35) can be transformed

into the confluent Heun equation. In this case of D = 4 Schwarzschild BHs the solutions

to the Heun equation are well known and have been widely studied in the literature, and

incoming and outgoing modes are classified by their behavior near the singular points.

We will not need the detailed behavior of the solutions to (2.35) in order to see that they

define a basis, but their asymptotic behaviors will be important.

One can describe quantization using a basis of such solutions. One way to characterize

solutions is in terms of their behavior at t → −∞. There are incoming solutions from

r = ∞, but also can be (singular) solutions that asymptote to r = R (or r∗ = −∞) in
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the far past. Specifically, we can introduce the following basis:

• ũωl: these “in” modes are modes such that the coefficient of eiωr∗ vanishes near

the horizon, i.e. g̃ωl ∼ e−iωr∗ . Eq. (2.40) then shows that these modes are non-

singular at the horizon; they have purely ingoing behavior there, ϕ ∼ e−iωx+
. At

r∗ = r = ∞ they have both an ingoing piece, which may be normalized to unity,

and a reflected outgoing piece. The internal part of the solution also is purely

ingoing at the horizon, but takes a more general form for finite r∗.

• uωl: these “up” modes are modes that in gωl have nonvanishing coefficient of eiωr∗ ,

taken to be unity, as r → R+, but vanishing coefficient as r → R−, and with purely

outgoing wave eiωr∗ at r∗ → ∞. These both give behavior ϕ ∼ e−iωx−
. These also

have a reflected e−iωr∗ piece at the horizon, which continues to the interior similarly

to the previous case.

• û∗ωl: these “inside” modes are modes that in ĝωl have nonvanishing coefficient of

eiωr∗ , taken to be unity, as r → R−, and which vanish outside the horizon. Thus

near the horizon ϕ ∼ eiωx̂
−
; for finite internal r∗, they have general behavior.

In the exterior region r > R, the “in” and “up” modes correspond to those of [49], also

discussed in [50], but we have also described the interior continuations of these solutions,

which have an ingoing part. We have also introduced the “inside” modes. Of course, the

“up” and “inside” modes are singular at the horizon, due to the singularity at r = R in

the definition of r∗. The corresponding full solutions are denoted

ϕωlm(x
i, t) = e−iωx+

uωl(r)
Ylm
rD/2−1

, (2.44)

and likewise for ϕ̃ωlm, ϕ̂
∗
ωlm.
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These solutions, written in terms of gωl via (2.40), are of course orthogonal under the

conserved inner product (2.23) unless l,m match, in which case the product becomes

(ϕ1, ϕ2) =

∫
dr

f

[
(ω1 + ω2)g

∗
ω1l
gω2l − if(1− fS ′)g∗ω1l

←→
∂r gω2l

]
ei(ω1−ω2)[t+S(r)−r∗] . (2.45)

One can see that the sets of modes ϕωlm, ϕ̂ωlm, ϕ̃ωlm are mutually orthogonal by con-

sidering a general localized wavepacket of such modes. In the far past, t → −∞, this

wavepacket will localize near the horizon for ϕωlm, ϕ̂ωlm, and near infinity for ϕ̃ωlm, and

so the inner product vanishes. The modes in a given set are orthogonal for ω1 ̸= ω2,

since otherwise (2.45) would contradict the time-independence of (ϕ1, ϕ2). One also finds

by examining their near-horizon behavior that the modes ϕ̂∗
ωlm are negative norm, and

so their conjugates ϕ̂ωlm are positive norm solutions.5 Our normalization convention is

(ϕωlm, ϕω′l′m′) = 4πωδ(ω − ω′)δll′δmm′ , and similarly for ϕ̂, ϕ̃.

The expansion of the field in terms of the modes inside and outside of the horizon

takes the form

ϕ(xi, t) =
∑
lm

∫ ∞

0

dω

4πω

(
bωlmϕωlm + b̃ωlmϕ̃ωlm + b̂ωlmϕ̂ωlm + h.c.

)
(2.46)

and may be, for example, evaluated at t = 0, in a given slicing, to give the Schrödinger

picture operator (2.24). This expansion also may be expressed compactly as

ϕ =
∑
A

bAϕA + h.c. (2.47)

where the integral over frequencies has been included in the general sum over modes

labeled by A. Note that for the purely internal ϕ̂ωlm(r) modes, the frequencies have the

opposite sign, in accord with the above definitions.

5We also take m→ −m in our definition, so that ϕ̂ωlm ∝ Ylm.
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As anticipated, the hamiltonian greatly simplifies in this basis. From (2.33) we found

for a stationary slicing

H =
1

2

∫
dD−1x

√
qnµ[∂tϕ∂µϕ− ϕ∂t∂µϕ] =

1

2
(ϕ∗, i∂tϕ) . (2.48)

Then using

∂tϕ(x) = −i
∑
A

ωAbAϕA + h.c. (2.49)

and the orthogonality between modes, we find

H =
∑
A

ωAb
†
AbA(ϕA, ϕA) +H0 (2.50)

where H0 is the normal ordering constant

H0 =
∑
A

ωA

2
[bA, b

†
A](ϕA, ϕA) . (2.51)

Returning to a more explicit labeling of the mode sum, the Hamiltonian becomes

H =
∑
lm

∫
dω

4πω
ω(b†ωlmbωlm − b̂

†
ωlmb̂ωlm + b̃†ωlmb̃ωlm) +H0 . (2.52)

This has the same form as the D = 2 case discussed in [25, 37], including both chiralities

of the modes, as a result of the spherical symmetry of the spacetime. One clearly sees

that the “inside” modes have negative energies for this hamiltonian.

Of course the simplicity of the hamiltonian (2.52) is somewhat illusory, since the

specification of a good initial state, e.g. with a regularity condition at the horizon, is

rather more complicated in this basis, as was clearly illustrated in the 2d case in [25, 37].

An alternate way to describe such a regular state is to work directly in terms of modes
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that are regular at the horizon, to which we now turn.

2.5 Regular modes and their evolution

To give a treatment of evolution respecting regularity at the horizon, it is most natural

to consider a mode basis that is regular there. If we consider a general stationary slicing

(2.12), a mode basis may be specified by giving pairs of functions (ϕA(x
i), πA(x

i)), with

A a basis label, on those slices. These also provide Cauchy data for a corresponding

solution that evolves forward from a given slice.

2.5.1 Properties of modes

We have found that the “in” energy eigenmodes are regular at the horizon, and so can

be used to provide a regular basis, but the “up” and “inside” modes are singular there.

However, as two-dimensional examples illustrate [25, 37], we should be able to also find

a mode basis that is regular at the horizon by combining these latter two.

Specifically, working with initial data on a slice which may be chosen to be at t = 0,

the spaceHin = Span{(ϕ̃ωlm(x
i, 0), π̃ωlm(x

i, 0))} describes “in” modes. This is orthogonal

to the spaces

Hup = Span{(ϕωlm(x
i, 0), πωlm(x

i, 0))}, and Hinside = Span{(ϕ̂ωlm(x
i, 0), π̂ωlm(x

i, 0))},

corresponding to the “up” and “inside” modes, where here the π’s are derived from the

corresponding solutions described in the previous section using (2.18). The orthogonality

of the Cauchy data extends to orthogonality of the solutions. We combine elements of

Hup and Hinside to give regular modes at the horizon.

Explicitly, we expect to be able to find regular modes which are determined by Cauchy

29



Quantum evolution of the Hawking state for black holes Chapter 2

data

ϕklm(x
i, 0) =

∫
dω(β+

kωlϕωlm + β−
kωl(−1)

mϕ∗
ωl,−m + β̂+

kωlϕ̂ωlm + β̂−
kωl(−1)

mϕ̂∗
ωl,−m) ,

πklm(x
i, 0) =

∫
dω(β+

kωlπωlm + β−
kωl(−1)

mπ∗
ωl,−m + β̂+

kωlπ̂ωlm + β̂−
kωl(−1)

mπ̂∗
ωl,−m) ,

(2.53)

where k is a continuous quantum number, and where it is understood that the up and

inside mode functions contain factors of θ(r−R) and θ(R−r), respectively. The regularity

condition at the horizon enforces conditions on the Bogolubov coefficients β+, β−, β̂+, β̂−.

We can then think of the modes (ϕklm, πklm) as spanning a space HR
up ⊂ Hup⊕Hinside,

which inherits its orthogonality to Hin from Hup and Hinside. The corresponding set

ukl(r) and their complex conjugates should form a complete basis of functions of r, and

the functions (2.53) and their conjugates likewise a basis for Cauchy data of regular

solutions. Of course, the corresponding solutions ϕklm(x
i, t) will then have non-trivial

time dependence, as in the D = 2 case in [25]. In D > 2 dimensions the equation of

motion also includes an effective potential, which leads to mixing between right and left

moving modes and more complicated solutions.

It appears difficult to give explicit expressions for such regular up bases, and that

they are most easily treated approximately. They can also be thought of as being speci-

fied by different characteristics. One is that a localized wavepacket superposition of such

solutions increasingly localizes in the vicinity of r = R in the far past, becoming singu-

lar in the infinite past, as is seen in the simpler 2d example [37]. We may alternately

imagine defining the modes by specifying regular functions ϕklm(x
i), and then choosing

corresponding πklm(x
i) so that the modes are orthogonal to those in Hin and satisfy an

appropriate condition corresponding to a choice of “positive frequency” (in the nomen-

clature of Sec. 2.3.2), but this appears not to give conditions that are simple to solve.
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Finally, these modes can be specified by requiring that they be regular at the horizon

and that their evolution ukl(x
+, r) (compare (2.34)) be purely outgoing at r =∞ for all

x+ or time.

Using a general such regular basis, the field and momentum operators can be expanded

as

ϕ(xi) =
∑
lm

∫ ∞

0

dk

4πk

(
aklmϕklm + ãklmϕ̃klm + h.c.

)
,

π(xi) =
∑
lm

∫ ∞

0

dk

4πk
(aklmπklm + ãklmπ̃klm + h.c.) (2.54)

where both ϕklm and ϕ̃klm are regular at the horizon.

2.5.2 Evolution of regular modes

Using (2.48) and (2.54), the Hamiltonian for regular modes takes the block diagonal

form

H =
∑
lm

∫
dk

4π

dk′

4π

[
Alm(k, k

′)a†klmak′lm +Blm(k, k
′)a†klma

†
k′l,−m+

Ãlm(k, k
′)ã†klmãk′lm + B̃lm(k, k

′)ã†klmã
†
k′l,−m + c.c.

]
.

(2.55)

Here for a stationary slicing

Alm(k, k
′) =

1

2kk′
(ϕklm, i∂tϕk′lm) (2.56)

and

Blm(k, k
′) =

1

2kk′
(ϕklm, i∂tϕ

∗
k′l,−m) , (2.57)
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Ãlm(k, k
′) and B̃lm(k, k

′) are defined similarly for the in-modes, and c.c. denotes conjuga-

tion that doesn’t change operator ordering.6 Note that the Hamiltonian does not contain

mixing terms between Hin and HR
up due to the orthogonality of the basis modes. This is

particularly clear when writing the Hamiltonian in terms of the Bogolubov coefficients.

Using the expansion (2.53) and relation (2.49), the mixing terms reduce to inner prod-

ucts between orthogonal energy eigenmodes. The remaining nonzero terms of the regular

Hamiltonian (2.55) are then characterized by the functions

Alm(k, k
′) =

1

2kk′

∫
dω4πω2(β+∗

kωlβ
+
k′ωl + β−∗

kωlβ
−
k′ωl − β̂

+∗
kωlβ̂

+
k′ωl − β̂

−∗
kωlβ̂

−
k′ωl) , (2.58)

and

Blm(k, k
′) =

(−1)−m

2kk′

∫
dω4πω2(β+∗

kωlβ
−∗
k′ωl + β−∗

kωlβ
+∗
k′ωl − β̂

+∗
kωlβ̂

−∗
k′ωl − β̂

−∗
kωlβ̂

+∗
k′ωl) (2.59)

where Ãlm(k, k
′) and B̃lm(k, k

′) are defined similarly, but with only one set of coefficients

β̃+ and β̃−. With specific choices of the mode functions the Bogolubov coefficients as

well as the coefficients A and B can in principle be calculated.

Given the hamiltonian (2.55), the evolution is in principle well defined. In practice,

evolution in such a regular description is more complicated than in the singular descrip-

tion in terms of energy eigenmodes. It has of course been of interest to establish that

there is a regular description, as well as to understand aspects of its behavior. We will

also explore its relation to the description using energy eigenmodes, and how properties

of the evolving wavefunction can consequently be inferred.

6Reordering then yields a normal ordering constant.
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2.6 Evolution for dynamic black holes and the

“Hawking state”

In this section, we will extend the preceding discussion to consider evolution of quan-

tum matter on a general time-dependent, spherically-symmetric BH background, cor-

responding for example to a BH that forms from collapse of a massive body, and will

discuss some properties of the corresponding quantum state.

2.6.1 Geometry

Specifically, consider the general metric

ds2 = −f(x+, r)dx+2 + g(x+, r)dx+dr + r2dΩ2 , (2.60)

where the null ingoing coordinate x+ can be chose so that g(x+, r) → 2 at r → ∞.

This could represent the metric of a general collapsing matter distribution, as shown in

Fig. 2.2; a specific case is the ingoing Vaidya solution with

f(x+, r) = 1− 2M(x+)

r
, g(x+, r) = 2 , (2.61)

with an ingoing mass function M(x+).

If we wish to provide a slicing of a collapsing BH spacetime such as shown in Fig. 2.2

by Cauchy slices, those slices need to avoid the singularity at r = 0. We assume that slices

in the far past, when matter is dilute, are increasingly close to Minkowski time slices.

Later slices can remain Cauchy if they have “nice” behavior, with a minimal radius Rn.

These slices may then be closed in the region prior to the singularity, as illustrated in the

figure. If we suppose that these slices asymptote to Minkowski time slices, the portion
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Figure 2.2: The geometry of a black hole formed from collapse, in an Edding-
ton-Finkelstein diagram. Also shown is a slice that behaves like a nice slice in the
vacuum region, which is then extended through the collapsing region to complete it
to a Cauchy slice.

in the vacuum region needs to advance into the future with advancing time.

There are different ways to accomplish this, corresponding to different choices of

coordinates or gauge, which arise from different choices of the functions X+(t, x) and

X r(t, x) in (2.11). For example, these could be chosen so that the spatial metric qxx on

the slices of constant time t is time-dependent in the post-formation vacuum region, and

might specifically undergo “stretching” as described in [51]. However, the description of

the state in the post-formation region of interest is simpler if we instead use stationary

slices, as in (2.12), in this region. Since the distance along the slices back to r = 0

must increase with time, these slices must undergo “stretching” in the early region, for

example within or near the infalling matter region. In this section we will not focus on

the latter behavior since it appears most relevant to the description of the “early” part of
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the BH state, and our interest will be in the part of the state corresponding to Hawking

radiation and internal excitations at later times.

2.6.2 States

Given a slicing, we will define the “Hawking state” as the time-dependent state

|ψ(t)⟩H that arises from evolving the matter vacuum |0⟩ at t = −∞ to a future time t.

Here, we focus on “spectator” matter that is different from the matter forming the BH.

The Hawking state is then given by the expression

|ψ(t)⟩H = Te−i
∫ t
−∞ dtHξ |0⟩ , (2.62)

with a hamiltonian as discussed in Sec. 2.3.2. This expression will implicitly depend

on the choices of coordinates and mode bases, described in Sec. 2.3, used to define the

picture.

The full time-dependent Hawking state (2.62) can be rather complicated, in part due

to excitations created during the time-dependent BH formation phase. A simpler state

that is sometimes considered is the Unruh state [52], which can be defined by working

with the extended vacuum Schwarzschild solution, and evolving the vacuum defined with

respect to the Kruskal coordinate X− at the past horizon forward in time, via a similar

procedure.

Indeed, if we compare the Hawking and Unruh states on a time slice that meets the

horizon just after the transition to vacuum, such as shown in Fig. 2.2, they differ in some

of the excitations escaping to infinity or falling into the BH. But, if we consider a much

later slice, these excitations will have reached the asymptotic region, or reached the deep

interior, either near r = 0, or with the kind of slicing we have described, the part of the

slice at r = Rn. In contrast, the excitations being emitted from or falling into the BH
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near that later time are expected to be determined by the local short-distance structure

of the state, which is the same for the Hawking and Unruh states.

In fact, these statements should extend to a more general state that behaves like

vacuum near the horizon at short distances – the subsequent long time behavior is gov-

erned by this vacuum-like structure near the horizon. Specifically, we expect that any

regular state has the same long-time behavior, once excitations that correspond to initial

differences between states have escaped to near infinity or to the BH deep interior. The

evolution of such a state can be examined at a more explicit level.

2.6.3 Evolution

To describe the evolution, first one makes a choice of slicing and coordinates along

those slices, given by (2.11), or equivalently by specifying t(x+, r) and spatial coordinate

x(x+, r), which we assume to be regular across the horizon. Next, choose a time t0 which

is taken so that the corresponding slice meets the horizon to the future of the collapsing

matter as in Fig. 2.2. To begin, we wish to characterize what it means to be vacuum-like

at this time near the horizon.

The vacuum-like structure can be characterizing by using the local relation to flat

Minkowski geometry. In the vacuum region, the metric (2.60), (2.61) can be written in

terms of Kruskal coordinates, defined for example in D = 4 by

X± = ±2Re±x±/2R , (2.63)

with corresponding extension across the horizon.7 The vacuum metric then becomes

ds2 = −R
r
e1−

r
RdX+dX− + r2dΩ2 . (2.64)

7For more discussion of these coordinates and the Rindler limit, see Appendix B.
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The near horizon limit |r − R| ≪ R gives a “Rindler region”[53] in which the metric is

locally M2 × S2,

ds2 ≈ −dX+dX− +R2dΩ2 , (2.65)

with corresponding 2d spacetime coordinates defined byX± = T±X. In this near horizon

limit and in these coordinates, a slice whose slice function S(r) only varies on scales ∼ R

will meet the horizon as a straight line. The regular basis (ϕklm, πklm), (ϕ̃klm, π̃klm) can

then be chosen so that at high k, the corresponding solutions behave as

ukl ≈ eikX−iωkT , ũkl ≈ e−ikX−iωkT (2.66)

in the Rindler region,8 with ω2
k − k2 = [l(l + 1) + 1]/R2. Then, with the field expansion

(2.54), a state which is locally Minkowski is one satisfying aklm|ψ⟩ = ãklm|ψ⟩ = 0 for the

operators associated to k ≫ 1/R, l ≫ 1 modes in this region. Of course, modes with

k ≲ 1/R can be excited in such a state.

The evolution of such a state is in general governed by the regular expression (2.55)

for the hamiltonian. In the Rindler region this simplifies to give Minkowskian evolution,

but this receives nontrivial corrections as excitations reach |r − R| ∼ R. This nontrivial

behavior causes excitations of the local vacuum. The details of this evolution depend on

the detailed structure of the hamiltonian (2.55) and its corresponding evolution operator,

which can be somewhat complicated. However, one thing that we do immediately learn

in this description is that the transition to excited states takes place on scales with

|r−R| ∼ R, as was also found in 2d [25, 37]. This supports previous arguments [55] (see

also the earlier related arguments [56, 57, 58]) that Hawking radiation “is produced” in

a black hole atmosphere at these scales, as opposed to at ultrashort distances.

8A more careful treatment requires localization of the modes of the basis. This can be done by
constructing wavepackets, for example as described in [2][54][37].
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We have argued that the hamiltonian (2.55) gives a regular description of evolution on

slices avoiding the singularity, but one with complicating features. To learn more about

the state one would like a simpler description of this evolution. This is achieved by going

to the energy eigenbasis of Sec. 2.4. While this description is inherently singular, as we

have seen, it does furnish an effective way to more simply describe the evolution, due to

the simplicity of the hamiltonian (2.52) in this basis. To describe the latter evolution,

we must first rewrite a regular state |ψ⟩ in this basis. This in principle follows from the

Bogolubov transformation (2.53), which is however also complicated. But, as discussed,

the long-time behavior is expected to follow from the local Minkowski structure near the

horizon.

In particular, in the high-k Rindler region limit, the regular modes can be chosen to

simplify to the form exp{−ikX±}. The locally right-moving modes exp{−ikX−} there

are related to the local (approximate) energy eigenmodes exp{−iωx−}, exp{−iωx̂−} by

the same relation that relates Minkowski to Rindler modes, as seen from the coordinate

transformation (2.63). Specifically, from this we find that the combinations

e−iωx−
+ e−2πRωeiωx̂

−
, e−iωx̂−

+ e−2πRωeiωx
−

(2.67)

are analytic in the lower half complex X− plane, and thus correspond to positive fre-

quency modes in X−. Then the corresponding operators

bω − e−2πRω b̂†ω , b̂ω − e−2πRωb†ω (2.68)

correspond to Minkowski annihilation operators, which should annihilate the state for
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large ω. Thus, for these high-wavenumber modes, the regular state has local description

|ψ⟩ ∼
∑
{nω}

e−2πR
∫
dωωnω |{n̂ω}⟩|{nω}⟩ (2.69)

in terms of occupation number eigenstates for the b̂ω and bω, and analogously for higherD.

Just as with Minkowski space, this description is inherently singular. However, it is useful,

and may for example be regulated with an appropriate short distance cutoff.

This description of the state is useful because it provides an effective intermediary to

relate evolution of modes near the horizon to corresponding asymptotic modes.9 Consider

excited modes in the expression (2.69).10 These are evolved by the simple hamiltonian

(2.52), which vanishes for paired excitations, and a near-horizon wavepacket of such

modes will evolve into a future wavepacket of the same modes. In the case of the “up”

modes, associated to the bωlm, the wavepackets will have an outgoing piece at infinity, with

magnitude given in terms of the transmission coefficient for the effective potential fV of

(2.41), and a reflected part that enters the BH.

Once we have used these modes as intermediaries to simplify the description of the

state, we can alternately convert back into a regular mode basis. In fact, in the asymptotic

region, the energy eigenmodes uωl should equate to corresponding regular modes, up to

the factor of the transmission coefficients, since they are both governed by free Minkowski

evolution. Specifically, asymptotically these modes take the form of flat space modes,

with wavepackets that are linear superpositions of

ϕωlm ∼ Tωl jl(kr)e
−iωt Ylm

rD/2−1
, (2.70)

9This can be seen even more explicitly in the two-dimensional example [37], which avoids complica-
tions such as reflection/transmission near the horizon.

10Again, a more precise version of this argument would use wavepackets to localize modes in both
position and frequency.
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where Tωl is the relevant transmission coefficient. These can be regarded either as energy

eigenmodes or as regular modes, in this region. In short, we convert to the energy eigen-

mode basis to simplify the evolution out to the asymptotic region, and then convert back

to a regular basis using this relation between modes. In this fashion, the intermediaries

provide a simple way to characterize the result of evolution of the regular expression for

the state with the regular hamiltonian (2.55). It has a thermal spectrum at the expected

temperature, e.g. T = 1/4πR for D = 4, following from the form of (2.69). It also has

the expected pairing and entanglement between quanta of Hawking radiation, and corre-

sponding internal excitations of the BH, implied by the pairing in (2.69), along with the

transmission factors. Again, this will be the generic long-time behavior, after transitory

excitations, of states that are regular at the horizon.

We emphasize that in this discussion, the singular energy eigenmodes are only used

as intermediary tool, and are not taken as part of a literal fundamental description of the

state. This differs from a significant part of the literature, in which the singular energy

eigenmodes are sometimes viewed as playing a more fundamental role; here, we stress,

they are merely a convenient basis for some purposes. In practice, one way to work with

a description of the state in terms of them is to introduce cutoffs in the description. But

not regarding these modes as fundamental avoids the potential pathologies that arise if

these modes are regarded as true physical excitations.

2.6.4 Internal evolution: nice slices and freezing

Evolution via a local quantum field theory hamiltonian, such as (2.28) or (2.30), has

been argued to plausibly give a good approximate description of the complete physical

evolution of excitations outside but near a BH, although one expects the need for impor-

tant, but possibly small, corrections to ultimately restore unitarity [59, 60, 61, 19, 62].
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On the other hand, one expects that the evolution of excitations inside the BH is likely

to ultimately receive large corrections. Nonetheless, it seems of interest to better under-

stand the leading field theory description of the internal evolution, as background and

preparation for understanding its possible modifications.

Such evolution can be described on a family of Cauchy slices. As was noted in

Sec. 2.2, slices that reach r = 0 are not Cauchy, and so a description on such slices must

be supplemented by additional dynamics “at r = 0.” But, evolution may be considered

on a family of slices that avoid r = 0, and in particular on a family of nice slices that

asymptote to a minimal radius r = Rn. We will describe some features of evolution on

these slices. Our focus will be on the vacuum region of the BH, and we will consider

stationary slices, as specified in (2.12) or (2.13), with a slice function chosen to asymptote

to Rn.

As we have noted, one also needs choices of spatial coordinate and modes to describe

evolution of the state. The use of r as a spatial coordinate on the constant-t slices leads

to a coordinate system (t, r) that degenerates at r = Rn. This means it is preferable to

use a more general spatial coordinate, x(t, r).

The choice of a “stationary” coordinate x(r) (say, with x→ −∞ as r → Rn) results

in a nonzero shift Nx at large t, as the slices accumulate at r = Rn, although the lapse

N vanishes in this limit. This implies a nontrivial contribution to the hamiltonian in

this region, as seen for example from (2.20). This may be alternately understood by

considering the form of the wavefunction solutions. For example, in such coordinates,

the solutions (2.38) take the form

e−iωtUωlm(x,Ω) , (2.71)

and thus continue to have nontrivial time evolution as t→∞.

41



Quantum evolution of the Hawking state for black holes Chapter 2

On the other hand, it is clear from the accumulation of slices at r = Rn that the

evolution of a state can be described as freezing [63][60] at this radius, as t → ∞. This

is best described with a choice of non-stationary coordinate along the slices. This choice

can be specified through a more general relation r(t, x), as in (2.11). Then, from the

ADM form (2.14) of the metric, we find N to be unchanged from (2.15), and

qxx = r′2qrr , Nx =
ṙ +N r

r′
, (2.72)

with r′ = (∂r/∂x)t, ṙ = (∂r/∂t)x. With such coordinates, the lapse, shift, and spatial

metric are now explicitly time-dependent, also resulting in an explicitly time-dependent

expression for the hamiltonian (2.20) or (2.28).

One way to exhibit the freezing behavior is if x → x+ as r → Rn, which leads to

both a vanishing lapse and shift as r → Rn, and so vanishing hamiltonian density there.

An example [37] is the coordinate x = x+ + g(r), with g vanishing as r → Rn, although

more generally we might instead like to use a time-dependent function g(t, r) so that the

coordinate x matches r asymptotically as r → ∞, which is achieved if g(r, t) ≈ −t in

this limit.

The freezing simplifies the description of the internal part of the state, since it no

longer evolves, and thus gives one way of simply describing BH internal states in terms

of this static appearance, in this approximation.

In these coordinates and this picture, the slices exhibit stretching behavior, rather

than translating under a shift in t. For example, the distance along a slice from a given

fixed x corresponding to a point near r = Rn increases linearly in t. This arises from the

time dependence of qxx from (2.72), and may for example be concentrated in the vicinity

of the horizon depending on the specific choice of r(t, x). The explicit time dependence

of the metric and hamiltonian in this gauge and picture introduces additional subtleties
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which we defer to future work, but which we expect may be resolved by connecting back

to the underlying stationary description, also in analogy to [46].

2.7 Extensions: interactions, generalizing asympto-

tics, AdS and connection to 1/N

The discussion of the bulk of this paper has been of a noninteracting theory such as

(2.17), with flat asymptotic geometry, but it is expected that the quantum description

extends both to interacting theories, and to more general, e.g. AdS, asymptotics, where

there is also a connection with the large N limit of the AdS/CFT correspondence.

2.7.1 Evolution in interacting theories

The extension to interacting theories, and theories with higher-spin matter, is ev-

ident; beginning with a generalization of the action (2.17) to incorporate interactions

and/or higher spin, the canonical approach yields a hamiltonian of the quadratic form

(2.20), together with additional interaction terms. Canonical quantization proceeds from

there via the canonical commutators, (2.21), or their higher-spin generalization. With a

choice of basis of regular mode functions, and expansion in ladder operators analogous to

(2.54), this results in a hamiltonian of the form (2.55), together with higher-order terms

describing the interactions. While this can result in more complicated dynamics, the

evolution of the state, e.g. as in (2.62), is in-principle concretely defined, modulo usual

issues of renormalization, etc.

This observation illustrates two points. The first is that the present methods extend

beyond Hawking’s original derivation [2], which relied on use of the free propagating mode

functions and so did not easily incorporate interactions. In evolution such as (2.62), the
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state continuously evolves in t according to the structure of the hamiltonian, without

direct dependence on having solutions. It is important to have such a generalization,

to treat Hawking radiation in interacting theories. The second point is that the specific

choice of the mode functions is less important with this additional context. That is

because a particular choice of modes may be motivated so to simplify evolution in the non-

interacting case; a specific example is that of energy eigenstates, where the hamiltonian

greatly simplified, to (2.52). However, once interactions are included, such simplifications

are lost. In the interacting theory, it appears that different choices of regular mode bases

won’t make significant difference in the practical difficulty of describing the evolution of

the state, and so fairly general choices can be considered.

This discussion also extends to include gravitational perturbations, and their cou-

plings to perturbations of other fields. The full fluctuating metric may be expanded

g̃µν = gµν + κDhµν , with gµν the metric of the BH background and κ2D = 32πGD. Then,

the action and hamiltonian for the metric fluctuation hµν have a leading quadratic term

similar to that for scalars (but also requiring gauge fixing), and interaction terms be-

tween hµν and the other fields, as well as self interactions of hµν at higher orders in the

expansion in κD. By the steps just outlined, these interactions lead to an interacting

hamiltonian generalizing (2.20), (2.55), which may be treated by similar methods, to

determine the evolution of the state on a chosen set of slices.

2.7.2 Generalizing asymptotics, and AdS/Schwarzschild

Our main discussion has focussed on asymptotically flat spacetime. However, we can

extend it to BHs with other asymptotics, using a slicing analogous to that described in

Sec. 2.2.2 that is taken to similarly extend to the BH interior. Of course with general

asymptotics, we may need to confront further subtleties associated with lack of a Killing
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vector corresponding to time translations. A prominent case with such a Killing vector

is that of BHs in AdS. For example, the D-dimensional AdS/Schwarzschild solution for

mass M takes the form (2.1), with

f(r) = 1 +
r2

R2
Λ

−
(
R0

r

)D−3

; (2.73)

here RΛ is the AdS radius, and

RD−3
0 =

16πGDM

(D − 2)AD−2

(2.74)

with AD−2 the area of the unit sphere. One may alternately use an ingoing null coordi-

nate x+ to rewrite the metric in the form (2.8), with f given by (2.73), and exhibit both

exterior and interior of the BH. A trans-horizon slicing analogous to those of (2.10)-(2.13)

may then be used to describe interior and exterior, and quantization may be performed

analogous to the discussion of Sec. 2.3, resulting in hamiltonian evolution analogous to

that of (2.62). In particular, we anticipate that the methods of this paper yield long-time

thermal behavior for a large class of regular initial states. These would evolve similarly to

the description of Sec. 2.6, with the additional feature that the AdS asymptotics behave

like a reflecting cavity, and so Hawking excitations are reflected back towards the BH.

Specifically, we may describe the interacting hamiltonian and evolution perturbatively

in Newton’s constant GD. The leading order evolution (also expanding in other couplings,

if present) is hamiltonian evolution of free fields, including the graviton perturbations,

by a hamiltonian analogous to (2.20), (2.55), on the AdS/Schwarzschild background.

Couplings to gravitational perturbations, backreaction, dressing, etc. then arise at higher

order in κD.
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2.7.3 AdS/CFT and large-N description

Gravitational dynamics in AdS is conjectured to be equivalent to that of a “boundary”

CFT [16]. In this context, it is interesting to explore the possible relation between the

perturbative dynamics we have outlined, and the dynamics of the CFT. We focus on the

“classic” example of AdS/CFT, with AdS5×S5 dynamics conjectured to be dual toN = 4

SU(N) super Yang-Mills on S3×R. The parameters are related by (RΛ/l10)
4 ∼ N , where

l810 ∼ G10 gives the ten-dimensional Planck length, and formulas here correctly include

parameters but neglect numerical O(1) factors. Black holes with horizon radii R ≪ RΛ

are expected to be ten-dimensional localized objects in AdS5 × S5; those with R ≳ RΛ

are expected to behave as five-dimensional BHs (2.1), (2.73) that are uniform on S5, and

these two cases are expected to be connected by a Gregory-Laflamme transition [64]. The

transition radius R ∼ RΛ corresponds to a mass threshold M ∼ N2/RΛ.

Thus, the case of AdS BHs, here with D = 5, is strictly speaking only valid above

this threshold. But in this case, the leading order dynamics, in a QFT description of the

bulk, can be given by a free hamiltonian like (2.20), (2.55). And, this will receive pertur-

bative corrections, order-by-order in the gravitational coupling. Given the relationship

between parameters, and the relation G10 ∼ R5
ΛG5, this corresponds to an expansion in

κ5 ∼ R
3/2
Λ /N .

As is known, this connects gravitational perturbation theory with the large N limit

and 1/N expansion. A first question is what is held fixed asN is taken to be large. We will

focus on the large N limit with AdS radius RΛ held fixed, when then corresponds to the

limit of G10 or G5 becoming small. If we wish to consider BH states, then the preceding

scaling tells us that we need to consider states whose energy scales up as N2. However,

if we consider for example fixing the temperature, e.g. as in [65], that is equivalent to

holding the radius of the BH fixed and so the geometry (2.1), (2.73) is unchanged as N
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increases.

The hamiltonian that describes BH excitations in the large N limit is then of the form

described in the preceding subsections. Specifically, a candidate infinite-N hamiltonian

H∞ can be found by choosing a slicing for AdS-Schwarzschild like those described in

Sec. 2.2.2, and specifically avoiding the singularity, and then deriving the corresponding

hamiltonian (2.20) (or (2.55)) which is quadratic in each of the field perturbations that

propogate on AdS.

Moreover, 1/N corrections to H∞ correspond to the bulk interaction terms between

these perturbations that arise in the perturbative expansion in κ5.

Questions have recently been raised about the existence of a large N description of

BHs in AdS/CFT in [66, 67],[65]. The present construction appears to begin to provide

answers, and specifically to address the statement [65] that the literature doesn’t contain

a proposal for the hamiltonian for a BH in the large N limit.

Of course, what is expected to be true is the statement that the perturbative hamil-

tonian that is found this way does not give a complete description of the BH dynamics:

specifically, there are good reasons to believe that this perturbative hamiltonian does not

ultimately lead to unitary evolution, and one piece of that evidence is the fact that H∞

can describe an infinite number of BH states.

For this reason, we expect the complete gravitational hamiltonian will be a corrected

version of the perturbative hamiltonian Hpert we have just described:

H = Hpert +∆H . (2.75)

We would obviously like to understand the structure of ∆H, and what phenomena it

encodes; another pertinent question is its dependence on N .

It has previously been argued [61, 68, 19, 62] in the case of flat asymptotics that ∆H
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has two important pieces: a piece ∆HI containing interactions between the BH states

and the BH’s surroundings, necessary to transfer information or entanglement from the

BH, and a piece ∆HBH modifying the internal dynamics of the BH states. Simple

forms of ∆HI have been parameterized [19], and it is plausible that these corrections

are small, even nonperturbatively so, in N . On the other hand, we might expect Hpert

to receive large internal corrections in ∆HBH corresponding to corrections to dynamics

in the strong-curvature regime at the core of the BH. This is expected to be necessary,

for example, to ensure a finite number of internal BH states. It is plausible that these

corrections also yield chaotic internal behavior. Their dependence on N is less clear, but

it is quite plausible that there are also important nonperturbative contributions here. A

possible role for ensemble averages, like discussed in [65], is also less clear, unless the

corrections to Hpert for example arise from baby universe emission [69, 70, 71, 72, 73, 74].

In such a plausible picture for ∆H, new chaotic dynamics is only associated with the

deep interior dynamics of the BH; evolution in the near-horizon regime, both inside and

outside the BH, may be close to that of LQFT, with only relatively small corrections that,

for example, an infalling observer would perceive as innocuous. Further discussion of this

picture, which may also lead to observational effects for BH observations [75, 76, 77][62],

is given in the works cited above. Needless to say, it would be very interesting if such

effects could be understood from, or even derived from, the AdS/CFT correspondence.

Or, perhaps, they have a different explanation.
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Perturbative quantum evolution of

the gravitational state and dressing

in general backgrounds

3.1 Introduction and motivation

If there is a quantum-mechanical theory of gravity, the big challenges in its formulation

include understanding the fundamental description of its quantum states and observables,

as well as the nature of the unitary evolution on its Hilbert space. Approaches to this

problem based on quantizing general relativity (GR) or related classical theories have run

into vexing problems, initially nonrenormalizability1 but likely more profoundly that of

nonunitarity in the high-energy regime involving black holes. An alternative approach is

to begin with the hypothesis that one is working with a quantum-mechanical theory, and

investigate what mathematical structure of such a theory is necessary to describe gravity

and consistently match the known and tested physics of local quantum fields propagating

1For a review with further references, see [78].
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on a weakly-curved background, in the appropriate limits. This might be referred to as

a “quantum-first” approach [79, 80, 81, 82].2 One would like to understand the nature of

the Hilbert space for gravity, and of its algebras of observables, symmetries, and unitary

evolution law.

Such an approach does not argue for completely abandoning a perturbative quanti-

zation of GR. The match to the known and tested physics of local quantum field theory

(LQFT) on a weakly curved background, the confirmed existence of gravitational waves,

and the apparent approximate validity of strong-field classical solutions suggests that

such a perturbative treatment gives at least approximately correct physics, in the weak-

gravity regime, though one that is missing important effects in other regimes. One can

view this as a “correspondence principle” for quantum gravity. What is interesting is that

already in this limit, one encounters non-trivial new properties of quantum gravity that

signal its departure from LQFT. This also raises the hope that, by better understanding

this structure in the perturbative limit, one may infer key properties of the more basic

structure of a fundamental theory of quantum gravity.

In particular, a significant part of the difficulty of gravity seems to stem from the

form of its gauge symmetries. And, significant aspects of this non-trivial gauge structure

appear to already be present at leading perturbative orders. This suggests that a useful

starting point is simply to better understand this structure at these leading orders.

One aspect of this structure is the lack of local gauge invariant observables [86]. In

short, any local observable clearly carries nontrivial Poincaré charge (in the example of

flat asymptotics), since it doesn’t commute with translation generators, and this must

source an associated gravitational field that extends to infinity [30].

There are different approaches to constructing nonlocal observables that respect gauge

2For related discussion, see [83, 84, 85]. Also note that if one can find a complete “holographic map,”
the AdS/CFT correspondence could be an approach to providing such structure.
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invariance, typically in a “relational” fashion. One approach is to specify the position

of a quantum operator relative to other quantum fields that vary in spacetime; we refer

to the resulting operator as “field-relational” (or, observer-relational), and an example

is provided by calculation of primordial perturbations in cosmology by referring to the

time of reheating set by the inflaton in inflationary models. Another alternative is to

construct relational observables by using position information from the gravitational sec-

tor; perturbatively, one can begin with a local observable, and “gravitationally dress”

it to construct gauge-invariant operators that no longer commute at spacelike separa-

tion [80][29][30][32][82][33, 31].3 In quantization of GR, the diffeomorphism symmetry

is generated by the gravitational constraints, so in either approach, a test for gauge

invariance of such operators is that they commute with the constraints.

Another key question for a quantum-mechanical theory is the structure of its states

and their evolution. The observables both characterize states, and furnish a means of con-

structing gauge-invariant states: one can act with a quantum observable on a “vacuum”

state to create a nontrivial state. The important question of evolution of these states,

if it is unitary, can then be addressed by providing a hamiltonian.4 In LQFT coupled

to quantized GR, as we will review and further clarify, the hamiltonian and evolution

are of course closely related to the constraints. In a closed universe, the hamiltonian

is given by the constraints, and so formally vanishes on their solution; in a universe

with asymptotic spatial infinity, there is an additional term in the hamiltonian, that is

important for evolution. In particular, solving the quantum version of the hamiltonian

3To clarify a difference in terminology, the recent work [87] considers observables referred to an
observer but calls them dressed, despite not having a gravitational component; here those would be
referred to as field-relational. Earlier work related to dressed observables includes [88] and [89]; the
first derived nontrivial commutators as arising from constraints, but didn’t give the dressed operators,
and the second focussed on deriving commuting operators. For related constructions in the cosmological
setting, see [90].

4Even in LQFT, it is argued that the hamiltonian provides a more fundamental description of evolu-
tion than an action; see e.g. [91], sec. 2.2.
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constraint is commonly referred to as solving the Wheeler-de Witt (WdW) equation, and

is accomplished by gravitationally dressing undressed operators or states.5 An additional

subtlety (see below) is that physical states may only be annihilated by “half” of these

constraints. The form of the evolution in the perturbative regime is expected to furnish

clues about its nonperturbative completion.

Construction of the gravitational dressing, which can be explicitly treated at leading

order in the gravitational coupling, is also relevant to the question of holography of

gravity. A leading proposed explanation of holography in anti de Sitter space (AdS) is

that it follows from the hamiltonian being a boundary term [93, 94] when the constraints

are satisfied; for additional discussion, see [95, 96]. A closely similar argument is that

momentum generators are also boundary terms, and so one can act both to translate

a state to infinity, and to measure it, purely with operators at infinity [32]. There

are related arguments that even perturbative observables at infinity can determine bulk

states [92], but their sensitivity is exponentially suppressed [36]. These statements do

rely on solution of the constraints, so implicitly on solution of the bulk dynamics [96].6

However these arguments are ultimately understood, it is clear that the dressing

modifies the locality properties of the algebra of operators [80, 29]; it also apparently

connects [98] to recent discussion of modification of the structure of von Neumann alge-

bras from type III to II [67].

In short, at the perturbative level it appears that we can begin to learn important

aspects of the structure of observables, states, and their evolution. This description is

of course expected to miss crucial effects, particularly when treating strong gravitational

configurations such as black holes.7 But, a clearer understanding of the perturbative

5Ref. [92] also discusses perturbative solution of the WdW equation, but seems not to have realized
that this is achieved by constructing gravitational dressing, nor recognized the relevance of preceding
works on this subject.

6Entanglement wedge reconstruction appears to likewise assume solution of the constraints [97][96].
7For an approach to parameterizing such effects as departures from LQFT evolution, see [19, 62] and
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structure is also expected to help provide a basis and background for understanding the

role of modifications in the strong gravity context, if the complete theory respects the

correspondence principle and is consistent with its weak gravity limit.

In the interest of such a deeper understanding of the interplay of evolution, gauge

symmetry, the constraints, and gravitational dressing, in general contexts, this paper

will investigate the perturbative structure of the hamiltonian and constraints, working

perturbatively about a general background. The next section begins with a simplified

derivation of the hamiltonian, exhibiting it either in a more conventional local form fa-

miliar from LQFT, or as a term proportional to the constraints plus a boundary term.

Section three then outlines different approaches to perturbative quantization, and sets

up a perturbative treatment of the constraints in what we refer to as “gauge-invariant

canonical quantization.” Section four gives a leading perturbative construction of oper-

ators commuting with the constraints, working about a general background, in terms of

a construction of the gravitational dressing that generalizes [29][82][33, 31, 99]. Section

five discusses construction of corresponding states, briefly discusses the form and charac-

terization of their evolution, and illustrates application to the important cases of black

holes and/or AdS spacetimes. Section six finishes with conclusions and further directions.

Appendices illustrate basic features of the analogous treatment of electromagnetism, and

show how the constraints generate gauge transformations.

references therein.
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3.2 Action, hamiltonian, and boundary terms

3.2.1 Action and boundary terms

This section will review formulation of the action in Arnowitt-Deser-Misner (ADM)

variables [20], and describe a simple approach to deriving the appropriate boundary

terms. This paper focusses on quantization of Einstein gravity plus matter, perturbing

around a general background. The usual starting point is the action8

S =

∫
dDx

(
1

16πG

√
|g|R + Lm

)
+ S∂ (3.1)

in D spacetime dimensions, where G is Newton’s constant, Lm is a matter lagrangian,

and S∂ is a boundary term. If a specific matter action is needed, the scalar theory with

Lm = −
√
|g|

[
1

2
(∇ϕ)2 + V (ϕ)

]
(3.2)

furnishes a useful example.

Since our focus will be on the evolving quantum state describing perturbations about a

background, we would like to find a corresponding hamiltonian. We begin by introducing

a foliation of the spacetime by slices labelled by time t, and with spatial coordinate xi,

with relation to general coordinates given by

xµ = X µ(t, xi) . (3.3)

The displacement vector between points of equal xi on nearby slices is given by

8We find it most convenient to work with expressions for lagrangians and hamiltonians that are
densities.
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Figure 3.1: Shown are two members of a family of slices labelled by t. Points at the
same spatial coordinate xi are connected by the vector ξµ, which can be decomposed
in terms of normal and tangential components to give the lapse and shift; vectors in
the figure are scaled by an implicit δt.

ξµ = (∂X µ/∂t)xi , and can be decomposed into pieces normal and tangential to a slice,

ξµ = Nnµ +Nµ , (3.4)

where N is the lapse, Nµ is the shift, and nµ is the unit normal; in (t, xi) coordinates

Nµ = (0, N i), and these quantities are illustrated in Fig. 3.1. In the coordinates (t, xi)

of the foliation the metric takes the ADM form

ds2 = −N2dt2 + qij(dx
i +N idt)(dxj +N jdt) (3.5)

and the unit normal to the slices has components

nµ =
1

N
(1,−N i) . (3.6)

The gravitational lagrangian can then be derived in these variables, after introducing
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the extrinsic curvature of the slices,9

Kij =
1

2N
(−q̇ij +DiNj +DjNi) , (3.7)

with dot denoting ∂/∂t, Di the covariant derivative constructed from q, and latin indices

raised/lowered with the spatial metric q. This lagrangian is given by [102, 103]

√
|g|R = N

√
q
[(
KijK

ij −K2
)
+Rq

]
− 2∂i

(√
qqij∂jN

)
+ 2∂i

(√
qKN i

)
− 2∂t(

√
qK) ,

(3.8)

with K = qijKij and Rq the scalar curvature of q. The total derivative terms become

boundary terms in the action, which can be cancelled by S∂,

S∂ =

∮
dtdAi

8πG
(∂iN −KNi) +

∫
dDx

∂t(
√
qK)

8πG
+ S ′

∂ . (3.9)

An additional term S ′
∂ is required, as is argued by requiring a well-defined variational

principle in [104] or finiteness of the action in [105]. This can be described by introducing

a background metric g0, e.g. the Minkowski or anti de Sitter metrics, depending on

boundary conditions, and writing the full metric as

gµν = g0µν +∆gµν , qij = q0ij +∆qij ; (3.10)

it then takes the form

S ′
∂ = −

∮
dtdAi

16πG
N

(
Dj

0∆qij − ∂i∆q
)
, (3.11)

with dAi the area element and ∆q = qij0 ∆qij. This can be checked (using equation (3.46)

9Note that there are differing sign conventions in the literature; e.g. [100, 101] differ by a sign.
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below) to eliminate the problematic boundary terms in the variation of the action.

The resulting gravitational action can be written in terms of a local lagrangian,

Sg =

∫
dDxLg =

∫
dDx

N
√
q

16πG

[
(KijK

ij −K2) +Rq

]
+ S ′

∂ , (3.12)

with S ′
∂ rewritten as a volume integral. The structure of Lg can for example be investi-

gated by using the relation [106, 107, 108]

√
qRq =

√
qqlm

(
γijlγ

j
im − γilmγ

j
ij

)
+ ∂i

[√
q
(
qjkγijk − qijγkjk

)]
, (3.13)

with γijk denoting the Christoffel symbols computed from the metric q. If the metric is

expanded about a background solution as in (3.10), the linear terms vanish by the equa-

tions of motion of the background or cancellation with the boundary term, and quadratic

and higher-order terms in the expansion of (3.13) give a lagrangian with quadratic con-

tributions of the form (∂∆q)2, plus interaction terms.

3.2.2 Hamiltonian and constraints

Momenta conjugate to the spatial metric q are defined as

P ij =
δSg

δq̇ij
= −

√
q

16πG

(
Kij − qijK

)
; (3.14)

we find it easiest to work with the form of these which are tensor densities. The momenta

conjugate to N,Ni of course vanish, corresponding to the fact that the lapse and shift

are Lagrange multipliers enforcing constraints. The gravitational action can then be
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rewritten in the canonical form

Sg =

∫
dDx

(
P ij q̇ij −Hg

)
. (3.15)

The hamiltonian is found by a straightforward calculation to be

∫
dtHg =

∫
dDxHg =

∫
dDx(P ij q̇ij − Lg)

=

∫
dDx

[
16πGN
√
q

(
P ijPij −

P 2

D − 2

)
−
N
√
q

16πG
Rq + 2P ijDiNj

]
− S ′

∂ .(3.16)

The hamiltonian can be rewritten in different ways. First, as expected from the

description of Sg given above, the expression Hg in (3.16) is quadratic in momenta and

first derivatives of the metric perturbation. Alternately, (3.16) can be rewritten in terms

of the Einstein tensor as

∫
dtHg =

∫
dDx

[
−
√
qGnt

8πG
+ 2Di(P

ijNj)

]
− S ′

∂, (3.17)

where Gnt = nµξνGµν . The matter hamiltonian likewise is given in terms of the stress

tensor

Tµν = ∇µϕ∇νϕ−
1

2
gµν(∇ϕ)2 (3.18)

as

Hm =
√
qTnt =

√
q
N

2

(
Π2

q
+ qij∂iϕ∂jϕ

)
+ΠN i∂iϕ , (3.19)

where the densitized canonical momentum is Π =
√
q∂nϕ. Then, the full hamiltonian

becomes

H =

∫
dD−1x Cξ +H∂ , (3.20)
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with

Cξ := ξµCµ := ξµ
√
q

(
−Gµν

8πG
+ Tµν

)
nν (3.21)

giving the usual gravitational constraints. The boundary contribution is, from (3.11) and

(3.17),

H∂ =

∮
dAi

[
N

16πG

(
Dj

0∆qij − ∂i∆q
)
+ 2

P ij

√
q
Nj

]
, (3.22)

which is the expected boundary expression for gravity [104],

−N(∞)PADM
0 −N i(∞)PADM

i . As is well known, if the constraints are satisfied,

Cµ = 0 , (3.23)

then the hamiltonian becomes simply this boundary expression (3.22).

The interplay of the expressions (3.16) and (3.20) is worth noting, and can be sum-

marized in

H =

∫
dD−1x

(
NCn +N iCi

)
+H∂ =

∫
dD−1x (Hg +Hm) (3.24)

where we have used (3.4) relating ξ to n, and define Cn = nµCµ. On the one hand,

using the expansion of Lg described in connection with (3.13), the rightmost expression

in (3.24) is of the general expected form for a field theory, with quadratic terms in

momenta and derivatives of fields, as well as interaction terms. We can think of this as

generating time evolution in the usual way. On the other hand, one can work with a

solution of the constraints (3.23), in which case the hamiltonian reduces to the surface

term H∂. The later observation has been argued to be connected to the “holographic”

property of gravity [93, 94, 95], but does rely [96] on first solving the constraints, which

behave as equations of motion.

An important question is thus the role of the constraints and different forms for the

hamiltonian in the quantum theory, as well as their possible corrections from a more
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complete quantum theory.

3.3 Quantization and perturbative expansion

3.3.1 Quantization, constraints, and gauge invariance

Our goal is to find a consistent quantum theory reproducing the preceding classi-

cal structure in the appropriate limits.10 The canonical approach tells us to introduce

canonical commutators,

[P ij(x, t), qkl(x
′, t)] = −iδi(kδ

j
l)δ

D−1(x− x′) , (3.25)

with normalization

δi(kδ
j
l) =

1

2

(
δikδ

j
l + δilδ

j
k

)
. (3.26)

SinceN andN i have vanishing conjugate momenta, they are taken to be c-numbers,11 and

(3.24) shows their role as Lagrange multipliers for the constraints. This means that these

variables are not determined by the equations of motion, and their arbitrariness is part of

the gauge symmetry. Gauge transformations acting on the canonical variables (qij, P
ij)

(and (ϕ,Π)) are generated by Cn and Ci, as described in Appendix D.

The Heisenberg equations of motion take the form

∂tqij = i[H, qij] , (3.27)

10For an analogous discussion for QED, see Appendix C.
11Here we work on a “reduced” phase space; for further discussion see comments in Appendix D, and

e.g. [109] or [110].
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which reproduces the expression (3.7) for the extrinsic curvature, using (3.16), and

∂tP
ij = i[H,P ij] (3.28)

which gives the ij Einstein equations. These time derivatives are not gauge invariant,

unlike the case of QED (see Appendix C), since the gauge transformations act non-

trivially on qij and P
ij.

The next question is how to describe physical states. It is tempting to require

Cµ|ψ⟩ = 0 for physical states, but this would then imply that for general operators O

⟨ψ|[Cµ, O]|ψ⟩ = 0 (3.29)

conflicting with the preceding equations of motion. Thus, in order to correctly describe

nontrivial evolution, the constraints should not be taken to vanish identically on the

physical Hilbert space.

Multiple related ways to proceed have been studied in the literature, in each of which

the question of locality becomes nontrivial. A brief summary is:

1. Dirac quantization. Here one introduces gauge-fixing conditions and solves these

and the constraints, and also introduces a new Dirac bracket (or alternately re-

defines operators) such that [Cµ, O]D = 0. This appears to simplify commutators,

but it is also true that solving the gauge conditions and constraints is nonlocal.

This nonlocality is then “hidden” in the structure of the Dirac brackets; a simple

example of this for QED is described in sec. IV.A.3 of [29].

2. Covariant gauge “fixing” (breaking). In this approach a gauge-violating term is

added to the action, and then canonical commutators postulated for all components

of the metric. This was used to study gauge-invariant operators in [29, 31]; the
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gauge breaking term decouples for these. These operators are in general nonlocal,

due to gravitational dressing, which is found by requiring vanishing commutators

with the constraints [30].

3. BRST/BFV quantization [111, 112]. Here extra fields, including ghosts, are added;

extra conditions are necessary as well.

4. Refined algebraic quantization, in which group averaging of states on an auxiliary

kinematic space induces an inner product on the space of states satisfying the

constraints [113, 114, 115, 116].

5. “Gauge invariant canonical quantization.”

The latter approach appears to be distinct from approaches previously described in

the literature; it is briefly described for QED in the Appendix C, and will be utilized here.

While it is closely similar to covariant gauge breaking used in [29, 31], the constraints

are separated into what may be called the positive and negative frequency parts, and

the positive frequency constraint is taken to annihilate the vacuum state. Then, the

constraints are found to commute with the gauge-invariant operators as usual, and also

define the time evolution of the quantum state via the Hamiltonian. Specifically, one

assumes a suitable decomposition of the constraints

Cµ(x) = C+µ (x) + C−µ (x) (3.30)

into positive and negative frequency parts, and then imposes the physical state condition

C+µ (x)|ψ⟩ = 0 (3.31)

for a |ψ⟩ taken to be the vacuum state |0⟩, on a given time slice. Since the constraints
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generate gauge transformations (see Appendix D), gauge-invariant operators are those

satisfying

[Cµ(x), O] = 0 . (3.32)

Such an operator creates a non-trivial state, |ψ⟩ = O|0⟩, which also satisfies (3.31) by

virtue of [C+µ , O] = 0.

A decomposition (3.30) is possible for example when perturbing about stationary

backgrounds, using the corresponding Killing vector to define frequency. For perturba-

tions about time-dependent backgrounds, there are additional complications [23, 44, 45,

24, 46] with such a picture which we will not address here. However, we note that the

condition for gauge-invariant operators, (3.32), is independent of this decomposition, and

so that should not play a direct role in their construction.

Suppose we consider evolution of states, in a Schrödinger picture, via the hamiltonian

(3.24). Since the full constraints don’t annihilate physical states, the time dependence of

states will depend on gauge (here, choice of arbitrary N = (N,N i)); the gauge-dependent

part of the change in the state for evolution for time δt via the hamiltonian (3.24) is

δN|ψ⟩ = iδt

∫
dD−1x

(
NC−n +N iC−i

)
|ψ⟩ . (3.33)

However, this will be orthogonal to another physical state |ψ′⟩. Likewise, if we consider

evolution of a matrix element of a gauge invariant operator O,

∂t⟨ψ′|O|ψ⟩ = i⟨ψ′|[H,O]|ψ⟩ , (3.34)

we find that this is also independent of the gauge-variant (N-dependent) part of the

hamiltonian (3.24). In short, while there is a gauge ambiguity in the states, that is not

present in matrix elements of gauge-invariant operators. Of course, we find from the
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Heisenberg equations (3.27) and (3.28) that evolution of matrix elements of qij and P ij

is gauge dependent.

3.3.2 Perturbative expansion

The remainder of this paper will primarily focus on a perturbative construction of

states and operators like we have just described. Some analogous work has been done in

the cosmological setting, including expanding the constraints to second order and related

methods to find gauge invariant observables [117, 118]. However, they do not consider

general backgrounds nor the general construction of gravitational dressing. The ADM

decomposition and perturbation of the constraints has also been investigated in other

special backgrounds, particularly asymptotically flat [26], AdS [27], and spacetimes with

black holes [28]. Going beyond this work, we will consider a perturbative expansion of the

ADM decomposition on an arbitrary classical background, and use the new expansions

of the constraints to define the dressed operators to leading order by requiring that the

operators commute with the constraints, as will be described in the subsequent sections.

We begin with a classical metric gµν ↔ (N,Ni, qij) satisfying Einstein’s equations, in-

cluding the constraints (3.23), possibly also with the stress tensor of a classical matter

background ϕ0. The corresponding quantum variables are denoted g̃µν ↔ (Ñ , Ñi, q̃ij)

and ϕ̃. Introducing the parameter κ2 = 32πG, these may be expanded as

g̃µν = gµν + κhµν , ϕ̃ = ϕ0 + ϕ , (3.35)

and likewise for (Ñ , Ñi, q̃ij), in particular with

q̃ij = qij + κhij . (3.36)

64



Perturbative quantum evolution of the gravitational state and dressing in general backgrounds
Chapter 3

We will also expand P̃ ij as

P̃ ij = P ij +
pij

κ
, (3.37)

in which case the canonical commutators (3.25) also take the simple form

[pij(x, t), hkl(x
′, t)] = −iδi(kδ

j
l)δ

D−1(x− x′) . (3.38)

Notice, from (3.14), that for a non-trivial classical background, P ij ∝ 1/κ2. We also

expand Π̃ = Π0 +Π.

The explicit form of the constraints (temporarily written without tildes) is

0 = Cn =
√
q

(
Tnn −

4

κ2
Gnn

)
(3.39)

and

0 = Ci =
√
q

(
Tni −

4

κ2
Gni

)
. (3.40)

Here the pertinent components of the Einstein tensor are

− 4

κ2
Gnn = − 2

κ2
Rq +

κ2

2q

(
P ijPij −

P 2

D − 2

)
(3.41)

and

− 4

κ2
√
qGni = −2DjP

j
i , (3.42)

and those of the stress tensor are, from (3.19),

√
qTnn =

√
q

2

(
Π2

q
+ qij∂iϕ∂jϕ

)
,
√
qTni = Π∂iϕ . (3.43)

The expansions of the constraints (3.39) and (3.40) must then be found for the quantum

perturbations hij, p
ij and ϕ,Π.
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The hamiltonian constraint has the expansion

C̃n = Cn +
1

2
qijκhijCn −

4

κ2
√
qδκhGnn +

√
q (δϕTnn + δκhTnn) +

√
qTQ

nn +
√
qt̆nn . (3.44)

Here δκh and δϕ denote first order variations, and we define a quantum stress tensor TQ

which collects terms that are quadratic and higher order in the variables ϕ, κh, coming

from Tnn, as well as a gravitational stress tensor t̆ that contains the quadratic and higher

order terms in κh and p arising from the Einstein tensor term. Since the background

satisfies Einstein’s equations, the first two terms vanish. To find the third term and t̆ we

need the expansion of the Ricci scalar

Rq̃ = Rq + κδhRq + δ≥2
κhRq , (3.45)

where the last term summarizes all higher-order terms in κh. Explicitly, the expansion

of the Ricci scalar is well known

δhRq = DiDjhij −Rij
q hij −DiD

i(qklhkl) := Lijhij , (3.46)

defining the second-order differential operator Lij. We also need to find the expansion of

the P -dependent term in an arbitrary classical background.

The terms δϕTnn and δκhTnn in (3.44) vanish in vacuum, but not with a nonzero

background ϕ0. They can be eliminated by passing to “perturbation picture” [37] or

absorbed in TQ. A matter background also leads to hϕ and hh terms in TQ. We will

defer treatment of such a nontrivial background for future work and focus on the vacuum

case.

In the vacuum case, working about a solution Cn = 0, the preceding expansions then
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give

C̃n =
√
q

(
−2

κ
Lijhij +

2

κ
P ijhij −

2

κ
√
q
Kijp

ij + TQ
nn + t̆nn

)
(3.47)

where Kij is the extrinsic curvature of the slices in the background solution, related to

the background Pij by (3.14), and

P ij =
κ4

2q

[
P ikP j

k −
PP ij

D − 2
− qij

2

(
P klPkl −

P 2

D − 2

)]
; (3.48)

recall that the classical P ij is O(κ−2), so P ij is O(κ0).

Expansion of the constraint (3.40) is handled similarly, giving

C̃i = Ci+Π0∂iϕ+Π∂iϕ0−2κhijDkP
jk−2qij(δκhDk)P

jk− 2

κ
qijDkp

jk+Π∂iϕ+
√
qt̆ni (3.49)

where again the quadratic and higher-order terms in h, p have been collected in t̆ni.

Again restricting to the vacuum case, ϕ0 = Π0 = 0, and using the statement that the

background solves the constraints, this becomes

C̃i = −
2

κ
qijDkp

jk − 2qij(δκhDk)P
jk − 2κhijDkP

jk +
√
q(TQ

ni + t̆ni) . (3.50)

We will collect the terms linear in h by defining a linear differential operator Q by

Qjk
i hjk = κqij(δκhDk)P

jk + κ2DkP
jkhij . (3.51)

Working about a classical background with Cn = Ci = 0, the κ → 0 limit of the

constraints gives the linear homogeneous equations

Lijhij − P ijhij +
Kij√
q
pij = 0 (3.52)
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and

Djp
j
i +Q

jk
i hjk = 0 , (3.53)

constraining linearized perturbations (hij, p
ij) about the solution, i.e. linearized gravita-

tional waves. These are evolved by a quadratic hamiltonian, which may be found from

the rightmost expression in (3.24), and which is expected to give evolution similar to that

for other quantum fields, e.g. as treated in [34], such as Hawking production in a black

hole background, etc.

At nonzero κ, the constraints become

Lijhij − P ijhij +
Kij√
q
pij =

κ

2

(
TQ
nn + t̆nn

)
(3.54)

and

Djp
j
i +Q

jk
i hjk =

κ

2

√
q
(
TQ
ni + t̆ni

)
. (3.55)

In the classical theory the corresponding equations determine the perturbative “Coulomb

fields” induced by matter, and at higher orders also incorporate the nonlinearities result-

ing from gravitational energy. At leading order in κ, the solutions to (3.54), (3.55) are

of course highly nonunique, since a solution of the homogeneous equations (3.52), (3.53)

may be added to any given solution.

3.4 Leading perturbative dressing

In the quantum theory, finding gauge-invariant operators O that commute with the

constraints, (3.32), can be approached by perturbatively solving for operators that com-

mute with (3.54), (3.55). Solutions can be found, beginning with an operator of the

quantum field theory to which we couple gravity. This is done by gravitationally dress-
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ing that operator, as has been described to leading order in perturbation theory about

flat space in [80][29][30, 32][82][33, 99] and about anti de Sitter space in [31]. Here we

will extend those constructions to a more general background.

This gravitational dressing is most easily studied in the situation where the back-

ground satisfies P ij = 0, corresponding to vanishing extrinsic curvature of the time slices

of the background metric. This includes the case of flat and AdS backgrounds with stan-

dard time slicings. However, we would also like to consider evolution that for example

perturbs about black hole solutions, either with flat or AdS asymptotics. For example

in the case of the Schwarzschild solution, one may consider a general stationary slicing

that is spherically symmetric [19][25][34],

x+ = t+ S(r) , (3.56)

specified by a slicing function S(r), where x+ is the ingoing Eddington-Finkelstein coor-

dinate. The nontrivial components of the extrinsic curvature of the slices are then given

by

DrNr = ∂rNr − γrrrNr , DθNθ = −γrθθNr , (3.57)

and so vanish if and only if Nr = 0. The expression [19] Nr = 1 − fS ′, with −f the

coefficient of dx+2 (see below), then implies this is true only for S ′ = 1/f , which is the

case of Schwarzschild time slices. These lead to a singular basis for perturbations at the

horizon, and as explained in [34] this can be avoided with a more general choice of slices.

But, this therefore requires considering P ij ̸= 0; similar statements hold for the case of

black holes in AdS.

The construction of [80][29][30, 32][82][33, 99] writes the linear order dressing of an
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underlying QFT operator O0 as

O = ei
∫
dD−1x

√
qV µ(x)(Tnµ+t̆nµ)O0e

−i
∫
dD−1x

√
qV µ(x)(Tnµ+t̆nµ) ; (3.58)

as long as we work to linear order in κ the exponential is not strictly necessary, but

is convenient and suggestive. (To leading order about a vacuum solution TQ of (3.44)

simplifies to T of matter perturbations; we have also included the stress tensor t̆nµ for

metric perturbations, in anticipation of the possibility that O0 could also include such

perturbations.) Here the dressing functions V µ(x) are functionals of the metric pertur-

bation which are fixed by the condition that the dressed operator O commute with the

constraints.12

3.4.1 Vanishing background extrinsic curvature: P ij = 0

We first consider this simplifying case. Specifically, generalizing the flat space con-

struction [29, 99], we anticipate that V n(x) takes the form

V n(x) = −κ
2
L−1
ij p

ij =
κ

2

∫
dD−1x′ȟij(x

′, x)pij(x′) , (3.59)

12Papers by Fröb, Lima, and collaborators [119, 120, 121, 122, 123, 124, 125, 126] have also studied
construction of leading-order gravitationally-dressed observables. The equivalence of their approach is
seen, e.g. in the case of dressing of a scalar field, by noting that if our dressing V µ defines a map χ
through χ(y) = y + V (y) (Lorentz indices suppressed), then the map X(x) given for example in (3) of
[125] is X(x) = χ−1(x). Then the scalar version of (7) of that reference is the same form as ϕ(y+V (y)) of
ref. [29] eq. (33), and the transformation properties under diffeomorphisms of X(x) that they give follow
from those of V in [29]. This means that their dressing in eq. (8) corresponds to a special case of (39)
of [29], up to a total derivative. However, this difference is important, since their (8) does not transform
correctly under harmonic diffeomorphisms. The missing total derivative also appears to explain the
claim of [123, 125] that they have observables commuting outside the light cone, in contradiction to the
generic noncommutativity found in [29] and to the dressing theorem of [30].
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where the inverse L−1 is given by a Green’s function solution to

Lij
x′ȟij(x

′, x) = −δ
D−1(x′ − x)
√
q

. (3.60)

These Green’s functions are highly non-unique, corresponding to the non-uniqueness of

the perturbative classical solutions. Explicit examples of this nonuniqueness in dress-

ings have been described for perturbations about a flat background [29]. Examples

there include explicit expressions describing either line-like or Coulomb-like gravitational

fields [29], and generalize to a broad class of instantaneous configurations of the field.

This nonuniqueness extends here to more general backgrounds, and again corresponds to

differences by homogeneous solutions, corresponding to source-free gravitational waves.13

With such a Green function, the commutator with the constraint C̃n is easily seen to give

[C̃n(x), V n(x′)] = iδD−1(x′ − x) +O(κ) . (3.61)

As a consequence, using the expression (3.58) and assuming the Vi term doesn’t contribute

(see below),

[C̃n(x), O] = 0 +O(κ) , (3.62)

with the commutator of the leading-order term from (T + t̆) in C̃n being cancelled by the

term arising from (3.61).14

To solve the momentum constraint (3.55), we consider dressing functions of the gen-

13This also means, as also described in [32, 33, 99] that soft charges are largely decorrelated with
the quantum state of matter in a region. For the most part they depend on the arbitrary choice of
gravitational dressing (which may be specified e.g. through imposition of boundary conditions), with
the only necessary correlation through the total Poincaré charges of the matter state.

14Note that the leading order (in κ) transformation of the metric perturbations leads to terms that
cancel the leading non-invariance of the operator O0 in (3.58). Higher-order terms in the transformation
of the metric perturbation then contribute to the O(κ) terms here.
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eral form

V i(x) = κ

∫
dD−1x′Gijk(x′, x)hjk(x

′) , (3.63)

and seek a solution of the equation

[C̃i(x), V j(x′)] = iδji δ
D−1(x′ − x) +O(κ) . (3.64)

From the canonical commutators (3.38), we find this holds if

2qijDkG
ljk(x, x′) = δliδ

D−1(x− x′) . (3.65)

In a flat background, solutions are given by [99]

V i(x) =

∫
dD−1x′ȟjk(x′, x)γijk . (3.66)

In more general backgrounds, the solutions are seen to correspond to Green functions

for the equations for linearized metric perturbations, (3.54), (3.55), and therefore should

exist once boundary conditions are specified to fix a specific solution. One can also easily

check that

[C̃n(x), V i(x′)] = O(κ) , [C̃j(x), V n(x′)] = O(κ) . (3.67)

Then, given the commutators (3.61), (3.64), (3.67), we find that the constraints have

been solved to leading nontrivial order in κ by the dressed operators (3.58),

[C̃µ(x), O] = 0 +O(κ) . (3.68)
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3.4.2 P ij ̸= 0

Once one sees this structure, it is apparent how one can generalize to the case of

background P ij ̸= 0. We now define

V n(x) =
κ

2

∫
dD−1x′

[
ȟij(x

′, x)pij(x′)− p̌ij(x′, x)hij(x′)
]

(3.69)

and

V i(x) = κ

∫
dD−1x′

[
Gijk(x′, x)hjk(x

′) +H i
jk(x

′, x)pjk(x′)
]

(3.70)

where ȟij, p̌
ij, Gijk, and H i

jk are c-number functions. Then, the hamiltonian constraint

gives

[C̃n(x), V n(x′)] = −i√q
(
Lij − P ij

)
ȟij(x, x

′)− iKij p̌
ij(x, x′) +O(κ) ; (3.71)

requiring this commutator to be of the form (3.61) then gives

(
Lij − P ij

)
ȟij(x, x

′) +
Kij√
q
p̌ij(x, x′) = −δ

D−1(x− x′)
√
q

. (3.72)

Leading order vanishing of the commutator of V n with the momentum constraint likewise

gives

Dj p̌
j
i (x, x

′) +Qjk
i ȟjk(x, x

′) = 0 . (3.73)

This generalizes the above Green function problem, and so should again have solutions

for ȟij and p̌ij by the relation to the classical problem of finding linearized solutions on

the background.

Requiring the correct leading order commutators of the constraints with V i(x), (3.64)
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and (3.67), likewise gives the equations

2qikDlG
jkl(x, x′)− 2Qkl

i H
j
kl(x, x

′) = δji δ
D−1(x− x′) (3.74)

and (
Ljk − Pjk

)
H i

jk(x, x
′)− Kjk√

q
Gijk(x, x′) = 0 , (3.75)

which again corresponds to a Green function problem for linearized perturbations. Once

ȟij, p̌
ij, Gijk, and H i

jk have been determined by solving these equations, together with

specification of the homogenous part of the solution e.g. through boundary conditions,

then (3.69) and (3.70), together with (3.58), give the dressed operator O to leading

nontrivial order in κ.

Significant features of the role of gauge invariance can be seen from the leading order

in κ construction of the dressed operators (3.58) given here. For example, the dressing

modifies the commutators from those of the underlying LQFT operators O0, such that

operators associated with spacelike-separated regions generically no longer commute;

examples can be given extending the discussion of [29]. Of course, to further understand

the role and structure of the constraints and dressing, one would like to go beyond to

higher orders in κ. One does expect further difficulties here, in particular associated

to infinities and the need to regulate operators. We will leave further discussion of

higher orders for future work, but will discuss some general features that already become

apparent with these leading-order results.
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3.5 Description of evolution

3.5.1 General structure

It is important to understand the general structure of evolution in quantum grav-

ity, given the constraints of gauge invariance. The leading-order construction of gauge

invariant operators, and the more general structure of the hamiltonian and constraints,

already appear to provide significant guidance to this structure.

In particular, we have given a leading-order construction of gauge invariant observ-

ables O, commuting with the constraints (3.32). These then lead to states that evolve

via the hamiltonian (3.24) of quantized general relativity, e.g. of the form

|ψ⟩ = O|0⟩ . (3.76)

One can alternately construct dressed states directly from undressed states,

|ψ⟩ = ei
∫
dD−1x

√
qV µ(x)(Tnµ+t̆nµ)|ψ0⟩ . (3.77)

As a simple example, one could begin with the basic scalar field operator, O0 = ϕ(x), and

then construct the corresponding dressed operator O, given to leading order by (3.58),

or equivalently [29] by Φ(x) = ϕ(xµ + V µ(x)). The resulting operator can be thought

of as creating from the vacuum a quantum of the field ϕ, together with its correspond-

ing gravitational field. As we have emphasized, the gravitational part of the operator

is non-unique, corresponding to the fact that there are different possible gravitational

field configurations dressing the particle, differing at leading order by free gravitational

excitations.

Evolution can be thought of in two ways, related through the two expressions for
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the hamiltonian (3.24). Since the rightmost expression there is of the standard form

of a LQFT hamiltonian, it determines evolution of the state by telling us how the ϕ

and gravitational parts of the state evolve like standard quantum fields. This evolution

is of course gauge dependent, through its dependence on N and N i. We expect it to

correspond to the quantum evolution of the matter state created by O, together with the

quantum gravitational field created by the gravitational piece of the operator.

Or, one can describe evolution in terms of the middle expression in (3.24) which is

written in terms of the constraints. The boundary hamiltonian H∂ contributes to the

time dependence of the state, because the gravitational dressing generically extends into

the asymptotic region [30, 31]. One might have anticipated that the constraints Cµ(x)

annihilate the state, so that this is the only time dependence. This would incorporate the

statement that the state “satisfies the Wheeler-DeWitt equation,” since the constraint

Cn(x) corresponds to the Wheeler-DeWitt operator. However, we have found that this

would be inconsistent with the basic commutators and in particular with evolution such

as described by the Heisenberg equations (3.27), (3.28). Instead the state is annihilated

by “half” of the constraints (and of the Wheeler-DeWitt operator), (3.31). This implies

that the constraint terms in (3.24) also contribute to gauge-dependent evolution of the

state, though as we have argued above not to evolution of matrix elements of gauge-

invariant operators. Alternately, transition amplitudes of the form

⟨ψ′|e−iHt|ψ⟩ (3.78)

will also exhibit time dependence.
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3.5.2 Bubble evolution, cosmology, and field-relational observ-

ables

This raises the question of the description of evolution on slices that coincide at

infinity, but not in a region in the interior of spacetime, so that the asymptotic lapse and

shift vanish, implying H∂ = 0. Then, the full hamiltonian commutes with the gauge-

invariant operators O. This suggests that their evolution is trivial in such “bubble”

evolution [127, 128]. This is also the case for closed cosmologies, with no boundary

term. In both of these cases the hamiltonian is typically explicitly time-dependent, with

additional subtleties [23, 44, 45, 24, 46]. Once again, we can anticipate that the physical

states are annihilated by “half” of the constraints. An alternate way to then describe

evolution is in terms of a different kind of relational observable that is not gravitationally

dressed; an example of such a field-relational observable is

∫
dDx

√
|g|O0(x)f(Z

I(x)) (3.79)

where ZI are D dynamical “locator” fields and f(ZI) is chosen so that in a particular

state for these fields its support is localized near a particular point. An example is using

the value of the inflaton field in inflation to localize in time to the reheating time; for

further discussion (including of limitations to localization) see [129]. We leave further

exploration of such evolution for future work.

3.5.3 Other specific examples

Beyond a flat space background, it is of interest to better understand gravitational

evolution in other backgrounds such as those of black holes, AdS, or black holes in AdS.
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The static cases can be subsumed in the line element

ds2 = −f(r)dx+2 + 2dx+dr + r2dΩ2 (3.80)

where

f(r) = 1 +
r2

R2
Λ

−
(
R0

r

)D−3

, (3.81)

RΛ is the AdS radius, and

RD−3
0 =

16πGDM

(D − 2)AD−2

(3.82)

with AD−2 the area of the unit sphere. Then, introducing a stationary slicing (3.56) given

by a slice function S(r) yields the ADM background solution [19]

N2 =
1

S ′(2− fS ′)
, Nr = 1− fS ′ , qrr = S ′(2− fS ′) , (3.83)

and with angular components the standard round metric of radius r.

Evolution may then be described perturbatively about this solution, using the pre-

ceding general construction. Specifically, we may consider a dressed state (3.76) on a

slice taken to be an initial slice. The evolution of this state can be described via either

of the forms of the hamiltonian (3.24). The latter form in particular gives a standard

description of field evolution, and so evolves the matter perturbation together with the

perturbative gravitational field corresponding to its dressing in standard field theory

fashion.15

In this way, one for example finds a perturbative expression for the bulk hamiltonian

for an AdS black hole to leading order in κ, or in the language of the AdS/CFT corre-

spondence, in 1/N , also making connection with the discussion in [34] of this approach

15While Lorentzian evolution for black holes has been considered previously, see e.g. [130], the treat-
ment outlined here extends to more general slicings than Schwarzschild, and including the black hole
interior.
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to defining such a hamiltonian. Alternately, by virtue of the constraints, the hamiltonian

is related to a boundary hamiltonian as in (3.24). We defer more detailed investigation

of this evolution to future work.

3.6 Conclusion and directions

In conclusion, we have shown that, starting from an ADM parameterization of the

geometry and the corresponding construction of the hamiltonian, leading order pertur-

bative gravitational states may be constructed and their evolution described. The states

and evolution have a gauge symmetry, generated by the constraints, and perturbative

solution of the constraints to construct gauge-invariant operators and states can be ac-

complished by gravitational dressing operators of an underlying field theory. Such a

construction has been found to leading perturbative order about a general background,

in terms of certain generalized Green functions of the given background, generalizing

earlier constructions in a flat background [80][29][30, 32][82][33, 99]. The resulting gravi-

tational part of the state is not uniquely determined, since it can be changed by addition

of a piece corresponding to an arbitrary source-free propagating gravitational wave. The

state gotten by acting with such a dressed operator on a vacuum state is then evolved by

the hamiltonian, which may be described as a standard local QFT hamiltonian including

the spin-two perturbative gravitational field, or alternately may be written in terms of a

boundary hamiltonian, up to terms proportional to the constraints.

There are multiple directions for further work. Within the framework of local QFT,

as noted above, we would like to better understand bubble evolution, on slices that match

at infinity, and the related description of cosmological evolution, and the connection to

other field-relational observables that are more useful in that context. There are also

related issues that occur when the background slicing has an explicit time dependence
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[23, 44, 45, 24, 46], which deserve to be more closely investigated. It also seems useful

to have a more complete description of the evolving perturbative state of black holes,

whether or not in AdS, e.g. generalizing [34] to include gravitational dynamics. And,

the problem of solving the constraints connects directly to a leading argument for the

origin of holography [93, 94, 95, 96], which is important to better understand. This also

connects to the question of in what sense information can be localized in a gravitational

theory, either because of the argued existence [93, 94] of a holographic map, or a similar

argument [32] that states internal to AdS may be observed by boundary observables,

if the constraints are solved.16 This connects directly to the question of the extent to

which subsystems may be defined [81, 82, 36, 131] in gravitational theories, whether

exactly or approximately. We note that a perturbative description of the evolution like

we have outlined is consistent with the perturbative solution of the constraints, and

appears to describe a black hole with a growing number of internal states entangled

with the exterior, and corresponding missing information if the black hole disappears at

the end of evolution. Thus, while the perturbative solution of the constraints via the

dressing does appear to provide some additional sensitivity to the black hole state, it

does not appear to resolve the unitarity problem, in contrast to recent claims [92], and in

particular does not obviously provide a mechanism for transfer of information from the

black hole.

In clarifying these issues, understanding better the structure of higher-order solution

to the constraints seems important (and it seems important to clarify the challenges to

finding higher-order solutions). We would also like to better understand the structure

of the algebras associated to dressed observables. It can be observed that the leading-

order perturbative dressed observables, (3.58) and related expressions in [33], have similar

16Such information has even been argued to be accessible perturbatively [92], although only if one can
measure exponentially small quantities [36].
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structure to the observables in the crossed-product construction, argued [67][87] to con-

vert type III von Neuman algebras into type II. Of course, the noncommutativity of

perturbative observables associated with different regions [80, 29], due to the dressing,

appears to be a likewise important modification of the underlying field theory structure;

further investigation of these questions is in progress.

The modification of local algebras in gravity illustrate the general statement that

locality is remarkably subtle in theories with structures like gauge symmetries. In QED

or standard nonabelian gauge theories, observables found by dressing underlying matter

operators are generically nonlocal, as with the gravitationally dressed operators discussed

above. Put differently, the problem of solving the constraints is generically a nonlocal

one, with a nonlocal solution. However, in gauge theories based on an internal group,

locality is still realized since there also exist gauge-invariant operators that are local, such

as Wilson loops or other neutral observables confined to a neighborhood. In gravity, the

gauge symmetry is that of transformations including Poincaré symmetries; any local ob-

servable thus carries nontrivial charge, and so is nonlocal when its gravitational dressing

is included [30]. In short, gauge theories with an internal symmetry appear to be barely

local, but it is less clear what locality properties quantum gravity has.

There are also important directions that appear to go beyond the framework of local

QFT. For one thing, if we consider evolution of a black hole, like that described in 3.5.3,

that appears to lead to the breakdown of unitarity, also noted above, associated with

the “black hole information paradox” or “unitarity crisis.” This can be encapsulated in a

“black hole theorem[73]”: unitary evolution, and the statements that black holes behave

like subsystems, that field configurations outside them evolve independently of the black

hole internal state, and that they disappear at the end of their evolution, are inconsistent.

We expect modification of both the structure of the Hilbert space and the hamiltonian

as compared to those given by quantization of GR like that we have described. In
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a more complete description, we expect that the fundamental quantum variables are

likely not those of fields moving on a background metric, with states labelled such as

|qij(·), ϕ(·)⟩, but that these variables only give an approximate description of the states.

An important question is what is the more accurate and complete description of the

variables parameterizing the wavefunction. This, then, closely relates to the question of

what are the fundamental observables, and the ultimate form of the hamiltonian and its

interactions, as well as the symmetries of the theory.

If in a more complete description of the Hilbert space black holes still effectively

behave as subsystems, the “black hole theorem” tells us that unitarity apparently re-

quires interactions that go beyond the quantized GR/local QFT description, and specif-

ically such that the evolution of the black hole exterior depends on the black hole in-

ternal state. An approach to parameterizing such interactions has been developed in

[59, 60, 61][19, 62]. The present work serves as an even firmer foundation on which to

describe their parameterization, if they can be regarded as corrections to the evolution

governed by local QFT plus quantized GR. In short, one can describe corrections ∆H

to the hamiltonian of (3.24), constrain their properties, and investigate their possible

observational effects for example in electromagnetic or gravitational wave observations

of the near-horizon regime [62]. The contributions to ∆H are plausibly small both far

from the black hole and even in the near horizon region, but of course are expected not

to be small in the deep black hole interior. More systematic analysis is planned for future

work.

It is believed in a large segment of the quantum gravity community that a fundamental

description like this may arise from a dual large-N gauge theory; if this is true, it is

important to understand and characterize the departures from the bulk LQFT description

that this implies, for example as corrections to the hamiltonian (3.24). But, it seems

quite likely that the more fundamental description arises in connection with some other
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mathematical structure on Hilbert space [81, 82], which it is our goal to infer and further

describe.
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Conclusion

This thesis explored quantum evolution in the BH setting and also in arbitrary back-

grounds. By carefully studying the current standard description of QG, particularly in

the semiclassical approximation, we can gain a better understanding of the underlying

theory. Though this work does not directly address the question of restoring unitarity, a

more complete examination could lead to clues about its modification. The Schrödinger

picture of evolution, rather than the usual covariant approach, was used to make deeper

connections with ordinary quantum mechanics. The ADM decomposition is complemen-

tary to the Schrödinger picture, and allows one to define the Hamiltonian of the system

and consider the Hamiltonian dynamics.

In the Schrödinger picture, Hawking radiation was derived using the ADM decompo-

sition. Building off of work done in the two dimensional setting, Hawking radiation was

described in terms of both energy eigenmodes and arbitrary regular coordinates. This is

achieved by introducing a foliation of “nice slices,” which smoothly cross the BH horizon.

These foliations still respect the time translation symmetry in the Schwarzschild space-

time, but remove the coordinate singularity at the event horizon. In each of these cases,

the Hamiltonians which govern evolution of the system were found, and for the regular
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modes, the Hamiltonian is also regular everywhere.

Each Hamiltonian was used to define the “Hawking State,” or the state described

by the evolution of the the vacuum and matter outside the horizon. The first of these

Hamiltonians corresponding to energy eigenmodes clearly shows the entanglement struc-

ture of the Hawking pairs produced in the vicinity of the horizon. The analysis of the

Hawking state in regular coordinates indicates that the transplanckian modes are not

the main contribution to the Hawking radiation, and are suppressed in favor of modes

generated in an atmosphere of horizon length outside of the BH. The analysis is briefly

repeated for the case of an AdS Schwarzschild BH.

The perturbative expansion of the Hamiltonian through the constraints was also

explored. Gauge-invariant canonical quantization was introduced, which splits the con-

straints into positive and negative frequency parts. Having the vacuum be annihilated by

the full constraints creates trivial evolution by the Heisenberg equation of motion, so the

vacuum is annihilated by half the constraints. The constraint equations were expanded

to second order in κ, in an arbitrary background spacetime with a scalar field.

Gravitationally dressed operators were discussed, which are built from the operators

from local QFT. Suitable observables in such a system are gauge invariant, since gravity

is a gauge theory, so operators that are gravitationally dressed must commute with the

constraints. With the perturbative expansion of the constraints and operators, we found

dressing functions which satisfy these equations. These are highly nonunique Green’s

functions, as in the previous cases in flat space, which satisfy the appropriate boundary

conditions.

The study of QG in the Schrödinger picture could lead to a better description of the

full theory. The Schrödinger picture more naturally follows the structure from quantum

mechanics, so developing a version of QG in this approach as opposed to the Heisenberg

picture is worthwhile. The role of the transplanckian modes, long a contentious point in
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the discussion of Hawking radiation, has been settled in all dimensions. Hawking radi-

ation is produced in an atmosphere around the BH extending approximately a distance

R outside of it. Furthermore, this work discussed the picture in AdS spacetimes, which

has implications for AdS/CFT correspondence.

The construction of gauge invariant observables through gravitationally dressed oper-

ators also has implications for QG. This work extended the expansion of the constraints

from flat backgrounds to discussions about a general background, but there are a number

of other generalizations that can be calculated. The constraint equations, as well as the

construction of the gravitational dressing, can be expanded to higher order in κ, to give

more terms in the perturbative solutions for gravitationally dressed observables. Also,

for both Hawking radiation and dressed observables, the analysis could be repeated with

other types of fields.

There are several more outstanding questions and directions to go for new research

relating to these topics discussed in the thesis. In the case of Hawking radiation, we con-

sidered mostly static spacetimes and eternal black holes, with some discussion of collapse.

In reality, BHs are astrophysical objects formed through collapse in highly dynamical

systems. There are many questions regarding dynamical evolution in the Schrödinger

picture, in particular defining and finding the unitary operator that governs evolution in

each of the previous sections. This operator was shown to exist as early as 1975 [132], but

an explicit construction involves using the extended phase space [24]. The problems are

wider than just defining an operator appropriate time-dependent gravitational collapse,

as this unitary operator also describes the Schrödinger picture for expanding cosmological

spacetimes.

Another direction would be defining an explicit parameterization of regular modes

which extend across the horizon in the first paper mentioned. This has been done in

the D = 2 dimensional case, which is simpler as there is the total absence of a potential
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in the equation describing the modes. In the higher dimensional case, it is easy to de-

fine incoming modes which are regular at the horizon, but modes which span the space

of Hawking partners will involve highly non-trivial coordinates, rather than a simple

transformation which respects the time translation symmetry. Though Kruskal coordi-

nates are regular at the horizon, the modes are not orthogonal there, so a novel set of

coordinates must be found.

Additionally, further work could explore the inclusion of nonlocal interactions to

unitarize BH evolution. These interactions are expected to be small and characterized by

perturbative corrections outside the BH, but could be larger for inside the BH, especially

near the singularity. In the context of AdS/CFT correspondence, this could be extended

from the point of view of the CFT, the study of which could indicate what terms must be

added on the gravitational side. Such interactions between the BH and its surroundings

that unitarize the evolution could be examined from either perspective.
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Appendix A

Radial Equation and Heun Function

for D=4

A more detailed picture of energy eigenmodes can be gained by further examining the

equation of motion either in the form of (2.35) or (2.41). We will focus our discussion

on the case of Eddington–Finkelstein coordinates, equation (2.35), to connect to the

analysis in Sec. 2.4. The Schwarzschild coordinate solutions of (2.41) will be related by

the transformation (2.40) to the solutions described in this appendix.

The ansatz u(x+, r) = re−iωx+
y(r) can be used to rewrite the differential equation

(2.35) as

y′′ + p0(r)y
′ + p1(r)y = 0 , (A.1)

where the prime denotes derivatives with respect to r,

p0(r) =
−2iωrD−2 + 2rD−3 + (D − 5)RD−3

r(rD−3 −RD−3)
, (A.2)
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and

p1(r) =
1

r2(rD−3 −RD−3)

(
− 2iωrD−2 − [l(l +D − 3) + (D − 2)(D − 4)/4] rD−3

+
[
(D − 3)− (D/2− 1)2

]
RD−3

)
. (A.3)

It can be seen that in arbitrary dimension the differential equation has regular singular

points at 0 and Re2πin/(D−3) for integers n = 0, 1, ..., D−4, and an irregular singular point

at infinity. The solutions of (A.1) are unknown in arbitrary dimension, but by defining

a rescaled spatial variable x = r/R, the D = 4 equation can be rewritten as

y′′ +
(1
x
+

1− 2iωR

x− 1
− 2iωR

)
y′ +

(−2iωRx− l(l + 1)

x(x− 1)

)
y = 0 , (A.4)

which is the confluent Heun equation;1 the case of general D thus represents a general-

ization of the confluent Heun equation. A standard form for the confluent Heun equation

is

y′′ +
(γ
z
+

δ

z − 1
+ ϵ

)
y′ +

( αz − q
z(z − 1)

)
y = 0 , (A.5)

and we denote the solutions to (A.5) that satisfy the regularity condition y = 1 at the

singular point z = 0 as as HC[q, α, γ, δ, ϵ, z]. This confluent Heun function is implemented

in Mathematica as HeunC, with parameters as in (A.5).

The incoming and outgoing modes of interest can be specified by their behavior in the

vicinity of the horizon. The three solutions used to define the basis outlined in Sec. 2.4

are found as follows. First, we let x = 1− z in (A.4), and compare the resulting equation

to (A.5); this gives the solution ũωl regular at the horizon. For the up modes, we then

substitute y → (−z)2iωRy into the resulting equation, which gives the confluent Heun

equation with different coefficients. The inside mode is found in the same fashion. This

1Some references discussing this equation and its relevance to BHs are [133, 134, 135, 136].
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results in the the following explicit solutions.

• ũωl = rHC[l(l + 1) + 2iωR, 2iωR,−2iωR + 1, 1, 2iωR, 1 − r/R] is the incoming

mode, which is regular at the horizon. From (2.40), one sees that the corresponding

function gωl is not regular.

• uωl = r(r/R−1)2iωR HC[l(l+1)−4ω2R2, 2iωR−4ω2R2, 2iωR+1, 1, 2iωR, 1−r/R]

is the up mode solution, which is not regular at the horizon, and gives the outgoing

Hawking mode.

• û∗ωl = r(1−r/R)2iωR HC[l(l+1)−4ω2R2, 2iωR−4ω2R2, 2iωR+1, 1, 2iωR, 1−r/R]

is the inside mode solution. It is also not regular at the horizon, and corresponds

to the internally trapped Hawking partner mode. It is defined inside the horizon,

for 0 < r/R < 1.

The analysis in Sec. 2.4 uses the asymptotic behavior e−iωx+
in the far past of the incoming

solution near infinity, and e−iωx−
of the outgoing solution near the horizon, as well as

e−iωx̂−
of the corresponding partner inside the horizon.
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Kruskal coordinates and Rindler

region

While the coordinates (x+, r) are useful for exhibiting the time translation symmetry,

Kruskal coordinates X± are useful for exhibiting the Minkowski-like structure of the

near-horizon Rindler region. Since the time translation symmetry becomes a scaling

(boost) symmetry in these coordinates, this symmetry becomes less transparent in the

equations of motion in these coordinates. In this appendix, we collect some basic results

on this Kruskal description, in the example of D = 4.

As was described in the main text, the Kruskal coordinates are related to the

Eddington–Finkelstein coordinates by

X± = ±2Re±x±/2R , (B.1)

with a continuation across the horizon in terms of x̂− such that the vacuum metric, given

in (2.64), is regular at the horizon. In the Rindler region |r−R| ≪ R, or |X+X−| ≪ R2,

the metric is well approximated as that ofM2×S2, as seen in (2.65), with local Minkowski
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spacetime coordinates defined byX± = T±X. The radial coordinate is related to Kruskal

coordinates by

X+X− = 4R2
(
1− r

R

)
er/R−1 , (B.2)

or

r

R
= 1 +W0

(
−X

+X−

4R2

)
, (B.3)

with W0 the Lambert W function, showing that the boundary of the Rindler region is

time-dependent in the local Minkowski coordinates.

The equation of motion may also be studied in these coordinates, and for a mode

with definite angular momentum

ϕlm = ul
Ylm(Ω)

rD/2−1
(B.4)

becomes

∂X+∂X−ul = −
1

4

R

r
e−r/R+1Vl(r)ul (B.5)

with Vl(r) given by (2.37) together with (B.3). Notice that as a result of the latter

equation, the effective potential is time-dependent in the locally Minkowski coordinates.

While the general form of solutions appears less transparent in these coordinates, the

solutions do simplify when restricted to the Rindler region. In this region, (B.5) becomes

the 2d massive wave equation,

4∂X+∂X−ul = −m2
l ul , (B.6)

with effective mass term

m2
l =

l(l + 1) + 1

R2
. (B.7)

92



Kruskal coordinates and Rindler region Chapter B

This has a basis of solutions (see (2.66))

ukl = eikX−iωkT , ũkl = e−ikX−iωkT (B.8)

with ω2
k = k2 + m2

l . These are neither purely outgoing or ingoing, but do become

purely outgoing or ingoing, respectively, in the large k limit. One may also compare

the equations and solutions in the Eddington–Finkelstein coordinates; from (B.1), the

equation (B.5) becomes

∂x+∂x−ul = −
1

4

(
1− R

r

)
Vl(r)ul , (B.9)

and likewise inside the horizon, in terms of x̂−. In the Rindler region, the effective

potential in these coordinates vanishes, resulting in solutions of the form e−iωx±
.

Comparing these descriptions provides another way to compute the Bogolubov coeffi-

cients, in this high momentum, near horizon limit. The approximate solutions (B.8) are

related to the energy eigenmodes (2.44) by

uω =

∫
dk

(
α+
ωkuk + α−

ωku
∗
k

)
, (B.10)

where the spherical indices have been suppressed to simplify the notation. The Bogolubov

coefficients can be calculated by performing the Fourier transform in the usual way

α+
ωk =

1

4πk
(uk, uω) =

i

4πk

∫
dX−(u∗k∂X−uω − ∂X−u∗kuω

)
, (B.11)

where it is useful to take the inner product on a null surface with coordinate X−. Simi-
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larly, the other coefficient is α−
ωk = −(u∗k, uω)/(4πk). The resulting integrals are

α+
ωk =

1

2πik

(
1

2ikR

)2iωR

Γ(1 + 2iωR) ,

α−
ωk = −

1

2πik

(
1

−2ikR

)2iωR

Γ(1 + 2iωR) . (B.12)

This is of the same form as Hawking’s result from [2], modulo conventions.
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Appendix C

Gauge-invariant canonical

quantization of electromagnetism

This appendix will illustrate aspects of the quantization of a gauge-invariant theory in

the simpler context of QED, with particular focus on the “gauge-invariant canonical

quantization” used for gravity in the main text.

The starting point is the gauge-invariant lagrangian

L = −1

4
FµνF

µν + Lm , (C.1)

with Fµν = ∂µAν − ∂νAµ and Lm a matter lagrangian, for example that coupling to a

fermion field,

Lm = iψ̄(∂µ + ieAµ)γ
µψ −mψ̄ψ . (C.2)

The momentum conjugate to A is

πµ =
∂L
∂Ȧµ

= −F 0µ . (C.3)
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As a result π0 = 0. This can be implemented working with a reduced phase space, where

A0 is no longer treated as a canonical variable.1 Spatial components of the momenta are

the electric field,

πi = ∂0A
i + ∂iA0 = −Ei . (C.4)

Then the hamiltonian form of the Maxwell part of the action (C.1) becomes

S =

∫
d4x

(
πiȦi −H

)
, (C.5)

with Maxwell hamiltonian

H =

∫
d3xH =

∫
d3x

(
Ei2

2
+
Bi2

2
+ Ei∂iA0

)
(C.6)

and Bi = ϵijkF
jk/2. A constraint arises from varying A0, which behaves like a Lagrange

multiplier, giving

∂iE
i = j0 (C.7)

where we have included the contribution from the matter current. A0 remains unfixed,

and is taken to be arbitrary.

As described in the main text, there are different options for how to treat quantization:

Dirac, covariant gauge “fixing” (breaking), BRST, refined algebraic, and what we will

call gauge invariant canonical quantization, and examine here. The starting point for

this is the canonical commutators,

[πi(x, t), Aj(x
′, t)] = −[Ei(x, t), Aj(x

′, t)] = −iδijδ3(x− x′) , (C.8)

1For certain gauges, additional care is needed here; an example is axial gauge, Az = 0, as is further
explored in e.g. [29].
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Then, the constraint (C.7) generates the gauge transformations,

[∂iE
i(x), Aj(x

′)] = i∂jδ
3(x− x′) . (C.9)

A0 remains an arbitrary c-number function, which also behaves like a gauge parameter;

the condition π0 = 0 is implemented through independence of physical quantities on A0.

Eq. (C.9) also shows that vanishing of the constraint (e.g. consider j0 = 0) on the Hilbert

space would imply ⟨0|[∂iEi, Aj]|0⟩ = 0 and be incompatible with the basic commutators,

unless commutators are modified as in the Dirac approach.

The canonical commutation relations (C.8) can be represented in the usual fashion

in terms of orthonormal polarization vectors ϵiλ(k) and annihilation/creation operators

akλ/a
†
kλ as

Ai(x, 0) =
∑
λ

∫
d̃k

[
ϵiλ(k)akλe

ikx + h.c.
]
+ ai(x)

Ei(x, 0) =
∑
λ

∫
d̃k

[
ikϵiλ(k)akλe

ikx + h.c.
]
, (C.10)

with

[akλ, a
†
k′λ′ ] = (2π)32|k|δλλ′δ3(k − k′) , (C.11)

d̃k = d3k/(2π)32|k|, and ai(x) a c-number function arising from gauge invariance. General

states can be constructed in the form
∏
(a†κλ)|0⟩. However, the constraints (focussing on

the free theory) are implemented as a physical state condition

∂iE
i+|ψ⟩ = 0 (C.12)

in terms of the annihilation piece of ∂iE
i, corresponding to a3k|ψ⟩ = 0 in a standard

choice of basis.
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Evolution can be studied in Schrödinger or Heisenberg pictures. In the former, the

evolution with H,

i∂t|ψ⟩ = H|ψ⟩ , (C.13)

depends on the arbitrary A0; for A0 of compact support this results in a gauge-dependent

piece of the evolution of the state,

δA0 |ψ⟩ = iδt

∫
d3x∂iE

i−(x)A0(x) |ψ⟩ . (C.14)

However, this piece is orthogonal to another physical state |ψ′⟩, by (C.12). Moreover,

consider evolution of the matrix element of an operator depending on the canonical

variables Ei, Ai, but not on A0,

∂t⟨ψ′|O|ψ⟩ = i⟨ψ′|[H,O]|ψ⟩ . (C.15)

Gauge invariance of O also requires [∂iE
i, O] = 0, and in that case only the gauge-

invariant (A0 independent) part of H contributes to the evolution (C.15): evolution

of matrix elements of such gauge-invariant operators is gauge invariant. In contrast,

∂t⟨ψ′|Ai|ψ⟩ is not gauge invariant.

Equivalently, evolution can likewise be described by converting to Heisenberg picture.

The Heisenberg equations are

∂tEi = i[H,Ei] = ∇×Bi − ji , (C.16)

and

∂tAi = i[H,Ai] = −Ei + ∂iA0 (C.17)

These are supplemented by the constraint (C.7), which as we have seen is not treated as
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an operator equation on physical states. From these equations we find that the evolution

∂tEi and also ∂tBi are independent of the arbitrary gauge parameter A0. We can likewise

consider gauge invariant operators built by dressing matter operators, and their evolution

is also gauge-independent.
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Appendix D

Gauge Transformations and

diffeomorphisms

This appendix will discuss the role of the constraints in generating gauge transforma-

tions, in the canonical formalism used in the main text. For simplicity we will consider

gravity coupled to the scalar field with lagrangian (3.2), which is also treated classically

in [102]. Canonical data for the scalar field is the field ϕ and its canonical conjugate

momentum Π. For the geometry, the phase space variables are D−1-dimensional spatial

metric qij and the conjugate momentum P ij, as well as the lapse and shift N , N i, and

their conjugate momenta. However, the latter momenta vanish for the Einstein action,

analogously to the vanishing of π0 in QED (see preceding appendix). As a result, one can

commonly work on a reduced phase space where they are set to zero and where N and N i

are no longer treated as canonical variables, like with the electromagnetic case.1 We will

1For further discussion of this see for example [109] or [110]. Note that as with QED, additional care
is needed when imposing certain gauges, such as “axial” or Fefferman-Graham gauges, hzµ = 0.
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then study the transformation generated by the general superposition of the constraints

C[ξ, ξi] =

∫
dD−1x

(
ξCn + ξiCi

)
, (4.1)

acting on the reduced phase space. The explicit form of the constraints Cn, Ci was given

in eqs. (3.39), (3.40).

We begin by considering the action on matter.2 The canonical commutators are

[ϕ(x),Π(x′)] = iδD−1(x− x′) , (4.2)

where Π is the densitized canonical momentum, satisfying

Π =
√
q∂nϕ . (4.3)

These commutators and the explicit form (3.39), (3.40) of the constraints give the com-

mutator

i[C[ξ, ξi], ϕ] = ξ
Π
√
q
+ ξi∂iϕ . (4.4)

The second term is the action of a spatial diffeomorphism on ϕ. If we also use the

Heisenberg equation of motion (4.3), we find that the full commutator becomes the Lie

derivative with respect to the vector ξµ with components

ξµ = (ξ, ξi) ; (4.5)

explicitly

i[C[ξ, ξi], ϕ] = £ξµϕ + ξ

(
Π
√
q
− ∂nϕ

)
, (4.6)

2For recent treatment of canonical quantization of matter on a general background, see [34].
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and so the transformation generated by C[ξ, ξi] can be identified as a general diffeomor-

phism for configurations satisfying the equations of motion.

One can likewise compute the commutator of the constraints with Π, which gives

i[C[ξ, ξi],Π] = ∂i(ξq
ij√q∂jϕ) + ∂i(ξ

iΠ) (4.7)

= ∂µ(ξn
µΠ) + ∂i(ξ

iΠ) + ∂µ (ξ
√
qgµν∂νϕ) + ∂µ[ξn

µ(
√
q∂nϕ− Π)] (4.8)

Once again the second term gives a spatial diffeomorphism. If in addition ξ is identified

with the lapse N , and the scalar field equations are satisfied, C[ξ, ξi] also generates the

action of a diffeomorphism, £ξµΠ. In the case where ξi is also taken to be the shift,

eqs. (4.6), (4.7) also give the time derivative defined via (3.4).

The transformations of the spatial metric qij and the conjugate momentum P ij are

similar in structure to those of the matter fields: using the canonical commutation relation

(3.25) and the equations of motion, C[ξ, ξi] generates diffeomorphisms. Beginning with

the commutator of the metric, this results in an expression analogous to (4.4),

i[C[ξ, ξi], qkl] =
κ2
√
q
ξ

(
Pkl −

Pqkl
D − 2

)
+Dkξl +Dlξk (4.9)

= −2ξKkl +Dkξl +Dlξk + ξ

[
2Kkl +

κ2
√
q

(
Pkl −

Pqkl
D − 2

)]
. (4.10)

The terms involving ξi once again correspond to a spatial diffeomorphism. The last term,

when set to zero, is the trace reverse of the relation of the conjugate momentum (3.14)

to the extrinsic curvature, which is a Heisenberg equation of motion in the canonical

description. If this equation is satisfied, the RHS of (4.10) is equal to

£ξµqkl = ∇kξl +∇lξk , (4.11)
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with the Lie derivative defined by using the D-dimensional expression qµν = gµν + nµnν

for the spatial metric. This is the expected gauge transformation. If the vector ξµ is taken

to be the time evolution vector (3.4), the equation (4.9) gives the equation of motion for

qij, and can be solved for the expression for the extrinsic curvature (3.7) given in the

main text.

Finally, for the ADM conjugate momentum, the commutator with the constraints

gives

i[C[ξ, ξi], P kl] =
2
√
q

κ2
(DkDlξ − qklD2ξ)−

2
√
q

κ2
ξ
(
Rkl

q − qkl
Rq

2

)
− κ2

2
√
q
ξ

[
2P kiP l

i − 2
P klP

D − 2
− 1

2
qkl

(
P ijPij −

P 2

D − 2

)]
+

√
q

2
ξSkl

+ ∂i(ξ
iP kl)− P ik∂iξ

l − P il∂iξ
k , (4.12)

where the tensor Sµν = qλµq
σ
νTλσ[Π, ϕ] is the projection of the scalar stress energy tensor

(3.18), written in terms of the canonical variables Π and ϕ, and has indices raised with

the induced metric. Recalling that P kl is a tensor density, the final line of (4.12) is

once again the action of a spatial diffeomorphism, £ξiP
kl. The relationship between the

remaining terms proportional to ξ and the normal component of the Lie derivative takes

more work to illustrate. We begin by rewriting

i[C[ξ, ξi], P kl] = £ξiP
kl +

{
2
√
q

κ2
(DkDlξ − qklD2ξ)−

2
√
q

κ2
ξ
(
Rkl

q − qkl
Rq

2

)
− κ2

2
√
q
ξ

[
2P kiP l

i − 2
P klP

D − 2
− 1

2
qkl

(
P ijPij −

P 2

D − 2

)]
+

√
q

2
ξSkl

}
.

(4.13)

The Lie derivative in the normal direction can be defined by extending to tensors P µν

and Kµν on the full spacetime, with Kµν = −qλµqσν∇λnσ. Then, when the Heisenberg
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equation (3.14) (replacing the Latin with Greek indices) holds, one can show

£ξnλP µν =
2
√
q

κ2
ξ

N
(DµDνN − qµνD2N)−

2
√
q

κ2
ξ
(
Rµν

q − qµν
Rq

2

)
− κ2

2
√
q
ξ

[
2P µλP ν

λ − 2
P µνP

D − 2
− 1

2
qµν

(
P λρPλρ −

P 2

D − 2

)]
+

2
√
q

κ2
ξqµλqνρ

(
Rλρ − gλρ

R

2

)
−NnµP νλDλ

(
ξ

N

)
−NnνP µλDλ

(
ξ

N

)
, (4.14)

where we have also used the Gauss relation to simplify. Note that the first term is related

to the acceleration, aµ = nν∇νn
µ = Dµ lnN , and could be set to zero with the choice

of Gaussian normal coordinates. The second to last line of (4.14) is proportional to

the projected components of the D-dimensional Einstein tensor, and when the projected

components of the Einstein equation hold can be replaced by Sµν . The last two terms

have normal components to the surface. When the equations of motion hold, and if we

again take ξ = N , the term of (4.13) in braces matches the Lie derivative with respect

to Nnµ, and so the RHS of (4.13) reduces to the Lie derivative with respect to ξµ.

Additionally, the time evolution (3.28) for the ADM conjugate momentum may be found

from (4.13) if ξµ is taken to be given in terms of the lapse and shift by (3.4).

In conclusion the gauge transformations generated by the constraints acting on the

reduced phase space variables qij, P
ij correspond to the diffeomorphisms if the equations

of motion hold, with ξ identified as the lapse.
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