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Abstract—As smart home devices are introduced into our
homes, security and privacy concerns are being raised. Smart
home devices collect, exchange, and transmit various data about
the environment of our homes. This data can not only be used
to characterize a physical property but also to infer personal
information about the inhabitants. One potential attack vector
for smart home devices is the use of traffic classification as a
source for covert channel attacks. Specifically, we are concerned
with the use of traffic classification techniques for inferring events
taking place within a building.

In this work, we study two of the most popular smart
home devices, the Nest Thermostat and the wired Nest Protect
(i.e. smoke and carbon dioxide detector) and show that traffic
analysis can be used to learn potentially sensitive information
about the state of a smart home. Among other observations,
we show that we can determine, with 88% and 67% accuracy
respectively, when the thermostat transitions between the Home
and Auto Away mode and vice versa, based only on network traffic
originating from the device. This information may be used, for
example, by an attacker to infer whether the home is occupied.

I. INTRODUCTION

Smart home devices are becoming increasingly popular
in households around the world. Nest Labs, one of the
most popular manufacturers of smart thermostats and smoke
detectors, is believed to have sold 440,000 smoke detector
units over the span of four months in 2014 alone. Smart
home devices are designed to help homeowners automate
and simplify mundane tasks around their property. However,
bringing internet connectivity to household devices has also
introduced many security and privacy concerns. At the end
of 2015, security researchers discovered a vulnerability in
Barbie dolls which would allow attackers to not only steal
personal information but also convert a doll into a spying
device capable of listening into conversations [6]. In early
2016, security research from Rapid7 found vulnerabilities in
Comcast’s Xfinity Home Security system that would cause the
system to not report when a property’s windows and/or doors
were compromised [19].

In this paper, we investigate how device-to-device and
device-to-cloud smart home network traffic can be used to
infer personal information. Specifically, we use traffic analysis
techniques on network traffic generated by devices from Nest
Labs to learn information about the presence of residents and
other events occurring within the property. Traffic analysis is

the process of intercepting and analyzing network packets in

order to deduce information from patterns in communication.

The experiments involve two smart home devices, a smart

thermostat and a smart smoke and carbon dioxide detector.
The rest of the paper is organized as follows:

e Section II describes relevant previous work.

o Section III gives a detailed rundown of the devices used
in this study and their features and capabilities.

o In Section IV the data collection process is described.

o In Section V, the methodology behind the traffic classi-
fication is explained.

o Section VI reports the findings of our analysis.

e Section VII describes how the findings were tested for
validity and presents information about the accuracy of
our findings.

o Section VIII discusses limitations of our approach.

o In section IX we provide some initial ideas for solutions
and list possible future work.

II. PREVIOUS WORK

Traffic analysis attacks were highlighted in “Attacks of the
SSL 3.0 protocol” [16], by Wagner and Schneier who showed
the URL of an HTTP GET request is leaked in SSL because
cipher-texts fail to disguise the plaintext length.

Later, Cheng and Avnur [3] show that websites can be
fingerprinted by performing traffic analysis of SSL encrypted
web browsing traffic. Ever since, there have been a number of
works [2], [7], [8], [10], [13], [15] exploring traffic analysis
attacks using various features including source and destination
attributes (e.g. address, port), protocol, packet and connection
sizes, and even timing information (e.g. duration of connec-
tions, burstiness of transmissions).

Efforts have also been put into developing countermeasures
for such attacks [5], [11], [18]. Countermeasure techniques
include traffic padding and traffic masking. Another variation
is in the implementation, whether server side, client side, or
both. Recently, in “Peek-a-Boo, I Still See You: Why Efficient
Traffic Analysis Countermeasures Fail” [4], Dyer, Coull et.
al. provide the first comprehensive analysis of some of the
proposed traffic analysis countermeasures and show why they
fail to protect against attacks. The authors argue that there is
no efficient solution.



Compared with previous works which focus on identifying
websites accessed by a user, our work focuses on home
automation devices. Our literature search was able to only
identify a single paper [12] in which the authors predicted user
behavior from wireless home automation communications. In
this work, the authors conduct analysis on two installations of
the HomeMatic home automation system. Specifically, without
prior knowledge of the HomeMatic installations, they use
the content of communications between devices to not only
identify the devices within the home, but also user behavior.
There are several differences between our work and theirs.
Perhaps the biggest distinction is that the authors of that
work had access to unencrypted traffic, while the traffic we
obtained was mostly encrypted. The only unencrypted traffic
we observed was comprised of HTTP requests to a weather
service. Such traffic was ignored by our analysis and not used
for our inference process.

III. DEVICES

The devices used for this study are the 2nd generation
Nest Thermostat and the 2nd generation Nest Protect Wired.
Both devices are equipped with 802.11 radios as well as
802.15.4 radios. However, at the time of this work, the
802.15.4 radios were not used by the devices. The device
setup is performed with the use of the mobile Nest application.
Through the application, users are asked to provide the SSID
and password of their home network. This allows the devices
to communicate with the Nest services. Unlike other home
automation platforms, in the Nest ecosystem there is no central
hub responsible for coordination of the devices. The devices
can access the internet directly through the home’s Wi-Fi
router. Additionally, the Nest Protect devices are capable of
communicating with each other, regardless of the presence of
a Wi-Fi network, using the Nest Interconnect feature.

The Nest Thermostat has several features designed to
optimize energy usage. The most popular features are the
ability to learn a user’s schedule and preferences, and the
capability to detect motion. The Thermostat has three modes
of operation: Home, Auto Away, and Away. In the Home mode,
the temperature is optimized for the user’s comfort and it
follows the learned schedule and settings of the user. Lack
of motion over extended periods of time will trigger the Auto
Away mode, where the temperature adjusts for energy savings.
The Away can manually be set by the user (from the device or
the mobile application) if the user expects to be away for an
extended period of time (e.g. before leaving for a vacation).

The Nest Protect also has some interesting features. It is
equipped with a motion sensor and relays the information
to the Nest servers to optimize the learning of the owner’s
schedule. The motion sensor can also be used to activate the
Pathlight, a light ring designed to help illuminate dark areas in
the presence of an individual. Instances of Pathlight activation
are also communicated with the Nest servers and show up in
the device’s history.

Nest provides device owners with a web interface from
which the devices can be accessed. The web interface allows

the user to adjust temperature for the Thermostat, adjust
the temperature schedule learned by the Thermostat, view
historical data about the devices’ states and energy usage,
as well as inspect and modify various device settings and
preferences (e.g. technical information, temperature units, Nest
Sense, equipment information, etc.).

IV. DATA COLLECTION

Network traffic was collected over the period of a month
using a standard netbook device. Because of the extended
capturing time and the overhead a GUI tool would impose
(e.g. Wireshark), we chose to use dumpcap [17], a command-
line network traffic dump tool. In order to capture the Nest
traffic, the netbook’s network adapter was set to monitor
mode. Monitor mode allows the network adapter to monitor
all of the traffic within a wireless network. In other words,
unlike promiscuous mode, monitor mode allows the netbook’s
network adapter to record traffic originating from and destined
to the Nest devices. To limit the packet captures to just traffic
to and from the Nest devices, we created a filter based on MAC
addresses. Nest devices can easily be identified on the network
due to the 3 byte Organizationally Unique Identifier (OUI). We
used this knowledge for the generation of the capture filter.

After the traffic was collected, airdecap-ng [1] was used
to decrypt the packets and remove the radiotap headers.
This process decrypts the WPA encrypted traffic, however,
it does not affect SSL/TLS encryption. While this slightly
simplifies our analysis, we argue that it does not invalidate
our findings, since packet size information is available even
without decrypting WPA traffic.

The resulting packet capture files were processed using Bro
[14] in order to generate connection logs. Bro is a network
analysis framework. As part of the framework, Bro comes with
a tool capable of parsing packet capture files and aggregating
packets into connections, outputting logs describing various
characteristics of the connections observed. The analysis was
performed on the resulting connection logs.

Examining the connection logs generated after the first
72 hours of capture permitted us to get an idea about the
nature and type of the network traffic. As expected, the
devices contact a small finite number of services. The Nest
Thermostat contacts 14 different hosts, including Google DNS
servers, AWS servers, Nest weather service servers and others.
Communication protocols include HTTP, NTP, DNS, and
most commonly SSL/TLS. HTTP is only used by the Nest
Thermostat to obtain weather data from the Nest servers.
While the address of some remote services such as DNS and
NTP change over time, some of the contacted IP addresses
remain the same. The traffic for the Nest Protect device is
similar except for the lack of NTP requests and the presence
of the WEAVE protocol [9].

V. TRAFFIC CLASSIFICATION

A. Traffic Characterization

To identify potential patterns or characteristics to further
investigate, we generated graphs depicting various features of
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Fig. 1. This figure depicts connections made by the Nest Thermostat over the span of 3 days for IP address 54.204.245.223. Each connection is represented

by the total number of payload bytes sent.
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Fig. 2. This figure depicts connections made by the Nest Protect for IP
address 107.21.244.221. Each connection is represented by the total number
of payload bytes sent.

the network traffic generated by the Nest devices.

For example, Figure 1 depicts connections made by the
Nest Thermostat over the span of 72 hours for the most
often contacted IP address (Amazon AWS). Each connection
is defined by the total number of payload bytes sent by the
device throughout the connection duration. In the graph, we

can see some patterns, such as the periodic connections of
roughly 2800 bytes sent as well as large connections during
which the device sent almost 6000 bytes. Additionally, we
can see some seemingly random bursts of connections of
approximately 1500 bytes. Figure 2 shows similar patterns
with connections made by the Nest Protect to a particular IP.
This IP also resolved to a Amazon AWS machine.

We also looked at the distribution of the sizes of connections
made by the Nest Thermostat, shown in Figure 3. We define
the size of a connection as the number of bytes transmitted by
the Nest device. The connections are also organized by host
(i.e. destination IP address). The figure brings to light several
observations. First, it shows how for each host, the connections
vary in the number of bytes sent. For example, we can see that
for certain hosts, all connections have the same size. This is
expected in cases such as NTP requests or for identical DN'S
requests. At the same time, this diagram allows us to visually
identify clusters of connections of similar sizes for a given
host. For example, for IP address 54.243.235.111 we can see
several connections of approximately 25,000 bytes sent.

Having made such observations, we decide to focus on
connection sizes for the rest of our analysis. Specifically, we
attempt to determine if there are any associations between
certain sized connections and the time of events of interest (e.g.
device mode switch, alarm activation, pathlight activation).
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Fig. 3. Figure depicts the distribution of Nest Thermostat connections with respect to payload bytes sent. One can see that some connections are very similar

in terms of the number of bytes sent.

B. Correlation Analysis

Our goal is to identify network patterns that allow us to
infer information about the state of the devices and/or the
state of the house. Specifically, we are interested in identifying
patterns for the occurrence of events such as Thermostat
operation mode tranisition (i.e. Home to Auto Away and vice
versa), motion detection, smoke alarm activation and Pathlight
activation. In an attempt to identify such patterns, we look
for sets of one, two, and three connections that occur at the
same time as the events of interest. For identifying sets of 2
and 3 connections, we use correlation analysis with a sliding
time window. We analyze connections captured over the span
of 60 days, only a small percentage of the total captured
connections. Specifically, we process the connection logs with
a sliding window of 10 seconds and a window displacement
of 2 seconds. This means that the sliding window shifts by
2 seconds, causing a 8 second overlap between consecutive
time windows. During this process, we generate a correlation
matrix. The correlation matrix is a N by N matrix where
N is the number of unique connections as defined by their
destination IP and payload bytes sent. The matrix describes
the number of occurrences of any two connections over the
whole observation time. More precisely, the value of a given
entry (¢, 7) in the correlation matrix is equal to the number of
instances connections % and j occurred together in a 10 second
time window. Connections are defined by the destination IP
address and the number of bytes sent by the source (i.e. Nest

device). We create a mapping between connections and indices
in the correlation matrix. To increase time efficiency, we also
generate SHA256 hash of each connection (defined by the des-
tination IP address and bytes sent) for connection equivalence
comparisons. A two dimensional correlation matrix allows us
to find pairs of correlated connections. The same approach is
extend to three dimensional matrix to allow the discovering of
sets of three correlated connections.

To minimize the size of the connections analyzed, we apply
several filters. First, we ignore connections with protocols
other than NTP and SSL/TLS. We determine that correlations
between connections with ICMP or DNS protocols are of no
importance. Once the correlation matrix has been generated,
we also filter out some of the correlated connections. To
begin with, we eliminate all connections with low correlation
(i.e number of occurences lower than 3). We determine that
connections which rarely occur together are insignificant and
can be disregarded. We also wish to discount regularly or fre-
quently occurring connections. Such connections may appear
to be highly correlated with other connections simply because
of the number of occurrences, however the relationship be-
tween such connections may have no special significance. Dis-
tinguishing between significant and insignificant correlations
in such cases is difficult. For example, one of the most frequent
connections made by the Nest Thermostat is to IP address
54.204.245.223 with 2826 bytes sent. This connection shows
up in the top 12 most correlated connection pairs. To carefully



filter out some of these correlations, we perform two tests.
First, to identify regularly occurring correlated connections,
we look at the difference between the timestamps of when
the connections occur together. If this difference is consistent
(plus/minus a small threshold), we ignore these connections.
We also look at frequency of each connection and for a given
pair of correlated connections, if both connections are very
frequent, we ignore the correlation.

While filtering narrows the search space, it does not produce
the desired patterns. To learn the patterns, we obtained the
exact time of the occurrences of the events of interest from
the Nest web interface. Having such information available,
we were able to draw associations between connections (or
sets of two and three connections) and the occurrence of an
event. To finally select between patterns of one, two, and three
connections, we choose the patterns with the best accuracy.

VI. FINDINGS

Our analysis was successful in discovering network traffic
patterns for Nest Thermostat operation mode switch, Nest
Protect smoke alarm trigger, Nest Protect Pathlight activation.
Additionally, we were able to make an interesting observation
relating to the distribution of NTP requests. The details of each
finding are described below independently.

A. Mode Transition

One of the events of interests was the transition between
modes of operation in the Nest Thermostat. If the transition
between modes was reflected in a unique identifiable pattern
in the network communications between the Nest Thermostat
and the Nest severs, such a pattern could be used to infer
information about the occupancy status of a building. Our
correlation analysis discovered a number of sets, of both
size two and three, of correlated connections which occur
during the Thermostat’s transition from Home to Auto Away.
The connections are identified by the destination IP address
54.204.245.223 and sizes 1375, 1391, and 2911. The corre-
lated connection sets were comprised of permutations of these
three connections. However, it should be noted that the set of
three correlated connections had the best accuracy rate.

The transition in the opposite direction is identified by
connections of to the same destination IP address. However,
in this case, the connections have different sizes, specifically
1663, 1631, 1711, 1786, and 1819. In contrast to the transition
from Home to Auto Away, in this case the single connections
which occur at the time of the mode transition represent the
mode transition the best. In other words, there are no sets of
two or three correlated connections which occur during this
mode transition.

It is important to note that our analysis also showed that
these connections do not appear every time the device transi-
tions between the two modes, which leads to false negatives.

B. Pathlight Activation

Another event of interest was that of the Nest Protect
Pathlight activation. As with the mode transitions, if the

event has an observable network pattern associated with it, an
attacker could use this information to learn about the presence
of individuals in a building.

Using the correlation analysis, we were able to identify a set
of SSL connections of certain sizes (with respect to payload
bytes sent by the device) which are observed together only
when the device senses motion and the Pathlight activates.

C. Smoke Alarm Triggering

We also wanted to see if we could determine the triggering
of the smoke alarm by observing the network traffic origination
from the Nest Protect device. Our correlation analysis showed
that two SSL connections of sizes 805 and 662 (with respect
to payload bytes sent by the device) are observed together only
when the device detects smoke and triggers the smoke alarm.
Manual verification showed that there were no False Positives
or False Negatives in our pattern recognition.

D. NTP requests

When looking at characteristics of the network traffic, we
were surprised to observe NTP packets. Unfortunately, the
correlation analysis wasn’t able to identify any relationship
between NTP requests and the mode of the Thermostat. How-
ever, manual investigation revealed that there is a discrepancy
in the frequency of NTP requests generated between when the
Nest Thermostat is operating in Home mode and when it is
in Auto Away mode. Figure 4 show the occurrences of NTP
requests during two days.

As mentioned earlier, one of the features of the Nest
Thermostat is the ability to learn a user’s schedule for energy
optimization. Our hypothesis is that the device updates the
Nest servers with motion (or lack of) activity, which includes
a timestamp. To guarantee the accuracy of the timestamp, the
Nest Thermostat will use NTP to synchronize its clock. For
example, the thermostat will report to the server that the user is
home or that the user is not home in comparison with activity
from the previous day.

VII. EVALUATION

The correlation analysis allowed us to identify certain
patterns, as discussed above, which we manually checked.
However, to further verify their validity and obtain accuracy
measurements, we automatically test the remaining 21 days
of network traffic for the presence of the discovered patterns.
The results of this test were compared against the ground truth,
obtained from the Nest web interface. As mentioned earlier, a
user can login to the Nest web interface and obtain a log of
events (e.g. mode change, smoke alarm) and their associated
time of occurrence, as recorded by the devices.

A. Mode Transitions

For the transition between Home and Auto Away modes,
our analysis resulted in 67% accuracy. For the transition in
the opposite direction, from Auto Away to Home, the accuracy
was 88%. However, it should be noted that in both cases, there
were no false positives. In fact, further manual analysis showed
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Fig. 4. This figure depicts the frequency of NTP requests made by the Nest Thermostat during two days. Each day is represented by a different color. The

vertical bars represent the beginning and end of the Auto Away periods.

that in cases where there are multiple transitions throughout
a single day, transitions after the second or third instance
sometimes do not produce the identified pattern.

B. Smoke Alarm

When checking the validity of the network pattern associ-
ated with the smoke alarm triggering, our tests showed 100%
accuracy. The analyzer was able to correctly identify all 5
instances of the smoke alarm being triggered, with zero False
Negatives and zero False Positives.

C. Protect Pathlight Activation

Validation testing showed 50% accuracy (100% sensitivity).
The sensitivity is a measure of the true positive rate. In
other words, it expresses the proportion of positives that are
correctly identified. This implies that the 50% accuracy rate is
due to only False Positives (i.e. no False Negatives). Manual
investigation shows that all of the False Positives occur due
to the fact that the same unique connections repeat exactly 30
minutes after the initial occurrence. We are unable to explain
why this occurs.

D. NTP requests

To test the validity of this observation, we used a simple
Support Vector Machine (SVM) approach. Specifically, con-
nection logs were split into non-overlapping one hour periods.
To build the feature vector, for each period, the number of NTP
requests during that period was obtained. Periods between

hours of 12 AM and 6 AM were ignored due to lack of user
activity and random distribution of NTP requests. Each hour
period used for the learning process was also labeled as 0 or
1 (i.e. 0 means Home whereas 1 represented the device being
in Auto Away mode).

The learned model resulted in 81% accuracy. Our testing
approach did result in false positives (i.e. device was identified
to be in Auto Away mode when it was not). To improve
accuracy one could build a model where confidence in the
classification adjuts according to the observations made. It
should be noted that the start and end times of the Auto Away
modes varied.

VIII. LIMITATIONS

We define connections by their destination IP address and
the number of bytes sent by the Nest device. However, this
only helps us find correlated connections with exactly the same
size. It does not permit any flexibility. It is easy to imagine
that packets containing semantically similar information may
vary slightly in size (e.g. by a few bytes). Our approach fails
to group such similar connections together, which may impact
the correlation analysis results. At the same time, grouping
connections together without ground-truth knowledge of their
semantic similarity may lead to false positives in the correla-
tion analysis and consequently in pattern recognition.

As mentioned earlier, the analysis was performed on un-
protected (i.e. no WPA/WEP encryption) wireless traffic. This
allowed us to not only aggregate packets into connections but



also uniquely identify connections by the destination IP and
number of bytes sent. While we agree that Wi-Fi encryption
would increase the complexity of such a covert channel attack,
we argue it would not completely eliminate the attack. MAC
address and size information can still be extracted from IEEE
802.11 packets. In fact, we manually verified that we could
still identify NTP requests in WPA encrypted traffic captures
using packet size information.

Furthermore, without more knowledge about the contents
of the packets transmitted or source code of the software
running on these devices, it is difficult to draw conclusions
about the source of the False Positive and False Negative rates
in our study. Early in our experiments, there was an instance
where the Nest Thermostat lost connection with the remote
servers. This could be due to incompatibility with the wireless
routers, a publicly known issue. After resetting the Thermostat,
we did not observe any more issues but without constant
supervision it is difficult to say whether the connectivity issue
resurfaced. Any such issue would cause the packet captures
to be incomplete, which may increase the number of False
Negatives and decrease the False Positives rate in our results.

The traffic analysis performed tries to correlate device
events/actions with network activity at the time of the event/ac-
tion. More specifically, our traffic analysis is unable to handle
cases in which the devices cache the results of event/action
and wait a period of time before transmitting the data to the
cloud. While making traffic analysis more difficult, such delays
do not make traffic analysis attacks infeasible especially if
the delay period is not random. It should be noted that in
certain scenarios, low latency is essential for device-to-device
or device-to-cloud communications and delays may not be
used as a defense mechanism.

IX. CONCLUSION

We have analyzed two of the most popular home automation
devices, the Nest Thermostat and the Nest Protect and we
have shown that home automation devices can leak sensitive
information about what’s happening inside any given property.
We show that even if such devices use encryption to commu-
nicate, traffic analysis can be used on the network traffic for
inference of information. Specifically, we show that features
such as destination IP contacted, the numbers of bytes sent, the
“burstiness* of packets sent can be used to fingerprint device
activity that can be used to infer activity occurring within a
home.

To ameliorate such traffic analysis attacks, there are several
options. We argue that sending fixed amount of data at set
time intervals is not a viable option. One reason is because
such an approach would deplete the resources of such devices.
Another reason is that these devices often need “fresh” data
and withholding the transmission of data for a period of time
may affect the quality of service provided by these devices.
One solution is to pad packets to the same length and make
all connections the same size. Additionally, instead of sending
the packets to various remote servers, all packets would be

destined to a single server. This server would be a proxy
between the application servers and the smart home devices.
Such an approach would make covert channel attacks more dif-
ficult since it disguises both destination and size information.
However, the proposed approach does not protect against side
channel attacks which exploit “burstiness”. To make covert
channel attacks even more difficult, devices could be designed
to make randomly occurring deceptive connections.

For future work, we would like to determine what the
appropriate balance between privacy and utility is. Another
idea is to introduce a policy system, allowing users to specify
the risks and cost (with respect to privacy) they are willing to
accept.
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