
UC San Diego
UC San Diego Previously Published Works

Title
Sequence-structure-function relationships in the microbial protein universe

Permalink
https://escholarship.org/uc/item/201884n7

Journal
Nature Communications, 14(1)

ISSN
2041-1723

Authors
Koehler Leman, Julia
Szczerbiak, Pawel
Renfrew, P Douglas
et al.

Publication Date
2023

DOI
10.1038/s41467-023-37896-w

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/201884n7
https://escholarship.org/uc/item/201884n7#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-023-37896-w

Sequence-structure-function relationships in
the microbial protein universe

Julia Koehler Leman 1,2,19 , Pawel Szczerbiak3,19, P. Douglas Renfrew1,2,19,
Vladimir Gligorijevic1,4, Daniel Berenberg1,4,5,6, Tommi Vatanen7,8,9,
Bryn C. Taylor10,16, Chris Chandler1, Stefan Janssen11,17, Andras Pataki12,
Nick Carriero12, Ian Fisk12, Ramnik J. Xavier 7,13, Rob Knight 10,11,14,15,
Richard Bonneau1,2,5,6,18 & Tomasz Kosciolek 3,19

For the past half-century, structural biologists relied on the notion that similar
protein sequences give rise to similar structures and functions. While this
assumption has driven research to explore certain parts of the protein uni-
verse, it disregards spaces that don’t rely on this assumption. Here we explore
areas of the protein universe where similar protein functions can be achieved
by different sequences and different structures. We predict ~200,000 struc-
tures for diverse protein sequences from 1,003 representative genomes across
themicrobial tree of life and annotate them functionally on a per-residue basis.
Structure prediction is accomplished using the World Community Grid, a
large-scale citizen science initiative. The resulting database of structural
models is complementary to the AlphaFold database, with regards to domains
of life as well as sequence diversity and sequence length.We identify 148 novel
folds and describe examples where we map specific functions to structural
motifs. We also show that the structural space is continuous and largely
saturated, highlighting the need for a shift in focus across all branches of
biology, from obtaining structures to putting them into context and from
sequence-based to sequence-structure-function based meta-omics analyses.

Structural biology follows the sequence-structure-function paradigm,
which states that the sequence of a protein determines its structure,
which in turn, determines its function1–4. Experimental structure
determination efforts were unable to keep up with the exponential

growth of available sequences, yet recent breakthroughs in protein
structure prediction and renewed focus on machine learning approa-
ches, through methods like AlphaFold25, now allow for closing the
sequence-structure gap. While disordered sequences, large
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complexes, multiple chains, and protein–protein interactions remain
to be addressed, the large number of available protein structures and
models has drastically shifted the perspective in the field.

Here, we predict the structures of ~200,000 metagenomic
sequences leveraging a citizen-science approach. We annotate these
models in terms of protein function6, specifically providing residue-
specific annotations, and analyze the features of the resulting protein
structure-function universe, including fold novelty and structure-
function relationships. Our work demonstrates how to integrate
massive structural datasets into a sequence and function context and
motivates a shift in perspective to include structurally informed
functional annotations as the starting point to understand biological
questions.

Results and discussion
Recent advances in the availability of predicted protein structures,
including the AlphaFold database and the MIP database presented

here, change the view on protein sequence-structure-function rela-
tionships from a relative paucity of structural information to a relative
abundance of it. This puts us in a position to start answering funda-
mental questions previously out of reach. How much of the protein
structure and fold space is still unexplored? And canwe learn anything
new about the sequence-structure-function universe of microbial
proteins? Here, we try to answer some of these and other questions by
large-scale structure prediction efforts that we relate to the sequence
space and residue-specific function prediction.

A database of 200,000 microbial sequences, structures, and
functions
Here we performed large-scale structure prediction on representative
protein domains from the Genomic Encyclopedia of Bacteria and
Archaea (GEBA1003) reference genome database across the microbial
tree of life7. A summary of our workflow is shown in Fig. 1a (see also
Supplementary Methods section 1). From a non-redundant GEBA1003

Fig. 1 | The fold space covered by the microbial protein structure universe is
continuous. a Flowchart of our process to arrive at ~200,000 de novo protein
models covering a diverse sequence space. b The sequence length distribution
shows that our sequences are shorter than many of the proteins in the PDB, CATH
or AlphaFold databases, as expected.We predicted structures between 40 and 200
residues long, which covers the majority of length distributions in microbial pro-
teins, which are often shorter than eukaryotic sequences. c The protein structure

universe in UMAP space is color-coded according to features, such as similarity to
CATH classes, sequence length, number of helical transmembrane spans, and
relative contact order. d Novel folds (blue dots) are spread throughout the fold
space with fewer representatives in the purely α-helical and purely β-sheet folds.
[Icons in panel (a) were created by Ronald Vermeijs and Maxim Kulikov for the
Noun Project, licensed under the Creative Common license CCBY3.0]. Source data
for this figure are provided in the source data file.
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gene catalog we extracted protein sequences without matches to any
structural databases and which produced multiple-sequence align-
ments deep enough for robust structure predictions using Rosetta8 or
DMPfold9 (N_eff > 16, see Supplementary Methods section 2). For
computational tractability we prioritized sequences according to their
length andexhaustively sampled all putative novel domains between40
and 200 residues. For each sequence we generated 20,000 Rosetta de
novo models8 using World Community Grid (formerly IBM) via the
Microbiome Immunity Project and up to 5 models per sequence using
DMPfold9. Unless otherwise stated, we use Rosetta models for the fig-
ures in this manuscript. We then curated the initial output dataset
(MIP_raw) of about 240,000 models to arrive at high-quality models
comprisingabout 75%of theoriginal dataset (MIP_curated)—see thenext
section for details. All analyses in this paper are either onMIP_curated or
a subset. Functional annotations of the entire dataset were created
using structure-based Graph Convolutional Network embeddings from
DeepFRI6. A detailed description on how to interpret DeepFRI scores
and output is provided in Supplementary Methods section 3.

Model quality assessment metrics to filter out low-quality
models
Model quality assessment metrics were derived from 5000 randomly
selected proteins (a.k.a. MIP_random5000_raw - see Supplementary
Note 2) in three steps. First, we noticed that the Rosetta models in our
MIP database generally contain fewer coil residues than the DMPfold
models (Supplementary Note 3.2), yet the quality of the DMPfold
models is higher for larger proteins (see Supplementary Note 3.3.). We
therefore filtered by coil content with varying thresholds for the two
methods: Rosettamodelswith >60%coil content, andDMPFoldmodels
with >80% coil content were filtered out as these have low quality.

Second, each modeling method needed a quality metric to eval-
uate themodel quality. DMPFold outputs a confidencemetric for each
model that we used as-is. Rosetta’s energy score is only meaningful in
relation to other models of the same protein within the energy land-
scape. For Rosetta, we derived a model quality assessment (MQA)
score by averaging the pairwise TM-scores10 of the 10 lowest-scoring
models. If these models sample a minimum in the energy landscape,
they are structurally very similar and their average TM-score is high. If
Rosetta’s scorefunction is unable to identify a specific fold, the average
TM-score is low. We filtered out models with an MQA score ≤ 0.4 as
these models have low quality.

The third quality metric we use is the agreement between the
Rosetta and DMPFold models. If both models are similar (TM-score ≥
0.5), then we can be confident that they are of high quality. This is
supported by the correlation between MQA scores and TM-scores
(Supplementary Note 3.3, Supplementary Figure 10). Further, the
predictions between Rosetta and DMPfold mostly agree (mean TM-
score = 0.61; median TM-score = 0.56)—Supplementary Note 5.3. The
quality metrics we used are independent of target difficulty that is
often used to classify targets in CASP. Further, all targets in our dataset
are “hard” targets since they have low to very low homology to any
known structures.

We then used these quality metrics to filter out low quality
models: from >240,000models in theMIP_raw database, we arrived at
>200,000 models in the MIP_curated database (see Supplemen-
tary Note 2).

Identification and verification of novel folds
Putative new folds were identified by comparing our models against
representative domains in CATH11 and the PDB, using a TM-score
cutoff12,13 of 0.5. The output set contained 452 novel structures
grouped into 161 fold clusters (Supplementary Information and Sup-
plementary Data 1, and 2). Putative novel folds were also verified by
AlphaFold2, which identified 14 false positives, decreasing the number
of novel structures to 438, clustered into 148 novel folds.

Supplementary Note 5 describes in detail how novel folds were iden-
tified, why specific cutoffs were used and shows false positive clusters.

The agreement between AlphaFold2 and Rosetta or DMPFold is
even higher than between Rosetta and DMPFold (see Supplementary
Figure 41). We speculate that AlphaFold2 might link physical and
knowledge-based scorefunctions (Rosetta) and machine learning
approaches (DMPFold) better. We decided not to run AlphaFold2 on
the entire MIP dataset due to runtime demands and us questioning
whether this new data would provide much insight, as most of our
Rosetta and DMPFold models have a high agreement and therefore
high confidence.

The MIP database is orthogonal to existing databases
We wanted to answer the question how similar or different the MIP
database is compared to other protein structure databases. The
baseline is the PDB90, which are proteins from the Protein Data Bank
with a pairwise sequence identity≤90%.CATH superfamilies are a non-
redundant subset of the PDB90, covering over 6000 folds (v4.3.0).
The AlphaFold protein structure database5,14 contains over 200million
protein models, vastly increasing the known structure space, and
covers a wide range of organisms and sequence lengths, primarily
from Eukaryotes. Our MIP database is distinct from the other data-
bases because it consists of proteins fromArchaea andBacteria, whose
protein sequences are generally shorter than Eukaryotic15,16 ones. The
average structural domain size for microbial proteins is about 100
residues (Figure 8 in ref. 17). We predicted structures in the size range
from 40 to 200 residues because when we started this project in 2016,
structure prediction methods performed better on smaller proteins,
200 residues still cover the majority of length space for microbial
proteins, and we wanted to focus on single domains and longer pro-
teins are more likely to cover multiple domains.

MIP models drastically increase the available structure space of
smaller proteins and domains from 40 to 200 residues (Fig. 1b), as we
selected.We further split the sequences into domains before structure
prediction, unlike structures in the AlphaFold database. Also, only
about 3.6% of structures in the AlphaFold database belong to Archaea
and Bacteria, indicating that AlphaFold and MIP databases are
complementary.

The microbial protein universe maps into a continuous
fold space
We wanted to contextualize the MIP dataset in relation to existing
structures and to investigate the features of a more complete and less
biased protein structure universe18–21. The PDB is biased by proteins
that aremore amenable to structure determination and by proteins of
higher interest as pharmaceutical targets, resulting in a larger number
of very similar structures with different mutations, ligands and che-
mical environments.

To generate the visualization, we represent eachprotein structure
as a graph given by its C-alpha contact map below a 6Å threshold. We
preprocess eachgraphby computing a 42-dimensional graphlet vector
representation22,23. A collection of graphlets up to size K is a set of all
possible non-isomorphic induced atmost K-sized subgraphs of a given
graph G. Graphlet count vectors24 report the counts of a set of (com-
putationally tractable) graphlets up to a given size; they serve as a
powerful baseline for graph encoding methods that do not consider
node level features25. For each model in the visualization dataset and
CATH superfamilies, we mapped the 42-dimensional graphlet count
vectors into 3D spaceusingUMAPdimensionality reduction (Fig. 1c, d).
Visualization was done in Emperor26. The surfaces of the 3D structure
cloud are outlined in black. We investigated several features in this
mapping, including sequence length, relative contact order, number of
transmembrane spans, andmapping to a CATH class. The 3Dmapping
of the protein universe allows to distinguish different sequence
lengths, the number of helical transmembrane spans and the relative

Article https://doi.org/10.1038/s41467-023-37896-w

Nature Communications |         (2023) 14:2351 3



contact order of the protein folds, as different shadings show in Fig. 1c.
The visualization further illustrates (see Supplementary Note 6) that
the protein universe space is continuous, indicating that folds may
evolve along a trajectory where small changes in the tertiary structure
can eventually lead to a different fold. Our results are in agreement
with prior work, albeit derived from a different (microbial proteins),
larger and more diverse dataset and using a different
methodology27–29. In contrast, a discrete fold space would display
distinct clusters of folds that require larger conformational changes to
interconvert between them. Prior work suggested evolutionary or
geometric sources for the continuity of theprotein fold space, and that
a low-dimensional representation has the potential to aid protein
structure-function investigations21,29–31. We identify 438 previously
unseen structures in our MIP dataset that cluster into 148 distinct,
novel folds (46 clusters with multiple proteins and 102 singletons—see
Supplementary Note 5). Figure 1d shows that the majority of novel
folds are distributed throughout α/β fold space (compare with Fig. 1c)
with few novel folds in α or β fold space.

MIP dataset explores the sequence-structure-function universe
To investigate the sequence-structure-function relationships in this
microbial protein universe and possibly gain novel insights from less
explored corners of this universe, we computed pairwise similarities
between random sequences in a subset of the curated dataset
(MIP_random5000_curated—see Table S2) in terms of sequence iden-
tity, structural similarity (TM-score) and functional similarity (cosine
similarity score of DeepFRI function prediction vectors - see Supple-
mentary Methods section 3). This was compared against a PDB base-
line of 1000 protein chains, covering pairwise sequence similarities
between 0 and 100%.

By design, the full-length protein sequences in theMIP dataset are
dissimilar (30% sequence identity cutoff) yet pairwise sequence iden-
tities between domains can occasionally be higher than 30% (Fig. 2).
When correlating sequence identities to structural similarities for pairs
of proteins, the vastmajority of dissimilar sequences fold intodifferent
structures, and a trend can be identified (Supplementary Note 7.1) that
has been previously described32,33. However, there are a fair number of
proteins that have vastly different sequences and still fold into similar
structures (Fig. 2b). The PDB baseline that covers sequence similarities
across all ranges from 0 to 100% confirms this expected trend, and it
also confirms the general notion that similar sequences fold into
similar structures (Fig. 2a).

When correlating sequence identity and functional similarity, the
majority of sequences have different functions, but still a fair number
of dissimilar sequences have similar functions. This originates in the
multiplicity of biological systems (Fig. 2d). i.e., achieving the same
functional outcome by different pathways (for example34,35). The PDB
baseline gives the same trend and has an additional known population
where similar sequences achieve similar functions (Fig. 2c).

When correlating structural similarity (of dissimilar sequences) to
functional similarity, we find 4 populations (Fig. 2f): (a) the largest
population following expectations of dissimilar structures having dif-
ferent functions—quadrant III, (b) the 2nd largest population of dis-
similar structures having similar functions—quadrant I, (c) the third
largest population of similar structures having different functions—
quadrant IV, and (d) the smallest population following expectations of
similar structures having similar functions. Quadrants I and IV are the
most interesting ones with examples shown below. The PDB baseline
covers all sequence similarities and followsmainly knownexpectations
of quadrants II and III (Fig. 2e).

Most functions are produced by the same structural motifs,
even for dissimilar sequences
For each of the 148 novel fold structural clusters, we compared func-
tional similarities for each protein pair by computing the cosine

similarity for the predicted function vectors from DeepFRI; this is
shown as a heatmap in Fig. 3 (a detailed description on how to inter-
pret DeepFRI scores and output is provided in Supplementary Meth-
ods section 3). We then picked several proteins for each structural
cluster andmapped selected top-scoring functions onto the predicted
structures (lower panel in each subpanel in Fig. 3). Residues that
DeepFRI predicts to have high importance to achieve a particular
function are highlighted in red, whereas blue residues are not involved
in generating that particular function. We find that the majority of
functions in those structural clusters map to the same residues in the
structure (“structural motif”) as shown for the clusters 158 and 153 in
Fig. 3a, b (moredetails for those examples are shown in Supplementary
Note 8). However, we also find more complicated structure-function
relationships in these clusters as shown in Fig. 3c–e and discussed in
the next section. Note that the sequences in each structural cluster
(and in the MIP dataset) are dissimilar to each other and neither
structural nor functional prediction could be inferred by sequence
identity for these proteins due to lack of homology. More examples of
this analysis are outlined in Supplementary Data 3 and 4.

Per-residue functional annotations reveal a more complex pic-
ture of protein structure-function relationships
Someof the structure-function relationshipsmap to quadrants I and IV
in Fig. 2f, where similar structures can have different functions36 or
different structures canhave similar functions. Different structures can
generate similar functions due to the multiplicity of functional
pathways34,35 as a back-up plan for organisms to survive. However, a
closer look at some of the structure-function disparities reveals some
surprises.

Figure 3a, b shows two proteins that use the same structural motif
for different functions. While the overall sequence identity between
these proteins is low (~30 and 25% for panels A and B, respectively), a
short sequence motif underlies the structural motif, which in turn has
different functions. Figure 3a shows two proteins where the terminus
of the central helix is involved in phosphatase activity, where the same
motif in a different protein is involved in actin binding. The sequence
motif for this region is GGWDXP. In Fig. 3b, the N-terminus of one
protein is involved in zinc ion binding and ‘catalytic activity, actingona
protein’, whereas the N-terminus of another protein of that structural
cluster is involved in DNA binding and ‘identical protein binding’. The
underlying sequence motif for this structural motif is CXCCG.

Figure 3c–e shows examples where a different structural motif in
the same protein fold achieves the same function. This seems unusual
anddoesn’t seem to rely on a short sequencemotif. In thefirst example
(Fig. 3c), transferase activity eithermaps to abeta-sheet or aC-terminal
short helix in two different proteins. In the second example trans-
membrane transporter activity maps to either two helices or a beta-
sheet (Fig. 3d). In the third example, ion transmembrane transporter
activity maps to different structural motifs for different proteins
(Fig. 3e). This entire structural cluster (cluster 146) has very high
similarity across predicted functions, indicated by the heatmap
showing mostly yellow hues.

Higher functional specificity is carried out by fewer possi-
ble folds
We investigated different protein functions and examined the struc-
tures with these functions (Fig. 4 and Supplementary Data 4). Some
protein functions are sufficiently general such that they can be
achieved by different folds, examples are ‘carbohydrate binding’
(GO:0030246), ‘protein tyrosine kinases’ (EC 2.7.10.), and ‘mitigation
of host immune response by virus’ (GO:0030683). More specific
functions are accomplished by fewer folds. Examples of specific
functions with a single fold in our MIP dataset are ‘thymidine kinase’
(EC 2.7.1.21) and ‘sole sub-class for lyases that do not belong in the
other subclasses’ (EC 4.99.1.).
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The functional cluster for carbohydrate binding (Fig. 4a) covers
many different folds with high β-sheet propensity, including β-barrels,
twisted sheets, and stacked sheets. This class contains a single helical
protein, indicated by the single blue line in the heatmap in Fig. 4a with
the structure shown in (F). The largest structural cluster in this func-
tional category corresponds to the largest novel-fold cluster (yellow
square in the heatmap) and the salient residues in this cluster show a
high degree of overlap.

Figure 4b shows the function ‘maintenance of CRISPR repeat
elements’. CRISPR repeats are short DNA sequences in bacteria and
archaea. They derive from DNA fragments of bacteriophages that
previously infected those organisms and allows them to identify

recurring invaders. Hence, the CRISPR-Cas system functions like a
microbial immune system37. Cas1 and Cas2 identify the site in the
bacterial genomewhere viral DNA is inserted andultimately cleavedby
Cas938. The structural cluster in Fig. 4b (A) overlays with part of Cas2
(PDB ID 5sd5 or 5xvp39, chains EF) and the predicted salient residues
bind DNA in the structure. Cluster (D) in Fig. 4b is similar to parts of
Cas1 (PDB ID 5sd5 or 5xvp39, chains ABCD) but doesn’t overlay
perfectly.

Figure 4c shows the function ‘sole sub-class for lyases that do not
belong in the other subclasses’.

Lyases are enzymes that catalyze the breaking of chemical bonds
by means other than hydrolysis or oxidation. None of the lyases in the

Fig. 2 | Sequence-structure-function relationships in both PDB and the MIP
dataset. Pairwise comparisons of protein sequences (using sequence identity),
structures (TM-score), and functions (cosine similarity between DeepFRI output
vectors) for two datasets: a baseline from the PDB and the MIP_random5000_cu-
rated dataset, containing 3,052 Rosetta generated models (see Tables S2 and S3).
The PDB baseline dataset contains 1000 chains covering pairwise sequence simi-
larities between 0 and 100% while the MIP dataset is a non-redundant set with
mostly dissimilar sequences (sequence identity <30% threshold was imposed
before sequential domain splitting). Analyses of these two datasets in this way lead
us to the following conclusions: sequence identity and structural similarity follow a

known trend (Supplementary Fig. 72) (a), yet high structural similarity can be
achieved by low sequence identity (b). High sequence identity (sequence identity
> 50%) leads to high functional similarity (cosine similarity > 0.5) (c), yet high
functional similarity can be achieved by proteins with low sequence identity (d).
Structural similarity often correlates with functional similarity ((e) and quadrants II
and III in (f)). However, there are plenty of examples where low structural similarity
can be seen in proteins with high functional similarity (quadrant I in (f)), and highly
similar structures can exhibit different functions (quadrant IV in (f)). Source data
for this figure are provided in the source data file.
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other classes (EC. 4.1–EC.4.6) have the same fold as our predicted MIP
models, even though there are structural similarities. Ourmodels have
an (αβ)×3 fold with sequential strand connections—the other lyases
have various (αβ)xN folds but their strand connections are non-
sequential.

In summary, in this study, we used a citizen-science approach to
predict ~200,000 protein structures for non-redundant microbial
sequences across the tree of life. Structures were predicted by two
state-of-the-art independent methods (Rosetta and DMPfold) and
evaluated by quality metrics to indicate model quality. Functional
annotations give us a unique look at the microbial protein universe in
termsof sequence, structure, and function.Ourdatabase is orthogonal
to the AlphaFold database in terms of domains of life, sequence
diversity and sequence length. We predicted 148 novel folds which
were verified by AlphaFold. With functional annotations, we can more
closely relate sequence-structure-function relationships in this

universe, that go beyond the main homology assumption of similar
sequences, structures, and functions. In fact, we frequently see that
these dissimilar sequences fold into similar structures, indicating that
the sequence diversity is much greater than the structural diversity.
Froma structure prediction standpoint, this highlights the importance
of distant homology detection and fold recognition methods for dis-
similar sequences. Moreover, we provide examples that challenge our
classic understanding of biological sequence-structure-function rela-
tionships.We hope that this research inspires the scientific community
to advance our understanding of site-specific protein function by
developing experimental and computational tools for high-quality
measurements and predictions. Only these new tools can lead to a
more complete understanding of the complexities of how proteins
fold, function, evolve and interact, to address questions related to
health, disease, and engineering applications to solve some of the
world’s biggest problems.

Fig. 3 | Functional diversity of proteins with the same structure. We show
examples from several structural clusters (Rosettamodels) that exhibit novel folds.
The heatmaps show functional similarity (cosine similarity of the function vectors)
of protein pairs within the cluster. Proteins that have predicted functions with
scores <0.1 are shown in gray in the heatmaps. Asterisks highlight the examples

shown below. a, b Cases where the same structural motif in two different proteins
produces different, unrelated functions. c–e Cases where the same function is
generated by different structural motifs in different proteins, even though the
proteins have the same fold. Source data for this figure are provided in the source
data file.
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Methods
Sequence clustering of GEBA dataset
The MIP dataset is constructed on the basis of GEBA1003 representa-
tive bacterial and archeal genomes from across the tree of life7. The
dataset includes environmental samples from soil, ocean water,
human gutmicrobiome andwas designed to sample themicrobial tree

of life evenly. For each genome, we generated a list of predicted genes
using Prodigal40. The raw gene catalog was processed using an incre-
mental clustering approach, similar to the one employed byUniClust41.
First, redundancy in the dataset was removed by using linclust (i.e.,
clustering at 100% sequence identity), as implemented in
MMSeqs242,43. Then, the dataset was further clustered into 90, 70 and
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30% sequence identity clusters, with the last step (70–30% clustering)
executedusing theMMSeqs2clustmodule. The resultingdatasetwas
sorted according to sequence length, sampling the entirety of
sequences between 40 and 200 residues.

Structure prediction
AlphaFold wasn’t available for the majority of the life of this project,
which started in 2016, and computational runtime and initial lack of
code availability prevented us from running it on the World Commu-
nity Grid. We used Rosetta and DMPFold for protein structure pre-
diction, two state-of-the-art methods available at the time.

Rosetta structure prediction. The structure of each MIP sequence
was predicted using version 2016.32.58837 of the Rosetta Macro-
molecular Modeling Suite, modified to run on the IBM World Com-
munity Grid. Residue-residue contacts from sequences closely
related to the target sequence were inferred using GREMLIN44 (ver-
sion 2.0.1) and incorporated as constraints during the folding pro-
tocol. For each MIP sequence, 20,000 models were generated.
Models were ranked using the REF2015 energy function45 and the
lowest energy model was used for further analysis. Details of the
fragment selection, contact prediction, and Rosetta model building
can be found in the supplement.

DMPfold structure prediction. We additionally predicted the struc-
tures of all MIP sequences using DMPFold9. The same multiple
sequence alignments used for contact prediction in the Rosetta
structure prediction pipeline were used, instead of DMPfolds default
method of generating an MSA from the UniClust30 database. All
other parameters were kept to their default values. Details of the
DMPfold model building can be found in Supplementary Methods
section 2.

Quality metrics: pairwise sequence identity, TM-score, cosine
similarity
Model quality assessment and construction of the MIP curated are
discussed in detail in Supplementary Note 3. The MQA scores for
AlphaFold2 predictions are the mean pLDDT or pTM values. Pairwise
sequence identity and structural similarity (TM-score) were generated
using TM-align, which is a widely accepted tool in the community and
is being continuously updated. Two structures were identified as
similar (including novel fold identification) if the corresponding TM-
score ≥ 0.5 (unless otherwise stated). We used DeepFRI for function
prediction because it was specifically developed for this purpose and
includes newest ML tools (such as GCNs and LSTMs), having been
trained on current databases with hundreds of millions of data points.
It further has the ability to generalize well, being able to predict any
function across the GO tree. Detailed information on DeepFRI output,
interpretation of scores and cosine similarity is provided in Supple-
mentary Methods section 3. Pairwise functional similarity was com-
puted as a cosine similarity between concatenated DeepFRI output
vectors, which comprise scores for 6315 GO terms/EC numbers. Noise
was reduced by only considering function scores above a thresh-
old of 0.1.

Protein universe visualization
For every structure in the MIP visualization dataset (comprising
10,000 Rosetta and corresponding DMPfold models plus 6,631 CATH
4.3.0 superfamily structures—see Tables S1 and S2), we generated a
contact map (representing residues closer than <6Å from each other),
which was then transformed into graph. Such graph representation
was subsequently used to forma42-dimensional graphlet vector23. The
collection of graphlet vectors (26,631 ×42 matrix) was then projected
onto a 3D space using two standard dimensionality reduction meth-
ods, i.e., UMAP and PCA. For UMAP we used the following set of
parameters (which provided reasonable spread of the data with clear
CATH class separability): n_neighbors = 100, min_dist = 0.001,
N_components = 3, metric = cosine. Visualizations were created with
Emperor26. An overview of the pipeline is depicted in Supplemen-
tary Fig. 49.

Meta-data
MIP models were superimposed against all CATH 4.3.0 superfamilies
(http://www.cathdb.info/, accession January 5, 2021) using TM-align in
order to identify novel folds (see below) and annotate them using
CATH classification, i.e., the most similar CATH structure to a given
protein (with the highest TM-score normalized by MIP model size) is
used as a template. The annotation quality drops with decreasing TM-
score (which is important for novel folds) but the quality is high,
especially at the class level. Proteins were annotated as α-helical
transmembrane proteins if their OCTOPUS output contained at least
one “M“ segment. Similarly, proteins were annotated as β-barrel
transmembrane proteins if their BOCTOPUS output contained at least
eight “pL“ segments. All the meta-data are discussed in Supplemen-
tary Note 4.

Novel fold identification
To identify new folds, we started from high quality MIP models i.e.
the MIP_curated dataset. First, we performed a TM-align structural
superposition against CATH 4.3.0 superfamilies (see above). For the
models without any significant structural similarity to CATH (TM-
score <0.5), we performed a superposition against representative
structures from the PDB90 (time stamp January 15, 2021). A putative
novel fold is a high quality (i.e., from MIP_curated) single domain
predicted by both Rosetta and DMPfold with satisfactory con-
fidence (agreement TM-score ≥ 0.5 between Rosetta and DMPfold
predictions) with a maximum TM-score <0.5 against CATH and the
PDB90. Note that when comparing MIP and CATH/PDB structures
we use the TM-score normalized by the MIP sequence length. The
output set contained 452 structures grouped into 161 clusters.
Clustering was achieved by computing pairwise TM-scores for all
452 models, then using the TM-scores as a list of edges and creating
graphs using the NetworkX Python package. Node positions were
computed using the Fruchterman-Reingold force-directed algo-
rithm whereas connected components (clusters) were computed
using the Breadth-first search algorithm. Both Rosetta and DMPFold
datasets were clustered separately with the intersection of both sets
being used as the final set of clusters. AlphaFold2 verification found
14 false positives, resulting in 438 novel structures grouped into 148

Fig. 4 | Structural diversity of proteins with the same function. We examine
proteins that have the same function and plot the TM-score as a measure of
structural similarity as a heatmap, with larger numbers (more yellow) representing
more similar structures.We alsomap the residue-specific function predictions onto
the structures on the right, where residues in red are responsible for the functions.
a Gene ontology molecular function carbohydrate binding with GO number
GO:0030246. Except for the protein shown in (F) which has high helical propensity,
the proteins in this functional cluster have high β-sheet content. The largest cluster
in the heatmap in yellow is also the largest novel-fold cluster. The salient residues

responsible for this function overlay nicely across the proteins in this cluster.
b Gene ontology biological process function ‘maintenance of CRISPR repeat ele-
ments’ with GO number GO:0043571. The largest cluster highlighted in yellow
superimposeswith Cas2 and the salient residues in red interact withDNA. c Enzyme
commission number EC 4.99.1. with the function ‘Sole sub-class for lyases that do
not belong in the other subclasses’. All structures in this functional cluster have the
same fold and the salient residues responsible for this function overlay onto the
same structural motif in the protein. More details in the text. Source data for this
figure are provided in the source data file.
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novel fold clusters. See Supplementary Note 5 for more
information.

DeepFRI prediction
DeepFRI computes saliency maps for each predicted GO term6. These
maps identify residues that are important for this function but that
does not mean that these are active residues, they could be important
for protein stability or short sequencemotifs away from the active site
to identify the function of this protein. Heatmaps in Fig. 4 were gen-
erated based on curated MIP (Rosetta) models with DeepFRI score ≥
0.2. Models were then grouped by GO-term and pairwise structural
similarity was computed as the maximum TM-score of two super-
imposed MIP models (i.e. the larger of TM-scores normalized by the
first and second sequence lengths was chosen).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequence, structure and function data generated in this study,
along with relevant metadata have been deposited on Zenodo (url
https://doi.org/10.5281/zenodo.6611431) and on Github at https://
github.com/microbiome-immunity-project/protein_universe under
commit ID 23354bf. This includes information on the directory struc-
ture and how to search the database via workflows and scripts using a
query sequence, a query structure, or a query function, to find similar
proteins in the MIP dataset. Source data are provided with this paper.

Code availability
TM-align v.20190822 (https://zhanggroup.org//TM-align/) was used
for computing TM-scores and sequence identities of aligned
structures12. Structure visualizations were created in Pymol v.2.4.0
(https://github.com/schrodinger/pymol-open-source). Secondary
structure assignments were generated using Stride v.2002102246.
Alpha-helical transmembrane annotations were generated using
OCTOPUS (as a part of TOPCONS2 software47; singularity image
downloaded on July 17, 2020, dependencies: Blast v.2.2.26, Uniref90
v.20200119, Pfam20191204). Beta-strand transmembrane annotations
were generated using BOCTOPUS248 (zip downloaded on August 8,
2020; dependencies: HH-suite v.2.0.16, Blast v.2.2.26, Uniprot20
v.20160226). Absolute and relative contact order was computed from
definitions49. For disordered sequence identification we usedMobiDB-
lite50 v.1.0 (March 2016) and DISOPRED351 (zip downloaded on Sep-
tember 16, 2021; dependencies: Blast52 v.2.2.26, Uniref90 v.20210731).
Putative new fold clusters were computed using Python package
NetworkX v.2.7.1. For putative new fold verification, we used Alpha-
Fold2 with “preset” flag set to full_pdb (repository downloaded on
August 16, 2021; reference databases which includes the PDB down-
loaded on July 31, 2021). A cosmeticallymodified versionof the Rosetta
Macromolecular Modeling Suite8,53, based on release 2016.32.58837,
was used for protein structure prediction on the World Community
Grid. The fragment picking pipeline54 is also part of the standard
Rosetta distribution. Both are obtainable from the Rosetta Commons
(https://www.rosettacommons.org/). Residue-residue pair constraints
were obtained using GREMLIN44 version 2.0.1. DMPfold9 v1.0 (https://
github.com/psipred/DMPfold, downloaded September 2019)wasused
to predict the structures of all MIP sequences. All custom codes gen-
erated for this study are part of the Zenodo repository (url https://doi.
org/10.5281/zenodo.6611431) and on Github at https://github.com/
microbiome-immunity-project/protein_universe under commit ID
23354bf. This includes information on the directory structure and how
to search the database via workflows and scripts using a query
sequence, a query structure, or a query function, to find similar pro-
teins in the MIP dataset.
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