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ARTICLE

OxPhos defects cause hypermetabolism and
reduce lifespan in cells and in patients with
mitochondrial diseases
Gabriel Sturm 1,2, Kalpita R. Karan1, Anna S. Monzel1, Balaji Santhanam3, Tanja Taivassalo4, Céline Bris5,6,

Sarah A. Ware7, Marissa Cross1, Atif Towheed1,8, Albert Higgins-Chen 9, Meagan J. McManus10,11,

Andres Cardenas 12, Jue Lin2, Elissa S. Epel13, Shamima Rahman 14, John Vissing15, Bruno Grassi16,

Morgan Levine 17, Steve Horvath 17, Ronald G. Haller18, Guy Lenaers5,6, Douglas C. Wallace 11,

Marie-Pierre St-Onge19, Saeed Tavazoie3, Vincent Procaccio5,6, Brett A. Kaufman7, Erin L. Seifert20,

Michio Hirano21 & Martin Picard 1,21,22✉

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with

fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic

basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients

with mitochondrial diseases (n= 690) we find evidence that these disorders increase resting

energy expenditure, a state termed hypermetabolism. We examine this phenomenon long-

itudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologi-

cally disrupting OxPhos approximately doubles cellular energy expenditure. This

cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling

efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is

associated with mitochondrial DNA instability, activation of the integrated stress response

(ISR), and increased extracellular secretion of age-related cytokines and metabokines

including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging

per cell division, consistent with evidence that excess energy expenditure accelerates bio-

logical aging. To explore potential mechanisms for these effects, we generate a longitudinal

RNASeq and DNA methylation resource dataset, which reveals conserved, energetically

demanding, genome-wide recalibrations. Taken together, these findings highlight the need to

understand how OxPhos defects influence the energetic cost of living, and the link between

hypermetabolism and aging in cells and patients with mitochondrial diseases.

https://doi.org/10.1038/s42003-022-04303-x OPEN

A full list of author affiliations appears at the end of the paper.
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M itochondrial diseases are caused by mutations in either
the mitochondrial (mtDNA) or nuclear (nDNA) gen-
omes, which impair oxidative phosphorylation

(OxPhos) and the ability to convert food substrates into ATP1.
However, cellular dysfunction arises even when ATP levels are
normal2–4, suggesting that energy deficiency may not be the pri-
mary disease initiator. In animal models, OxPhos defects trigger
nuclear transcriptional responses, including the integrated stress
response (ISR)3,5–8. As a result, downstream gene products such
as growth differentiation factor 15 (GDF15) are secreted sys-
temically, where they impact organismal metabolic functions9,10.
This implicates conserved systemic signaling pathways in the
pathogenesis of mitochondrial diseases11. Considering that these
stress pathways entail fundamentally energetically demanding
cellular processes (transcription, translation, secretion, etc),
OxPhos defects could therefore increase energy consumption at
the cellular and organismal levels. However, the potential meta-
bolic costs of cellular and systemic recalibrations in mitochon-
drial disorders have not been defined.

Clinically, OxPhos defects cause a broad spectrum of multi-
system disorders where symptoms include, among others, fatigue
and exercise intolerance12,13. As a result, most patients with
mitochondrial diseases avoid physical activity and exercise14,15. A
common misconception arising from this clinical picture is that a
reduced mitochondrial capacity to oxidize substrates16 coupled
with minimal physical activity levels would promote an energy
conservation response, resulting in positive energy balance and
body fat accumulation, leading to obesity. However, patients with
mitochondrial diseases are rarely obese. In fact, patients with
moderate to severe disease, on average, classify as underweight17.
Although gastrointestinal symptoms that limit food intake or
absorption could contribute to this phenotype, the rarity of
obesity in mitochondrial disease remains a clinical paradox. This
may be resolved by the counterintuitive notion that mitochon-
drial OxPhos defects may not decrease energy consumption and
expenditure but may rather increase the energetic cost required to
sustain basic physiological functions.

Living organisms avoid thermodynamic decay to grow and
survive by consuming energy. The amount of energy expended
relative to the minimal metabolic rate required to sustain life is
defined as metabolic efficiency. Strong evolutionary pressures have
optimized metabolic efficiency in organisms, thereby minimizing
the amount of ATP required to sustain life18. One evolutionary
strategy includes the choice of metabolic pathways to derive ATP
(OxPhos vs glycolysis), which have different ATP yields and
metabolic costs19. Within cells, metabolic costs arise mainly from
transcription/translation processes (~60% of total energy
demands), the maintenance of ionic balance, as well as organelle
biogenesis and degradation20,21, which includes mitochondrial
turnover. Consequently, mitochondrial biogenesis entails a sub-
stantial energetic cost because of the extensive mitochondrial
proteome19. In mitochondrial diseases, the intracellular hetero-
geneous mixture of mitochondria with mutant and wild-type
mtDNA (i.e., heteroplasmy) triggers exaggerated biogenesis22, a
phenomenon predicted to increase the basal metabolic cost of
organelle maintenance and total energy expenditure23. Accord-
ingly, a re-analysis of resting energy expenditure (REE) in animal
models of mitochondrial OxPhos defects indicates that REE is
likely elevated by 15–85%, including in Crif1−/− mice with
impaired mitochondrial translation10, Clpp−/− mice with defi-
cient proteostasis24, Polg mutator mice10, ANT1−/− mice with
impaired ATP/ADP exchange25, and ATP6-mutant flies26. Based
on thermodynamics principles, impaired OxPhos capacity may
impede the natural and optimal balance of energy transformation
pathways, consequently reducing metabolic efficiency. Therefore,
we reasoned that patients with severe OxPhos defects

would similarly exhibit impaired metabolic efficiency and
increased REE—a state known as hypermetabolism. Other causes
of OxPhos defects, including mutations in nuclear genes encoding
respiratory chain assembly factors like SURF127, which cause
disease and decrease lifespan in humans28, could also trigger
hypermetabolism.

Shortened lifespan is a ubiquitous feature of mitochondrial
diseases29–31, and most animal models with severe OxPhos defects
die prematurely32–35. But is there a causal link between hyperme-
tabolism and lifespan in humans? Among healthy individuals, ele-
vated REE or hypermetabolism measured by indirect calorimetry
(oxygen consumption, VO2) predicts more rapid age-related phy-
siological decline36 and independently predicts 25–53% higher
mortality over the following 20–40 years37,38—an effect double
than what is incurred by smoking cigarettes38. In human stem cells,
hypermetabolism was also correlated with senescence and other
aging phenotypes39. Mechanistically, multiple processes compete
for limited energetic resources within cells40,41, and also within
organisms42,43, particularly under energy-restricted conditions.
Some cellular operations are prioritized over others20. As a result,
the energetic cost of stress responses43 and their associated increase
in transcription/translation can inhibit growth and cell division,
even triggering premature senescence44,45. Recently, it was reported
that excessive activation of the ISR alone inhibits cell population
growth8. Thus, OxPhos-induced ISR activation and the resulting
hypermetabolism could curtail growth and/or cause premature
death by forcing an energetic tradeoff between stress responses and
growth/survival pathways.

Taken together, the observations that: (i) genetic mitochondrial
OxPhos defects trigger ISRs, (ii) cells operate under energetic
constraints where the prioritization of stress responses and
transcription/translation costs can precipitate senescence, and
(iii) decreased metabolic efficiency predicts shorter lifespan in
humans and other animals, lead to the following hypothesis:
OxPhos defects trigger hypermetabolism both physiologically and
cell-autonomously, a phenotype associated with reduced lifespan.

Here we test this hypothesis first by re-analyzing data from
multiple clinical cohorts of primary mitochondrial diseases with
direct and indirect assessments of energy expenditure and lifespan,
and then via longitudinal in vitro studies in primary human
and patient-derived fibroblasts. We have developed a cellular sys-
tem that provides high temporal resolution, repeated-measures of
bioenergetic and multi-omic molecular recalibrations across the
cellular lifespan. Using this model, we show that both genetic and
pharmacological mitochondrial OxPhos defects trigger marked
hypermetabolism in a cell-autonomous manner. We identify
mtDNA instability, activation of the ISR, increased secretory
activity, and transcriptional upregulation of transcriptional/trans-
lational stress pathways as potential contributors to hypermetabo-
lism. Finally, we report that OxPhos defects and hypermetabolism
are linked to accelerated telomere shortening and epigenetic aging
in fibroblasts, and provide a publicly available longitudinal dataset
to query epigenetic and transcriptional signatures conserved across
both cellular models. Our analyses highlight how the associated
resource dataset can serve as a discovery platform to identify
potentially targetable pathways linking OxPhos defects to hyper-
metabolism, as well as downstream mechanisms linking hyperme-
tabolism to cellular and clinical phenotypes. Together, these
translational data implicate hypermetabolism as a pathophysiolo-
gical feature of mitochondrial diseases and lifespan reduction.

Results
Meta-analysis of metabolic rate and physiology in primary
mitochondrial diseases. To test the hypothesis that mitochon-
drial OxPhos defects are associated with increased energy

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04303-x

2 COMMUNICATIONS BIOLOGY |            (2023) 6:22 | https://doi.org/10.1038/s42003-022-04303-x | www.nature.com/commsbio

www.nature.com/commsbio


expenditure and shortened lifespan (Fig. 1a), we integrated and
re-analyzed data from a total of 17 cohorts representing a total of
690 patients with mitochondrial diseases and 225 healthy controls
(provided by the authors or directly from publications) (Table 1).
The heterogeneous mixture of functional and dysfunctional
mitochondria within single cells is well-known to cause mito-
chondrial hyperproliferation and increase mtDNA copy
number46–49, as illustrated within a single patient skeletal muscle
cell in Fig. 1b. Increased biogenesis must naturally incur increased

energy expenditure at the cellular level23, which we reasoned may
translate to elevated whole-body REE.

In patients with mitochondrial diseases, resting heart rate, which
correlates with whole-body REE50, was on average 10.7% higher
than healthy controls (p < 0.01, Fig. 1c). This tachycardia reached up
to+46% when patients and controls performed mild exercise at the
same absolute workload. Both at rest and during mild physical
activity, as initially reported in a small study51, patients had on
average 244% higher blood or urine catecholamine levels (p < 0.05,

Fig. 1 Meta-analysis of human studies reveals increased energy expenditure and shortened lifespan in primary mitochondrial diseases. a Overall
conceptual model linking mtDNA- and nDNA-related OxPhos defects to impaired metabolic efficiency at the cellular level, impacting whole-body resting
energy expenditure and clinical outcomes. b Skeletal muscle biopsy with individual muscle fibers stained with cytochrome c oxidase/succinate
dehydrogenase (COX/SDH) histochemistry to reveal functional (brown) and respiratory chain deficient (blue) mitochondria. In the affected cell (middle),
three sub-regions showing low, intermediate, and high mtDNA mutation load were captured by laser capture microdissection and subjected to quantitative
PCR analysis as in ref. 117. Subcellular regions with high mtDNA mutation load show elevated mtDNA density, which is predicted to increase the energetic
cost due to mitochondrial biogenesis and turnover processes. WT, wild type. c Meta-analysis of human mitochondrial disease cohorts showing elevated
resting heart rate (n= 104 controls, 111 patients), d catecholamines (urinary-Cohort 3 and blood-Cohort 6) at rest or during fixed-intensity exercise (n= 38
controls, 19 patients), e whole-body oxygen consumption measured by indirect calorimetry at rest or during the response to mild exercise challenge; one
before training, two after training. Slope refers to the rate of increase in VO2 relative to work rate, where a higher slope indicates increased energetic cost
for a given work rate (n= 56 controls, 78 patients). f Body mass index (BMI) across mitochondrial disease cohorts and compared to relevant national
averages (USA, UK, and Italy combined) (n= 285 controls, 174 patients). g Average life expectancy in individuals with mitochondrial diseases relative to
the national average (n= 301 patients). Data are means ± SEM, with % difference between mitochondrial disease and control group were available.
h Mortality (age at death) over 10 years (2010–2020) in Cohort 17 compared to national averages for women and men (n= 109 patients). See Table 1 for
cohort details. Total n= 225 healthy controls, 690 patients. Only aggregate group means (with or without a measure of variance) were available for some
cohorts, so individual participant data is not shown. Standardized effect sizes are quantified as Hedges’ g (g). Overall group comparisons were performed
by paired t tests (c and f) or one-sample t tests (d and e), *p < 0.05, **p < 0.01, ****p < 0.0001.
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Fig. 1d), particularly norepinephrine (NE), a neurohormone
sufficient to elevate REE when administered systemically to healthy
individuals52. To estimate REE in mitochondrial disease patients,
we used resting whole-body VO2 expressed relative to body weight,
which, although imperfect, was available in the largest number of
studies. Strikingly, VO2 measured by indirect calorimetry across 6
cohorts of patients with mtDNA defects was on average 30% higher
at rest (p < 0.0001) than in healthy controls, a difference
characterized by very large effect size (Hedge’s g= 2.4, Fig. 1e).
REE estimates using theWeir equation53 (combining both VO2 and
VCO2, readily available in 3/6 cohorts) yielded equivalent results
within 1.2% of the group difference derived from VO2 alone.
Notably, VO2 was elevated by more than half (+51%) during mild
physical activity in mitochondrial diseases, consistent with
hyperkinetic cardiocirculatory responses to exercise in this
population54. Thus, these gross body mass-normalized REE values
reveal increased energy consumption (i.e., lower metabolic
efficiency) in mitochondrial diseases, at rest and particularly during
mild physical challenges.

The increase in REE is particularly striking given that patients
with mitochondrial diseases, on average, have lower muscle
mass17, which is the major site of activity-dependent energy
consumption. The lower muscle mass in patients would be
expected to reduce energy expenditure, unless the tissues
intrinsically exhibited impaired metabolic efficiency, and thus
consumed more energy per unit of time just to sustain
homeostasis. Therefore, the meta-analysis of these clinical data
from multiple cohorts combining hundreds of patients reveals an
increased energetic cost of living per unit of body mass – or
hypermetabolism—in mitochondrial diseases.

Physiologically, hypermetabolism is expected to produce a
negative energy balance, expending more energy substrates than
are ingested, generally preventing the accumulation of body fat.
Accordingly, body mass index (BMI), a gross estimate of adiposity,
was on average 9.8% lower (p < 0.05) in patients with mitochondrial
diseases compared to controls (23% lower than national averages
across 3 countries) (Fig. 1f). In one study, fat mass index, a more
precise indicator of body fat, was 21.9% lower in mitochondrial

Table 1 Human cohorts included in the quantitative meta-analysis of energy expenditure and related clinical phenotypes in
patients with mitochondrial diseases (see Fig. 1).

Cohort # Author (year) N= (W/M) Age Genetics Mutations Clinical

Cohort 1 Taivassalo (2003) 40 Mito (22/18);
32 Ctrl (9/22)

37; 39 mtDNA (n= 35)
nDNA (n= 5)

m.3243 A > G, m.8344 A > G, m.14710 G > A,
m.5543 T > C, m.4409 T > C, m.14846 G > A,
m.5920 G > A, ND2 and COXIII microdeletions,
sDel, mDel, other (3), unknown (4)

CPEO, MELAS,
MERRF, EI, mixed

Cohort 2 5a:Bates (2013)
5b:Newman (2015)
5c:Galna (2014)
5d: Gorman et al.
Newcastle cohort

a:10 Mito (4/6);
10 Ctrl (4/6)
b:8 Mito (5/3)
c:6 Mito (1/5)
d:8 Mito (2/6)

a:42.4; 39.0
b:42
c:40.5
d:42

mtDNA a:m.3243 A > G
b:m.3243 A > G
c:m.8344 A > G+ 3243 A > G
d:sDel

SNHL, DM, Ei, AT,
FT, DP, mixed

Cohort 3 Strauss (2013) 9 Mito (7/2);
28 Ctrl

14.6; 14.0 nDNA SLC25A4 (ANT1) mutations (c.523delC,
p.Q175RfsX38)

CM, EI, insomnia,
DP, anxiety

Cohort 4 Delaney (2017) 21 Mito (15/6);
12 Ctrl (8/4)

44; 34 mtDNA sDel, mDel, m.3243 A > G, m.10010 T > C,
m.12261 T > C, ISCU, m.4281 A > G, CYTB,
m.8344 A > G, m.5543 T > C

Mild to severe
mixed

Cohort 5 MiSBIE 23 Ctrl (15/8);
12 Mito (8/4)

34.0; 32.9 mtDNA m.3243 A > G MELAS, mixed

Cohort 6 Jeppesen (2013) 10 Mito (6/4);
10 Ctrl (6/4)

39; 39 mtDNA m.3243 A > G, 8344 A > T, 4409 T > C,
8340 G > A, 2-bp deletion, 12,113–14422,
7177–13767

CPEO, EI, HI, GI, Enc,
SS, DM, ME, AT

Cohort 7 Jeppesen (2009) 10 Mito (5/5);
10 Ctrl (5/5)

39; 40 mtDNA m.3243 A > G, m.8344 A > T,
m.5543t > C, sDel

CPEO, EI, HI, GI, Enc,
SS, DM, ME, AT

Cohort 8 Heinicke (2011) 5 Mito (2/3);
4 Ctrl (2/2)

42; 34 mtDNA, nDNA m.3243 A > G, m.5543 T > C,
m.14846 G > A, ISCU

Myopathy

Cohort 9 Grassi (2009) 15 Mito (7/8);
21 PCtrla (7/14);
22 Ctrl (9/13)

40.1; 38.3; 37.9 mtDNA sDel, mDel, m.8344 A > G Myopathy

Cohort 10 Porcelli (2016) 6 Mito (2/4) 51 mtDNA mDel, sDel, m.3255 G > A, m.3243 A > G Myopathy
Cohort 11 Grassi (2007) 6 Mito (1/5);

25 PCtrla (5/20);
20 Ctrl (8/12)

37.8; 31.6; 32.7 mtDNA mDel, m.8344 A > G Myopathy

Cohort 12 Hou (2019) 89 Mito (57/32) 30.4 mtDNA, nDNA sDel, POLG, RRM2B, Twinkle, TK2,
m.3243 A > G, m.8344 A > G, m.5541 C > T,
m.10158 C > T

MELAS, CPEO

Cohort 13 Kaufman (2011) 31 Mito (16/15);
54 Ctrlb (15/39)

30; 38 mtDNA m.3243 A > G MELAS

Cohort 14 Barends (2015) 30 Mito (15/15) 50.4c mtDNA, nDNA m.3243 A > G, sDel, mDel, c.1635C > G,
m.8344 A > G, m.13094 T > C, m.14709 T > C,
m.5816 A > G, m.14484 T > C, m.12258 G > A,
POLG mutations

MELAS, CPEO, KSS,
MERRF, mixed

Cohort 15 Eom (2017) 221 Mito Pediatric 6.0c mtDNA, nDNA m.3243 A > G, LS mutations LS, MELAS, mixed
Cohort 16 Wedatilake (2013) 44 Mito (20/24)

Pediatric
<14c nDNA SURF1 mutations Poor feeding/

vomiting, PWG, DD,
HT, MD, AT

Cohort 17 McFarland et al.
Newcastle cohort

109 Mito (56/53) 48.1 mtDNA, nDNA In addition to Cohort 14: AGK, ETFDH,
m.10010 T > C, m.11778 G > A, m.13513 G > A,
m.8993 T > C, m.8993 T > G, m.9176 T > C,
m.9997 T > C, MRPL44, NDUFAF6, NDUFS1,
RRM2B, SDHA, SURF1, TYMP

MELAS, PMM,
MERRF, MIDD,
MNGIE, KSS,
CM, mixed

ANT1 adenine nucleotide translocator 1, AT ataxia, CM cardiomyopathy, CPEO chronic progressive external ophthalmoplegia, DD developmental delay, Dm diabetes mellitus, DP depression, EI pure
exercise intolerance, Enc encephalopathy, FT fatigue, GI glucose intolerance, HI hearing impairment, HT hypotonia, KSS Kearns-Sayre Syndrome, LS Leigh Syndrome, MD movement disorder, mDel
multiple mtDNA deletions, ME myoclonic epilepsy, MELAS mitochondrial encephalopathy, lactic acidosis, stroke-like episodes, MERRF myoclonus epilepsy with ragged red fibers, MiSBIE mitochondrial
stress, brain imaging, and epigenetics study, mtDNA mitochondrial DNA, nDNA nuclear DNA, PWG poor weight gain, sDel single, large-scale mtDNA deletion, SNHL sensorineural hearing loss, SS: short
stature.
aPCtrl: “patient controls” with symptoms of mitochondrial myopathy but with biopsy negative for primary mitochondrial disease.
bControls were m.3243 A > G carrier relatives without MELAS.
cBased on age at death. The number of women (W) and men (M) are shown in parentheses.
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disease patients17. Moreover, although not all patients are thin,
patients with more severe disease manifestations tended to have
lower BMI (r=−0.25, p= 0.018)17, suggesting that more severe
mitochondrial OxPhos defects in humans compete with body fat
accumulation and obesity. Again, this result is in line with those in
animal models of OxPhos defects, which exhibit hypermetabolism
and reduced adiposity10,24–26.

This clinical picture of mitochondrial diseases marked by
increased REE and reduced body fat was associated with a 3–4-
decade reduction in lifespan among adults (Fig. 1g)31. In a 10-year
longitudinal observational study from the UK Newcastle group, peak
mortality in mixed genetic diagnoses of mitochondrial diseases
occurs up to 3 decades earlier than the national reference (Fig. 1h).
In children with severe pediatric forms of mitochondrial diseases,
including diseases caused by autosomal recessive respiratory chain
defects (e.g., SURF1 mutations: median lifespan 5.4 years28), lifespan
can be reduced by >90%. Heterogeneity between genetic diagnoses
also highlights possible mutation-specific effects on hypermetabolism
(Supplementary Fig. 1). Together, these multimodal physiological
data establish hypermetabolism as a clinical feature of mitochondrial
diseases, which could account for the rarity of obesity and possibly
also contribute to the shortened lifespan in this population.

Longitudinal analysis of primary human fibroblasts with
SURF1 mutations. To examine if mitochondrial OxPhos defects
alter the REE and lifespan in a cell-autonomous manner inde-
pendent of clinical, medical, and socio-behavioral confounds, we
next performed a longitudinal study of primary human fibroblasts
with genetically defined or pharmacologically induced OxPhos
defects. We used cells with a stable nuclear mutation in SURF1
(Surfeit Locus Protein 1), which causes partial mis-assembly and
dysfunction of respiratory chain complex IV (cytochrome c oxi-
dase, COX)55, leading to Leigh syndrome and death in early
childhood (see Fig. 1g). Primary dermal fibroblasts were obtained
from 3 patients with SURF1 mutations presenting with Leigh
syndrome, and from 3 healthy donors with no known mito-
chondrial defects (Control). Each group included one female and
two male donors. To capture both baselines as well as trajectories
of metabolic parameters across the entire lifespan, we passaged
each fibroblast line over multiple cellular generations until growth
arrest, a model that recapitulates in vivo molecular features of
human aging, including canonical age-related changes in telo-
mere length56 and DNA methylation57. By sampling cells across
the lifespan, longitudinal profiles of multiple cellular, bioener-
getic, transcriptomic, epigenomic, and secreted molecular features
can be modeled for each donor (Fig. 2a). Although healthy cells
survive for up to 250 days, here we limit our analyses to the
maximal lifespan of SURF1-mutant cells, ~150 days.

Beyond allowing longitudinal assessments of molecular and
bioenergetic parameters as cells transition from early-, mid-, and
late-life, one major advantage of time-resolved trajectories with
repeated measures is that this approach de-emphasizes potential
bias of any single time point and provides more accurate estimates
of stable cellular phenotypes for each donor and treatment
condition. The use of primary human cells obtained from multiple
donors, compared to the same experiment repeated in an
immortalized cell line(s), also provides a more robust test of the
generalizability of the data. Throughout the text, we report
standardized measures of effect sizes (Hedge’s g) where g > 0.2 is
considered a small, g > 0.5 a medium, and g > 0.8 represents a large
effect size, which is considerably more informative than p values to
compare groups with small sample size (3 donors per group)58.

SURF1 mutations cause hypermetabolism. We first examined
the effect of SURF1 mutations using extracellular flux analysis

(Seahorse XFe96) of oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) (Fig. 2b, c). Using standard
stoichiometric ratios for oxygen consumed, protons pumped, and
linked ATP synthesis under standard conditions, OCR and ECAR
can be transformed into interpretable ATP production rates using
the methods described in ref. 59. When added together, OxPhos-
derived (JATP-OxPhos) and Glycolysis-derived ATP flux (JATP-Glyc)
reflects the total energetic demand (JATP-Total) of each cell
population (Supplementary Figure 2a). This approach is the
cellular equivalent to REE measurements through indirect
calorimetry in humans (Fig. 1e) and mice10,24,25.

Trajectories of JATP-OxPhos and JATP-Glyc across 150 days of
lifespan are presented in Fig. 2d. As expected from the SURF1
deficiency, SURF1-mutant cells (hereafter SURF1 cells) exhibited a
44% decreased JATP-OxPhos, but a 3-4-fold increased JATP-Glyc. Both
parameters remained relatively stable across the lifespan (although a
potential oscillatory behavior cannot be ruled out). Computing total
energy expenditure showed that total ATP demand per unit of time
was strikingly 91% higher in SURF1 cells relative to control cells
(JATP-Total, p < 0.001, g= 2.4) (Fig. 2e). These data demonstrate a
robust SURF1-induced hypermetabolic state similar, albeit of greater
magnitude, to that observed in patients with mitochondrial diseases.

To confirm this finding, potential confounds had to be ruled
out. Non-glycolytic ECAR could inflate estimates of JATP-Glyc60.
However, measured resting non-glycolytic ECAR (in the absence
of glucose or in the presence of the glycolysis inhibitor
2-deoxyglucose) was not elevated in SURF1 cells (it was, in fact,
31% lower), confirming the specificity of the ECAR signal in
SURF1 cells to glycolysis (Supplementary Figure 3d). We also
confirmed that non-OxPhos-related oxygen consumption by
cytoplasmic and other oxidases did not differ between experi-
mental groups (Supplementary Fig. 2d). Non-mitochondrial
respiration also is not included in computing JATP-OxPhos, which
formally excludes this parameter as a potential contributor to the
hypermetabolism measured in SURF1 cells.

Primary fibroblasts are continually dividing, and a portion of
the total energy budget is expected to support cell division-related
processes, including DNA replication, transcription/translation,
and other intracellular processes20. Early in life (20–50 days),
when division rates were mostly constant, SURF1 fibroblasts
compared to control cells divided on average 31.8% slower
(p < 0.0001, g=−1.53; and 48.4% slower when quantified across
150 days). Therefore, hypermetabolism in SURF1 cells cannot be
accounted for by an accelerated division rate. In fact, normalizing
JATP-Total per rate of division further exaggerates apparent
hypermetabolism, where SURF1 cells expend more than double
the amount of energy than controls to complete each cell cycle.
Moreover, optically monitoring cell size at each passage showed
that the SURF1 cell volume was moderately larger in early life and
became smaller with increasing age, reaching a similar volume as
control cells by 150 days (Supplementary Fig. 4a). Cell death was
not significantly elevated (p= 0.69, g= 0.15, Supplementary
Fig. 4d, e). After accounting for cell volume, energy expenditure
remained significantly elevated in SURF1 fibroblasts (p < 0.0001,
g= 1.2, Fig. 2f), demonstrating an increase in volume-specific
REE. This increase is consistent in magnitude with that observed
in humans (Fig. 1) and animals10,24–26 with OxPhos defects.

In control cells, the balance of estimated ATP derived from
OxPhos and glycolysis was 64:36%, such that under our specific
tissue culture conditions (physiological 5.5 mM glucose, with
glutamine, pyruvate, and fatty acids), healthy fibroblasts derived
the majority of ATP from OxPhos. In contrast, SURF1 deficiency
robustly shifted the relative OxPhos:Glycolysis contribution to
23:77% (p= 4.1e− 6, g=−5.1), reflecting a significant shift in
OxPhos-deficient cells towards an alternative, and therefore less
energy efficient, metabolic strategy (Fig. 2g, h). As expected,
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removing glucose from the media did not substantially affect
growth in control cells, but the absence of glucose was lethal to
SURF1 cells within 5 days, confirming their dependency on
glycolysis for survival (Supplementary Fig. 3).

In response to this metabolic shift towards glycolysis, we
expected SURF1 cells to naturally decrease maintenance-related
energetic costs by decreasing mitochondrial mass and mtDNA
copy number (mtDNAcn). However, in early life, SURF1 cells
had the same mtDNAcn as control cells (5–40 days: p= 0.99,
g= 0.04). And across the lifespan, SURF1 cells contained 32%
more mtDNA copies, which manifested as an earlier age-related

rise in mtDNAcn that reached maximal levels on average 30%
higher than control cells (p= 0.52, g= 1.9, Fig. 2i). Thus,
although total mitochondrial mass was not directly assessed,
elevated mtDNAcn similar to that observed in patient tissues (see
Fig. 1b) could contribute to increased maintenance cost and
overall hypermetabolism in OxPhos-deficient cells, as suggested
by mathematical modeling studies23.

One potential mechanism for the lowered metabolic efficiency
is a decrease in OxPhos coupling (i.e., uncoupling) at the inner
mitochondrial membrane. However, both estimated proton leak
(Fig. 2j) and coupling efficiency (Fig. 2k) measured by the

Fig. 2 SURF1 defects decrease metabolic efficiency and cause hypermetabolism without affecting coupling efficiency. a Schematic of the study design
with primary human fibroblasts, coupled with repeated, longitudinal measures of cellular, bioenergetic, and molecular profiling across the lifespan. Three
Control and three SURF1 donors (one female, two males in each group) were used for all experiments. b Example oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR) obtained from Seahorse measurements of Control and SURF1 cells. c Comparison of average OCR and ECAR values
across the cellular lifespan. The specificity of the ECAR signal for glycolysis was verified (seeMethods for details). d Lifespan trajectories of ATP production
rates (JATP) derived from glycolysis (JATP-Glyc), oxidative phosphorylation (JATP-OxPhos), and total ATP (JATP-Total: Glycolytic-+OxPhos-derived rates) over
up to 150 days. Percentages show the average difference between SURF1 and Control across the lifespan. e Lifespan average energy expenditure (EE) by
cell line and f corrected for cell volume. g Balance of JATP derived from OxPhos and glycolysis and h quantified SURF1-induced metabolic shift. Dotted lines
in (h) denote the range in control cells. i Lifespan trajectory of mtDNAcn and average mtDNAcn at the first 3 time points (early life, days 5–40) and peak
value across the lifespan. j Lifespan trajectories and averages of proton leak and k coupling efficiency estimated from extracellular flux measurements of
ATP-coupled and uncoupled respiration. n= 3 individuals per group, 7–9 timepoints per individual. Data are means ± SEM. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, mixed effects model (fixed effect of control/SURF1 group and days grown, random effects of the donor or cell line).
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proportion of OxPhos-dependent respiration not linked to ATP
synthesis were not different between control and SURF1 groups.
These parameters also did not show measurable drift across the
lifespan, thus ruling out mitochondrial uncoupling as a mechan-
ism for hypermetabolism.

Finally, oxygen tension can have a marked effect on the
metabolism and replicative lifespan of cultured fibroblasts61, and
chronic hypoxia improves survival in fibroblasts with complex I
defect and the Ndufs4 mouse model of Leigh syndrome62. We,
therefore, repeated longitudinal experiments in SURF1 cells at
low (3%) O2 in parallel with atmospheric (∼21%) O2 (Supple-
mentary Fig. 5a). Compared to 21% O2, the low oxygen condition
did not improve population doubling rates (Supplementary
Figure 5b, c), nor did it correct or alter hypermetabolism
(Supplementary Fig. 5d, e). Results of the low O2 “hypoxia”
experiments, as well as the full lifespan aging trajectory of control
cells beyond 150 days, are available in the resource dataset (see
Data availability statement).

Inhibition of the mitochondrial FoF1 ATP synthase triggers
hypermetabolism. Next, to test if hypermetabolism manifests
specifically in SURF1 cells or whether it is a more general feature
of mitochondrial OxPhos defects, we used an orthogonal phar-
macological approach to chronically perturb OxPhos and repe-
ated the lifespan assessments of energy metabolism. Starting at
day 20, fibroblasts from the same three healthy donors as above
were treated chronically with a sublethal concentration of the
mitochondrial ATP synthesis inhibitor Oligomycin (Oligo, 1 nM),
which induces the ISR3,63 (Fig. 3a). Oligo reduced cellular oxygen
consumption rate by ~90% while largely maintaining viability,
reflected in only a moderate elevation in cell death over time
(2.7% in Oligo-treated cells vs. 1.4% in control cells, 20–50 days:
p= 0.078, g= 0.70) (Supplementary Figs. 4d and 6b).

In relation to energy expenditure, Oligo doubled JATP-Total
across the lifespan for each of the three healthy donors (+108%,
p= 5.9e− 9, g= 2.2), recapitulating the hypermetabolic state
observed in SURF1 cells (Fig. 3b). This robust elevation in cellular
energy expenditure was already evident by 5 days of treatment
and remained relatively stable across the lifespan, indicating the
rapidity and stability of the adaptive hypermetabolic state. As in
SURF1 cells, the hypermetabolic state in Oligo-treated cells was
attributable to a markedly increased JATP-Glyc in excess of the
decline in JATP-OxPhos, resulting in a shift outside of the optimal
(i.e., normal) window of the OxPhos:Glycolysis ratio for these
primary human cells grown under physiological glucose con-
centration (Fig. 3c, d).

Reductions in cell size and division rates are strategies to
minimize energetic costs. Oligo caused a small but stable 4.8%
decrease in cell size (p < 0.001, g=−0.35), and decreased cell
division rates by 39.1% (days 20–50: p= 1.3e− 5, g=−1.31;
49.6% slower across 150 days) (Supplementary Fig. 4). Taking cell
size into consideration showed that Oligo increased energy
expenditure per unit of cell volume by 131% (p < 0.001, g= 0.97)
(Fig. 3e, f). Here also, hypermetabolism was not driven by a
significant increase in estimated proton leak (p= 0.19, g= 0.27)
(Fig. 3g), although we observed a 34.4% reduction in estimated
coupling efficiency (p < 0.05, g=−0.59) (Fig. 3h), likely arising
from the expected elevation in membrane potential from ATP
synthase inhibition. Unlike SURF1 mutations, Oligo decreased
mtDNAcn by 39.0% early in life (20–50 days: p= 3.1e− 5,
g=−2.42), which subsequently normalized; peak levels were
similar to control levels (Fig. 3i, j).

Monitoring weekly the influence of Oligo on cell morphology
also revealed an unexpected morphological phenotype. Oligo-
treated cells developed into a reticular network, which involved
contraction of the cell body and extension of multiple cellular

Fig. 3 Pharmacological inhibition of the mitochondrial F0F1 ATP synthase triggers hypermetabolism. a Schematic of the study design for fibroblast
profiling across the lifespan from three Control donors treated with 1 nM Oligomycin (Oligo). b Lifespan trajectories of JATP (Glycolytic+OxPhos) derived
from oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) obtained from Seahorse measurements across the cells’ lifespan (up to
150 days). Percentages show the total average difference between Oligo and Control. c Balance of JATP derived from OxPhos and glycolysis across the
lifespan and d oligo-induced metabolic shift. Dotted lines denote the range in control cells. e Relative average lifespan energy expenditure by cell line
normalized to control, f corrected for cell volume. g Average of proton leak and h coupling efficiency measures on the Seahorse normalized to control.
i Lifespan trajectories and j average mtDNA copy number at the first three time points (early life) and peak value across the lifespan. n= 3 individuals per
group, 7–9 timepoints per individual. Data are means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, mixed effects model for Oligo vs. control.
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appendages reminiscent of neuronal dendrites (Supplementary
Fig. 6). This reversible phenotype exhibited regular oscillatory
behavior (1-week normal morphology, 1-week reticular forma-
tion). We note that oscillatory behaviors are naturally energy-
dependent64, and that such dramatic and repeated changes in cell
morphology must necessarily involve the remodeling of cell
membranes and cytoskeleton through the energy-dependent
motor and cytoskeletal components. This morphological pheno-
type unique to the Oligo treatment could contribute to the higher
energy expenditure in Oligo-treated cells (+131% ATP con-
sumption per unit of cell volume) vs. SURF1 cells (+91%), which
did not exhibit transitory morphological changes.

OxPhos defects trigger the ISR and mtDNA instability. To
understand the specific organelle-wide mitochondrial recalibra-
tions in hypermetabolic SURF1 and Oligo-treated cells, we per-
formed bulk RNA sequencing across the lifespan in each donor
cell line (average of ~7 timepoints per cell line). We then sys-
tematically queried mitochondrial pathways from MitoCarta
3.065, in addition to all mtDNA-encoded transcripts (37 genes),
and core ISR-related genes (average of ATF4, ATF5, CHOP/
DDIT3, and GDF15). Both SURF1 defects and Oligo treatment
downregulated the majority of intrinsic mitochondrial pathways,
including mtDNA stability and decay, which was downregulated
in both SURF1 (−15%, p= 1.7e− 8, g=−1.65) and Oligo-
treated cells (−19%, p < 0.001, g=−0.57) relative to control
(Fig. 4a). Although SURF1 and Oligo-treated cells exhibited
similar overall mitochondrial transcriptional changes, some
pathways showed opposite responses (e.g., expression of mtDNA-
encoded genes, Pathway 3 in Fig. 4b), suggesting the existence of
partially specific mitochondrial recalibrations among SURF1 and
Oligo models. In hierarchical clustering analysis across all path-
ways, the ISR pathway diverged most strongly from other path-
ways, and was upregulated +110% in SURF1 (p= 6.5e− 7,
g= 1.76) and +217% in Oligo-treated cells (p= 1.2e− 8,
g= 0.99), reaching up to a 16-fold elevation relative to the
average of the young healthy donor cells (Fig. 4b). Thus, both
models of OxPhos defects and hypermetabolism were associated
with upregulation of the ISR, and downregulation of most
mitochondrial pathways, notably mtDNA maintenance, suggest-
ing a potential effect on mtDNA stability.

To our knowledge, neither SURF1 mutations nor Oligo
treatment is established to cause mtDNA instability, but given
the transcriptional changes described above and that hetero-
plasmy among mtDNA species is predicted to increase energetic
maintenance costs23, we directly examined mtDNA stability using
two approaches. We first used gel electrophoresis on long-range
PCR products at multiple time points across the lifespan of
control, SURF1, and Oligo-treated cells, then validated the
presence of mtDNA deletions across the lifespan by mtDNA
sequencing and quantified mtDNA deletion burden using
eKLIPse66 (Fig. 4c, d). Circos plots in Fig. 4d show the
breakpoints and heteroplasmy level for each mtDNA deletion (or
duplication), at early and late time points along the cellular
lifespan. Circos plots for all timepoints investigated (4–14
timepoints per condition) are presented in Supplementary Fig. 7.

Consistent with previous work, healthy fibroblasts do not
accumulate appreciable heteroplasmy levels of mtDNA deletions
in culture. However, SURF1 cells contained, on average, 17-fold
more unique mtDNA deletions than control cells (p < 0.01,
g= 1.38), reaching up to 126 unique deletions at a given time
point (Fig. 4e, f). The effect of Oligo treatment was more modest
but reached levels 3-fold higher than untreated cells (p < 0.01,
g= 0.79), and up to 20 unique deletions per time point. The
majority of deletions eliminated segments of the minor arc and

were, on average, 6.8–7.3 kb in length; deletion size was similar
among the three groups (Supplementary Fig. 8a–c). Point
mutations were not significantly elevated in SURF1 and Oligo-
treated cells, suggesting specificity of mtDNA instability to
deletions in this OxPhos-deficient, hypermetabolic state (Supple-
mentary Fig. 8d). Compared to controls where the maximal
heteroplasmy levels were 0.13%, SURF1 and Oligo accumulated
individual deletions reaching up to 0.40% and 0.19% hetero-
plasmy among the cell population (Supplementary Fig. 8e, f),
which remains low but similar to that observed with aging in
human blood and brain tissues67,68, and possibly noteworthy for
replicating fibroblasts.

SURF1 mutations increase aging-related secretory activity. We
next investigated the outputs of the ISR, including the production
of metabokines and cytokines. To broadly characterize changes in
the cytokine stress response in patient-derived SURF1 cells across
the lifespan, we designed a custom Luminex array targeting age-
related proteins identified by plasma proteomics to be upregu-
lated with human aging69 (Fig. 5). Compared to healthy donors,
hypermetabolic SURF1 cells secreted higher levels of cytokines on
a per-cell basis, including several pro-inflammatory cytokines,
chemokines, and proteoglycans associated with the senescence-
associated secretory phenotype (SASP)70 (Fig. 5a). Of the 27
cytokines detected in extracellular media, SURF1 cells achieved
the highest cytokine concentration across the lifespan for 23
(85%) of the cytokines, reaching up to 10-fold higher con-
centration than a control for one of the cytokines (insulin-like
growth factor binding protein, IGFbp-rp1) (Fig. 5b). Upregulated
cytokines also included the canonical pro-inflammatory cytokines
IL-6 and IL-8. The metabokine GDF15, which is elevated in both
mitochondrial disease71,72 and human aging69,73, and which also
appears sufficient to trigger hypermetabolism in mice10, was also
upregulated by 110% in SURF1 vs. control cells (20–80 days,
p= 0.035, g= 1.0, Fig. 5c).

We attempted to validate IL-6 and GDF15 levels in both
SURF1 and Oligo-treated cells by enzyme-linked immunosorbent
assays (ELISA). The ELISA confirmed that IL-6 increased
exponentially in aging fibroblasts, displaying altered onset and
trajectories in both SURF1 (upregulated) and Oligo-treated cells
(downregulated) (Fig. 5d). Compared to control fibroblasts where
GDF15 was undetectable in early passages, SURF1 mutant
fibroblasts began to secrete GDF15 prematurely, and Oligo
treatment acutely induced robust GDF15 secretion by 1–2 orders
of magnitude over the first few weeks (Fig. 5e), consistent with the
rapid induction of the ISR particularly in Oligo-treated cells (see
Fig. 4b).

As cell-free mitochondrial DNA (cf-mtDNA) is associated with
human aging74 and was recently found to be elevated in the plasma
of patients with mtDNA mutations/deletions75, we quantified cf-
mtDNA in the media along the lifespan. Both mtDNA and nDNA
were detectable at appreciable levels (Supplementary Fig. 9a, b).
Compared to the media of control cells, cf-mtDNA levels were 73%
higher in SURF1 (g= 0.5) and 100% higher (g= 0.3) in the media
of Oligo-treated cells (Fig. 5f), although these differences did not
reach statistical significance due to the high temporal variation of
this phenotype. Parallel measurements of cell-free nuclear DNA
(cf-nDNA) showed that the released mitochondrial-to-nuclear
genome ratio was, on average, 117% higher in SURF1 than in
control cells (p < 0.01, g= 0.85, Supplementary Fig. 9c, d),
indicative of selective mtDNA release. Given the energetic cost
associated with protein secretion21,76, we suggest that the cytokine/
metabokine and mtDNA hypersecretory phenotype in SURF1 and
Oligo cells must contribute to hypermetabolism along with other
cellular processes.
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OxPhos defects upregulate energy-demanding cellular pro-
grams. From our longitudinal RNAseq dataset, we noted changes
in the totality of genes related to the ribosomal machinery, which
is produced in proportion with cellular biosynthetic demands
(Supplementary Figure 10a). Despite their significantly reduced
growth rate, both SURF1 (+19%, p= 2.4e− 10, g= 2.59) and
Oligo-treated cells (+50%, p < 0.01, g= 0.86) showed a marked
time-dependent upregulation in the ribosomal machinery, con-
sistent with the hypersecretory phenotype (secreted proteins must

be transcribed and translated) as well as the elevated metabolic
demands of translation that compete with cell growth44,76 (Sup-
plementary Fig. 10b). To characterize the genome-wide gene
regulatory changes associated with these cellular phenotypes and
to gain insights into the potential cause(s) of hypermetabolism in
response to OxPhos defects, we next deployed time-sensitive
models of gene regulation and DNA methylation.

We first visualized the transcriptomic profiles of SURF1 and
Oligo-treated cells using t-distributed stochastic neighbor

Fig. 4 Longitudinal mtDNA deletion profiles in OxPhos deficient SURF1 and Oligo cells. a RNAseq gene expression results for all MitoCarta 3.0
pathways, plus all mtDNA genes, and the integrated stress response (ISR: average of ATF4, ATF5, CHOP, GDF15). Values for each pathway are computed
from the average expression levels of all genes in each pathway, expressed as the median-centered value relative to the youngest control timepoints for
each pathway (rows). Each column represents a single timepoints (n= 3–8) along the lifespan of each donor or treatment condition (n= 3 donors, 3
groups). b Gene expression time course of selected mitochondrial pathways from E, expressed on a Log2 scale relative to the first control timepoint
(baseline). c 10 kb long-range PCR product resolved by agarose gel electrophoresis for control fibroblasts cultured up to 166 days (P3 to 31), and passage-
matched SURF1 and Oligo-treated cells. d Results from mtDNA sequencing and Eklipse analysis. Each line in the circos plots depicts a deletion burden in
control (Donor2) and SURF1 (Patient2) and Oligo-treated (Donor2) cells from two (early and mid-lifespan) representative passages. e Timecourse of the
number of unique mtDNA deletions in control, SURF1, and Oligo-treated cells. Deletion counts were estimated with a variant call cutoff of >5%
heteroplasmy. f Total deletion burden in cells across 150 days of lifespan. Data are mean ± SEM. **P < 0.01, ***P < 0.001, mixed effects model (fixed effect
of Control/SURF1/Oligo group and days grown, random effects of donor or cell line).
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embedding (t-SNE). Spatial embedding along the two major tSNE
components captured three main features of the transcriptome: (i)
substantial interindividual differences separating each donor/cell
line, (ii) age-dependent shifts in transcriptional profiles, (iii)
clustering among both SURF1 and Oligo cells, consistent with a
main effect of OxPhos defects (Fig. 6a). To harness the longitudinal
nature of these data, we used a linear mixed effects model (LMER)
to identify time-dependent differentially expressed genes (DEGs,
FDR < 0.05 threshold) between SURF1 and Oligo relative to
control, across the cellular lifespan (Supplementary Data 1 and 2).
Consistent with the similar degree of hypermetabolism and
the metabolic shift among both cellular models (see Figs. 2d–f
and 3b–f), there was a relatively high degree of overlap in DEGs
between SURF1 and Oligo-treated cells (Supplementary Figs. 11

and 14 and Supplementary Data 3). Genes with the largest effect
sizes conserved across SURF1 and Oligo showed up to 2-4-fold
upregulation (39%, n= 1503) or downregulation (35%, n= 1344)
(Fig. 6b, c). Differences were larger and more stable between
SURF1 and control, compared to more progressive effects
following the beginning of the Oligo treatment (Supplementary
Fig. 11), consistent with the constitutive genetic deficiency in
SURF1 cells compared to the novel insult with Oligo treatment.
The influence of OxPhos defects on the expression of the 37
mtDNA genes across the cellular lifespan is shown in Supplemen-
tary Fig. 12.

To identify gene regulatory pathways associated with hyper-
metabolism, we analyzed gene expression changes using iPAGE,
an information-theoretic computational framework that enables

Fig. 5 OxPhos defects trigger hypersecretion of metabokines and age-related cytokines. a Cytokine dynamics across the lifespan measured on two
multiplexes (Luminex) arrays. Cytokine levels are normalized to the number of cells at the time of sampling, shown as Log2 median-centered for each cytokine;
samples with undetectable values are shown as gray cells. Columns represent repeatedmeasures (n= 6–8) along the lifespan of each control and SURF1 donor
(n= 3 per group). b Comparison of maximum cytokine concentration reached in each of the SURF1 and healthy control donors, showing general upregulation of
most metabokines and cytokines. The value for TGF-α is heavily influenced by a single very high value in Donor 3. c Cell-free media GDF15 concentration time
course as measured on the Cytokine array. Inset compares early release between 20 and 80 days. dMedia IL-6 levels across the cellular lifespan by enzyme-
linked immunosorbent assay (ELISA), normalized to the number of cells at the time of sampling. eMedia GDF15 levels across the cellular lifespan measured by
ELISA, normalized to the number of cells at the time of sampling. Samples with non-detectable values (N.D.) are shown as zero values. f Cell-free mitochondrial
DNA (cf-mtDNA) dynamics across the cellular lifespan using qPCR, normalized to the number of cells at the time of sampling. n= 3 per group, 6–13 timepoints
per condition. Data are means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, mixed effects model (fixed effect of Control/SURF1/Oligo group and
days grown, random effects of donor or cell line). Abbreviations: CCL7 C-C motif chemokine ligand 7, IL-8 interleukin 8, CHI3L1 chitinase-3-like protein 1,MMP7
Matrix metallopeptidase 7, IL-6 Interleukin 6, IGFBP-rp1 Insulin-like growth factor binding protein 7, TNF-RII tumor necrosis factor receptor superfamily member
1B, TGF-α tumor growth factor alpha, IFN-γ interferon-gamma, TNFRSF9 TNF receptor superfamily member 9, GDF-15 growth differentiation factor 15, TNF-β
tumor necrosis factor beta, Fas Fas cell surface death receptor, CCL3 C-C motif chemokine ligand 7, FSTL1 Follistatin like 1, CCL23 C-C motif chemokine ligand
23, TIMP-1 tissue inhibitor of metallopeptidase 1, CD163 CD163 antigen, Lumican keratan sulfate proteoglycan Lumican, IL-18 interleukin-18, CXCL16C-X-Cmotif
chemokine ligand 16, Fetuin A alpha 2-HS glycoprotein, ALCAM activated leukocyte cell adhesion molecule, TNF-RI TNF receptor superfamily member 1A,
PCSK9 proprotein convertase subtilisin/kexin type 9, TFPI tissue factor pathway inhibitor.
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the systematic discovery of perturbed cellular pathways from gene
expression data77. Both SURF1 and Oligo-treated cells displayed a
significant perturbation of transcription and translation processes
(Fig. 6d). Upregulated genes were enriched for pathways related
to Golgi vesicle transport, fibroblast growth factor (FGF) binding,
VEGF receptor signaling pathway, and the unfolded protein
response, a signature consistent with increased secretion and
inter-cellular signaling activity. Downregulated genes were over-
represented for processes relating to cell division, consistent with
the slower division rates (i.e., quiescence or senescence) of SURF1
and Oligo-treated cells.

Lifespan gene expression trajectories in this dataset showed
some noteworthy features of OxPhos defects and hypermeta-
bolism at the single-gene level: (i) ISR-related genes are robustly
upregulated in a time-dependent manner by up to ~16-fold for
the transcription factor CHOP (DDIT3), and ~60-fold for its
downstream target GDF15; (ii) the age-related upregulation of
senescence-related genes (e.g., p21/CDKN1A) occurs prema-
turely in hypermetabolic SURF1 and Oligo cells; (iii) key
nucleotide metabolism enzymes such as thymidine kinase 1
(TK1) are robustly downregulated in SURF1 cells, possibly
contributing to mtDNA instability78; and (iv) telomere and
longevity-related genes such as the metabolic sensor SIRT1 and

the telomere protection complex component CTC1 are upregu-
lated two to fourfold (Fig. 6e). These broad changes in gene
expression, largely consistent with previous in vitro work3,79,
prompted us to examine another major layer of gene regulation,
DNA methylation.

DNA methylation recalibrations in OxPhos-induced hyper-
metabolism. To examine nuclear DNA methylation (DNAm) and
create a resource dataset with broad utility for pathway discovery,
we measured DNA methylation levels at 865,817 CpG sites
(Illumina EPIC array) in Control, SURF1, and Oligo-treated cells
at multiple time points across their cellular lifespan (n= 66). We
then leveraged these high dimensional data by building mixed-
effects models that consider the underlying data structure (donors,
longitudinal observations) to identify robust conserved DNA
methylation changes associated with OxPhos defects and hyper-
metabolism. Visualizing the general data structure using t-SNE
showed, that: (i) as expected, the methylome signature of each
donor was relatively distinct; (ii) DNAm exhibited consistent age-
related shifts, (iii) SURF1 cells clustered separately from control,
while (iv) Oligo cells caused a modest time-dependent shift away
from their respective controls (Fig. 7a). These data, therefore, add

Fig. 6 Mitochondrial defects trigger conserved transcriptional remodeling. a t-distributed stochastic neighbor embedding (t-SNE) of RNAseq data from
control, SURF1, and Oligo-treated human fibroblasts across the lifespan. bOverlap of significantly upregulated (red) or downregulated (blue) genes in SURF1 and
Oligo groups relative to control (linear mixed effects model, FDR-corrected p value < 0.05). Note, outer group counts include shared counts in the overlapping
rings. Gray indicates the diverging direction of regulation between SURF1 and Oligo DEGs. c Expression levels of the top 100 differentially expressed genes in
SURF1 (<75 days grown) and Oligo-treated cells (days 35–110). d iPAGE analysis of RNAseq data showing the top 40 enriched gene ontology pathways in top
overlapping upregulated and downregulated genes, conserved across both SURF1 and Oligo groups relative to control. Note, −log(p value) > 8 are mapped as
dark orange. e Gene expression timecourses of select genes related to the ISR, senescence, nucleotide metabolism, and telomere maintenance. Log2 expression
values (TPM) are normalized to the median of the control youngest timepoints. n= 3 donors per group, 3–8 timepoints per donor.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04303-x ARTICLE

COMMUNICATIONS BIOLOGY |            (2023) 6:22 | https://doi.org/10.1038/s42003-022-04303-x | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


to previous evidence in HEK293 cells80 and mice81, providing a
robust platform for discovering conserved nuclear DNAm sig-
natures associated with hypermetabolism-causing OxPhos defects
in primary human cells.

At the single CpG level, we asked which differentially methylated
positions (DMPs) were stably and consistently either hypo- or
hypermethylated in both SURF1 or Oligo-treated cells relative to
the control. Because transcriptionally relevant DNAm changes may
operate across multiple CpGs, we complemented this approach by
systematically examining differentially methylated regions
(DMRs), which include multiple nearby CpGs exhibiting similar
hypo- or hypermethylated changes in our statistical model82 (see
Methods for details). Figure 7b shows the overlap in significant
DMPs and DMRs (threshold FDR < 0.05). Of the overlapping
DMPs between SURF1 and Oligo, 14.8% were hypermethylated,
and 45.9% were hypomethylated. Global hypomethylation is a
feature of human aging and replicative senescence57. For DMRs,
the corresponding proportions were 11.1% and 46.6%, showing
high agreement in the methylome recalibrations between DMPs
and DMRs approaches. A notable number of significant and highly
differentially methylated changes in either SURF1 or Oligo-treated
cells were specific to each condition (Supplementary Data 4–9), but
here we focus exclusively on the changes conserved across two

independent models, which therefore have the highest probability
of being specifically caused by OxPhos defects and associated with
hypermetabolism (Fig. 7c, d).

The most robust changes in DNA methylation were targeted
at CpG islands near or on gene bodies. Relative to control cells,
as in the RNAseq results, the effect sizes were larger for SURF1
compared to Oligo, which induced directionally consistent but
smaller effect size changes than SURF1 defects (Fig. 7e). A
stringent analysis of the most differentially methylated genes
(based on both DMPs and DMRs) showed strong enrichment
for processes involving: (i) development and morphogenesis,
(ii) regulation of cell-cell signaling and organismal commu-
nication, (iii) neural development, and (iv) cell adhesion
(Fig. 7f). As highlighted above, increased regulation of signaling
and communication, along with development and morphogen-
esis, must entail energetically dependent processes. These data,
supported by the activation of corresponding downstream
transcriptional programs (Fig. 6) and the observed hypersecre-
tory phenotype in OxPhos-deficient cells (Fig. 5), document
genome-wide epigenomic recalibrations consistent not with
energy conservation, but with increased total energy expendi-
ture. These data also can be further queried with specific
genomic targets in mind.

Fig. 7 Mitochondrial defects trigger conserved epigenetic remodeling. a t-SNE of the nuclear DNA methylome from control, SURF1-disease (<75 days
grown), and Oligomycin-treated (35–110 days grown) fibroblasts across the replicative lifespan. b Overlap of differentially methylated CpGs (DMPs, left
panel) and differentially methylated regions (DMRs, right-panel) generated from mixed effects models. Note, outer group counts include shared counts in
the overlapping rings. c Heatmap of top 100 DMPs in SURF1 and Oligo-treated cells. DMPs were ordered by mean methylation difference between groups.
d Timecourse of top three hyper- and hypo-DMPs for SURF1 and Oligo-treated groups. e Gene regional map of top hyper- and hypo-DMRs for SURF1-
disease and Oligo-treated fibroblasts. 5′–>3′ direction. f Heatmap of top 20 enriched gene ontology pathways in top 1000 hyper- and hypo-DMPs and
DMRs overlapping between SURF1 and Oligo-treated groups. Note, −log(P values) > 10 are mapped as dark orange. n= 3 donors per group, 5–11
timepoints per donor/treatment.
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OxPhos defects accelerate telomere shortening and decrease
cellular lifespan. Finally, given the deleterious effect of
hypermetabolism-causing OxPhos defects on the lifespan of
patients with mitochondrial diseases and in animal models, these
genome-wide data prompted us to examine how OxPhos defects
and hypermetabolism relate to dynamic genomic markers of
cellular aging and senescence. The complete population doubling
curves of each donor (Fig. 8a) provided initial evidence that
cellular lifespan was reduced in SURF1 and Oligo-treated cells.
The Hayflick limit (i.e., the total number of cell divisions56) was,
on average, 53% lower in SURF1 cells (p= 0.072, g= 2.0), and
Oligo decreased the Hayflick limit by 40% (p < 0.066, g= 2.0)
relative to the untreated cells of the same donor (Fig. 8a, b).
Interestingly, the magnitude of these effects (40–53%) on total
population doubling loosely corresponds to the 3–4 decade loss in
human lifespan documented among adults with mitochondrial
diseases (see Fig. 1g, h), which would represent 38–50% for an
average 80-year life expectancy.

To directly measure the pace of biological aging in response to
OxPhos defects, we performed repeated measures of telomere
length across the cellular lifespan. This allowed us to compute the
average rate (i.e., slope) of telomere shortening per population
doubling or cell division (Fig. 8c). Consistent with observations of
dramatically shortened telomeres in skeletal muscle of patients
with mtDNA mutations83 and recent work causally linking
mitochondrial OxPhos defects to telomere dysfunction84, both
SURF1 mutations and Oligo treatment strikingly increased the
rate of telomere erosion per population doubling by 162% for
SURF1 (p= 0.53, g= 3.2) and 769% for Oligo (p= 0.09, g= 1.2)
(Fig. 8d). This means that for each cell division and genome
duplication event, OxPhos-deficient fibroblasts lose 1.6–7.7 times
more telomeric repeats than healthy fibroblasts. We note that
these results rely on the estimated slope across the whole cellular
lifespan (single value per donor, n= 3 per group), so the p values
are less meaningful than the effect sizes, which are large (g > 1).
The terminal telomere length coinciding with growth arrest
tended to be moderately higher in SURF1 and Oligo groups
(Fig. 8e). This could suggest that growth arrest is driven by factors
other than absolute telomere lengths, such as the prioritization of

transcription/translation over growth-related functions, which are
sufficient to induce growth arrest and senescence in human
fibroblasts44,45.

Next, we leveraged our DNAm dataset to quantify biological
age using validated multivariate algorithms or “clocks” (DNA-
mAge, or epigenetic clocks) trained, in human tissues, to predict
chronological age and mortality57,85. Five different DNA-
mAge clocks that rely on different CpG sets and include a
modification that improves their accuracy86 were applied directly
to our fibroblast time series DNAm data. These results showed
that relative to the rate of epigenetic aging in control cells with
normal OxPhos function, the rates of biological aging per
population doubling were accelerated by an average of 131% in
SURF1 cells (p < 0.05, g= 1.5), and to a lesser extent in Oligo-
treated cells (+54%, p < 0.05, g= 0.6, Fig. 8f, g), thus indepen-
dently supporting the findings of accelerated telomere shortening.
Trajectories and DNAm aging rates for each donor using all five
epigenetic clocks, including those computed relative to “time in
culture” rather than to population doublings, produced variable
results and are presented in Supplementary Fig. 13.

Together, the decreased Hayflick limit, the accelerated telomere
attrition rate, and the increased rate of epigenetic aging converge
with the senescence-related secretome and gene expression results
to link OxPhos defects to hypermetabolism and reduced cellular
lifespan.

Discussion
Integrating available clinical and animal data together with our
longitudinal fibroblast studies has revealed hypermetabolism as a
conserved feature of mitochondrial OxPhos defects. A major
advantage of our cellular system is that it isolates the stable
influence of genetic and pharmacological OxPhos perturbations
on energy expenditure, independent of other factors that may
operate in vivo. Thus, these data establish the cell-autonomous
nature of hypermetabolism. Moreover, despite the diverging
mode of action of SURF1 and Oligo models, as well as some
divergent molecular responses, both models converge on the
same hypermetabolic phenotype, adding confidence around the

Fig. 8 Mitochondrial OxPhos defects decrease lifespan and accelerate telomere shortening. a Growth curves of control, SURF1, and Oligo-treated cells.
Population doublings were determined from both live and dead cell cells at each passage. b Hayflick limit defined as the total number of population
doublings achieved before division rate <0.01 divisions/day for at least two passages. c Telomere length per population doubling, d rate of telomere
attrition per division, and e terminal telomere length. f Rate of epigenetic aging for control, SURF1, and Oligo-treated cells, calculated from the linear rate
between days 25 and 75 (3–4 timepoints/cell line). g Average rate of epigenetic aging across all PC-based clocks. Each datapoint represents a different
clock. f, g Significance values were calculated using a multiple comparison two-way ANOVA. n= 3 donors per group, 5–15 timepoints per condition for
telomere length. In d, data are the slope estimate for the linear regressions in (c). Data are means ± SEM. *P < 0.05, **P < 0.01.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04303-x ARTICLE

COMMUNICATIONS BIOLOGY |            (2023) 6:22 | https://doi.org/10.1038/s42003-022-04303-x | www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio


generalizability of this phenomenon. Our data also rule out
mitochondrial uncoupling as a main driver of hypermetabolism
in SURF1 patient-derived fibroblasts, and instead implicate the
activation of energy-demanding gene regulatory programs,
including but likely not limited to increased metabokine/cytokine
secretion, which can compete with growth and longevity (Fig. 9).
Our resource cellular lifespan data provide several novel obser-
vations that agree with previous work79, and that are relevant to
understanding how primary mitochondrial OxPhos defects trig-
gers core physiological and phenotypic hallmarks of aging and
mitochondrial diseases.

First, we observed that the mitochondrial disease marker
GDF15 was largely undetectable in the media of young, healthy
fibroblasts, but increased progressively across the cellular lifespan.
This finding recapitulates the age-related increase in GDF15 in
humans69,73 and adds to previous evidence of conserved age-
related changes in DNA methylation in primary human fibro-
blasts cultured over several months57. Consistent with the higher
GDF15 levels in primary OxPhos disorders in humans72 and
mice10, extracellular GDF15 tended to be elevated in both models
of OxPhos defects. Likewise, OxPhos defects increased extra-
cellular cf-mtDNA levels, in line with recent reports that cf-
mtDNA is elevated in primary OxPhos disorders75 and with
aging in humans74. The link between OxPhos defects and cf-
mtDNA release requires further investigation.

Second, we observed that OxPhos dysfunction from SURF1
mutations, and to a lesser extent Oligo treatment, both caused
secondary mtDNA instability. mtDNA instability was associated
with the variable accumulation of mtDNA deletions, but not
point mutations, across the cellular lifespan. Our confidence in
this result is reinforced by the longitudinal nature of the mtDNA

sequencing data, from the same primary cell lines examined at
multiple time points. Notably, the time course data also showed
that cell populations can eliminate a large fraction of mtDNA
deletions within 12–14 days (mtDNA deletions are removed from
one passage to the next). This is consistent with the fact that
replicating fibroblasts eliminate some deleterious mtDNA
deletions87, and also that several de novo deletions removed the
origin of replication of the light strand (OL), thereby preventing
their replication. Whether the clonal amplification of some
mtDNA deletions in SURF1 fibroblasts occurs through popula-
tion selection at the cellular level, through intracellular quality
control mechanisms, or a combination of both, remains to be
determined.

Third, mitochondrial OxPhos defects dramatically increased
the telomere erosion rate per cell division, despite the adaptive
transcriptional upregulation of telomere protection complex
components. This effect of mitochondria on telomeres agrees
with the variable telomere maintenance in mtDNA conplastic
mice88, with the life-shortening effect of pathogenic mtDNA
variants32 and OxPhos defects in mice34, and with the reduced
lifespan in patients with mtDNA disease shown in Fig. 1g, h. A
study in skeletal muscle of children with high heteroplasmic
mtDNA mutations also reported excessively short telomeres,
similar in length to the telomeres of healthy 80-year-old
controls83. Because skeletal muscle is a post-mitotic tissue, this
previous result also implies that OxPhos defects could accelerate
telomere attrition at a disproportionate rate, or perhaps inde-
pendent from cell division, as suggested by the disconnect
between the loss of telomeric repeats and genome replication/cell
division observed in our hypermetabolic fibroblasts. Beyond
severe OxPhos defects, mild alterations of OxPhos function

Fig. 9 Conceptual model including potential sources of hypermetabolism in cells and patients with mitochondrial diseases. OxPhos defects trigger
mtDNA instability and cell-autonomous stress responses associated with the hypersecretory phenotype, recapitulating findings in plasma of patients with
elevated metabokine and cell-free mitochondrial DNA (cf-mtDNA) levels. These responses are linked to the upregulation of multiple energy-dependent
transcriptional programs, including the integrated stress response (ISR). We propose that these processes collectively increase energy consumption,
leading to hypermetabolism in patient-derived fibroblasts, and physiological hypermetabolism in affected patients. In dividing human fibroblasts,
hypermetabolism-causing OxPhos defects curtail lifespan and accelerate canonical cellular senescence and aging markers, namely telomere length,
epigenetic aging, as well as secreted and transcriptional markers.
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driven by mild, common variants in complex I subunits genes,
may also shape disease risk89 and influence lifespan90.

The mechanistic link between OxPhos-induced hypermetabo-
lism and both mtDNA instability and accelerated telomere ero-
sion remains unclear. DNA maintenance (mtDNA, and
telomeres) relies on the accuracy of the molecular processes
ensuring accurate replication. The energetic tradeoff or “compe-
tition” between translation and growth44 could explain why
OxPhos-deficient cells, which must expend a large fraction of
their energy budget to upregulate transcription/translation and
secretory, also grow more slowly. DNA replication is also ener-
getically constrained and notably sits at the bottom of a hierarchy
of energy-consuming processes where vital processes, meaning
that in a situation when energy is limited, ionic balance and
translation are prioritized over division and DNA replication20.
Furthermore, cells under stress experience an energetic tradeoff
between the accuracy of molecular operations and the speed of
these processes, known as the energy-speed-accuracy tradeoff91.
Oxygen tension affecting electron flux through the OxPhos sys-
tem could also contribute to imposing energetic tradeoffs. How-
ever, our cells grown at 3% oxygen did not show significantly
different growth rates nor energy expenditure. On this basis, we
can largely rule out a main effect of oxygen tension in our results
and instead conclude that the hypermetabolic cellular phenotype
is a direct consequence of the OxPhos defects. This interpretation
is reinforced by the orthogonal nature of the SURF1 (complex IV)
and Oligo (complex V) models, which target different OxPhos
components yet produce a comparable degree of hypermetabo-
lism. Hypermetabolism is a global state of the cell, and no cur-
rently available approach can selectively manipulate or correct
hypermetabolism without introducing unresolvable confounds.
For this reason, to our knowledge, it is currently not possible to
mechanistically isolate the influence of hypermetabolism on DNA
instability and accelerated telomere shortening. We speculate that
the diversion of energetic resources43, as well as substrates
including nucleotides78, may contribute to reduced DNA repli-
cation fidelity, which in turn could contribute to both mtDNA
instability and telomere attrition, independent of cell division.

Fourth, our longitudinal RNASeq and DNAm datasets reveal
conserved recalibrations implicating developmental and
translation-related pathways, as well as cell–cell communication,
with OxPhos defects and hypermetabolism. These identified
pathways overlap with previously identified multi-omic over-
representation analysis performed on iPSC-derived neurons from
SURF1 patients92. In both this and our study, neural develop-
ment, cell signaling, morphogenesis, cell cycle, and metabolism
were the predominant processes altered in SURF1-related disease.
The induction of these energetically-demanding pathways that
constrain growth at the cellular and possibly at the organismal
level41, could help explain why a major feature of pediatric
mitochondrial disorders (including our SURF1 donors) is a
neurodevelopmental delay, and also why adult patients com-
monly display short stature (restricted growth)30. In relation to
cell-cell communication, we note that the biomarker picture of
adult patients with mitochondrial encephalopathy, lactic acidosis,
and stroke-like episodes (MELAS) is dominated, as in our
fibroblast models, by elevated (not reduced) signaling and meta-
bolic markers in blood72. Thus, the organism under metabolic
stress does not initiate an energy-saving hypometabolic state with
reduced signaling activity, but instead activates energivor-
ous stress responses (ISRs), which must divert and consume
energetic resources, thereby forcing an apparent tradeoff with
other processes such as growth and longevity pathways.

Finally, the OxPhos defects in our fibroblasts triggered a shift
toward glycolytic ATP production. The glycolytic shift is con-
sistent with the physiological shift in substrate oxidation from

lipids/amino acids to carbohydrates, quantified by the RQ among
patients93 and mice94 with OxPhos defects. The active shift
towards glycolysis occurs even when OxPhos is not completely
obliterated. For example, although basal respiration was markedly
lower in SURF1 cells, the maximal FCCP-uncoupled respiration
in SURF1 cells was relatively preserved (see Fig. 2b and Supple-
mentary Fig. 2c). This result implies a cellular decision to route
metabolic flux towards an energetically less efficient pathway (i.e.,
glycolysis). This could be explained on the basis of energetic
constraints and proteome efficiency, since the proteome cost of
OxPhos is at least double that of glycolytic fermentation19. Thus,
cells can “choose” to divert metabolic flux towards glycolysis even
when OxPhos is at least partially functional, as in cancer, because
of rising intracellular energetic constraints driven by hyperme-
tabolism. We note again that hypermetabolism is apparent across
multiple animal models of primary OxPhos defects, manifesting
as an elevated cost of living, even during rest and sleep in
mice10,24–26. In particular, deep phenotyping of Ant1−/− mice
across three studies25,95,96 reveals a systemic physiological picture
highly consistent with mitochondrial diseases, including excessive
mitochondrial biogenesis, elevated circulating catecholamine
levels, severe hypermetabolism (+82 to −85% REE) when
adjusted for lower physical activity levels, reduced adiposity,
elevated mtDNAcn, and mtDNA instability, and decreased
median lifespan. These in vivo data thus provide additional
converging evidence, beyond the clinical data in Fig. 1, that
mitochondrial OxPhos defects impair whole-body energetic effi-
ciency and cause physiological hypermetabolism in mammals.

Identifying hypermetabolism as a feature of the mitochondrial
diseases may be clinically relevant as it provides an explanatory
framework for some of the major symptoms in affected patients.

First, fatigue and exercise intolerance are evolutionary con-
served, subjective experiences that arise when the organism
consumes more energy than it would under optimal conditions
(e.g., subjective fatigue during the oxygen debt after strenuous
exercise, or during an infection). Thus, symptoms of fatigue could
be direct consequences of impaired metabolic efficiency and
hypermetabolism.

Second, as noted above, severely affected patients with mito-
chondrial disease are usually thin, which may be attributable to
not only reduced energy intake or to intestinal malabsorption, but
to chronic hypermetabolism, effectively burning excess ingested
calories, preventing the accumulation of excess adiposity and
muscle mass.

Third, alcohol appears to be poorly tolerated and associated
with symptom onset in some patients with mtDNA defects97–99,
but the basis for alcohol intolerance remains unknown. Alcohol
itself causes hypermetabolism in healthy individuals—increasing
whole-body REE by as much as 16%, and inhibiting lipid oxi-
dation by 31–36%100,101. Alcohol may therefore aggravate pre-
existing hypermetabolism, thus imposing further energetic con-
straints on vital cellular or physiological functions.

Fourth, chronic hypermetabolism could, in part, explain why
infections can trigger clinical exacerbations, representing the
major cause of decompensation and death in this population29.
The metabolic cost of immune activation to viral and bacterial
infection is high, and cytokine production in human leukocytes is
under mitochondrial regulation102. Thus, immunity must there-
fore compete with other host maintenance systems103. We
speculate that in mitochondrial diseases, because the limited
energetic resources are consumed at a higher rate than normal
due to systemic hypermetabolism, patients may lack the necessary
energetic reserve required to sustain vital organs while mounting
adequate immune responses.

A major open question relates to the origin and modifiability of
signaling pathway(s) and cellular process(es) that underlie
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hypermetabolism in OxPhos deficient cells and humans. Rather
than pursuing a single potential explanation, here we attempted to
deeply phenotype both cellular models of hypermetabolism and to
produce a foundational dataset covering several key processes and
pathways previously implicated in the pathogenesis of OxPhos
defects in humans and animal models. Our dataset, therefore,
provides a foundation that can be used as a resource to develop
targeted, mechanistic experiments to (i) determine the origin and
modifiability of hypermetabolism in the context of OxPhos defects
in vitro and in vivo, and (ii) resolve the mechanism(s) linking
hypermetabolism to human aging biology. A usual suspect to
explain decreased cellular and physiological bioenergetic efficiency
is the uncoupling of the OxPhos machinery. While this article was
under revision, a case of clinically suspected hypermetabolism in
twin boys harboring a complex V (FoF1 ATP synthase) defect was
reported104. Introducing the pathogenic mutation in fibroblasts
increased basal OCR, where the underlying mechanism involves
elevated proton leak and uncoupling. This agrees with the first
reported case of mitochondrial disease by Luft, a woman with
uncoupled skeletal muscle mitochondria suffering from severe,
documented hypermetabolism105. This uncoupling phenotype dif-
fers from our observations, which indicate no sign of uncoupling in
SURF1-mutant hypermetabolic fibroblasts – in fact, significantly
lower (−35%) proton leak and higher (+10%) coupling efficiency
(Fig. 2j, k). On the other hand, the Oligo treatment targeting the
complex V did cause a marginally significant (−28%) reduction in
coupling efficiency and punctual elevations in proton leak across
the lifespan
(Fig. 3g, h). These results point to a potential role of OxPhos
uncoupling as a partial contributor to hypermetabolism in the Oligo
model. However, other cellular data, as well as the physiological
results from our meta-analysis where only a minority of patients
had mutations affecting the FoF1 ATP synthase, call attention to
uncoupling-independent, energy-demanding processes as more
general causes of hypermetabolism deserving further investigation.

Factors that could be regarded as limitations of this study
include the small sample size and the in vitro nature of the cel-
lular data, potentially limiting generalizability. However, the
stability of metabolic and molecular phenotypes in two distinct
experimental models, across three unrelated donors (female and
male) systematically monitored across the replicative lifespan—
when cells undergo dynamic age-related changes—is a strong test
of robustness for these findings. We also note that the extra-
cellular flux analysis used to derive ATP consumption rates is
indirect60, and other approaches, such as metabolic tracing
experiments, would be required to fully define energy partitioning
in hypermetabolic cells. Finally, the clinical phenotyping pre-
sented in Fig. 1 is not exhaustive, focusing exclusively on available
clinical outcomes related to energy expenditure, including indir-
ect calorimetry without careful body composition or age adjust-
ments. Further studies are therefore needed to address potential
confounders and to fully define the magnitude and clinical het-
erogeneity in energy expenditure among patients, together with
the dynamic neuroendocrine and metabolic manifestations of
hypermetabolism.

Overall, the meta-analysis of clinical data from hundreds of
patients and two cellular models of OxPhos dysfunction identifies
hypermetabolism as a feature of mitochondrial diseases. Our
longitudinal patient-derived fibroblasts data delineate some of the
cellular and molecular features of OxPhos-induced hypermeta-
bolism, including sustained induction of the ISR, genome
instability, hypersecretion of cyto/metabokines, and genome-wide
DNA methylation and transcriptional recalibrations that
emphasize the upregulation of energy-dependent processes rela-
ted to signaling and communication (see Fig. 9). A resource
webtool with all data from this study, including the longitudinal

RNAseq and DNAm data, is available and can be explored for
genes or processes of interest (see Data Availability Statement).
Altogether, these translational data, therefore, provide a basis to
rationalize some unexplained clinical features of mitochondrial
diseases and suggest that intracellular and systemic energy tra-
deoffs (rather than ATP deficiency) may contribute to the
pathogenesis of mitochondrial diseases. The proposed explana-
tory framework of cellular and physiological hypermetabolism
calls for well-controlled studies to further understand the extent
to which hypermetabolism is a bystander or a harbinger of
morbidity and early mortality in patients with mitochondrial
diseases. Our translational findings highlight the need for colla-
borative partnerships that bridge the cellular, clinical, and
patient-reported aspects of mitochondrial diseases and aging.

Methods
Human cohorts. Data were meta-analyzed from 17 mitochondrial disease cohorts
listed in Table 1. Inclusion criteria included (1) cohorts with a genetic diagnosis for
all participants and (2) including measures for at least one of the primary outcomes
(resting heart rate, catecholamine levels, resting VO2 or VO2 relative to work rate,
BMI, mortality). Eligible cohorts included participants from five countries,
including China, Denmark, England, Italy, and the USA. Studies were published
between 2003 and 2019, covering a 16-year period. Each cohort with its sample
size, female/male distribution, genetic diagnoses (nDNA vs mtDNA), and symp-
tomatology are listed in Table 1, with additional information about data extraction
provided here. Each cohort included its own control group, so group-level averages
(not patient-level data) were used to compute effect sizes as % difference between
mitochondrial diseases and control, and standardized Hedges g for each outcome
measure (e.g., resting heart rate, resting VO2). Cohorts with available source data to
calculate intragroup variance include error bars denoting the standard error of the
mean in Fig. 1.

Cohort 154 included data on resting HR and resting VO2 in patients with mixed
genetic defects. Cohort 2 included four sub-studies: (a)106, (b)107, (c)108, and (d) a
cohort of patients with single large-scale mtDNA deletions with measures of resting
HR, resting VO2, and BMI. Cohort 3109 included data on resting HR, resting
urinary catecholamines, and BMI. Cohort 4110 included data on resting HR and
BMI. Cohort 5 is a cohort (the Mitochondrial Stress, Brain Imaging, and
Epigenetics Study – MiSBIE) of patients with m.3243 A > G mutations, which
included data on resting HR and BMI. Cohort 6111 included data on circulating
catecholamines at rest and during exercise. Cohort 793 included data on VO2

during fixed workload (65W) and BMI. Cohort 8112 included data on resting VO2

and BMI. Cohort 9113 included VO2 during constant work rate (40% of max), and
VO2 values in ml/kg/min were adjusted to average workload achieved by each
group to obtain comparable estimates of energetic demand relative to work
performed. Cohort 1014 included metabolic efficiency during constant-rate cycle
ergometry (30 watts), including before and after a home-based exercise training
protocol, and these values were compared to reference values in healthy individuals
from113. Cohort 11114 overlaps with Cohorts 9 and 10 and included BMI data.
Cohort 1217 included BMI data averaged between both mutation groups. Cohort
1330 is a natural history study of adult patients with mortality data. Cohort 1429 is a
retrospective study of the causes of death in adult patients with mortality data.
Cohort 15115 is a pediatric natural history study with mortality data. Cohort 1628 is
a multi-center pediatric natural history study with mortality data. Cohort 17 is an
ongoing natural history study (McFarland et al., Newcastle Mitochondrial Disease
Cohort) with mortality data.

For a subset (3/6) of studies reporting both VO2 and VCO2 in the original
publication, or reporting both VO2 and the respiratory quotient (RQ) from which
VCO2 could be derived, we used the Weir equation53 to estimate group-level REE
differences between patients and controls. Compared to VO2 (mlO2/min/kg body
mass) differences between groups, the Weir equation-derived REE differences
(kcal/day/kg) were, on average, 1.2% higher (range: −0.3% to +2.3%) than the
group difference in VO2 (30.0%). Future studies using the proper methodology to
quantify resting metabolic rate (RMR) or free-living energy expenditure,
normalized with sensitive body composition assessments, are needed to fully define
the spectrum of hypermetabolism in affected patients.

Reference BMI for the USA (29.9 kg/m2) was obtained from the National
Health and Nutrition Examination Survey (NHANES) for wave 2015-2016
(n= 9544) (e-link), for the UK (28.6 kg/m2) from the Health Survey for England
2018 (n= 6600) (link), and for Italy (25.8 kg/m2) from the NCD Risk factor
collaboration (link), with the combined average presented in Fig. 1f. Reference
values for life expectancy, were obtained from the World Bank (https://data.
worldbank.org/) and the average value for the USA (78.6 yr), UK (81.2 yr), and
Italy (82.9 yr) (representing most cohorts included) is reported in Fig. 1g. Data
presented in Fig. 1h represent mortality rates in the UK (reference population) for
2018, and the mortality data for individuals for the mitochondrial disease was
collected between 2010 and 2020.
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The clinical data demonstrating hypermetabolism are derived from more than a
dozen laboratories over a >15-year period, illustrating the stability of this finding.
The apparent cross-study stability of clinical hypermetabolism is also unlikely to be
influenced by publication or reporting bias for three main reasons: (i) most studies
were exploratory (as opposed to confirmatory) in nature, such that the motivation
for their publication depended neither on the significance nor direction of these
results, (ii) baseline group differences for most parameters (e.g., resting VO2) were
not primary outcomes in any studies, and in several cases, these data were not
analyzed nor reported in the original reports, and (iii) variables such as BMI were
ubiquitously reported. Moreover, to further reduce the potential of bias, the overall
sample includes new, previously unpublished cohorts of clinically and genetically
well-defined patient populations (see Table 1). Together, these factors increase the
likelihood that the findings revealing the existence of a hypermetabolic state are
robust and generalizable to mitochondrial diseases represented here, which
includes a relatively broad diversity of mtDNA mutations. Further work is needed
to sensitively quantify hypermetabolism across the diurnal cycle, normalized to
body composition (fat-free mass), and normed against population references. 116.
Studies linking hypermetabolism to disease severity and progression are also
warranted.

Skeletal muscle histology, mtDNA heteroplasmy, and mtDNA density. Human
skeletal muscle from the diaphragm was subjected to sequential cytochrome c
oxidase (COX, diaminobenzidine, brown) and succinate dehydrogenase (SDH,
nitrobluetetrazolium, blue) staining as described previously117. This technique
reveals segments of myofibers deficient for mtDNA-encoded COX but positive for
exclusively nDNA-encoded SDH22. Sub-cellular segments of the same myofiber
highlighted in Fig. 1b were dissected from a 20um-thick cryosection by laser-
capture microdissection (LCM) on a Leica AS LMD 6000 microscope, transferred
and digested (Tween20, Proteinase K) overnight, and used as template DNA in a
multiplex real-time PCR reaction that amplifies MT-ND4 and MT-ND1 amplicons
within the minor and major arcs of the mtDNA, respectively, to calculate het-
eroplasmy levels for major arc mtDNA deletions118. Total mtDNA density was
quantified by deriving MT-ND1 copies from a standard curve, normalized per
surface area (µm2) of tissue used as input117.

Tissue culture. Primary human dermal fibroblasts were obtained from a dis-
tributor or in the local clinic from 3 healthy and 3 SURF1-patient donors (IRB
#AAAB0483, see Tables 2 & 3 for descriptive information and distributor).
Fibroblasts were isolated from skin tissue biopsies using standard procedures. After
isolation, fibroblasts were stored in 10% DMSO (Sigma-Aldrich #D4540), and 90%
fetal bovine serum (FBS, Life Technologies #10437036) in a cryogenic tube under
liquid nitrogen. To avoid freeze shock, necrosis cells were frozen gradually in an
isopropanol container (Thermofisher #5100-0001) at −80 °C overnight before
storage in liquid nitrogen.

Genotypes were confirmed by whole genome sequencing. Paired-end (PE) reads
were obtained from Illumina HiSeq and processed using SAMtools (v1.2) and
BaseSpace workflow (v7.0). PE reads were aligned to hg19 genome reference
(UCSC) using Isaac aligner (v04.17.06.15), and BAM files were generated. Small
variants, including single nucleotide variants (SNVs) and insertion/deletion
(Indels), were called from the entire genome using Strelka germline variant caller
(v2.8). Variants specific to the SURF1 gene were obtained from the genome-wide
annotated vcf files using SnpSift and annotated using web ANNOVAR.

To initiate cultures, cryopreserved fibroblasts were thawed at 37 °C ( < 4 min)
and immediately transferred to 20 ml of preheated DMEM (Invitrogen #10567022).
Cells were cultured in T175 flasks (Eppendorf #0030712129) at standard 5% CO2

and atmospheric (∼21%) O2 at 37 °C in DMEM (5.5 mM glucose) supplemented
with 10% FBS, 50 μg/ml uridine (Sigma-Aldrich #U6381), 1% MEM non-essential
amino acids (Life Technologies #11140050), 10 μM palmitate (Sigma-Aldrich
#P9767) conjugated to 1.7 μM bovine serum albumin (BSA) (Sigma-Aldrich
#A8806), and 0.001% DMSO (treatment-matched, Sigma-Aldrich #D4540). Cells
were passaged approximately every 5 days (±1 day). Oligo-treated healthy control
cells were cultured in the same media as control cells supplemented with 1 nM
Oligomycin (in 0.001% DMSO, Sigma-Aldrich #75351) starting on Day 15.

Brightfield microscopy images (10×, 20× magnification) were taken before each
passage using an inverted phase-contrast microscope (Fisher Scientific #11350119).
Cell counts, volume, and death were determined at each passage using the
Countess II Automated Cell Counter (ThermoFisher Scientific #A27977). Growth
rates were used to determine replating density, by pre-calculating the number of
cells needed to reach ~90% confluency (~2.5 million cells) at time of the next
passage. Cells were never plated below 200,000 cells or above 2.5 million cells to
avoid plating artifacts of isolation or contact inhibition, respectively. The timing
and frequency of time points collected vary by assay, with an average sampling
frequency of 15 days119. Cell media was collected at each passage. Individual cell
lines were terminated after exhibiting less than one population doubling over a
30-day period. The Hayflick limit was determined as the total number of
population doublings of a cell line at the point of termination.

Mycoplasma testing. Mycoplasma testing was performed according to the man-
ufacturer’s instructions (R&D Systems #CUL001B) at the end of the lifespan for
each treatment and cell line used. All tests were negative.

Calculations of energy expenditure and normalization to division rate and cell
size. Bioenergetic parameters were measured using the XFe96 Seahorse extra-
cellular flux analyzer (Agilent), and oxygen consumption rate (OCR), and extra-
cellular acidification rate (pH change) were measured over confluent cell
monolayers. Cells were plated for Seahorse measurement every 3 passages
(~15 days) with 10–12 wells plated per treatment group. Each well of a seahorse
96-well plate was plated with 20,000 cells and incubated overnight under standard

Table 2 Control and SURF1 donor characteristics.

Cell Line Tissue Genotype Sex Age Passagea Source Cat #

Donor 1 Dermal breast Normal Male 18 1 Lifeline Cell Technology FC-0024 Lot # 03099
Donor 2 Dermal breast Normal Female 18 1 Lifeline Cell Technology FC-0024 Lot # 00967
Donor 3 Foreskin Normal Male 0 4 Coriell Institute AG01439
Patient 1 Dermal upper-arm skin SURF1 mutation Male 0.25 7 Hirano lab NA
Patient 2 Dermal upper-arm skin SURF1 mutation Male 11 5 Hirano lab NA
Patient 3 Dermal upper-arm skin SURF1 mutation Female 9 9 Hirano lab NA

aIndicates the passage at which cells were obtained before the experiment began.

Table 3 Genotyping results of SURF1 patient-derived fibroblasts.

Cell line Surf1 mutation Exonic function dbSNP id Clinical significancea

Patient 1 c.518_519del (p.S173Cfs*7) c.845_846del (p.S282Cfs*7) Frameshift deletion rs782316919 Pathogenic | Pathogenic
Patient 2 c.247_248insCTGC (p.R83Pfs*7) c.574_575insCTGC (p.R192Pfs*7) Frameshift insertion rs782289759 NA

c.C246G (p.T82T) C573G (p.T191T) Synonymous SNV rs28715079 Benign | Likely Benign
c.313_321del (p.L105_A107del) Nonframeshift deletion rs759270179 NA
c.311_312insA (p.L105Sfs*11) Frameshift insertion rs764928653 NA
c.T280C (p.L94L) Synonymous SNV rs28615629 Benign | Likely Benign

Patient 3 c.C246G (p.T82T) c.C573G (p.T191T) Synonymous SNV rs28715079 Benign | Likely Benign
Homozygous c.313_321del (p.L105_A107del) Nonframeshift deletion rs759270179 NA
c.T280C (p.L94L) Synonymous SNV rs28615629 Benign | Likely Benign

Results from whole genome sequencing (WGS). SNV single nucleotide variant.
aClinical interpretation of genetic variants is based on the ANNOVAR gene annotation pipeline that uses ClinVar database as a primary reference.
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growth conditions, following the manufacturer’s instructions, including a plate
wash with complete Seahorse XF Assay media. The complete XF media contains no
pH buffers and was supplemented with 5.5 mM glucose, 1 mM pyruvate, 1 mM
glutamine, 50 μg/ml uridine, and 10 μM palmitate conjugated to 1.7 μM BSA. After
washing, the plate was incubated in a non-CO2 incubator for one hour to equili-
brate temperature and atmospheric gases. The instrument was programmed to
assess various respiratory states using the manufacturer’s MitoStress Test120. Basal
respiration, ATP turnover, proton leak, coupling efficiency, maximum respiration
rate, respiratory control ratio, spare respiratory capacity, and non-mitochondrial
respiration were all determined by the sequential additions of the ATP synthase
inhibitor Oligomycin (final concentration: 1 μM), the protonophore uncoupler
FCCP (4 μM), and the electron transport chain Complex I and III inhibitors,
rotenone and antimycin A (1 μM). The optimal number of cells and concentration
for the uncoupler FCCP yielding maximal uncoupled respiration was determined
based on a titration performed on healthy fibroblasts.

The final Seahorse injection included Hoechst nuclear fluorescent stain
(ThermoFisher Scientific #62249) to allow for automatic cell counting. After each
run, cell nuclei were counted automatically using the Cytation1 Cell Imager
(BioTek), and raw bioenergetic measurements were normalized to relative cell
counts on a per-well basis. ATP metrics were determined using the P/O ratios of
OxPhos and glycolysis as previously described by Mookerjee et al.59. These
conversions assumed energy sourced was derived entirely from glucose. All JATP
measurements take into account non-mitochondrial, and proton leak-derived
oxygen consumption, thereby reflecting the mitochondrial ATP-synthesis-related
flux (Supplementary Fig. 2a). The code and raw data are available as detailed in the
Data Availability statement.

To assess if increased ECAR in experimental conditions was due to non-
glycolytic activity, a glucose-dependency test was performed using the Seahorse XF
Glycolysis Stress Test Kit (Agilent, 103020-100). Prior to extracellular flux
measurements, young healthy control (Donor2) and young SURF1 (Patient3) cells
were grown overnight in differing nutrient conditions: physiological 5.5 mM
glucose, 0 mM glucose, 25 mM glucose. The glycolysis stress test kit was performed
according to the manufacturer’s protocol. To monitor growth and cell death, cells
were cultured for 7 days in each glucose condition and monitored daily (see
Supplementary Fig. 3).

mtDNA deletions. mtDNA deletions were initially detected by long-range PCR
(LR-PCR) from DNA extracted from cultured fibroblasts using DNeasy blood and
tissue kit (Qiagen #69504) following the manufacturer’s instructions. Isolated DNA
was amplified using 12 F (np 5855–5875) and D2 R (np 129-110) Oligonucleotide
primers to yield a 10-kb product. PCR reactions were carried out using Hot Start
TaKaRa LA Taq kit (Takara Biotechnology, #RR042A) with the following cycling
conditions: 1 cycle of 94 °C for 1 min; 45 cycles of 94 °C for 30 s, 58 °C for 30 s, and
68 °C for 11 min with a final extension of 72 °C for 12 min. Amplified PCR pro-
ducts were separated on 1% agarose gels in 1× TBE buffer, stained with GelGreen
(Biotium #41005), and imaged using a GelDoc Go Imager (Biorad). Primers (5′–3′)
were: Forward (12F): AGATTTACAGTCCAATGCTTC (nucleotide position
5855–5875); Reverse (D2R): AGATACTGCGACATAGGGTG (129-110).

mtDNA next-generation sequencing and eKLIPse analysis. The entire mtDNA
was amplified in two overlapping fragments using a combination of mtDNA primers.
The primer pairs used for PCR amplicons were tested first on Rho zero cells devoid of
mtDNA to remove nuclear-encoded mitochondrial pseudogene (NUMTS) amplifi-
cation (PCR1: 5′-AACCAAACCCCAAAGACACC-3′ and 5′-GCCAATAATGACG
TGAAGTCC-3′; PCR2: 5′-TCCCACTCCTAAACACATCC-3′ and 5′-TTTATGG
GGTGATGTGAGCC-3′). Long-range PCR was performed with the Kapa Long
Range DNA polymerase according to the manufacturer’s recommendations (Kapa
Biosystems, Boston, MA, mtDNA next-generation sequencing and USA), with
0.5 µM of each primer and 20 ng of DNA. The PCR products were analyzed on a 1%
agarose gel electrophoresis.

NGS Libraries were generated using an enzymatic DNA fragmentation
approach using Ion Xpress Plus Fragment Library Kit. Libraries were diluted at
100 pM before sequencing and pooled by a maximum of 25 samples. Sequencing
was performed using an Ion Torrent S5XL platform using Ion 540 chipTM. Signal
processing and base calling were done by the pre-processing embedded pipeline.
Demultiplexed reads were mapped according to the mtDNA reference sequence
(NC_012920.1) before being analyzed with a dedicated homemade pipeline,
including eKLIPse121 (https://github.com/dooguypapua/eKLIPse) using the
following settings. Deletion counts have been estimated with a variant call cutoff of
>5% heteroplasmy, and separately with cutoffs of 1% and 5% heteroplasmy (see
Supplementary Fig. 8d).

● Read threshold: min Quality= 20 | min length= 100 bp
● Soft-Clipping threshold: Read threshold: Min soft-clipped length= 25pb |

Min mapped Part= 20 bp
● BLAST thresholds: min= 1 | id= 80 | cov= 70 | gapopen= 0 | gapext= 2
● Downsampling: No

mtDNA copy number. Cellular mtDNA content was quantified by qPCR on the
same genomic material used for other DNA-based measurements. Duplex qPCR
reactions with Taqman chemistry were used to simultaneously quantify mitochondrial

(mtDNA, ND1) and nuclear (nDNA, B2M) amplicons, as described previously4. The
reaction mixture included TaqMan Universal Master mix fast (life technologies
#4444964), 300 nM of custom design primers and 100 nM probes: ND1-Fwd:
GAGCGATGGTGAGAGCTAAGGT, ND1-Rev:CCCTAAAACCCGCCACATCT,
ND1-Probe: HEX-CCATCACCCTCTACATCACCGCCC-3IABkFQ. B2M-Fwd:
CCAGCAGAGAATGGAAAGTCAA, B2M-Rev: TCTCTCTCCATTCTTCAGT
AAGTCAACT, B2M-Probe: FAM-ATGTGTCTGGGTTTCATCCATCCGAC
A-3IABkFQ). The samples were cycled in a QuantStudio 7 flex qPCR instrument
(Applied Biosystems) at 50 °C for 2min, 95 °C for 20 s, 95 °C for 1min, 60 °C for 20 s,
for 40 cycles. qPCR reactions were set up in triplicates in 384 well qPCR plates using a
liquid handling station (epMotion5073, Eppendorf), in volumes of 20 µl (12 µl
mastermix, 8 µl template). Triplicate values for each sample were averaged for mtDNA
and nDNA. Ct values >33 were discarded. For triplicates with a C.V. > 0.02, the
triplicates were individually examined, and outlier values were removed where
appropriate (e.g., >2 standard deviations above the mean), with the remaining
duplicates, were used. The final cutoff for acceptable values was set at a C.V.= 0.1
(10%); samples with a C.V. > 0.1 were discarded. A standard curve along with positive
and negative controls was included on each of the seven plates to assess plate-to-plate
variability and ensure that values fell within the instrument range. The final mtDNAcn
was derived using the ΔCt method, calculated by subtracting the average mtDNA Ct
from the average nDNA Ct. mtDNAcn was calculated as 2ΔCt × 2 (to account for the
diploid nature of the reference nuclear genome), yielding the estimated number of
mtDNA copies per cell.

Cytokines. Two multiplex fluorescence-based arrays were custom-designed with
selected cytokines and chemokines most highly correlated with age in human
plasma from69, listed as available analytes on the R&D custom Luminex arrays
(R&D, Luminex Human Discovery Assay (33-Plex) LXSAHM-33 and LXSAHM-
15, http://biotechne.com/l/rl/YyZYM7n3). Media samples were collected at selected
passages across the cellular lifespan and frozen at −80 °C. After thawing, samples
were centrifuged at 500xg for 5 min, and the supernatant was moved to a new tube.
Wells were loaded with media samples diluted 1:5 with assay diluent, incubated,
washed, and read on a Luminex 200 (Luminex, USA) as per the manufacturer’s
instructions. Positive (aged healthy fibroblast) and negative controls (fresh
untreated media) samples were used in duplicates on each plate to quantify batch
variations. Data were fitted, and final values interpolated from a standard curve in
xPONENT (v4.2), normalized to the cell number at the time of collection to
produce estimates of cytokine production on a per-cell basis. IL-6 and GDF15
measures were repeated using ELISA, according to the manufacturer’s instructions
(Abcam #ab229434 and R&D #DGD150).

Media cell-free DNA. Total cell-free DNA (cf-DNA) was isolated from cell culture
media using a previously published automated, high throughput methodology122.
Quantitative polymerase chain reaction (qPCR): cf-mtDNA and cf-nDNA levels
were measured simultaneously by qPCR. Taqman-based duplex qPCR reactions
targeted mitochondrial-encoded ND1 and nuclear-encoded B2M sequences as
described previously122,123. Each gene assay contained two primers and a fluor-
escent probe and were assembled as a 20× working solution according to the
manufacturer’s recommendations (Integrated DNA Technologies). The assay
sequences are: ND1 forward 5′-GAGCGATGGTGAGAGCTAAGGT-3′, ND1
reverse 5′-CCCTAAAACCCGCCACATCT-3′, ND1 probe 5′-/5HEX/CCATCAC
CC/ZEN/TCTACATCACCGCCC/2IABkGQ/-3′, B2M forward 5′-TCTCTCTCC
ATTCTTCAGTAAGTCAACT-3′, B2M reverse 5′-CCAGCAGAGAATGGAAA
GTCAA-3′, and B2M probe 5′-/56-FAM/ATGTGTCTG/ZEN/GGTTTCATC
CATCCGACCA/3IABkFQ/-3′. Each reaction contained 4 µL of 2× Luna Universal
qPCR Master Mix (New England Biolabs, cat#M3003E), 0.4 µL of each 20X primer
assay, and 3.2 µL of template cf-DNA for a final volume of 8 µL. The qPCR
reactions were performed in triplicates using a QuantStudio 5 Real-time PCR
System (Thermo Fisher, cat#A34322) using the following thermocycling condi-
tions: 95 °C for 20 s followed by 40 cycles of 95 °C for 1 s, 63 °C for 20 s, and 60 °C
for 20 s. Serial dilutions of pooled human placenta DNA were used as a
standard curve.

Digital PCR (dPCR): mtDNA and nDNA copy number (copies/µL) of the
standard curve used in cf-mtDNA/cf-nDNA assessment were measured separately
using singleplex ND1 and B2M assays using a QuantStudio 3D Digital PCR System
and associated reagents (Thermo Fisher, cat#A29154) according to the
manufacturer’s protocol. The values obtained for the standard curve were used to
calculate the copy number for the experimental samples. All reactions were
performed in duplicate (two chips). Because the same standard curve was used on
all plates, its copy number was applied uniformly to all qPCR plates.

RNA sequencing and transcriptomic analyses. Total genomic RNA was isolated
every ~11 days across the cellular lifespan and stored in 1 ml TRIzol (Invitrogen
#15596026). RNA was extracted on-column using the RNeasy kit (Qiagen #74104),
DNase was treated according to the manufacturer’s instructions, and quantified
using the QUBIT high sensitivity kit (Thermo Fisher Scientific #Q32852). RNA
samples underwent QC on a bioanalyzer and Nanodrop 2000; all samples had a
RIN score >8.0 and no detectable levels of DNA. RNA (1500 ng/sample, 50 ng/μl)
was then submitted for sequencing at Genewiz Inc. (Illumina HiSeq, single index,

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04303-x

18 COMMUNICATIONS BIOLOGY |            (2023) 6:22 | https://doi.org/10.1038/s42003-022-04303-x | www.nature.com/commsbio

https://github.com/dooguypapua/eKLIPse
http://biotechne.com/l/rl/YyZYM7n3
www.nature.com/commsbio


10 samples/lane), and underwent RiboZero Gold purification. Sequenced reads
yielding approximately 40 million paired-end 150 bp single-end reads per sample.
Sequenced reads were then aligned using the pseudoalignment tool, kallisto
(v0.44.0)124. These data were imported using txi import (‘tximport’, v1.18.0, length-
scaled TPM), and vst normalized (‘DEseq2’, v1.30.1).

Dimensionality reduction was performed using ‘Rtsne’ (v0.15) with perplexity
value of 10 and initial dimensions of 30 on the log2 transformed normalized
expression values after removing genes without any variation in expression across
all samples. Linear mixed modeling was performed using the ‘lme4’ (v1.1) R
package with the fixed effects of time grown and clinical group for SURF1-
differential expression and fixed effects of time grown and treatment with a mixed
effect of the cell line for Oligo-differential expression. P values were obtained by
running an analysis of variance (ANOVA) comparing the model for each gene to a
null model that had a fixed effect of days grown (mixed effects of cell line for Oligo
models), and then the value was corrected for multiple comparisons using FDR-
adjustment (p < 0.05). We used iPAGE to discover perturbed pathways in SURF1
and Oligo-treated cells (https://tavazoielab.c2b2.columbia.edu/iPAGE/)77. iPAGE
enables the systematic and comprehensive discovery of pathways that are
significantly informative of gene expression measurements without any explicit
thresholding requirements. Additionally, iPAGE is also able to detect pathways
whose constituent genes are both upregulated and downregulated in the
treatments. Input to iPAGE included gene symbols and, for each gene, a cluster
identifier indicating if it was upregulated, downregulated, or not differentially
expressed in both (i.e., intersection) SURF1-mutant and Oligo-treated cells
compared to controls. For discovering significantly over- and under-represented
pathways using iPAGE, we used a stringent p value cutoff of 0.001 along with
minr=1, ind=0 (to produce the most expansive set of pathway terms), and,
catMin=30 (to exclude pathways with fewer than 30 genes). Timecourse and
heatmaps show transcript levels relative to the median of the youngest control
timepoints. Categorized genes were selected based on known mitochondrial and
aging literature. Categorized pathways were categorized into meta-categories based
on shared gene ontology parent processes.

DNA methylation and methylome analysis. Global DNA methylation was
measured using the Illumina EPIC microarray ran at the UCLA Neuroscience
Genomic Core (UNGC). DNA was extracted using the DNeasy kit (Qiagen
cat#69506) according to the manufacturer’s protocol and quantified using the
QUBIT broad-range kit (Thermo Fisher Scientific cat#Q32852). At least 375 ng of
DNA was submitted in 30 µl of ddH2O to UNGC for bisulfite conversion and
hybridization using the Infinium Methylation EPIC BeadChip kit. Sample positions
across plates were randomized to avoid batch variation effects on group or time-
based comparisons. All DNA methylation data were processed in R (v4.0.2), using
the ‘minfi’ package (v1.36.0). Quality control preprocessing was applied by
checking for correct sex prediction, probe quality, and sample intensities, and
excluding SNPs and non-CpG probes. Data were then normalized using Functional
Normalization. Using the R package ‘sva’ (v3.12.0), both RCP and ComBat
adjustments were applied to correct for probe type and plate bias, respectively.
After quality control, DNAm levels were quantified for 865,817 CpG Sites.

Dimensionality reduction was performed using the ‘Rtsne’ package (v0.15) with
a perplexity value of 10 and initial dimensions of 30 on the normalized beta values.
We ran LMER using ‘lme4’ (v1.1). For our differential methylation analysis of
SURF1, the fixed effects were assigned to ‘days_grown’ and ‘clinical_group’. For the
Oligomycin treatment, the fixed effects ‘time_grown’ and ‘treatment’ and the mixed
effect were assigned to the ‘cell_lines’ (i.e., donors). P values were obtained from an
ANOVA comparing the model for each CpG to a null model with a fixed effect of
days grown (mixed effects of the cell line for Oligomycin models) and then
corrected for multiple comparisons using FDR-adjustment (p < 0.05) to identify
differentially methylated CpGs (DMPs). Differentially methylated regions (DMRs)
were derived using the modified comb-p method in the ‘Enmix’ package (v1.26.8),
with a maximum distance for DMR combination of 1000 bp, a bin size for
autocorrelation of 310, and FDR-adjustment cutoff of 0.01, and a minimum of 3
CpGs per a DMR. Each DMP and DMR were assigned to the nearest annotated
gene (IlluminaHumanMethylationEPICanno.ilm10b4.hg19 package, v0.6.0). Gene
set enrichment analysis was then performed using ShinyGO125 (v0.66, http://
bioinformatics.sdstate.edu/go/) on the top 1000 DMPs- or DMRs-associated genes
based on the combined negative log p value across hyper- and hypo-methylated
DMPs and DMRs.

Relative telomere length. Relative telomere length was measured by quantitative
polymerase chain reaction (qPCR), expressed as the ratio of telomere to single-
copy gene abundance (T/S ratio). The telomere length measurement assay was
adapted from the published original method by Cawthon126,127. The telomere
thermal cycling profile consisted of Cycling for T(celomic) PCR: Denature at 96 °C
for 1 min, one cycle; denature at 96 °C for 1 s, anneal/extend at 54 °C for 60 s, with
fluorescence data collection, 30 cycles. Cycling for S (single copy gene) PCR:
Denature at 96 °C for 1 min, one cycle; denature at 95 °C for 15 s, annealing at
58 °C for 1 s, extend at 72 °C for 20 s, 8 cycles; followed by denature at 96 °C for 1 s,
annealing at 58 °C for 1 s, extend at 72 °C for 20 s, hold at 83 °C for 5 s with data
collection, 35 cycles. The primers for the telomere PCR are tel1b [5′-CGGTTT
(GTTTGG)5GTT-3′], used at a final concentration of 100 nM, and tel2b [5′-

GGCTTG(CCTTAC)5CCT-3′], used at a final concentration of 900 nM. The pri-
mers for the single-copy gene (human beta-globin) PCR are hbg1 [5′ GCTT
CTGACACAACTGTGTTCACTAGC-3′], used at a final concentration of 300 nM,
and hbg2 [5′-CACCAACTTCATCCACGTTCACC-3′], used at a final concentra-
tion of 700 nM. The final reaction mix contained 20 mM Tris-HCl, pH 8.4; 50 mM
KCl; 200 µM each dNTP; 1% DMSO; 0.4× SYBR Green I; 22 ng E. coli DNA; 0.4
Units of Platinum Taq DNA polymerase (Invitrogen Inc.); approximately 6.6 ng of
genomic DNA per 11 microliter reaction. Tubes containing 26, 8.75, 2.9, 0.97,
0.324, and 0.108 ng of a reference DNA (Human genomic DNA from the buffy
coat, Sigma cat# 11691112001) are included in each PCR run so that the number of
targeted templates in each research sample can be determined relative to the
reference DNA sample by the standard curve method. The same reference DNA
was used for all PCR runs. Assays were run in triplicate wells on 384-well assay
plates in a Roche LightCycler 480. The average concentrations of T and S from the
triplicate wells were used to calculate the T/S ratios after a Dixon’s Q test to remove
outlier wells from the triplicates. The T/S ratio for each sample was measured twice.
When the duplicate T/S value and the initial value varied by more than 7%, the
sample was run the third time, and the two closest values were reported. 26 out of
the 512 samples (5%) have a CV greater than 10% after the third measurement.
The inter-assay coefficient of variation (CV) for this study is 3.0% ± 4.3%
(including the 26 samples) and 2.2% ± 2.0% (excluding the 26 samples). Telomere
length assays for the entire study were performed using the same lots of reagents.
Lab personnel lab who performed the assays were provided with de-identified
samples and were blind to other data.

DNAmAge. DNAmAge was calculated using the online calculator (https://
dnamage.genetics.ucla.edu/new) with normalization using the age of the cell line
donor as the input age. This outputted the Horvath1 (i.e., PanTissue clock),
Horvath2 (Skin&Blood clock), PhenoAge, Hannum, and GrimAge estimated
DNAmAges. PC-based DNAmAges were then obtained using the principal com-
ponent method (https://github.com/MorganLevineLab/PC-Clocks)86. The rates of
epigenetic aging for each cell line were determined from the linear slope of
timepoints between 25 and 75 days. This period ensures that Oligo treatment has
taken effect, and avoids late-life changes in the behavior of DNAm clocks, pro-
viding the time window where the signal is most stable.

Statistics and reproducibility. All statistical analyses were performed using
GraphPad Prism (v9.0) and RStudio (v1.3.1056) using R (v4.0.2). Comparisons of
groups between control, SURF1, and treatment groups were performed using a
mixed effects model, except for peak and rate measurements (unpaired t-test,
assuming unequal variance or two-way ANOVA for concurrent measures).
Interpolated curves for each experimental group are the best fit for non-linear
third-order or fifth-order polynomial functions depending on the kinetic com-
plexity of a given measurement. Data visualization and statistical analyses were
generated in R (‘ggplot2’, v3.3.5) and Prism 8.

The time windows for specific statistical analyses were selected based on a
combination of cellular growth behavior including (i) population doubling curves
(e.g., stable division rates for all groups early in the cellular lifespan between days
20 and 50), (ii) the availability of matching timepoints between treatment groups
(at least three timepoints for all groups), and (iii) potential delay to reach stable
cellular phenotypes in Oligo-treated cells. To allow for adjustment to the in vitro
environment, treatments began after 15 days of culture. Therefore, overall “lifespan
effects” were determined between 20–150 days, which represents the maximal
replicative lifespan of SURF1 cells. “Early life” effects that isolate most clearly the
effects of OxPhos dysfunction, and avoid the potential accelerated aging
phenotypes in SURF1 and Oligo cells, were examined using timepoints between 20
and 50 days. For analyses of differentially expressed genes (RNASeq, Fig. 6) and
differential methylation (DNAm, Fig. 7) where a greater datapoint density was
necessary to achieve robust mixed effects models, SURF1 cells were analyzed
between 0 and 75 days (genetic defects in SURF1 are constitutive so do not require
time in culture to manifest) whereas models for Oligo-treated cells used timepoints
between days 35 to 110 (allowing 15 days for the effects of ATP synthase inhibition
to manifest in the transcriptome, while avoiding late-life changes). All timepoints
are shown in time series graphs.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNAseq and DNA methylation datasets for this project are available under the GEO
SuperSeries GSE179849. All data preprocessing and analysis code is available on GitHub
(https://github.com/gav-sturm/Cellular_Lifespan_Study). Data presented in this
manuscript was generated as part of the Cellular Lifespan Study, which includes
metabolic and endocrine experimental treatments across multiple donors described in
detail in119. The complete multi-omic fibroblast dataset for the present study is available
without restriction and can be accessed, visualized, and downloaded using our web tool:
https://columbia-picard.shinyapps.io/shinyapp-Lifespan_Study/. This fibroblast dataset,
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along with brightfield images and seahorse assay files, are additionally available at
FigShare.com under accession numbers 18441998, 18444731, 20277606, respectively. The
meta-analyzed clinical data of mitochondrial disease cohorts (Fig. 1) can be obtained
from the original publications listed in Table 1. Requests for any other information will
be provided upon request by the corresponding author.
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