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A LINEAR TIME, CONSTANT SPACE DIFFERENCING ALGORITHM 

Randal C. Bums and Darrell D. E. Long 

Department of Computer Science 
University of California Santa Cruz 

Santa Cruz, Califomia 95064 

ABSTRACT 

An efficient differencing algorithm can be used to com- 
press version of files for both transmission over low band- 
width channels and compact storage. This can greatly re- 
duce network traffic and execution time for distributed ap- 
plications which include software distribution, source code 
control, file system replication, and data backup and re- 
store. 

An algorithm for such applications needs to be both 
general and efficient; able to compress binary inputs in 
linear time. We present such an algorithm for differenc- 
ing files at the granularity of a byte. The algorithm uses 
constant memory and handles arbitrarily large input files. 
While the algorithm makes minor sacrifices in compres- 
sion to attain linear runtime performance, it outperforms 
the byte-wise differencing algorithms that we have encoun- 
tered in the literature on all inputs. 

I. INTRODUCTION 

Differencing algorithms compress data by taking ad- 
vantage of statistical correlations between different ver- 
sions of the same data sets. Strictly speaking, they achieve 
compression by finding common sequences between two 
versions of the same data that can be encoded using a copy 
reference. 

We define a digerencing algorithm to be an algorithm 
that finds and outputs the changes made between two ver- 
sions of the same file by locating common sequences to 
be copied and unique sequences to be added explicitly. A 
delta$le (A) is the encoding of the output of a differenc- 
ing algorithm. An algorithm that creates a delta file takes 
as input two versions of a file, a base file and a version 
file to be encoded, and outputs a delta file representing the 
incremental changes made between versions. 

Fbase -k Fversion -+ A(base,version) (1) 

Reconstruction, the inverse operation, requires the base file 
and a delta file to rebuild a version. 

One encoding of a delta file consists of a linear array 
of editing directives (Figure 1). These directives are copy 
commands, references to a location in a base file where 

the same data exists, ancl adld commands, instructions to 
add data into the version fibe followed by the data to be 
added. While there are othex representations [ 12, 1, 31, in 
any encoding scheme, a differencing algorithm must have 
found the copies and adds, to Ibe encoded. So, any encoding 
technique is compatible with the methods that we present. 

Several potential applications of version differencing 
motivate the need for a compact and efficient differencing 
algorithm. An efficient algorithm could be used to dis- 
tribute software over a low bandwidth network such as a 
modem or the Internet. Upon releasing a new version of 
software, the version could be differenced with respect to 
previous version. With compact versions, a low bandwidth 
channel can effectively distribute a new release of dynam- 
ically self updating software in the form of a binary patch. 
This technology has the potential to greatly reduce time to 
market on a new version ancl ease the distribution of soft- 
ware customizations. 

For replication in dislributed file systems, differencing 
can reduce by a large factor the amount of information that 
needs to be updated by transmitting deltas for all of the 
modified files in the replicated file set. 

In distributed file system backup and restore, differen- 
tial compression would reduce the time to perform file sys- 
tem backup, decrease network traffic during backup and 
restore, and lessen the storage to maintain a backup image 
[7]. Backup and restore can be limited by both bandwidth 
on the network, often 10 IMBls, and poor throughput to sec- 
ondary and tertiary storage devices, often 500 K B I s  to tape 
storage. Since resource limitations frequently make back- 
ing up the just the changes to a file system infeasible over 
a single night or even wleekiend, differential file compres- 
sion has great potential to alleviate bandwidth problems 
by using available processor cycles to reduce the amount 
of data transferred. This teichnology can be used to pro- 
vide backup and restore services on a subscription basis 
over any network including the Internet. 

Differencing has it {origins in both longest common 
subsequence (LCS) algol-ithins and the string-to-string cor- 
rection problem [ 131. Some of the first applications of dif- 
ferencing updated the screens of slow terminals by sending 
a set of edits to be applied locally rather than retransmit- 
ting a screen full of data. Another early application was 
the UNIX diff utility which used the LCS method to find 
and output the changes to a text file. diff was useful for 
source code development anid primitive document control. 

0-7803-3873-1/97 $1 0.00 0 1997 IEEE 429 



Figure 1: The copies found between the base and version file 
are encoded as copy commands in the delta file. Unmatched se- 
quences are encoded as an add command followed by the data to 
be added. 

LCS algorithms find the longest common sequence be- 
tween two strings by optimally removing symbols in both 
files leaving identical and sequential symbols.’ While the 
LCS indicates the sequential commonality between strings, 
it does not necessarily detect the minimum set of changes. 
More generally, it has been asserted that string metrics that 
examine symbols sequentially fail to emphasize the global 
similarity of two strings [4]. Miller and Myers [6] estab- 
lished the limitations of LCS when they produced a new 
file compare program that executed at four times the speed 
of the diff program while producing significantly smaller 
deltas. 

The edit distance [ 101 proved to be a better metric for 
the difference of files and techniques based on this method 
enhanced the utility and speed of file differencing. The edit 
distance assigns a cost to edit operations such as delete a 
symbol, insert a symbol, and copy a symbol. For example, 
the LCS between strings xyz and xzy is xy, which neglects 
the common symbol z .  Using the edit distance metric, z 
may be copied between the two files producing a smaller 
change cost than LCS. In the string-to-string correction 
problem [ 131, an algorithm minimizes the edit distance to 
minimize the cost of a given string transformation. 

Tichy [ 101 adapted the string-to-string correction prob- 
lem to file differencing using the concept of block move. 
Block move allows an algorithm to copy a string of sym- 
bols rather than an individual symbol. He then applied the 
algorithm to source code revision control package and cre- 
ated RCS [ 111. RCS detects the modified lines in a file 
and encodes a delta file by adding these lines and indicat- 
ing lines to be copied from the base version of a file. We 
term this differencing at line granularity. The delta file is 
a line by line edit script applied to a base file to convert 
it to the new version. Although the SCCS version control 
system [9] precedes RCS, RCS generates “minimal” line 
granularity delta files and is the definitive previous work 

‘A stringhbstring contains all consecutive symbols between and in- 
cluding its first and last symbol whereas a sequencehbsequence may 
omit symbols with respect to the corresponding string. 

in version control. 
While line granularity may seem appropriate for source 

code, the concept of revision control needs to be gener- 
alized to include binary files. This allows data, such as 
edited multimedia, to be revised with the same version 
control and recoverability guarantees as text. Whereas re- 
vision control is currently a programmers tool, binary revi- 
sion control systems will enable the publisher, film maker, 
and graphic artist to realize the benefits of strict versioning. 
It also enables developers to place bitmap data, resource 
files, databases and binaries under their revision control 
system. Some previous packages have been modified to 
handle binary files, but in doing so they imposed an arbi- 
trary line structure. This results in delta files that achieve 
little or no compression as compared to storing the ver- 
sions uncompressed. 

Recently, an algorithm appeared that addresses differ- 
ential compression of arbitrary byte streams [8]. The al- 
gorithm modifies the work of Tichy [ 101 to work on byte- 
wise data streams rather than line oriented data. This algo- 
rithm adequately manages binary sources and is an effec- 
tive developer’s tool for source code control. However, the 
algorithm exhibits execution time quadratic in the size of 
the input, O ( M  x N )  for files of size M and N .  The algo- 
rithm also uses memory linearly proportional to the size of 
the input files, O ( M  + N ) .  To find matches the algorithm 
implements the greedy method, which we will show to be 
optimal under certain constraints. The algorithm will then 
be used as a basis for comparison. 

As we are interested in applications that operate on 
all data in a network file system, quadratic execution time 
renders differencing prohibitively expensive. While it is a 
well known result that the majority of the files are small, 
less than 1 kilobyte [2], a file system has a minority of files 
that may be largc, ten to hundreds of megabytes. In order 
to address the differential compression of large files, we 
devised an differencing algorithm that runs in both linear 
time, O ( M  + N ) ,  and constant space, O(1). 

Section I1 outlines the greedy differencing algorithm, 
proves it optimal, and establishes that the algorithm takes 
quadratic execution time. Section I11 presents the linear 
time differencing algorithm. Section IV analyzes the lin- 
ear time algorithm for run-time and compression perfor- 
mance. Section V presents an experimental comparison of 
the linear time algorithm and the greedy algorithm. We 
conclude in Section VI that the linear time algorithm pro- 
vides near optimal compression and the efficient perfor- 
mance required for distributed applications. 

11. GREEDY METHODS FOR FILE 
DIFFERENCING 

Greedy algorithms often provide simple solutions to 
optimization problems by making what appears to be the 
best decision, the greedy decision, at each step. For difkr- 
encing files, a greedy algorithm takes the longest match it 
can find at a given offset on the assumption that this match 
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provides the best compression. Greedy makes a locally op- 
timal decision with the hope that this decision is part of the 
optimal solution over the input. 

For file differencing, we prove the greedy algorithm 
provides an optimal encoding of a delta file and show that 
the greedy technique requires time proportional to the prod- 
uct of the sizes of the input files. Then we present an algo- 
rithm which approximates the greedy algorithm in linear 
time and constant space by finding the match that appears 
to be the longest without performing exhaustive search for 
all matching strings. 

A. Examining Greedy Delta Compression 

For our analysis, we consider delta files constructed by 
a series of editing directives; “add commands”, followed 
by the data to be added, and “copy commands” that copy 
data from the base file into the version file using an offset 
and length (Figure 1). 

Given a base file and another version of that base file, 
the greedy algorithm for constructing differential files finds 
the longest copy in the base file from the first offset in the 
version. It then looks for the longest copy starting at the 
next offset. If at a given offset, it cannot find a copy, the 
symbol at this offset is marked to be added and the algo- 
rithm advances to the following offset. For an example of 
a greedy differencing algorithm refer to the work of Re- 
ichenberger [ 81. 

We now prove that the greedy algorithm is optimal for 
a simplified file encoding scheme. In this case an optimal 
algorithm produces the smallest output delta. For binary 
differencing, symbols in the file may be considered bytes 
and a file a stream of symbols. However, this proof applies 
to differencing at any granularity. We introduce and use 
the concept cost to mean the length (in bits) for the given 
encoding of a string of symbols. 

Claim Given a base file B, a version of that base file V, 
and an alphabet of the symbols C, by making the following 
assumptions: 

0 A copy of any length may be encoded with a unit 
cost = c. 

0 All symbols in the alphabet C appear in the base file 
B. 

0 Copying a string of length 1 with maximum cost c x 1 
provides an encoding as compact as adding the same 
string. 

we can state: 

Theorem 1 The greedy algorithmfinds an optimal encod- 
ing of the versionjle V with respect to the basejle B. 

Proof Since all symbols in the alphabet C appear in the 
base file B, a symbol or string of symbols in the version 

file V may be represented in a differential file D exclu- 
sively by a copy or series of copies from B. Since we have 
assumed a unit cost function for encoding all copies and 
this cost is less than or eqiual to the cost of adding a sym- 
bol in the version file, there exists an optimal representa- 
tion P, of V with respect to B, which only copies strings 
of symbols from B. In order to prove the optimality of a 
greedy encoding G, we require the intermediate result of 
Lemma 1. 

Lemma 1 For an arbitraiy number of copies encoded, the 
length of versionfile data encoded by the greedy encoding 
is greater than or equal to the length of data encoded by 
optimal encoding. 

Proof (by induction) We introduce pi to be the length 
of the ith copy in the optimd encoding P and gi to be 
the length of the ith copy in the greedy encoding G. The 
length of data encoded in P and G after n copies are re- 
spectively given by: 

n n 

i= 1 i=l 

At file offset 0 in V ,  P has a copy command of 
length pl . G encodles a matching string of length g1 
which is the longest sbring starting at offset 0 in V. 
Since G encodes the longest possible copy, 91 2 pl. 

Given that G and P have encoded n - 1 copies and 
the current offset in G is greater than the current off- 
set in P, we can conclude that after G and P en- 
code an nth copy that the offset in G for n copies is 
greater than the offset in P. 

n-1 n-1 n n 

i=l i= 1 i=l i=l 

G encodes a copy of length gn and P encodes a copy 
of length pn. If eqiuation 3 did not hold, P would 
have found a copy of length pn at offset pi 
that is greater than gn + E;.: gi - pi. A 
substring of this copy would be a string starting at 

gi of length greater than gn. As G always 
encodes the longest matching string, in this case gn, 
this is a contradiction and equation 3 must hold. H 

Having established L,emma 1, we conclude that the 
number of copy commands that G uses to encode V is less 
than or equal to the number of copies used by P. How- 
ever, since P is an optimal encoding, the number of copies 
P uses to encode V is less than or equal to the number the 
G uses. We can therefore state that, size(G) = size(P) = 
c x N where N is the number of copy commands in greedy 
encoding. 

We have shown that the greedy algorithm provides an 
optimal encoding of a version file. Practical elements of 
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the algorithm weaken our assumptions. Yet, the greedy 
algorithm consistently reduces files to near optimal and 
should be considered a minimal differencing algorithm. 

B. Analysis of Greedy Methods 

Common strings may be quickly identified as they also 
have common footprints. In this case a footprint is the 
value of a hash function over a fixed length prefix of a 
string. The greedy algorithm must examine all match- 
ing footprints and extend the matches in order to find the 
longest matching string. The number of matching foot- 
prints between the base and version file can grow with 
respect to the product of the sizes of the input files, i.e. 
O(M x N )  for files of size M and N, and the algorithm 
uses time proportional to this value. 

In practice, many files elicit this worst case behavior. 
In both database files and executable files, binary zeros are 
stuffed into the file for alignment. This “zero stuffing” cre- 
ates frequently occuring footprints which must all be ex- 
amined by the algorithm. 

Having found a footprint in the version file, the greedy 
algorithm must compare this footprint to all matching foot- 
prints in the base file, This requires it to maintain a canon- 
ical listing of all footprints in one file, generally kept by 
computing and storing a hash value over all string pre- 
fixes [8]. Consequently, the algorithm uses memory pro- 
portional to the size of the input, O ( N ) ,  for a size N base 
file. 

111. VERSIONING IN LINEAR TIME 

Having motivated the need to difference all files in a 
file system and understanding that not all file are small [ 2 ] ,  
we improve upon both the runtime performance bound and 
runtime memory utilization of the greedy algorithm. Our 
algorithm intends to find matches in a greedy fashion but 
does not guarantee to execute greedy exactly. 

A. A Linear Time Differencing Algorithm 

The linear algorithm modifies the greedy algorithm in 
that it attempts to take the longest match at a given offset 
by taking the longest matching string at the first matching 
string prefix beyond the offset at which a previous match 
was encoded; we term this the next match policy. In many 
instances matching strings are sequential between file ver- 
sions, i.e. they occur in the same order in both files. When 
strings that match are sequential, the next matching pre- 
fix approximates the best match extremely well. In fact 
this property holds for all changes that are insertions and 
deletions (Figure 2).  We expect many files to exhibit this 
property, most notably mail, database, image and log files. 

The linear time differencing algorithm takes as input 
two files, usually versions of each other, and using one 
hash table performs the following actions: 

Encoding an Insertion 

Base 

\ \  

Version 

Add Copy 

Encoding a Deletion 

Base 

Version 
c__ 

COPY 

Encoding an Insertion and a Deletion 

Base 

Version 
* 

Add Copy 

Figure 2: Simple file edits consist of insertions, deletions and 
combinations of both. The linear time algorithm finds and en- 
codes all modifications that meet the simple edit criteria. 

Algorithm 
Start file pointers boffset in the base file and voffset in the 
version file at file offset zero. Create a footprint for each 
offset by hashing a prefix of bytes. Store the start position 
in the version file as vstm. 
We call this state “hashing mode”. For each footprint: 

(a) If there is no entry in the table at that footprint value, 
make an entry in the hash table. An entry will indi- 
cate the file and offset from which the footprint was 
hashed. 

(b) If there is an entry at a footprint value, if the entry 
is from the other version of the file, verify that the 
prefixes are identical. If the prefixes prove to be the 
same, matching strings have been found. Continue 
with step 3. 

(c) If there is an entry at a footprint value and the entry 
is from the same file, retain the existing hash entry. 

Advance both voffset and boffset one byte, hash prefixes, 
and repeat step 2. 
Having found a match at step 2b, leave hashing mode and 
enter “identity mode”. Given matching prefixes between 
some offset “copy in the version file, and some offset 
bcopy in the base file, match bytes forward in the files to 
find the longest match of length 1. Set voffset and boffset 
to the ends of the match. 
Encode the region of the version file from wstart to “COPY 

using an add codeword followed by the data to be added. 
Encode the regon from “copy to woffset in the version file 
using a copy codeword encoding I ,  the length of the copy 
found, and bcopy, the offset in the base file. 
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5. Flush the hash table to remove the information about the 
files previous to this point. Set “start to the and 
repeat step 2. 

By flushing the hash table, the algorithm enforces the next 
match policy. Note that a match can be between the current 
offset in one version of the file and a previous offset in the 
other version. After flushing the hash table, the algorithm 
effectively remembers the first instance of every footprint 
that it has seen since encoding the last copy. 

IV. ANALYSIS OF THE LINEAR TIME 
ALGORITHM 

We often expect the changes between two versions of a 
file to be simple edits, insertions of information and dele- 
tions of information. This property implies that the com- 
mon strings that occur in these files are sequential. An 
algorithm can then find all matching strings in a single 
pass over the inputs files. After finding a match, we can 
limit our search space for subsequent matches to only the 
file offsets greater than the end of the previous matching 
string. 

Many files exhibit insert and delete only modifications. 
In particular mail files and database files. Mail files have 
messages deleted out from the middle of the file and data 
appended to the end. Relational database files operate on 
tables of records, appending records to the end of a table, 
modifying records in place, and deleting them from the 
middle of the table. System logs have an even more rigid 
format as they are append only files. 

When a match is found and the algorithm enters iden- 
tity mode, if the match is not spurious (section B), the 
pointers are “synchronized”, indicating that the current off- 
set in the version file represents the same data at the offset 
in the base file. The algorithm’s two phases, hashing and 
identity, represent the synchronization of file offsets and 
copying from synchronized offsets. When the identity test 
fails, the files differ and the file offsets are again “out of 
synch”. Then, the algorithm enters hashing mode to re- 
gain the common location of data in the two files. 

We selected the Karp-Rabin hashing function [5] for 
generating footprints as it can be calculated incrementally, 
i.e. a footprint may be evaluated from the footprint at the 
previous offset and the last byte of the current string prefix. 
This technique requires fewer operations when calculating 
the value of overlapping footprints sequentially. Our al- 
gorithm always hashes successive offsets in hashing mode 
and realizes significant performance gains when using this 
function. 

A. Performance Analysis 

The presented algorithm operates both in linear time 
and constant space. At all times, the algorithm maintains 
a hash table of constant size. After finding a match, hash 
entries are flushed and the same hash table is reused to 

find the next matching prefix. Since this hash table nei- 
ther grows nor is deallocated, the algorithm operates in 
constant space, roughly the size of the hash table, on all 
inputs. 

Since the maximum number of hash entries does not 
necessarily depend on the file input size, the size of the 
hash table need not grow wilth the size of the file. The 
maximum number of hash entries is bounded by twice the 
number of bytes between the: end of the previous copied 
string and the following matching prefix. On highly cor- 
related files, we would expect a small maximum number 
of hash entries since we expect to find matching strings 
frequently. 

The algorithm operates in time linear in the size of the 
input files as we are guaranteed to advance either the base 
file offset or the version file (offset by one byte each time 
through the inside loop of‘ the program. In identity mode, 
both the base file offset and the version file offset are in- 
cremented by one byte at each step. Whereas in hashing 
mode, each time a new offset is hashed, at least one of 
the offsets is incremented, as matching prefixes are always 
found between the current offset in one file and a previ- 
ous offset in another. Therefore, identity mode proceeds 
through the input at as much as twice the rate of hashing 
mode. Furthermore, the byte identity function is far easier 
to compute than the Kap-Rabin [5]  hashing function. On 
highly correlated files, we expect the algorithm to spend 
more time in identity mo’de than it would on less corre- 
lated versions. We can then state that the algorithm exe- 
cutes faster on more highly correlated inputs and the linear 
algorithm operates best on its most common input, similar 
version files. 

B. Sub-optimal Compression 

The algorithm achieves less than optimal compression 
when either the algorithm falisely believes that the offsets 
are synchronized, the assumption that all changes between 
versions consist of insertions and deletions fails to hold, or 
when the implemented hashing function exhibits less than 
ideal behavior. 

Due to the assumption of changes being only inserts 
and deletes, the algorithm fails to find rearranged strings. 
Upon encountering a rearranged string, the algorithm takes 
the next match it can find. ?’his leaves some string in ei- 
ther the base file or in the vexsion file that could be com- 
pressed and encoded as a copy, but will be encoded as an 
add, achieving no additional compression. In Figure 3, the 
algorithm fails to find the copy of tokens ABCD since the 
string has been rearranged. In this simplified example we 
have selected a prefix of length one. The algorithm en- 
codes EFG as a copy and flu,shes the hash table, removing 
symbols ABCD that previously appeared in the base file. 
When hashing mode reslarts the match has been missed 
and will be encoded as ani add. 

The algorithm is also susceptible to spurious hash col- 
lisions as a result of taking the next match rather than the 
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Base 

Version 

BaSe 

Version 

Rearranged Sequences 

t + t 
Start Collide Restart 

4 t t  
Start Restart Collide 

Spurious or Ali ied Match 
Start ColliddRfstsrt Collide 

I t I 

t 
Collide 

t t t  
Start Collide Restart 

Figure 3: Sub-optimal compression may be achieved due to the 
occurrence of spurious matches or rearranged strings. The en- 
coded matches are shaded. 

best match. These collisions indicate that the algorithm 
believes that it has found synchronized offsets between the 
files when in actuality the collision just happens to be be- 
tween strings that match by chance. In Figure 3, the al- 
gorithm misses the true start of the string ABCDEF in the 
base file (best match) in favor of the previous string at A 0  
(next match). Upon detecting and encoding a “spurious” 
match, the algorithm achieves some degree of compres- 
sion, just not the best compression. Furthermore, the al- 
gorithm never bypasses “synchronized offsets” in favor of 
a spurious match. This also follow directly from choosing 
the next match and not the best match. This result may be 
generalized. Given an ideal hash function, the algorithm 
never advances the file offsets past a point of synchroniza- 
tion. 

Hashing functions are, unfortunately, not ideal. Con- 
sequently, the algorithm may also experience the bZocking 
of footprints. For a new footprint, if there is another foot- 
print from the same file already occupying that entry in the 
hash table, the second footprint is ignored and the first one 
retained. In this instance, we term the second footprint to 
be blocked. This is the correct procedure to implement the 
next match policy assuming that all footprints represent a 
unique string. However, hash functions generally hash a 
large number of inputs to a smaller number of keys and are 
therefore not unique. Strings that hash to the same value 
may differ and the algorithm loses the ability to find strings 
matching the discarded string prefix. 

Footprint blocking could be addressed by any rehash 
function or hash chaining. However, this solution would 
destroy the constant space utilization bound on the algo- 
rithm. Instead of a rehash function, we propose to ad- 

dress footprint blocking by scanning both forwards and 
backwards in identity mode. This simple modification al- 
lows the algorithm to go back and find matches starting 
at a prefix that was hash blocked. The longer the match- 
ing string, the less likely that match will be blocked as 
this requires consecutive blocked prefixes. Under this so- 
lution, the algorithm still operates in constant space, and 
although matches may still be blocked, the probability of 
blocking a match decreases geometrically with the length 
of the match. 

V. EXPERIMENTAL RESULTS 

We compared the Reichenberger [8] greedy algorithm 
against our linear time algorithm to experimentally verify 
the performance improvements and quantify the amount 
of compression realized. The algorithms were run against 
multiple types of data that are of interest to potential appli- 
cations. Data include mail files, modified and recompiled 
binaries, and database files. 

Both algorithms, where appropriate, were implemented 
with the same facilities. This includes the use of the Re- 
ichenberger codewords for encoding copy and add com- 
mands in the delta file, memory mapped YO, the use of 
the same prefix length for footprint generation, and the 
use of the Karp-Rabin hashing algorithm in both cases. 
Karp-Rabin hashing is used by the Reichenberger algo- 
rithm since it also realizes benefits from incremental hash- 
ing, by sequentially hashing one whole file before search- 
ing for common strings. 

The linear algorithm outperforms the Reichenberger 
algorithm on all inputs, operating equally as fast on very 
small inputs and showing significant performance gains on 
all inputs larger than a few kilobytes. The performance 
curve of the Reichenberger algorithm grows quadratically 
with the file input size. The algorithm consistently took 
more than 10 seconds to difference a 1MB file, extrap- 
olating this curve to a lOMB file, the algorithm would 
complete in slightly more than 15 minutes. Depending 
upon the machine, the linear algorithm can compress as 
much as several megabytes per second. Currently, the data 
throughput is U0 bound when performing the byte identity 
function and processor bound when performing the hash- 
ing function. The relative data rates are approximately 10 
MBls and 280 K B I s  for identity and hashing mode respec- 
tively. These results were attained upon an IBM 43P Pow- 
erPC with a 133MHz processor and a local F/W SCSI hard 
drive on a 10 MBls data bus. 

In Figure 4a, the runtime performance of the Reichen- 
berger algorithm grows in a quadratic fashion, whereas the 
linear time algorithm exhibits growth proportional to the 
file input size. We also show that our algorithm’s execu- 
tion time continues to grow linearly on large input files 
in Figure 4b. There is a high amount of variability in the 
time performance of the linear algorithm on a file of any 
given size depending upon how long the algorithm spends 
in hashing mode as compared to identity mode. 
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Figure 4: Experimental Results 

Mail 2 

Table 1: The relative size of the delta files measured in the per- 
cent size as compared to the version file. Total is the compression 
over the sum of all files. The "*" indicates a data set of files too 
large for the Reichenberger algorithm. 

Most of the data that we experimented on shows a high 
degree of compressibility, with some instances of databases 
showing the best compressibility. Our data sets (table 1) 
include: Mail 1 ,  electronic mail files less than 1MB from a 
UNIX network file system; Mail 2, files greater than 1MB 
from the same system; D13 1,  the weekly backup of a uni- 
versity student informatialn database; DB 2, the same data 
from a different pair of weeks; and the Binary entry rep- 
resents the compressibility of for all executable versions 
of both algorithms over their development cycle. The to- 
tal compressibility represents the ratio between the sum of 
the sizes of the delta files compared to the sum of the sizes 
of the version files. Generally, the mean file size is larger 
than the total indicating that larger files in any data set tend 
to be more compressible. The standard deviation indicates 
the volatility of the data set with a high deviation showing 
data with more files that hLave. been significantly altered. 

Compressibility figures depend totally on the input data 
and are not meant to indicate that delta file compression 
achieves these kinds of rissulits on all inputs. Rather, the 
data is, in our experience, representative of the compres- 
sion that can be achieved on versions in a typical UNIX file 
system. We consistently noteld that the data sets with larger 
files also tended to be mare compressible. This is verified 
by the data in table 1. Mail 2 consists of files larger than 
1MB and are 10% more compressible than the files in Mail 
1, files less than 1MB. 

The linear algorithm conisistently compressed data to 
within a small factor of the compression the greedy algo- 
rithm realizes. On all the mail files less than IMB, the lin- 
ear algorithm achieved compression to less than 12% the 
original size whereas the: Reichenberger algorithm com- 
pressed the files less than 3% more to slightly under 9%. 
The relative compression of the algorithms are displayed in 
Figure 4c. Points on the unit slope line represent files that 
were compressed equally by both methods. The Reichen- 
berger encoding is consistently equal to or more compact 
than the linear algorithm, but only by a small factor. 

ods to many applications as compression by a factor of 30 
or more is feasible on many data sets. The results also indi- 
cate that the linear algorithm consistently performs well in 
compressing versions when compared with the greedy al- 
gorithm. The linear algorithm provides near optimal com- 
pression and does so in linear time. 

Experimental results indicate the suitability of our meth- 
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VI. SUMMARY AND CONCLUSIONS 

We have described a differencing algorithm that exe- 
cutes in both linear time and constant space. This algo- 
rithm executes significantly faster than the greedy algo- 
rithm and provides comparative compression to the greedy 
method, which has been shown to provide optimal com- 
pression. The linear algorithm approximates the greedy 
algorithm by taking the next matching string following the 
previous match, rather than exhaustively searching for the 
best match over the whole file. This next match policy cor- 
responds highly with best match when files are versions 
with insert and delete modifications. The algorithm en- 
forces the next match policy by synchronizing pointers be- 
tween two versions of a file to locate similar data. 

Experiments have shown the linear time algorithm to 
consistently compress data to within a small percentage of 
the greedy algorithm and to execute significantly faster on 
inputs of all sizes. Results have also shown many types of 
data to exhibit high correlation among versions and differ- 
encing can efficiently compress the representation of these 
files. 

We envision a scalable differencing algorithm as an en- 
abling technology that permits files of any size and format 
to be placed under version control, and allows the trans- 
mission of new version of files over low bandwidth chan- 
nels. File differencing can mitigate the transmission time 
and network traffic for any application that manages dis- 
tributed views of changing data. This includes replicated 
file systems and distributed backup and restore. A technol- 
ogy that was previous relegated to source code control may 
be generalized with this algorithm and applied to address 
network resource limitations for distributed applications. 
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