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Abstract:  Understanding abstract relations is a crucial aspect of human cognition. This thesis 

explores how children learn to reason about semantic relations, such as antonyms and 

synonyms, and the factors that enhance their ability to use these relations for analogical 

reasoning (e.g., understanding that big:small hold the same relation as clean:dirty). Chapter I 

investigates the early stages of how young children generate antonyms, identifies patterns in 

their responses across different parts of speech, and compares their abilities to those of 

relational and natural language models. Chapters II and III focus on how both children and 

models utilize antonyms to solve verbal analogies, and how relational language cues and 
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semantic distance affect this skill. This thesis provides a comprehensive examination of the 

development of antonymy understanding and identifies key factors that can enhance the ability 

of both children and models to solve verbal analogies. 

Keywords: semantic relations, analogical reasoning, semantic distance, computational models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv 

The dissertation of Amalia Ionescu is approved. 

Keith Holyoak 

Idan Blank 

Hongjing Lu, Committee Co-Chair 

Catherine M. Sandhofer, Committee Co-Chair 

 

University of California, Los Angeles 

2024 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

Table of Contents 

INTRODUCTION 1 

SEMANTIC RELATIONS 1 

ANTONYMY 4 

ANALOGICAL REASONING 6 

Development of Analogical Reasoning 6 

Semantic Distance 8 

Context as a facilitator for relational reasoning 11 

COMPUTATIONAL MODELS 14 

OVERVIEW OF STUDIES 16 

CHAPTER I: THE EMERGENCE OF SEMANTIC RELATION UNDERSTANDING 18 

INTRODUCTION 18 

IA. BEHAVIORAL 19 

Methods 19 

Results 21 

IB. COMPUTATIONAL 37 

Results 38 

CHAPTER I DISCUSSION 40 

CHAPTER II: ANALOGIES INVOLVING ANTONYMS 42 

INTRODUCTION 42 



 

 

vi 

IIA. BEHAVIORAL 43 

Methods 43 

Results 47 

IIB. COMPUTATIONAL 52 

Results 55 

CHAPTER II DISCUSSION 59 

CHAPTER III: ANALOGIES AND SEMANTIC DISTANCE 61 

INTRODUCTION 61 

IIIA. BEHAVIORAL 63 

Methods 63 

Results 67 

IIIB. COMPUTATIONAL 73 

Results 73 

CHAPTER III DISCUSSION 75 

GENERAL DISCUSSION 77 

 

 

 

 

 

 



 

 

vii 

List of Figures 

Figure 1. Hypothetical memory structure for a three-level hierarchy (Collins & Quillian, 1969). . 9 

Figure 2. Accuracy on the generative antonym task for both age groups, broken down by part of 

speech. Each box represents the interquartile range (IQR) of the data, with the median shown as 

a line inside the box. The whiskers extend to the most extreme data points. .................................. 22 

Figure 3. Four-year-old children's accuracy on the generative antonym task, broken down by 

part of speech.  The violin plots reflect the kernal density estimate (KDE), and the means and 

standard deviations are shown for each part of speech. ..................................................................... 23 

Figure 4. Five-year-old children's accuracy on the generative antonym task, broken down by 

part of speech.  The violin plots reflect the kernal density estimate (KDE), and the means and 

standard deviations are shown for each part of speech. ..................................................................... 24 

Figure 5. Correlations between accuracy on the generative antonym task and parent reports of 

children's word knowledge. The accuracy on the task is shown as a total, as well as broken 

down by part of speech. Parent reported language ability is reflected by the MCDI label. “MCDI 

Opposite” reflects parents’ reports of whether children know the word “opposite.” ................... 25 

Figure 6. Correlations between accuracy on the generative antonym task, split by age group, 

and parent reports of children's knowledge of the words used in the task. .................................... 25 

Figure 7. Accuracy on the recoded generative antonym task for both age groups, broken down 

by part of speech. Each box represents the interquartile range (IQR) of the data, with the median 

shown as a line inside the box. The whiskers extend to the most extreme data points. ................ 27 



 

 

viii 

Figure 8. Four-year-old children's accuracy on the recoded generative antonym task, broken 

down by part of speech.  The violin plots reflect the kernal density estimate (KDE), and the 

means and standard deviations are shown for each part of speech.................................................. 28 

Figure 9. Five-year-old children's accuracy on the recoded generative antonym task, broken 

down by part of speech.  The violin plots reflect the kernal density estimate (KDE), and the 

means and standard deviations are shown for each part of speech.................................................. 29 

Figure 10. Correlations between accuracy on the recoded generative antonym task and parent 

reports of children's word knowledge. The accuracy on the task is shown as a total, as well as 

broken down by part of speech. Parent reported language ability is reflected by the MCDI label. 

“MCDI Opposite” reflects parents’ reports of whether children know the word “opposite.” ..... 29 

Figure 11. Correlations between accuracy on the recoded  generative antonym task, split by age 

group, and parent reports of children's knowledge of the words used in the task. ....................... 30 

Figure 12. W2V embeddings for the target and generated words in the generative antonym task, 

collapsed to two-dimensional space. The plots are split by part of speech, and in each plot the 

green dots depict the 14 possible target words for each part of speech, and the red dots reflect 

the words that the children generated. The jitter is set to 0 for target words and 1 for the 

generated words. In some cases, if the generated word is the target word, the dots overlap. ..... 32 

Figure 13. The cosine distance between the target words and the words that children generated 

on the antonym task, separated by part of speech. Each box represents the interquartile range 

(IQR) of the data, with the median shown as a line inside the box. The whiskers extend to the 

most extreme data points. ........................................................................................................................ 33 



 

 

ix 

Figure 14. Frequency of each of the words that children generated on the antonym task, 

according to each adjective target word. The target words on each row correspond to the same 

relation (e.g., cold:hot, happy:sad). If the target is cold, the source word is the opposite. ............ 34 

Figure 15. Frequency of each of the words that children generated on the antonym task, 

according to each noun target word. The target words on each row correspond to the same 

relation (e.g., winter:summer, love:hate)............................................................................................... 35 

Figure 16. Frequency of each of the words that children generated on the antonym task, 

according to each verb target word. The target words on each row correspond to the same 

relation (e.g., pull:push, frown:smile). ................................................................................................... 36 

Figure 17. Accuracy on the generative antonym task for both models and children. .................... 39 

Figure 18. Examples of three trials on the pictorial antonym analogy task, illustrating the three 

lexical classes used in the task. A: An adjective source pair exemplifying a contrastive relation 

(big : small), with a distractor pair (surprised : sad) on the left and the correct option (happy : 

sad) on the right. B: A noun source pair (boy : girl), with the correct option (friends : enemies) 

on the left and distractor pair (friends : mother) on the right. C: A verb source pair (cry : laugh), 

with the correct option (smile : frown) on the left and a distractor pair (frown : hate) on the 

right. ............................................................................................................................................................ 45 

Figure 19. Proportion accuracy across all parts of speech tested in the pictorial analogy task as a 

function of age, separated by condition. ............................................................................................... 49 

Figure 20. Average proportion accuracy for each condition across three lexical classes, separated 

by age group. Error bars reflect ± 1 standard error of the mean for human responses.................. 51 



 

 

x 

Figure 21. Response distribution for Label and No-Label conditions across each lexical class and 

overall, as a function of age. Green represents the label condition and orange represents the no-

label condition. .......................................................................................................................................... 52 

Figure 22. Illustration of Word2vec semantic space for individual words, and BART relation 

space for word pairs. ................................................................................................................................ 53 

Figure 23. Model performance on the analogy task, and children’s performance on the analogy 

task in the no-label condition. ................................................................................................................. 57 

Figure 24. Proportion accuracy on the trials involving verb pairs for children and models. ........ 59 

Figure 25. An example trial of the mixed part of speech condition. Source pair is at the top, 

distractor on the left and target pair on the right. The order of the target/distractor is 

randomized between trials. ..................................................................................................................... 65 

Figure 26. An example trial of the same part of speech condition. Source pair is at the top, 

distractor on the left, target on the right. The order of the target/distractor is randomized 

between trials............................................................................................................................................. 65 

Figure 27. Proportion accuracy across both parts of speech tested in the pictorial analogy task as 

a function of age, separated by condition. ............................................................................................ 68 

Figure 28. These plots represent correlations between the variables in our model with response 

as our dependent variable. “Rating” refers to condition, “trial_type” refers to “analogy type” 

and “pos” refers to “part of speech.” ..................................................................................................... 69 

Figure 29. Proportion accuracy on same vs. mixed trials in the label condition. The x axis shows 

the part of speech that corresponds to the target words. The data is collapsed across ages. Error 

bars reflect ±1 standard error. ................................................................................................................. 70 



 

 

xi 

Figure 30. Proportion accuracy on same vs. mixed trials in the no-label condition. The x axis 

shows the part of speech that corresponds to the target words. The data is collapsed across ages. 

Error bars reflect ±1 standard error. ** represents a p-value lower than .01. ................................... 71 

Figure 31. Proportion accuracy on same vs. mixed trials in both conditions. The data is collapsed 

across ages and part of speech. Error bars reflect ±1 standard error. ** represents a p-value lower 

than .01. ...................................................................................................................................................... 71 

Figure 32. Correlations between accuracy on the antonym analogy task and parent reports of 

children's word knowledge. The accuracy on the task is shown as a total, as well as broken 

down by part of speech. Parent reported language ability is reflected by the language survey 

label. “MCDI Opposite” reflects parents’ reports of whether children know the word 

“opposite.” ................................................................................................................................................. 72 

Figure 33. Model and human accuracy on the antonym analog task in the “no label” condition, 

separated by analogy type. ...................................................................................................................... 74 

 

 

 

 

 

 

 

 

 



 

 

xii 

List of Tables 

Table 1. Proportion model performance on the generative antonym task. ...................................... 39 

Table 2. Estimates of Posteriors for Bayesian Logistic Regression Model. ....................................... 49 

Table 3. Model Performance Across Parts of Speech........................................................................... 57 

Table 4. Model performance across verb tenses. .................................................................................. 58 

Table 5. Estimates of Posteriors for Bayesian Logistic Regression Model ........................................ 68 

Table 6. Model performance on the antonym analogy task, separated by analogy type. .............. 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xiii 

Preface 

The seed for this dissertation was planted during my second year of graduate school, in 

Dr. Idan Blank’s lab meeting. Up until that point, I vacillated between various topics, unsure of 

how I would characterize my research interests when asked. My goal was always to create an 

interdisciplinary body of work, in collaboration with brilliant minds from different fields. At the 

time, I did not realize how much those I had already worked with permanently shaped my 

research interests.  

My first foray into research began in Dr. Andrei Cimpian’s lab at University of Illinois at 

Urbana-Champaign. There, I learned the essentials of conducting research with children and 

became enthralled by the incredible graduate students I had the pleasure to work with: Drs. 

Christina Tworek, Zach Horne, Lin Bian, Larisa Hussak, Shelby Sutherland, and Daniel Storage. 

I am especially thankful for Christina, who mentored me on my senior thesis project with great 

care and attention, and to Zach, who encouraged me in the most Zach way to apply to UCLA 

and who always provided candid and essential feedback. I am most thankful for Andrei, who 

has been one of my greatest supporters throughout my academic journey. I feel so endlessly 

grateful and lucky to have had his mentorship as an undergraduate and beyond, and I feel 

certain that without his help I would have never gotten where I am now.  

Though I knew I wanted to pursue research after my undergraduate degree, I knew that 

I needed more experience before I could begin a PhD. Through Andrei’s recommendation, I 

spent two formative years in Dr. Dedre Gentner’s lab at Northwestern University as her lab 

coordinator. I recall so distinctly being in constant awe of everybody in that lab: Drs. Nina 

Simms, Francisco Maravilla, Christian Hoyos, Ruxue Shao, Kensy Cooperrider. I felt as though I 



 

 

xiv 

had snuck into an intellectual powerhouse where I was to try to absorb as much knowledge as I 

could. Extraordinarily, their intellect was matched only by their immense kindness and 

generosity. I will always remember the lunch conversations, the holiday parties, and the many 

laughs. I am so lucky to have gotten to work with Dedre – a giant in the field, and a wonderful, 

patient, funny, endlessly impressive advisor.  

When I started my PhD, I felt drawn to the idea of incorporating culture into the study 

of cognitive development. My first project in graduate school was under the mentorship of Dr. 

Patricia Greenfield. Patricia encouraged me to think deeply about the effects of our 

environments on cognition, and to not let my research questions be constrained by resources. 

Indeed, as impossible as my first study seemed at the time, with her help and determination we 

were able to find collaborators and resources to help us finish it. I will always have deep 

admiration for Patricia.  

As my research interests continued to evolve, I began working more closely with Dr. 

Catherine Sandhofer, who remained my primary advisor throughout my graduate career. 

During our many meetings over the years, Cathy has been ever supportive and encouraging of 

everything I have tried to do, and always helped me persist with my research and writing. I am 

lucky to have benefited from her expertise and insights on language and cognitive development 

research, the freedom and support to pursue the ideas I had, and to have been always treated 

with so much kindness and understanding. I cannot begin to imagine what my graduate career 

would have been like without Dr. Sandhofer’s mentorship. 

During my second and third years, I began collaborating with Drs. Hongjing Lu, Keith 

Holyoak, and Idan Blank. I believe now that most of my ideas, especially those that became my 



 

 

xv 

dissertation, emerged during our many lab meetings, which were both intellectually cultivating 

and wonderfully humorous. As my interests gradually began shifting back to analogical 

reasoning, I was lucky to have Keith as a mentor and collaborator. My deep interest in this topic 

will never cease to exist, and that is in large part because of Keith and Dedre. Keith’s wisdom 

and incredible insight into essentially every topic will always have my admiration. I am 

thankful to Hongjing for her mentorship, encouragement, and enthusiasm as I began my first 

foray into computational work. Every interaction left me optimistic and intellectually 

invigorated, with a great desire to learn more. Finally, I have so much gratitude for Idan, for his 

immense kindness and generosity, and his incredible ability to think deeply about any idea we 

discussed. To have had such a wonderful group of mentors during my graduate career has been 

an honor.  

Apart from my mentors, my years in graduate school have been indelibly marked by 

Hunter Priniski, Adriana Mendez Leal, Renée Zhu, Nick Ichien, Mason McClay, Josh MacNeal, 

Erika Blair, Kelly Medrano, and Beck, who provided me with so much support and care over 

the years and who made my life an adventure. There is much to be said about our times 

together, but I owe so much of my happiness to them.  

My eternal gratitude to my family, especially my mom, for all the love, time, and 

support they have given me so that I can chase any dream I had. They have been a driving force 

behind every opportunity I have had, and the source of constant care. Thank you for 

everything.  

 

 

 



 

 

xvi 

Vita 

EDUCATION  

University of California, Los Angeles (UCLA), Los Angeles, CA                                                                            

M.A. Developmental Psychology                  December 2019 

Minor: Cognitive Psychology 

University of Illinois at Urbana-Champaign             May 2016 

B.S. in Psychology 

Minor: Philosophy        

AWARDS, FELLOWSHIPS, & GRANTS 

UCLA Psychology Dissertation Fellowship            2023 

Diverse Intelligences Summer Institute Fellowship           2022 

UCLA Summer Mentored Research Fellowship (SMRF)                      2021 

Patricia Greenfield International Field Research Award                       2020 

UCLA Graduate Summer Research Mentorship Award (GSRM)                      2019 

University of Illinois Distinction in Psychology Award                                       2016 

University of Illinois Dean’s List                           2015– 2016  

Psi Chi International Honor Society in Psychology Member                       2015– 2016 

PUBLICATIONS 

Ionescu, A., Furdui, R., Gavreliuc, A., Greenfield, P.M., & Weinstock, M. (2023). The 

Effects of Sociocultural Changes on Epistemic Thinking Across Three Generations in 

Romania. PLOS One, 18(3), e0281785. https://doi.org/10.1371/journal.pone.0281785. 

 

Ionescu, A., Lu, H., Holyoak, K.J., & Sandhofer, C.M. (2022). Children’s Acquisition of 

the Concept of Antonym Across Different Lexical Classes. In J. Culbertson, A. Perfors, 

H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Meeting of the 

Cognitive Science Society (pp. 2526-2531). Toronto, Canada: Cognitive Science Society. 

CONFERENCE POSTERS & PRESENTATIONS 

Ionescu, A., Lu, H., Holyoak, K.J., Sandhofer, C.M. (March, 2023). “The role of language in 

preschoolers' understanding of antonyms” Poster at the 2023 Biennial Meeting for Society for 

Research in Child Development.  

 

Ionescu, A., Lu, H., Holyoak, K.J., Sandhofer, C.M. (November, 2022). “Children’s Antonym 

Understanding Across Parts of Speech” Poster at the Psychonomic Society 63rd Annual Meeting.  

 

Ionescu, A., Lu, H., Holyoak, K.J., Sandhofer, C.M. (July, 2022). “Children’s Acquisition of the 

Concept of Antonym Across Different Lexical Classes” Flash talk at the 44th Annual Meeting of the 

Cognitive Science Society.  

 

Ionescu, A., Furdui, R., Gavreliuc, A., Greenfield, P.M. (2021, November). “Epistemic Thinking 

and Social Change: An Inter-Generational Analysis of the Transition to Post-Communism” Talk at the 

Association of Psychologists in Romania Conference.  

 

https://doi.org/10.1371/journal.pone.0281785


 

 

xvii 

Ionescu, A., Tworek, C.M., Sandhofer, C. & Cimpian, A. (2021, July). “The Effects of Messages 

about Intellectual Ability on Children’s Activity Preferences” Poster presented at Cognitive Science 

Society. 

 

Ionescu, A., Tworek, C.M., Sandhofer, C. & Cimpian, A. (2021, April).“The Effects of Gender 

Stereotypes on Children’s Activity Choices” Talk at Society for Research in Child Development. 

 

Ionescu, A., Greenfield, P.M. (2019, December). “Cross-Generational Differences in Epistemological 

Development” Talk at University of California, Los Angeles Developmental Psychology Forum, 

Los Angeles, CA. 

 

Ionescu, A., Greenfield, P.M. (2019, June). “The Effects of Sociocultural Change on Epistemic 

Development” Talk at Symposium on Cognition and Language Development, Los Angeles, CA. 

 

Ionescu, A., Greenfield, P.M. (2019, May). “Social Change and Epistemic Thinking” Talk at the 

University of California, Los Angeles Developmental Psychology Forum, Los Angeles, CA. 

 

Ionescu, A., Tworek, C.M., & Cimpian, A. (2016, April). “Feminizing Activities 

Counteracts the Negative Effects of Gender Stereotypes” Poster presented at the University 

of Illinois at Urbana-Champaign Undergraduate Research Symposium, Champaign, IL. 

 

Ionescu, A., Tworek, C.M., & Cimpian, A. (2016, April). “Feminizing Activities 

Counteracts the Negative Effects of Gender Stereotypes” Poster presented at the University 

of Illinois at Urbana-Champaign Psychology Department Honors and Capstone 

Research Fair, Champaign, IL. 

TEACHING EXPERIENCE 

Teaching Fellow, University of California, Los Angeles 

Research Methods in Psychology                     Summer 2023, Spring 2024 

Choice Architecture (Anderson School of Business)         Winter 2024 

Developmental Psychology Lab                               Spring 2023 

Dynamic Perspectives on Parenting                         Winter 2023 

Language Development                              Fall 2022 

Teaching Associate, University of California, Los Angeles 

Developmental Psychology                      Winter, Spring 2021 

Cognitive Development                  Fall 2020, Winter 2022 

Cognitive Psychology                      Summer 2020 

Culture and Human Development                                    Spring 2020 

Teaching Assistant, University of California, Los Angeles       

Research Methods in Psychology                 Winter 2020, Fall 2021 

Research Methods in Developmental Psychology                                      Fall 2019 

Introductory Psychology                       Winter 2019 



 

 

 

1 

Introduction 

The ability to reason about semantic relations (e.g., synonyms, antonyms, function) is 

crucial to cognitive development. To do so, children must first learn the meaning of words, how 

these meanings are related across pairs of words, and finally, how these binary relations can be 

used to reason by analogy across various instantiations. Such relations are first formally taught 

to children in elementary school and followed up repeatedly throughout formal schooling, 

where the ability to complete verbal analogy problems (e.g., rich : poor :: big : small) is tested, 

including on standardized tests such as the SAT.  

Although a large body of research has examined children’s ability to learn relational 

words and categories (Hall & Waxman, 1993; Asmuth & Gentner, 2005; Gentner et al., 2011), 

less is known about how children learn abstract semantic relations. Considering the need to be 

able to use such relations to reason by analogy, it is crucial to understand the developmental 

trajectory of learning abstract semantic relations and the types of support that facilitate this type 

of learning. 

Semantic Relations 

We must first examine what semantic relation comprehension entails to understand how 

the factors involved in word and category learning might affect semantic relation learning. 

Semantic relations (associations between meanings of words) are considered fundamental 

components of language and thought. Semantic relations can be compartmentalized into 
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categories: antonymy, synonymy, function, part-whole relations, cause-purpose, space-time, 

case relations, etc. (Lu et al., 2019; Landis et al., 1987; Murphy, 2003).  

To reason about abstract relations, children must first learn the meaning of the 

individual words (e.g., understand the meaning of the word “happy”), how these meanings are 

related across words (e.g., learn that “happy” and “sad” are both emotions and belong to the 

same category), and the binary relations that pairs of words have with each other (e.g., “happy” 

and “sad” both convey emotions, but they are also opposites and share a contrast relation). 

Afterward, learners can identify various instantiations of the same abstract relation. For 

example, one can grasp that “fly” is related to “bird” in the same way as “cut” is related to 

“knife” (function) or that “night” is related to “day” in the same way as “poor” is related to 

“rich” (opposite). Machine-learning models, such as Word2Vec and BART (Bayesian Analogy 

with Relational Transformations), which should be comparable to adults in semantic relation 

processing, show variation in their ability to learn specific semantic relations (Lu et al., 2019). 

Therefore, there is reason to believe that there might also be differences in the development of 

semantic relation comprehension during early childhood.   

Indeed, research has shown differences in children’s comprehension of various semantic 

relations, though the focus has been mostly on synonyms and antonyms (Heidenheimer, 1978; 

Garnham et al., 2000). Moreover, research shows that children’s first understanding of the 

antonym relation begins with substantially higher accuracy than other relations, such as part-

whole inclusion, synonyms, and class inclusion (Landis et al., 1987; Heidenheimer, 1978). 

Studies find that children’s understanding of semantic relations increases between second and 

eighth grade in two respects: knowledge about what each relation is and is not (Landis et al., 
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1987). For example, second graders understand the antonym relation well (i.e., second graders 

understand that the relationship between two words can be categorized as an antonym if the 

words entail opposition). Yet, at this age, there are still a number of intrusions into the relation 

(i.e., children do not yet fully understand that antonyms do not include any two words that 

might overlap in meaning, e.g., salt and sea). However, by eighth grade, children’s 

understanding of the antonym relation is refined in both respects (Landis et al., 1987). 

Much of the research on children’s understanding of semantic relations has failed to 

consider the possibility of different elements that require processing (e.g., form class, semantic 

content, familiarity with the stimulus words) for different types of word stimuli. For example, 

previous research on antonym understanding has largely focused on adjectives and has failed 

to examine other types of lexical classes, despite research showing that children acquire 

different parts of speech starting at different times, beginning with nouns, followed by 

adjectives and verbs (Nelson, 1973; Sandhofer & Smith, 2007). Similarly, the semantics of each 

word or pair of words and the role this plays in early semantic relation understanding have not 

been systematically examined. This is important as the semantic complexity of a word or a pair 

of words might make the relation either more or less noticeable. Research using word 

association and false recognition tasks found that first graders produced significantly more 

antonyms than synonyms when controlling for these factors. However, the production of 

synonyms does seem to increase with age (Heidenheimer, 1978). Thus, it is clear that children 

can grasp antonymy from a young age and that antonymy plays an important part in young 

children’s cognitive development (Jones & Murphy, 2005).   
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Antonymy 

The antonym relation involves understanding the concept of “opposite,” which makes it 

possible to identify an indefinite number of instantiations of the same abstract relation (e.g., 

being able to reason about “rich and poor” sharing the same relation as “ugly and pretty”). 

Antonyms are a unique semantic relation because the words that share the relation typically 

belong to the same category or are closely associated (e.g., happy and sad both describe 

emotions), yet they differ maximally typically on a single dimension (e.g., happy and sad are 

opposites even though they are both emotions). Empirical research assessing children’s 

understanding of the concept of “opposite” tends to fall into two categories: discourse studies 

and metalinguistic studies. Discourse studies primarily center on children’s spontaneous usage 

of antonyms with children as young as two years old (Tribushinina et al., 2013; Jones & 

Murphy, 2005). Furthermore, there is evidence that young children’s usage of explicit contrast 

in speech (e.g., “give me the big piece, not the small piece”) is largely associated with parents’ 

tendency to do the same. This is particularly important as reasoning about contrasts might 

facilitate attention to the various dimensions that antonyms can be evaluated (Tribushinina et 

al., 2013).  

On the other hand, metalinguistic studies evaluate children’s ability to work with the 

metalinguistic vocabulary of opposition. They primarily involve verbal games in which children 

respond to questions such as “What is the opposite of X?” Other studies of this type used free 

association tasks, which showed that children tend to respond with a word that is closely 

associated with the stimulus word (e.g., dark-night) prior to five years of age, while older 
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children tend to respond with a word that is semantically opposite to the stimulus (e.g., dark-

light) (Entwistle et al., 1964). The verbal component of these instruments might explain why 

metalinguistic studies show that the antonym relation becomes salient to children only around 

five years of age. Previous research ties relational reasoning with executive functioning. 

Namely, research on the development of working memory indicates that children’s working 

memory capacity increases with age (Gathercole et al., 2004), and this contributes to their ability 

to process binary relations (a relation between two arguments/objects) around two years of age 

and, later, ternary relations (a relation between three arguments/objects) after five years of age 

(Halford, 1993; Andrew & Halford, 2002). Therefore, it could be that young children’s relatively 

limited working memory capacity contributes to their limited ability to detect relations in these 

types of verbal tasks. However, when the verbal component of such tasks was eliminated, 

children understand the “opposite” relation much earlier, specifically, around four years of age 

(Phillip & Pexman, 2015). Using a non-verbal opposite task, researchers found that labeling the 

objects and providing a label for the opposite relation helped four- and five-year-old children 

understand this relation (Phillip & Pexman, 2015).  

When considering the extant literature on semantic relation learning, it is clear that it is 

largely divorced from the literature on traditional word and category learning, which has a 

history of examining the acquisition process. Specifically, the factors that facilitate word and 

category learning, especially relational words and categories, have not been focused on as 

meticulously in semantic relation learning in children. While some work does show that 

language, namely labels, plays a role in semantic relation learning the way it does in category 

learning, research on this topic is limited (Phillips & Pexman, 2015). One possibility for this 
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oversight might be because semantic relations are abstract and are often presented verbally 

using the words themselves rather than as pictures, which are typically presented with other 

abstract relational categories. Most studies have examined children’s spontaneous production 

and free association of semantic relations. However, if researchers were to take an experimental 

approach using non-verbal stimuli, as they often do for relation learning studies, they could 

implement the same strategies that have been shown to facilitate relational word/category 

learning, such as language (labeling), context (structural alignment), and comparison. If these 

factors were considered, children might show more understanding of complex semantic 

relations such as the “opposite” relation than when spontaneously generating these relations.  

Analogical Reasoning 

A marker of semantic relation understanding is successfully drawing analogies between 

pairs of words that hold the same relation. There are two types of analogy problems: the first, 

referred to as the classical analogy, takes the form A:B::C:D (e.g., Hot:Cold::Small:Big), and the 

second is the problem solving analogy, in which the solution to one problem is explained and 

then using analogy, can aid in solving a novel, more difficult problem. Both types of analogies 

are commonly used in research, but the classical analogy task is the most appropriate for 

examining semantic knowledge understanding (Lu et al., 2019). 

Development of Analogical Reasoning  

First, it is crucial to elucidate the developmental trajectory of analogical reasoning – 

when do children draw analogies across different instances? Traditionally, analogical reasoning 

has been considered accessible only for older children and adults, as it necessitates relational 
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knowledge (information about the higher-order relations that the analogy depends on), an 

ability to make relational inferences (realizing that the link between A and B can be applied to C 

and D), and knowledge of task requirements (clarity on what the aim of the task is) (Singer-

Freeman, 2005). While early work suggested that children are unable to reason analogically 

until about 13-14 years of age (Piaget et al., 1977), more recent evidence suggests that children 

as young as age three can successfully complete analogical reasoning tasks as long as they know 

the relations involved (Goswami & Brown, 1989; Richland et al., 2006). However, increased 

domain knowledge is not the only factor contributing to children’s increased understanding of 

analogical reasoning across development. One theory is that children undergo a “relational 

shift,” in which they shift their attention from featural similarity to relational similarity 

(Gentner & Rattermann, 1991). In other words, while young children first attend primarily to 

perceptual features, with time, they begin attending to relational similarities. This relational 

shift occurs at different ages for different domains and is contingent upon children’s knowledge 

of that domain. For example, if shown a picture of a dog chasing a cat and another picture of a 

boy chasing a girl while a cat is present in the background, younger children (aged 3) tend to 

match the cats in both photos (featural similarity). In contrast, older children (aged 5) tend to 

match the cat from the first picture to the girl from the second, as both are being chased 

(relational similarity).  

However, there are factors that support children’s analogical reasoning, including 

relational familiarity, relational language, and comparison across instances. Relational similarity 

in analogical tasks involves using familiar examples, such as physical causality (Goswami & 

Brown, 1990). If children are given problems involving examples of relations that they 
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frequently encounter in their daily lives, it is easier for them to solve an analogical reasoning 

problem. Another factor is awareness of relational language, including labels and names for the 

relations involved in an analogical reasoning task. Research has shown that using relational 

labels for objects in a task helps children notice and manipulate memories of relational 

similarities, similar to how labels help children learn categories (Loewenstein & Gentner, 1998; 

Rattermann & Gentner, 1998). Lastly, comparison across instances helps children extract higher-

order relations in analogical reasoning problems, as it highlights the shared relational structure 

between examples (Gentner & Namy, 1999; Anggoro et al., 2005).  

Semantic Distance  

An important factor that should be controlled for when studying how semantic relations 

can be used to reason by analogy is semantic distance. Previous work has shown that semantic 

distance could be represented as Euclidean distance in a semantic space. For example, a “robin” 

is closer in the semantic space to “bird” than it is to “animal.” Findings suggest that the 

statement “a robin is a bird” is verified faster than the statement “a robin is an animal” (Collins 

& Quillian, 1969). Given that a robin is a subset of a bird, and a bird is a subset of an animal, the 

representation of a robin and a bird are closer together in an underlying semantic structure than 

that of a robin and an animal. This subset effect manifests as the increasing time it takes to 

confirm a semantic relation between two nouns as the semantic distance between the two words 

also increases. In addition, semantic distance can predict reaction time in semantic 

categorization tasks and analogy tasks (Rips et al., 1973). For example, the more increased 

semantic distance between words, the longer it takes to categorize the words as belonging to a 
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particular semantic relation (e.g., opposites, part-whole) and the longer it takes to complete 

analogy tasks between sets of semantic relations (e.g., identifying that hand:finger is analogous 

to foot:toe the same way as it is analogous to tree:branch). 

 Semantic distance can be easily interpreted when considering the structure of semantic 

memory. For instance, Quillian (1967, 1969) proposed a model of semantic memory in which 

every word includes a stored configuration of pointers to other words in memory that represent 

the word’s meaning. For instance, a canary might be stored as a yellow bird that can sing, with 

“yellow” and “can sing” representing properties of the canary and “bird” representing the 

broader category to which the canary belongs.  

 
Figure 1. Hypothetical memory structure for a three-level hierarchy (Collins & Quillian, 1969). 

  

As illustrated in Figure 1, the distance in memory structure between a subordinate item 

(“canary”) and a superordinate item (“animal”) manifests as a longer reaction time when trying 
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to reason about the semantic relation between the two items or, more profoundly, when 

attempting to solve an analogy between the semantic relation that these two items share with an 

entirely different set of items (e.g., dining room chair:furniture).   

When considering the acquisition of semantic relations, research often fails to include 

the premise of semantic distance as a factor that may contribute to children’s ability to reason 

about particular semantic relations or solve analogy problems containing semantic relations. 

Collins and Quillian (1969) proposed that the hypothetical memory structure implies a 

difference between adjectives and nouns when reasoning about the semantic relations between 

subordinate and superordinate items. It could be that when comparing nouns, children are 

inherently forced to reason about all the associated properties. In contrast, when comparing 

adjectives, children only have a single dimension in which to compare them.  

Most studies on antonym relation learning have focused on adjective pairs (e.g., big : 

small); however, nouns dominate children’s early lexicons compared to verbs and adjectives 

(Gentner, 1978; Nelson, 1973; Sandhofer & Smith, 2007; Phillips & Pexman, 2015). These 

findings raise the possibility of similar variability in how children are able to reason about 

antonyms based on different parts of speech. For example, perhaps children may show earlier 

success with noun pairs instantiating antonym relation (e.g., king : queen). However, though 

nouns are learned earlier than adjectives, nouns are semantically richer because they hold 

multiple meanings and share more than one relation with other words, which could make it 

more difficult for young children to evaluate nouns as compared to adjectives. For example, to 

generate the opposite of “short” (“tall”), one evaluates the concepts on a single dimension of 
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length (height); however, to generate the opposite of “king,” one could produce “queen” if 

evaluating based on gender, or “peasant” if evaluating based on economic status. 

Therefore, reasoning about antonyms across various parts of speech may follow a 

different developmental pattern than the acquisition of individual words. Studies assessing the 

performance of computational models of verbal analogy (e.g., Mikolov et al., 2013; Lu et al., 

2019) have compared different semantic relations but not performance across different lexical 

classes within a single semantic relation of interest. Accordingly, one of the goals of the current 

studies is to examine human and model performance across different parts of speech: 

adjectives, nouns, and verbs.  

Context as a facilitator for relational reasoning 

Semantic relations can be considered abstract categories, for they require children to 

extract the relation that two words share and generalize it to novel pairs of words that share the 

same abstract relation. As such, the factors that help children learn relational categories might 

also facilitate learning semantic relations. Some of the factors that have been found to support 

the acquisition of categories are relational language, structural alignment, and comparison 

(Ankowski et al., 2013; Waxman & Markow, 1995; Namy & Gentner, 2002; Gentner et al., 2011; 

Gentner, 2005).  

 Studies on relational nouns show that the right syntactic support might clarify their 

relational nature. For example, a syntactic frame, such as “this is the home of a bird” or “the 

brother of Y” helps make the argument structure clear (Asmuth & Gentner, 2005). Indeed, 

research shows that children make more relational responses when they receive a relational 
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noun label in a relational construction (e.g., “the knife is the dax for the watermelon”) vs. when 

they receive the label in a simple category sentence (e.g., “this knife is a dax”) or no label at all 

(Gentner et al., 2011). Given the relational nature of antonyms or synonyms, it could be that the 

same kind of syntactic support might benefit children’s learning of semantic relations. For 

example, providing a label for the relation (e.g., “antonym” or a novel word, such as “dax”), or 

perhaps just enough syntactic support to draw attention to the relational nature of the word, 

could help children learn the relation more easily.  

Another factor that has been shown to facilitate category learning is the use of 

comparison and contrast, both of which have been shown to provide learners with 

opportunities to either view various examples of a target category or to compare the target 

category with non-members of the category (Gentner & Namy, 1999; Ankowski et al., 2013).  

There is considerable evidence from early naming studies suggesting that children categorize 

objects based on perceptual features, such as shape or color, rather than on conceptual 

knowledge (Gentner, 1978; Bowerman, 1976; Smith et al., 1992). Gentner (1978) found that 

young children extended novel words to objects based on perceptual appearance rather than 

function, even when the function of the objects was made salient. When preschool-aged 

children are taught a novel word for a familiar object (e.g., egg) and asked to extend it to new 

objects, they tend to choose objects that are perceptually similar yet unrelated to the target (e.g., 

a football) over objects that are conceptually related (e.g., nest) (Baldwin, 1992). In fact, even 

when 3-5-year-olds were given a choice between an object that shared both perceptual features 

and category membership and an object that shared only perceptual features with the target 

object, they were equally likely to select either object (Imai et al., 1994). Despite young children’s 
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tendency to categorize based on shared perceptual features, comparison has been shown to 

have positive effects on both adult and child learning (Gick & Holyoak, 1983; Gentner & 

Markman, 1995; Holyoak & Thagard, 1989; Medin et al., 1993).  

Studies have shown that comparison promotes categorization, particularly when the 

category is not bound by salient perceptual commonalities but rather by higher-order 

commonalities. For example, young children are able to recognize higher order commonalities, 

such as symmetry, if presented with examples that share perceptual commonalities (Kotovsky 

& Gentner, 1996). Comparing similar category members is particularly necessary when learning 

a new relational category, as aligning perceptual features among exemplars allows children to 

focus on higher order commonalities that would otherwise be less salient (Gentner & Markman, 

1994).  

According to the structure-mapping theory (Gentner, 1983, 2010), comparison is 

especially effective at emphasizing relational information, as the structural alignment process 

helps to highlight the common relational structure that should be attended to rather than 

features that are not relevant. Though it would seem like learning abstract relations would be 

best fostered by examining pairs that are different, progressive alignment proves to be effective 

because the relations are represented in an implicit and context-specific manner (Gentner, 2003; 

Kotovsky & Gentner, 1996). Specifically, progressive alignment involves starting with concrete, 

close comparisons and gradually moving to abstract and purely relational comparisons. For 

example, young children might find it difficult to understand that the relation between a knife 

and a melon is the same as between an axe and a tree. However, a close similarity pair such as a 

knife to a melon and a knife to an orange might highlight the similarity between the 
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corresponding entities and thus highlight the alignment, which would ultimately make the 

common relation more salient and more easily understood in future examples (Gentner & 

Medina, 1998; Kotovsky & Gentner, 1996).  

Because relational language and structural alignment promote the abstraction of a 

relation from exemplars, there is reason to believe that the same factors would benefit learning 

semantic relations, given that semantic relations are inherently abstract. However, the literature 

on semantic relation learning is still fairly limited in including the factors shown to support 

relational category and noun learning. For example, when teaching children the “opposite” 

relation, Phillips & Pexman (2015) minimized the visual similarity (e.g., color, posture, size) of 

the images that were used in the task to prevent the possibility of children using perceptual 

similarity as a guide for forming the relation. However, structural alignment would suggest that 

the opposite approach might be more effective – namely, using images that depict stimuli that 

share perceptual similarities so that children can focus on the higher order semantic relation 

that the images share (Gentner, 2003; Kotovsky & Gentner, 1996). Similarly, providing the right 

syntactic support, including labels and context that emphasizes that pairs of words share a 

relation, should help children focus on the higher order commonality that pairs of words share 

and thus facilitate their ability to solve analogy problems involving semantic relations.  

Computational Models 

 While we know that humans learn new categories and relations based on just a few 

examples, computational models tend to require big data to acquire the ability to complete the 

same task. However, newer models, such as BART, seek to integrate big data with supervised 
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learning from small data. Namely, they create semantic features for individual words and then 

use them to create vectors representing the relations between pairs of words, such as antonyms 

or synonyms. As such, models like BART are explicitly designed to be able to solve analogy 

problems involving various types of semantic relations, including the ones discussed in the 

present studies.  

 It is important to note the abilities and limitations of these models to inform research 

that could be tested behaviorally early in development. For example, Lu, Wu, and Holyoak 

(2019) found that BART and Word2Vec perform less accurately than adults on antonyms 

despite performing comparably (or even better) on analogy problems involving a large set of 

semantic relations. As a result, it is essential to examine whether children are also learning 

semantic relations in similar patterns or, alternatively, what is helping children perform well on 

analogy problems involving the same relations. Though children eventually do practice analogy 

problems in schools, there is little research examining how early they become able to complete 

these problems and what factors are helping them do so. If language input, such as labels, helps 

children solve these analogies, the same input may also help models.  

For example, the model Bidirectional Encoder Representations from Transformers 

(BERT) (Devlin et al., 2019), as well as the large language model GPT, are able to receive input 

such as “is related to” or “is opposite to,” which act similarly to the input that children receive 

and could potentially facilitate their performance on a verbal analogy task. As such, it is 

important to use the data provided by the models to inform research questions and methods 

used in behavioral studies and to use the behavioral data to inform ways in which the models 

can be improved. 
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Overview of Studies  

The proposed studies have a central goal of identifying the factors that contribute to 

how young children begin reasoning about abstract semantic relations and use them to engage 

in analogical reasoning. Chapter I aims to elucidate whether and how children generate the 

antonym pair when given a query word and how this might vary across different parts of 

speech. Previous research shows that nouns dominate children’s early vocabularies compared 

to adjectives and verbs (Nelson, 1973; Sandhofer & Smith, 2007). Therefore, there is reason to 

expect differences in antonym generation across lexical classes. Chapter I also implements two 

vector-based computational models (BART-Gen and Word2Vec), as well as the large language 

model GPT3.5 in solving the same task.  

Chapter II aims to elucidate how much relational labels (i.e., the label “opposites”) help 

children solve analogies involving antonyms in a pictorial analogy task. This experiment 

separated trials by lexical class to examine potential differences in analogy problems involving 

different parts of speech. Chapter II implemented BART and Word2Vec, as well as an NLP 

model BERT, to examine their performance on the same task, as well as how input, such as 

labels given to children, affects BERT’s performance. 

Lastly, Chapter III serves as an extension of the experiment in Chapter II by examining 

whether differences between different lexical classes exist once children are provided with 

comparison within a trial. Previous work shows that when semantic relations are used to reason 

by analogy, participants find it easier to think about pairs of words that are more closely related 

to each other than others. For example, it is easier to see how “a finger is to a hand” and what “a 
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toe is to a foot” than what “wing is to a bird.” That is because the pairs of words finger:hand are 

more often associated with toe:foot. Computationally, these two pairs of words would be closer 

in the semantic space than wing:bird. Pairs of words belonging to different lexical classes would 

naturally be farther away in the semantic space than those belonging to the same class. Thus, 

Chapter III varies parts of speech within one analogy problem, examining the role semantic 

distance plays in reasoning about these relations. Based on previous research on semantic 

distance, I hypothesized that semantically distant pairs of words would be more challenging for 

children to reason about than semantically near pairs. The same task was also administered to 

the models in order to examine whether the semantic distance of the mixed analogies proves 

more difficult for models such as BART or GPT3.5. 

Solving classic analogy problems involving semantic relations is certainly an ability 

required of students once they enter the education system (Common Core State Standards 

Initiative, 2017). Therefore, it is necessary to examine whether the factors that help children 

solve spatial or visual analogy problems might also facilitate their ability to solve semantic 

relations analogy tasks to determine how to help children successfully reason about analogies 

involving semantic relations that they have not yet been formally taught. For example, research 

thus far has yet to examine how early children can solve verbal analogies involving semantic 

relations. Given the evidence showing that children begin to get a sense of these abstract 

relations around four years of age, the present studies examined whether children in the same 

age range also used these relations to reason by analogy. This was done through verbal analogy 

tasks and supporting pictures, which might help children reason about these abstract relations 

by viewing concrete depictions of the words.  



 

 

18 

Moreover, analogical reasoning could serve as a tool in semantic relation acquisition. 

The opportunity to detect the same semantic relation across semantically different examples 

might help children understand the abstract relation more clearly.  

Further, comparing the behavioral studies to computational results elucidates 

differences in performance on specific analogies where lexical classes are either isolated or not, 

language support is either given or not, and verbal analogies are either provided or generated. 

These differences are important, particularly for models like BART and BART-Gen, which are 

built to mimic relation learning from non-relational inputs (i.e., using embeddings for 

individual words to create a representation of the relation they share). Elucidating the 

challenges children experience when first learning how to reason by analogy, as well as the 

factors that facilitate their ability to do so, will be informative in improving computational 

models in the future. 

Chapter I: The Emergence of Semantic Relation Understanding 

Introduction 

 This chapter focuses on how children and models (BART-Gen and GPT3.5) generate the 

opposite item in an antonym pair. Experiment IA is the behavioral portion of the first study, 

and it examines 4- and 5-year-old children’s ability to generate antonyms when provided with a 

query word (e.g., "What’s the opposite of big”). Experiment IB is the computational portion of 

the study and focuses on models such as GPT-3 and BART-Gen. Because this study requires 

children to generate the antonym pairs, both models will serve as a direct comparison for the 

behavioral data on the generative task. 
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The purpose of this study was to examine the accuracy of the responses given by 

children and models, as well as the patterns of responses. We were interested in the semantic 

similarity between the default “correct” response and the actual responses generated by both 

children and models. In order to assess differences across parts of speech, the antonyms used in 

this task were presented from three lexical classes: adjectives, verbs, and nouns.  

IA. Behavioral 

Methods 

Participants 

The study consisted of 37 participants, including 24 4-year-olds (M= 4.458, SD= 0.314) 

and 13 5-year-old (M= 5.433, SD= 0.404) children recruited through UCLA’s Language and 

Cognitive Developmental Lab. As required by the UCLA IRB, only children whose parents 

provided consent participated. 

Measures 

Parents completed a language survey. The language survey included all the words used 

in the study (including “opposite”) to determine whether children have prior knowledge of the 

words used in the study and whether word knowledge is related to their performance on the 

analogy task. In addition, parents were asked to complete a demographic questionnaire. 

Stimuli and Procedure 

This study consisted of 3 training trials and 21 test trials. The three training trials 

consisted of one pair from each part of speech used (noun, verb, adjective), and the test trials 

included 7 trials from each part of speech. The word pairs were chosen to ensure that the words 
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represented valid antonym pairs and were words known by children of this age range. First, the 

experimenters selected pairs of antonyms from educational booklets that teach antonyms. Then, 

each word in the pairs was plotted against the proportion of children who tend to produce it by 

30 months of age using Stanford’s Child Vocabulary Wordbank (wordbank.stanford.edu), 

which archives data from the MacArthur-Bates Communicative Development Inventory and 

thus reflects a large dataset of children’s English vocabulary acquisition. Only words that 80% 

or more of children seemed to know by 30 months were used. Although Wordbank tracks 

language acquisition until 30 months, the youngest children in the present study were 48 

months of age. Thus, we took a conservative approach to selecting words children would 

understand. Then, the pairs were piloted on adult participants who were given one word and 

asked to generate the other for each pair. Only pairs with high reliability (90%+) were kept in 

the study.  

  In the present experiment, words in each pair were labeled as query word 1 or 2 to 

randomize which words participants were given, with each participant receiving words from 

either query word list 1 or 2. First, participants completed a warm-up activity to help them feel 

comfortable responding to the experimenter. During this activity, participants were shown 

pictures of balloons and asked to name the color of each balloon. Afterward, participants were 

presented with the first training trial in which the experimenter asked, “What is the opposite of 

X?” Depending on the response, experimenters confirmed that the participant’s response was 

correct (“That’s right! The opposite of X is Y”) or corrected the participant’s response 

(“Actually, the opposite of X is Y”). The test trials followed the same format as the training 

trials, except that participants were not given any feedback after their responses.  
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Results 

We first coded the responses for accuracy strictly, using only the words from the 

antonym pairs we had initially chosen as the correct response.  In subsequent analyses, we 

consider the synonyms of those words. 

We examined whether age affected overall performance and children’s performance for 

antonyms from each part of speech. We found that there was no significant difference in overall 

performance between four-year-olds (M= .500, SD= .169) and five-year-olds (M= .567, SD=.168), 

t(35)= -0.973, p = 0.341. Similarly, there was a statistically non-significant difference in 

performance on adjective trials between four-year-olds (M= .657, SD=.206) and five-year-olds 

(M=.738. SD=147), t (35)=  -1.367, p = 0.182; no statistically significant difference in noun trial 

performance between four-year-olds (M= .571, SD=.218) and five-year-olds (M= .655, SD=.247), 

t(35)= -0.996, p = 0.331; and no statistically significant difference in verb trial performance 

between four-year-olds (M= .303, SD= .227) and five-year-olds (M= .310, SD= .218), t(35) = -0.086, 

p = 0.932 (Figure 2).  
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Figure 2. Accuracy on the generative antonym task for both age groups, broken down by part of speech. Each box 

represents the interquartile range (IQR) of the data, with the median shown as a line inside the box. The whiskers 

extend to the most extreme data points. 

Regardless, we split up the data by age to examine differences in performance between 

each part of speech. A paired t-test showed no statistically significant difference between 

adjective (M=.657, SD=.206) and noun (M=.571, SD=.218) accuracy among four-year-olds, t(25) = 

1.964, p = 0.061. However, four-year-olds had a significantly higher performance on noun trials 

(M=.571, SD=.214) than verb trials (M= .302, SD= .227), t(25) = 5.260, p < 0.001. Similarly, they 

performed significantly better on adjective trials (M=.657, SD=.206) as opposed to verb (M= .302, 

SD= .227) trials t(25) = 6.699, p < 0.001. These results indicate that four-year-olds performed 

comparably on trials involving adjectives and nouns but performed significantly worse on verb 

trials (Figure 3). 
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Figure 3. Four-year-old children's accuracy on the generative antonym task, broken down by part of speech.  The 

violin plots reflect the kernal density estimate (KDE), and the means and standard deviations are shown for each part 

of speech. 

 

 We also examined five-year-old children’s performance for each part of speech. A paired 

t-test revealed no statistically significant difference between adjective (M=.738, SD=.147) and 

noun (M=.655, SD=.247) performance among five-year-olds t(11) = 1.205, p = 0.253. However, 

similarly to four-year-olds, five-year-olds performed significantly better on noun trials (M=.655, 

SD=.247) as opposed to verb trials (M= .310, SD= .218), t(11)= 4.994, p < 0.001. They also 

performed significantly higher on adjective trials (M=.738, SD=.147) than on verb trials (M= .310, 

SD= .218), t(11) = 9.95, p < 0.001. These results indicate that among five-year-olds, there was no 

significant difference between adjective and noun accuracy, but they were able to generate 

adjective and noun opposites significantly better than they could verb opposites (Figure 4). 
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Figure 4. Five-year-old children's accuracy on the generative antonym task, broken down by part of speech.  The 

violin plots reflect the kernal density estimate (KDE), and the means and standard deviations are shown for each part 

of speech. 

 

 When examining correlations between parent reports of children’s language knowledge 

involving the words specifically used in our experiment, we found that overall performance on 

the antonym generation task and the knowledge of the words we expected children to know in 

order to complete this task was significantly correlated r(35)= 0.41, p=0.01 (Figures 5 and 6). 

However, there was no significant correlation between overall performance on the task and 

whether the parents reported if the children knew the word “opposite” r(35)= 0.19, p=0.26 

(Figure 5). 
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Figure 5. Correlations between accuracy on the generative antonym task and parent reports of children's word 

knowledge. The accuracy on the task is shown as a total, as well as broken down by part of speech. Parent reported 

language ability is reflected by the MCDI label. “MCDI Opposite” reflects parents’ reports of whether children know 

the word “opposite.” 

 
Figure 6. Correlations between accuracy on the generative antonym task, split by age group, and parent reports of 

children's knowledge of the words used in the task. 
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Recoded Results 

We recoded all the responses to account for responses that do not directly match our 

original pairs but are synonyms of those words or other reasonable potential antonyms (“legal” 

responses). Similar to the original coding, we found no significant difference in the adjective 

proportion correct between four-year-olds (M=.709, SD=.196) and five-year-olds (M= .750, SD= 

.151), t(35)= -.708, p = .485; no significant difference in the noun proportion correct between four-

year-olds (M= .600, SD= .222) and five-year-olds (M=.690, SD=.250), t(35)= -1.068, p =.299; no 

significant difference in the verb proportion correct between four-year-olds (M= .434, SD=.239) 

and five-year-olds (M= .440, SD=269), t(35)= -.068, p=.946; and no significant difference in the 

total proportion correct between four-year-olds (M= .581, SD= .168) and five-year-olds (M= .627, 

SD= .188), t(35)= -.720, p=.480. These findings suggest that even with lenient coding, the 

discrepancy between four- and five-year-olds’ performance on the antonym generative task 

remains non-significant (Figure 7). 
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Figure 7. Accuracy on the recoded generative antonym task for both age groups, broken down by part of speech. 

Each box represents the interquartile range (IQR) of the data, with the median shown as a line inside the box. The 

whiskers extend to the most extreme data points.  

When testing strictly for four-year-olds’ performance, a paired t-test showed that 

performance on adjective trials was significantly higher (M= .709, SD= .196) than on noun trials 

(M=.600, SD= .222) among four-year-olds, t(24) = 2.671, p = 0.013. Additionally, four-year-olds 

performed significantly better on nouns (M=.600, SD= .222) than on verbs (M=.434, SD= .239), 

t(24) = 3.112, p = 0.005. They also performed better on adjectives (M= .709, SD= .196) than on 

verbs (M=.434, SD= .239), t(24) = 5.331, p < 0.001. These findings suggest that even with more 

lenient coding, four-year-olds performed significantly better on nouns and adjectives compared 

to verbs (Figure 8). 
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Figure 8. Four-year-old children's accuracy on the recoded generative antonym task, broken down by part of 

speech.  The violin plots reflect the kernal density estimate (KDE), and the means and standard deviations are shown 

for each part of speech. 

When examining the performance of five-year-olds, we found no statistically significant 

difference between adjectives (M= .75, SD= .151) and nouns (M= .69, SD= .25), t(11) = 0.861, p = 

0.408. However, similarly to the original coding, the proportion of correct responses on nouns 

(M= .69, SD= .25) was significantly higher than that on verbs (M= .44, SD= .269), t(11) = 3.540, p = 

0.005. Additionally, performance on adjectives (M= .75, SD= .151) was also significantly higher 

than that on verbs (M= .44, SD= .269) among five-year-olds, t(11) = 5.613, p < 0.001 (Figure 9). 

These findings suggest that even when coding for responses that did not fit the originally 

chosen pairs and instead included synonyms or other valid antonyms, there was no significant 

difference between the proportion of correct responses for both adjectives and nouns among 

five-year-olds, but they performed significantly better on nouns and adjectives as opposed to 

verbs. 
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Figure 9. Five-year-old children's accuracy on the recoded generative antonym task, broken down by part of 

speech.  The violin plots reflect the kernal density estimate (KDE), and the means and standard deviations are shown 

for each part of speech. 

 
Figure 10. Correlations between accuracy on the recoded generative antonym task and parent reports of children's 

word knowledge. The accuracy on the task is shown as a total, as well as broken down by part of speech. Parent 

reported language ability is reflected by the MCDI label. “MCDI Opposite” reflects parents’ reports of whether 

children know the word “opposite.” 
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We computed Pearson correlation coefficients between parent reports of children’s 

language knowledge involving the words specifically used in our experiment and the words the 

children generated even when they were recoded for possible correct alternatives, and we 

found that overall performance on the antonym generation task and the knowledge of the 

words we expected children to know in order to complete this task was still significantly 

correlated r(35)= 45, p=0.01 (Figures 10 and 11). However, there was still no significant 

correlation between overall performance on the task and whether the parents reported if the 

children knew the word “opposite” r(35)= 0.20, p=0.25 (Figure 10). 

 
Figure 11. Correlations between accuracy on the recoded  generative antonym task, split by age group, and parent 

reports of children's knowledge of the words used in the task. 

 

Apart from recoding the data to account for target word synonyms or other potentially 

correct antonyms, we wanted to examine the semantic distance of the words that children 
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generated relative to the target word. This way, we can computationally measure whether 

children’s responses are relatively semantically close to the target word. To do this, we retrieved 

the word2vec (w2v) embeddings of each query word, each target word, and each generated 

response word. Using the Python package t-SNE, we were able to convert the w2v embeddings 

to 2 dimensions to plot them on a scatterplot. With the two conditions collapsed across 

participants, we have 14 target adjectives, 14 target nouns, and 14 target verbs. Using these 

plots, we can observe the distribution of the generated words around the target words and 

whether clusters form around the target words. In the scatterplots in Figure 12, we observe clear 

clusters of generated words formed for nouns and adjectives, and a broader distribution for 

verbs. This would suggest that the words children generate for the adjective and noun 

antonyms are closer in the semantic space than those they generate for verbs.  
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Figure 12. W2V embeddings for the target and generated words in the generative antonym task, collapsed to two-

dimensional space. The plots are split by part of speech, and in each plot the green dots depict the 14 possible target 

words for each part of speech, and the red dots reflect the words that the children generated. The jitter is set to 0 for 

target words and 1 for the generated words. In some cases, if the generated word is the target word, the dots overlap. 

 

 Next, we computed the cosine distance between each unique target word and each 

corresponding generated word to examine whether the clusters we observe in our TSNE plots 

do indeed coincide with the average semantic distance between each target word and each 

corresponding generated word. We grouped the target words by part of speech and found that 

there is a significantly higher average semantic distance between target words and generated 

words for verbs (M=.458, SD=.7) as opposed to adjectives (M= .244, SD=.193), t(26)= -3.1559, p= 
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.004, and a significantly higher average semantic distance for verbs as opposed to nouns 

(M=.238, SD=.182), t(26)= -3.365, p= .0024. However, much like the accuracy analyses, we found 

no significant difference between the average semantic distance between target words and 

generated words for adjectives (M= .244, SD=.193) and nouns (M=.238, SD=.182), t(26)= .098, 

p=.923 (Figure 13).  

 Figures 14-16 depict the frequency and distribution of the words children generated, 

corresponding to each target word across the three parts of speech.  

 

 
Figure 13. The cosine distance between the target words and the words that children generated on the antonym task, separated 

by part of speech. Each box represents the interquartile range (IQR) of the data, with the median shown as a line inside 

the box. The whiskers extend to the most extreme data points. 
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Figure 14. Frequency of each of the words that children generated on the antonym task, according to each adjective 

target word. The target words on each row correspond to the same relation (e.g., cold:hot, happy:sad). If the target is 

cold, the source word is the opposite. 
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Figure 15. Frequency of each of the words that children generated on the antonym task, according to each noun 

target word. The target words on each row correspond to the same relation (e.g., winter:summer, love:hate). 



 

 

36 

 
Figure 16. Frequency of each of the words that children generated on the antonym task, according to each verb 

target word. The target words on each row correspond to the same relation (e.g., pull:push, frown:smile). 
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IB. Computational 

In this portion, we implemented the model BART-Gen, which can receive language 

input similar to that given to children (e.g., what is opposite of X?”) in order to generate the 

target word in an analogy. BART-Gen is intended to match adult performance in correctly 

identifying semantic relations.  

BART-Gen uses the relational representations generated by BART (Bayesian Analogy with 

Relational Transformations), a model of relation learning that forms representations of relations 

from vector representations of individual word meanings (Lu et al., 2019). Namely, it relies on a 

distributed vector representation of the relation between words A and B (RAB), which 

corresponds to one of the 270 distinct relations learned by BART. After being given the input for 

word C, the model generates 270 predictions of word embeddings for the target word D, and 

computes a weighted average of the set of generated embeddings scaled by a normalized 

relation vector. To successfully generate the word embedding for target word D, the model 

must make predictions from the relations for which A and B are a positive example, compared 

to the relations for which A and B are a negative example (Ichien, N., Kan, A., Holyoak, K. J., & 

Lu, H., 2022). The individual word vectors used by BART to form the relational vectors are 

provided by Word2Vec (Mikolov et al., 2013). As such, we also included W2V’s performance in 

our findings as a reference point.  

We also conducted the same task on GPT3.5 through ChatGPT. GPT3.5 is an advanced 

artificial intelligence model designed by OpenAI for natural language processing tasks. While 

OpenAI has not disclosed the number of parameters, it is safe to assume that it is larger than its 
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predecessor, GPT-3, which comprised 175B parameters. Given its advanced training, it should 

also serve as a good comparison for children’s performance on the antonym generation task. 

Results 

 

 When provided the word pairs from our study, BART-Gen and W2V each provide a 

ranking for the target word in relation to the query word, with a ranking of 1 signaling that the 

target word is the first choice for the models’ in terms of what constitutes the opposite of the 

query word, followed by all the words which they are trained on in the context of our relations 

of interest. In order to mark what constitutes a correct or incorrect response in our dataset, we 

used a cut-off limit of 10, marking performance as being correct as long as the models generated 

words in the top 10 rankings. For GPT3.5, we marked the words as correct or incorrect while 

allowing alternative responses to be correct if they were logical. This coding scheme was 

intended to resemble that used with children, in which their responses were recoded for 

accuracy while allowing for legal words. All models were administered one of the query words 

and then reassessed while the second query word was administered. In our results, 

performance is shown averaged across the two query word simulations.  

 Table 1 shows that performance on the antonym generative task varied across the 

models, with GPT3.5 showing a perfect performance on each part of speech. BART-Gen and 

W2v each show the highest performance on nouns, followed by adjectives and verbs at a similar 

accuracy rate.  
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Table 1. Proportion model performance on the generative antonym task. 

 Models Adjectives Nouns Verbs 

Relation model BART-Gen  0.57 0.86 0.50 

NLP models W2V 0.50 0.86 0.57 

 GPT3.5 1 1 1 

     

 

 
Figure 17. Accuracy on the generative antonym task for both models and children. 

 Our simulations show that BART-Gen and W2V perform worse than children on 

adjective pairs, but better on noun and verb pairs. GPT3.5, on the other hand, performs 

considerably better than children on all parts of speech (Table 1, Figure 17). 
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Chapter I Discussion 

In Chapter I, I reported on both a behavioral and computational approach to examining 

antonym word-pair generative responses. In Chapter IA, I presented four- and five-year-old 

children with query words belonging to three parts of speech (adjectives, nouns, and verbs) and 

prompted them to generate the corresponding antonym. The behavioral task showed that 

children of both ages demonstrate overall high performance on both adjectives and nouns, and 

lower performance on verbs. Even when allowing for a multitude of “legal” responses that were 

not our intended antonym target words but semantically similar and conceptually a good fit for 

an antonym pair, the same patterns were present for both ages, though performance increased 

overall for all parts of speech. These findings somewhat match children’s lexical development 

patterns as children’s early vocabularies contain more nouns and verbs earlier than adjectives 

(Nelson, 1973; Sandhofer & Smith, 2007). However, many adjective antonym pairs tend to vary 

on a single dimension, whereas nouns and verb pairs are typically more semantically complex. 

When examining the variability in the generated responses of the children for each part 

of speech, we found that verbs especially tended to have much more variability than adjectives 

and nouns. This could be due to the subjective nature of verb antonyms because they can be 

evaluated on multiple dimensions. When children did not know the correct response for a verb 

antonym, they tended to simply negate the original query word (e.g., catch:not catch, hate:not 

hate). This suggests that when children do not know the correct antonym pair, they prioritize a 

“different” relation in which they know that the target word is something other than the query 

word, even if they do not know the correct response.  
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 When looking at the word embeddings for each target word and each generated word, 

we found that particularly for adjectives and nouns we tended to see more clusters being 

formed around the target words suggesting that even if children are not necessarily generating 

the right target word, they are generating words that are semantically close to the target words. 

The verb embedding plots also show some clusters forming around the target words. However, 

we see much more variability in where each word embedding is in the two-dimensional 

semantic space as opposed to nouns and adjectives. This further demonstrates the findings from 

the statistical test suggesting that accuracy tends to be higher for adjectives and nouns and 

lower for verbs. Overall, these findings suggest that there is variability across parts of speech 

and that even though children seem to have a solid understanding of the antonym relation and 

how it applies to various instantiations of the relation, they still have difficulty generating 

words to complete antonym pairs, especially if they might not yet have high familiarity with 

them due to their age.  

To measure whether familiarity with the words played a role in children's overall 

performance on the task, we found that familiarity with the words, as reported by parents, is 

significantly correlated with overall performance on the antonym generation task. Interestingly, 

however, there was no significant correlation between overall performance on the antonym task 

and whether the children knew the word opposite as reported by parents. Because overall 

parents reported that children knew most of the words used in our experiment, this suggests 

that lexical development is correlated with the ability to reason about relations between the 

words. When it comes to the word opposite specifically, it could be that children either know the 

word but do not yet completely understand how it applies to different instantiations, or it could 
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be that parents were either not aware that their child knew the word opposite or were not 

completely accurate when completing our questionnaire, which is a general limitation of parent 

language reports. 

When examining the model simulation results against those of children, we see a 

different pattern. BART-Gen and W2V perform comparably to, or better, than children on noun 

and verb pairs, yet considerably worse on adjective pairs.  

Chapter II: Analogies Involving Antonyms 

Introduction 

This chapter focuses on how children and models (Word2Vec, BART, BERT) complete 

verbal analogy problems using antonyms in a pictorial task. Experiment 2A is the behavioral 

portion of the final study, which examines how 4- and 5-year-old children perform when given 

an example pair of antonyms and then shown two more pairs (one antonym, one a distractor) 

and asked to choose which of the pairs corresponds to the example, thus having to solve an 

analogy problem successfully. For Experiment 2A, we predicted that children in the relational 

label condition would perform better than children in the no label condition. Experiment 2B 

focuses on model performance on the same task.  

The purpose of the experiments in this chapter is to expand past the ability to generate 

antonyms and instead examine how children and models use them to solve analogy problems. 

Moreover, the experiments are intended to investigate the factors that facilitate this ability, 

including language cues in the form of labels (i.e., “opposites”) and any potential differences 

across parts of speech. Because children tend to learn nouns first, followed by adjectives and 
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verbs, we were interested in examining whether such differences affect young children’s ability 

to draw analogies across antonym pairs that involve each part of speech individually.  

IIA. Behavioral 

Methods 

Participants   

We tested 107 participants, including 54 four-year-old (M = 4.42, SD = .27) and 53 five-

year-old (M = 5.55, SD = .26) children were recruited through the Language and Cognitive 

Development Lab at the University of California, Los Angeles (UCLA) either through Lookit, an 

online recruitment platform hosted by MIT, or through the UCLA Developmental Subject Pool. 

In accordance with the UCLA Institutional Review Board policies, only children whose parents 

granted formal consent participated. Data collection was completed entirely online using Zoom.  

Measures  

Parents completed a language survey adapted from the MacArthur Bates 

Communicative Development Inventory in which they were instructed to identify the words 

their child produces. This survey included words that appeared in the analogy task (e.g., 

“happy” and “opposite”) to determine whether the children had prior knowledge of the words 

used in the study and whether their word knowledge was related to their performance on the 

analogy task.  

Materials  

The pictorial analogy task followed the format of a Relational Match-to-Sample (RMTS) 

task (see Figure 1) (see Appendix N for full set of word pairs and Appendix D for full set of 
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pictures). Children were allowed to simultaneously compare a source pair exemplifying a 

contrast relation to a target pair also exemplifying a contrast relation but on a different 

dimension than the source (e.g., size versus cleanliness) and a distractor pair that was 

semantically unrelated. Thus, the relational match between the source and target was at the 

abstract level of antonym rather than at the level of a more specific relational contrast. 

  The pairs corresponding to antonyms and the distractor pairs were pictures of people, 

familiar animals, and objects. As illustrated in Figure 1, the objects used in the target and 

distractor were from the same category, which differed from the category used for the source 

objects. The contrastive relations used in the task could be expressed as either adjectives (e.g., 

happy : sad :: dry : wet or tired : dry), nouns (e.g., friends : enemies :: teacher : mother or teacher : 

student), or verbs (e.g., open : close :: build : destroy or build : stop).  

Stimulus validation  

The antonym word pairs were sourced from educational websites and subsequently 

verified on WordBank (cite), a database of words produced by at least 50% of children by 30 

months of age. Word pairs were chosen by selecting only those known to over 80% of 30-

month-olds. To determine the validity of antonym pairs, we conducted a Google Form survey 

with adults to validate which words are considered “opposites.” Two forms were created, each 

of which included one of the words in each pair. Twenty-five UCLA undergraduates were 

asked to generate the antonym for each word on a list, and only pairs with reliability over 95% 

were chosen for the final list. 
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Figure 18. Examples of three trials on the pictorial antonym analogy task, illustrating the three lexical classes used 

in the task. A: An adjective source pair exemplifying a contrastive relation (big : small), with a distractor pair 

(surprised : sad) on the left and the correct option (happy : sad) on the right. B: A noun source pair (boy : girl), with 

the correct option (friends : enemies) on the left and distractor pair (friends : mother) on the right. C: A verb source 

pair (cry : laugh), with the correct option (smile : frown) on the left and a distractor pair (frown : hate) on the right. 

 

Procedure  

  Children received three training trials (one per part of speech) and thirty test trials (ten 

per part of speech), all within subjects. Children were assigned to one of two conditions 

(between subjects): the Label and No-Label conditions. On each trial in the Label condition, 

children were told that the animals/objects/humans depicted in the source pair were 

“opposites” of each other (e.g., “This is dirty, this is clean. Dirty and clean are opposites”) in both 

practice and test trials. The words used to describe objects were either adjectives, nouns, or 
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verbs. In the No-Label condition, children were not given a label for the abstract relation in any 

of the trials. Instead, children were only provided with verbal descriptions of the individual 

objects (e.g., “This is dirty and this is clean”). The pictures used in the study were not intended 

to be the primary sources of information, but rather, their use was designed to facilitate 

children’s understanding of the key words in the study and to provide a concrete representation 

of each of them. As such, the verbal descriptions of the individual objects were given for every 

image that appeared in the study, regardless of the condition. 

  For each condition, we created five versions of the task to semi-randomize which source 

pairs were matched with which target/distractor pairs. Because some picture pairs were 

repeated across trials, combinations were semi-randomized so that a target pair never appeared 

earlier as a source pair. For example, if a pair based on big/small was used as the source pair in 

the first test trial, that pair was never used afterward as a target pair. The part of speech was 

kept consistent among the source, target, and distractor pairs for every trial. In addition, the 

display position of the target/distractor pair was randomized between trials such that the 

correct pair appeared on the left side of the screen for half of the trials and on the right side of 

the screen for the other half. Children were randomly assigned to one of the five versions within 

each condition. 

Practice trials  

To begin, children were shown a source picture showing two animals, objects, or 

humans depicting a pair of antonyms (e.g., a big balloon and a small balloon; see Figure 1). The 

experimenter labeled the pictures, emphasizing the words that depicted the contrastive relation 

(e.g., “This is big, this is small. Big and small”). Afterward, simultaneously, the experimenter 
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provided two more images that respectively depicted either a target pair of antonyms (e.g., a 

clean pig and a dirty pig) or a distractor pair of semantically unrelated words, one of which was 

kept consistent with the antonym pair (e.g., a clean pig and a sad pig). The experimenter always 

described each of the pictures, emphasizing the key words (e.g., clean and dirty). The 

participants were asked, “Which one is like this one (pointing to the source picture)?” Children 

were given feedback: either told that they were correct or told the correct answer if the child 

provided an incorrect one.  

Test trials  

The format of test trials was identical to that of training trials, except that the children 

were not given any feedback regarding their answers on each trial. The animals/objects/humans 

shown in the target and distractor pictures were always kept consistent in color and category 

(animals, objects, or humans). The target and distractor pictures differed in color and category 

from the source picture. These constraints ensured that children could not simply choose the 

picture that was most similar to the source picture based on the features of individual objects. 

Results 

To analyze children’s accuracy in selecting the correct target, we implemented a 

Bayesian logistic regression model using the R package brms (Burkner, 2018). We tested 

hypotheses by fitting a logistic regression model predicting responses on the analogy task based 

on the interaction between condition (Reference = No Label) and age (Reference = four-year-

olds). This model included group-level effects of subject and item and allowed for heterogeneity 

in the intercepts of the effects of condition and age. The model also included a grouping of the 
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item types into three parts of speech to analyze differences between analogies based on nouns, 

verbs, and adjectives. For the prior distributions in our model, we used a uniform (i.e., 

uninformative) distribution for the main effects and interaction coefficient, and used a t(3,0,2.5) 

for the random intercepts and their standard deviation. Specified in brms syntax, the model is:  

Response ~ Condition*Age + PartofSpeech  + (1| Subject) + (1| Item) 

These analyses revealed that being in the older age group and being given the relation 

label of “opposite” predicted higher accuracy on the analogy task (b= 0.45, 95% CI [-0.39, 1.31]) 

(see Table 2 and Figure 19). Moreover, the pattern of results suggested that labeling the 

antonym relation was particularly effective for five-year-old children. In contrast, labeling the 

antonym relation made less of a difference for four-year-old children overall. Separated by part 

of speech, results show that being given a label helped four-year-olds do significantly better on 

verb trials (M= .672, SD=.191) compared to the no-label condition (M=.536, SD= .2196), t(52) = -

2.44, p = .018). We found that in the no-label condition, four-year-olds were not able to perform 

significantly above chance on verb trials, t(52) = .820, p = .42, indicating that this abstract 

analogy task is too difficult for four-year-olds to solve with above-chance accuracy for verbs 

when not given a relational cue. Similarly, reliable performance on other versions of RMTS 

problems is not observed prior to age five (Hochmann et al., 2017). 
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Table 2. Estimates of Posteriors for Bayesian Logistic Regression Model. 

 
 

 
Figure 19. Proportion accuracy across all parts of speech tested in the pictorial analogy task as a function of age, 

separated by condition. 

  

  Overall, there were no significant differences in how four-year-old children performed 

across parts of speech, regardless of condition. In the no-label condition, there was no 

significant difference between how four-year-old children performed on trials involving 

adjectives (M = .596, SD = .213) and nouns (M = .608, SD = .150) (t(24) = -.336, p = .740) and no 
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significant difference in performance on verb trials (M = .536, SD = .220) compared to noun trials 

(M = .608, SD = .150), t(24) = 1.869, p = .074) (see Figure 20). Similarly, there were no differences 

between how four-year-olds in the no-label condition performed on adjective and verb trials, 

t(24) = 1.455, p = .159.  

  In the label condition, there was no significant difference between how four-year-old 

children performed on trials involving adjectives (M = .666, SD = .229) and nouns (M = .645, SD 

= .190) (t(28) = .606, p = .550) and no significant difference in performance on verb trials (M = 

.672, SD = .191) compared to noun trials (M = .645, SD = .190), t(28) = -.731, p = .471) (see Figure 

20). Similarly, there were no differences between how four-year-olds in the no-label condition 

performed on adjective and verb trials, t(28) = -.203, p = .841. 

  When examining what drives the label effect for five-year-olds, we found that five-year-

olds in the label condition performed significantly better on adjective trials (M=.808, SD=.232) 

and noun trials (M=.754, SD=.238) than those in the no label condition (M=.707, SD=.181 and 

M=.628, SD=.217, respectively) (t(51) = -1.787, p = .04 and t(51) = -2.025, p = .024, respectively). 

  Collapsed across conditions, five-year-old children performed significantly more 

accurately on trials involving adjectives (M = .753, SD = .2099) than nouns (M = .685, SD = 233) 

(t(52) = 2.590, p = .012) and performed overall higher on verb trials (M = .736, SD = .226) 

compared to noun trials (M = .685, SD = 233), though there were no significant differences 

between the two (t(52) = -1.895, p = .064). Similarly, there were no differences between how five-

year-olds performed on adjective and verb trials (t(52) = .894, p = .376).  

  Splitting it up by conditions, we see differences across parts of speech specifically for 

children in the no-label condition. In the no-label condition, five-year-old children performed 
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significantly more accurately on trials involving adjectives (M = .707, SD = .181) than nouns (M = 

.628, SD = .217) (t(28) = 2.484, p = .019) and performed overall higher on verb trials (M = .697, SD 

= .199) compared to noun trials (M = .628, SD = .217), though there were no significant 

differences between the two, t(28) = -1.808, p = .081 (see Figures 20, 21). Similarly, there were no 

differences between how five-year-olds performed on adjective and verb trials, t(28) = .341, p = 

.736. 

  In the label condition, there was no significant difference between how five-year-old 

children performed on trials involving adjectives (M = .808, SD = .232) and nouns (M = .754, SD 

= .238) (t(23) = 1.236, p = .229) and no significant difference in performance on verb trials (M = 

.783, SD = .251) compared to noun trials (M = .754, SD = .238), t(23) = -.771, p = .448) (see Figures 

Figure 20. Average proportion accuracy for each condition across three lexical classes, separated 

by age group. Error bars reflect ± 1 standard error of the mean for human responses. 
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20, 21). Similarly, there were no differences between how five-year-olds in the label condition 

performed on adjective and verb trials, t(23) = 1.187, p = .247.  

 

 
Figure 21. Response distribution for Label and No-Label conditions across each lexical class and overall, as a 

function of age. Green represents the label condition and orange represents the no-label condition. 

 

IIB. Computational 

We implemented two computational models of verbal analogy, Word2Vec (Mikolov et 

al., 2013) and BART (Lu et al., 2019), to compare model predictions with children’s performance. 
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Both models operate on vector representations (embeddings) of individual word meanings. 

However, as shown in Figure 22, the two models operationalize in different representation 

spaces. Word2Vec is based on semantic space for individual words, such that words with 

similar meanings are clustered together in this semantic space. In contrast, BART forms relation 

space, in which each dimension indicates a specific relation. Hence, word pairs instantiating 

similar relations are located closely in the BART relation space. Based on representations of the 

two words in each pair, the models compute the dissimilarity of a source word pair with a 

target word pair and select the option with the smaller dissimilarity value as the predicted 

correct response.  

 
Figure 22. Illustration of Word2vec semantic space for individual words, and BART relation space for word pairs. 

 

Word embeddings produced by Word2vec (Mikolov et al., 2013) were used to represent 

the meanings of each of the words included in the test trials of the pictorial analogy task (90 

word pairs, with 180 total word embeddings). Word2vec-diff is a measure defined as the 

difference between the vectors of each word in a pair: i.e., 𝑓𝐴 −  𝑓𝐵  for the word pair A:B. The 

dissimilarity between two pairs is then defined by the cosine distance between the difference 

vectors for the two pairs:  
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𝐷𝑊2𝑉−𝑑𝑖𝑓𝑓 =𝑐𝑜𝑠 (𝑓𝐴 − 𝑓𝐵 ,   𝑓𝐶 −  𝑓𝐷) 

The second model, BART, is trained on a set of specific relations, including 79 abstract 

relations from the SemEval-2012 Task-2 dataset (Jurgens et al., 2012) and an additional 56 

relations (Popov et al., 2017). For each of those relations, BART was trained with less than 100 

examples, including a small number (10 or 20) of positive examples instantiating this relation 

and some negative examples (~70) that instantiate other relations.   

After learning explicit representations of each semantic relation, BART encodes the 

specific relation between any pair of words (A, B) using distributed representations expressed 

as a relation vector 𝑅𝐴𝐵 , in which each element indicates the probability that this pair of input 

words instantiates each of the learned relations. The relation vector is 270 dimensions 

(including the 135 relations in the training datasets and their corresponding converses). To solve 

an analogy problem, the model computes dissimilarity as the cosine distance between 

corresponding relation vectors based on the two word pairs and selects the answer with smaller 

dissimilarity:  

𝐷𝐵𝐴𝑅𝑇 =𝑐𝑜𝑠 (𝑅𝐴𝐵 ,   𝑅𝐶𝐷)  

Additionally, this simulation was run on the NLP model Bidirectional Encoder 

Representations from Transformers (BERT) (Devlin et al., 2019). BERT is trained on massive text 

corpora and intended to predict words based on the highest probability that they would occur 

in a particular sentence (e.g., “A [x] is a type of bird.”). In lieu of being trained on explicit 

relation representations, BERT relies solely on the frequency of word usage in their training 

corpora.  
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We conducted two simulations on BERT with the input “is related to” or “is opposite 

to,” the latter of which is analogous to the condition of the behavioral task in which we 

provided children with a relational label. As such, we were able to compare its performance to 

the other two models when given the “is related to” input, as well as the to the behavioral task 

results from Experiment 2A in both conditions.  

It is important to note that all three models received only the verbal input (e.g., 

happy:sad), unlike the children in the behavioral task, who also received accompanying 

pictures. Because some of the present-tense verbs in our task could also be interpreted as nouns, 

we ran simulations on all models on all verb tenses to compare whether it was the verb present 

tense that was perhaps hindering model performance.  

Results 

For both models, the dissimilarity between the word pairs was computed using the 

cosine distance between the vectors representing each pair. If the cosine distance between the 

source pair and the target pair was less than that between the source pair and the distractor 

pair, we considered that the models had correctly answered the analogy problem. Note that 

models W2vec-diff and BART are not sensitive to the presence of relation labels. Accordingly, 

we compared model predictions and children’s performance in the No-Label conditions. 

However, BERT is able to receive input such as “is opposite to” and thus is able to be compared 

to children’s performance in the label condition, as well.  

Our simulations found that BART performed most accurately on adjective antonym 

pairs (.80 correct), followed by noun and verb pairs (.60 and .40, respectively (see Figure 23). 
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Word2vec also performed most accurately on adjective pairs (.70 correct), followed by verbs 

and nouns (.60 and .50, respectively). BART performed comparably to, or better than, children 

on adjectives and nouns but failed to match their performance on verb trials. Word2vec 

performed better than or comparably to children on adjectives and verbs but lower on nouns.  

BERT was run on two separate simulations. In one, BERT was given the input “is related 

to” and it performed most accurately on noun pairs (.70 correct), followed by adjective and verb 

pairs (.60 and .50, respectively) (see Table 3). In another simulation, BERT was given the input 

“is opposite to,” which serves as a better comparison to the condition in which children were 

given the label “these are opposites.” In this simulation, BERT performed most accurately on 

verb pairs (.90 correct), followed by adjective and noun pairs (.70 and .60, respectively). These 

results are comparable to those of five-year-old children in the label condition, suggesting that 

such input plays a similarly beneficial role for both children and models such as BERT.  

Overall, both models showed variability across the different parts of speech. Both 

models yielded levels of accuracy approximating (or higher than) that of five-year-olds in the 

No-Label condition for antonyms based on adjectives and nouns. However, for verb antonyms, 

the models (particularly BART) fell well short of the level achieved by five-year-olds.  
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Figure 23. Model performance on the analogy task, and children’s performance on the analogy task in the no-label 

condition. 

 
Table 3. Model Performance Across Parts of Speech 

 Models Adjectives Nouns Verbs 

Relation model BART-270dim 0.80 0.60 0.40 

NLP models W2V 0.50 0.20 0.50 

 
BERT with input “is related 

to” 
0.60 0.70 0.50 

 
BERT with input “is 

opposite to” 
0.70 0.60 0.90 

     

 

 One of the potential explanations for why all models performed more poorly on verbs 

compared to adjectives and nouns (apart from BERT with the input of “is opposite to”) could be 

that some of the verbs in the dataset could be mistaken for nouns while in the present tense 

(e.g., “love” or “frown”). To test this, we conducted simulations on each of the three models 
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using five tenses for each verb (present, past simple, present continuous, present perfect, and 

present-third). We found some variability in how the models performed across the different 

verb tenses. However, performance only increased for BART when verbs were provided in the 

present continuous tense (.70 correct) compared to the default present tense (.40 correct). 

Therefore, the variation in verb tenses does not appear to help model performance (see Table 4). 

Overall, taking the average performance across tenses, BERT performed similarly to five-year-

old children when given the relational input “is opposite to.” However, when given the input 

“is related to” (see Figure 24), BERT performed similarly to four-year-old children. 

Table 4. Model performance across verb tenses. 

Verb Tenses BART BERT W2V 

Present (e.g., throw) 0.40 0.89 0.50 

Past Simple (e.g., threw) 0.50 0.67 0.30 

Present Continuous (e.g., 

throwing) 
0.70 0.89 0.20 

Present Perfect (e.g., thrown) 0.50 0.67 0.30 

Present-third (e.g., throws) 0.40 0.44 0.30 

Average 0.50 0.71 0.32 
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Figure 24. Proportion accuracy on the trials involving verb pairs for children and models. 

 

Chapter II Discussion 

Chapter II applied both developmental and computational methods to examine the 

solution of analogy problems based on antonyms. Using a verbal analogy task (with picture 

illustrations), we demonstrated that by age five years—before the antonym relation is formally 

taught in school—children are able to reliably solve analogies based on antonyms, especially 

when the antonym relation is given a verbal label (“opposites”). Namely, we find that children 

perform better on analogy problems involving antonyms when they are given a language cue in 

the form of a label than when they are faced with having to implicitly recognize the relation that 

the pairs hold.  

In our experiment, we found no differences in performance across lexical classes for 

four-year-olds, who did not perform significantly above chance on any of the three. However, 

we found that five-year-olds, when not given a label for the relation, were more accurate on 
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analogy problems involving adjectives compared to nouns but performed comparably on 

problems involving verbs and those involving nouns.  

Chapter I found that children could more reliably generate antonyms for nouns and 

adjectives than verbs. However, in Chapter II we find that problems involving nouns tend to be 

the hardest, specifically for children who are not provided relational language cues when 

solving analogy problems. These findings suggest that developmental trends in reasoning about 

the antonym relation do not coincide with children’s lexical development or ability to generate 

pairs of words, given that children know more nouns than adjectives and verbs (Nelson, 1973; 

Sandhofer & Smith, 2007). A possible explanation is that nouns can be compared on a wider 

range of dimensions than either adjectives or verbs, making it more challenging to determine 

the basis for an antonymy relation for nouns.  

We also compared children's performance to that of two vector-based models of verbal 

analogy, Word2vec (Mikolov et al., 2013) and BART (Lu et al., 2019), using the same set of 

problems. These models are based on embeddings derived from training on corpora of adult 

language. However, neither model is sensitive to the provision of verbal labels for the antonym 

relations, and thus, we compared their performance only to that of children in the no-label 

condition. BART specifically performed either better or comparably to children for adjective 

and noun trials but fell short for verb trials. Word2vec performed similarly to children for 

adjectives and verbs but worse for nouns.  

In contrast, we also examined BART’s performance against that of children and found 

that its performance is slightly lower for adjectives and verbs and higher on nouns than that of 

five-year-old children. We found that when BART is given the input “is opposite to,” BART 
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performs comparably to or higher than five-year-olds for adjectives, nouns, and verbs. This 

suggests that the type of language cues provided to children can also serve as input for NLP 

models such that the relation is explicitly stated, making these verbal analogies easier to 

complete across all parts of speech.  

Variability in performance across parts of speech for both models and children suggests 

differences in the complexity of semantic meaning for each lexical class, which could play a role 

in both children's and models’ ability to solve verbal analogies. While prior research on 

antonyms focused specifically on adjectives, this chapter shows that varying the lexical class of 

each analogy problem has potential implications for examining varying levels of performance 

on an identical task.  

Chapter III: Analogies and Semantic Distance 

Introduction 

  The experiments in this chapter sought to expand those in Chapter II.  

Experiment IIIA focused on examining the role of labels in helping children solve analogy 

problems involving the antonym relation across different lexical classes. Namely, do children 

perform differently for word pairs from different parts of speech when they can compare them 

within a single analogy problem? Moreover, do labels help ameliorate any differences? Unlike 

the experiments in Chapter II, which examined performance on analogy tasks involving a single 

part of speech, these experiments sought to compare performance on analogy problems 

involving both one part of speech individually (replicating experiment IIA) as well as multiple 
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within a single trial. Additionally, Experiment IIIB examined performance on the same analogy 

task on two models: BART and GPT3.5.  

For Experiment IIIA, we predicted that, overall, children in the relational label condition 

would do better than children in the no label condition. For children in the label condition: 

within the trials involving the same part of speech, we predicted that children would do better 

on the adjective trials than the noun trials, in line with the findings from Chapter II showing 

that 5-year-old children perform better on analogy problems involving adjectives than those 

involving nouns when not given a label. Within the trials involving mixed parts of speech, we 

predicted that children would perform similarly on adjective and noun trials, though overall 

performance for both adjective and noun trials would be lower than that for the trials involving 

the same part of speech analogies. Though it is likely more difficult for children to draw 

analogies between pairs that are semantically different (adjectives vs. nouns), being able to 

compare the target and distractor noun pairs with each other and then, in turn, with the source 

adjective pair might help children detect how the pairs share the same abstract relation.  

For the children in the no-label condition: within the trials involving the same part of 

speech, we predicted that there would be no differences between adjective trials and noun trials 

for either same vs. mixed analogy types.    
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IIIA. Behavioral 

Methods 

Participants 

This experiment involved 113 participants, including 52 5-year-old (M=5.549, SD= 0.293) 

and 61 6-year-old (M=6.425, SD= 0.310) children recruited through UCLA’s Language and 

Cognitive Developmental Lab. Only children whose parents provided consent participated, as 

required by the UCLA IRB. Estimated sample sizes were calculated using G*Power 3.1.9.4 (Faul, 

Erdfelder, Lang, & Buchner, 2007). Using Cohen’s f of .2, a power analysis revealed that a 

sample size of 84 participants was required to achieve 95% power to detect (42 children per 

condition).  

Design 

This experiment involved a 2 (relational language) x 2 (analogy type) design. Relational 

language (relational label vs. no label) was manipulated between subjects to eliminate potential 

carry-over effects. Analogy type (same part of speech vs. mixed part of speech) was 

manipulated within subjects.  

Parent Measures 

As in the previous studies, parents completed a language survey. The language survey 

included all the words used in the study to determine 1) whether children have prior 

knowledge of the words used in the study and 2) whether word knowledge is related to their 

performance on the antonym task. In addition, parents were asked to complete a demographic 

questionnaire. 
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Stimuli  

The experiment consisted of a pictorial analogy task that followed the format of a 

Relational Match-to-Sample (RMTS) task involving the same materials as the experiment in 

Chapter II. This format allowed children to compare the source pair simultaneously, 

exemplifying a contrast relation to the target pair that exemplifies a contrast relation but in the 

same or different lexical classes. For every trial, children were presented with a source pair, a 

target pair, and a distractor pair of semantically unrelated words.  

In the mixed part of speech condition, if the source pair involved an adjective pair, the 

target pair might involve nouns (see Figure 25). The source pairs always had different parts of 

speech than the target and distractor pairs, whose parts of speech were always consistent. An 

example of the contrastive relations used in the task could be happy : sad (source adjective pair) 

:: friends : enemies (target noun pair), or friends : winners (semantically unrelated noun 

distractor pair). 

In the same part of speech condition, the trials followed the same format except that the 

source pair, target pair, and distractor pair were always the same part of speech (see Figure 26). 

An example of the contrastive relations used in the task could be big : small (source adjective 

pair) :: sad : happy (target adjective pair), or sad : bored (semantically unrelated adjective 

distractor pair). 

  The pairs corresponding to antonyms and the distractor pairs were pictures of people, 

familiar animals, or objects.  
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Figure 25. An example trial of the mixed part of speech condition. Source pair is at the top, distractor on the left and 

target pair on the right. The order of the target/distractor is randomized between trials. 

 

 
Figure 26. An example trial of the same part of speech condition. Source pair is at the top, distractor on the left, 

target on the right. The order of the target/distractor is randomized between trials. 

 

Procedure 

  Children received two training trials and twenty test trials. Of the twenty trials, ten 

contained same part of speech pairs (five for adjectives and five for nouns), and the other ten 

contained mixed part of speech pairs (both nouns and adjectives; five in which the source pair 

contained adjectives and five in which the source pair contained nouns). Children were first 
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assigned to one of the two conditions: the Label and No-Label conditions. On each trial in the 

Label condition, children were told that the animals/objects/humans depicted in the source pair 

are “opposites” of each other (e.g., “This is dirty, this is clean. Dirty and clean are opposites”) in 

both practice and test trials. The words used to describe objects were either adjectives or nouns. 

In the No-Label condition, children were not given a label for the abstract relation in any trials; 

instead, they were only given verbal descriptions of the individual objects (e.g., “This is dirty, 

and this is clean”).  

During practice trials, children were shown a source picture of two animals, objects, or 

humans depicting a pair of antonyms. The experimenter described the pictures, emphasizing 

the words that depicted the contrastive relation (e.g., “This is big, this is small. Big and small”). 

Afterward, the experimenter simultaneously provided two more images that respectively 

depict either a target pair of antonyms (e.g., “friends and enemies”) or a distractor pair of 

semantically unrelated words (e.g., “friends and winners”). The participants were asked, 

“Which one is like this one (pointing to the source picture)?” Children were given feedback: 

either told that they were correct or told the correct answer if the child provided an incorrect 

one. The format of test trials was identical to that of training trials, except that the children were 

not given any feedback regarding their answers on each trial.  

Two versions of the materials were created in which we randomized the order of the 

trials, the combinations of source and target/distractor pairs, and whether the target/distractor 

were a part of a mixed analogy (noun and adjective source/target combination) or a same 

analogy (only noun pairs or only adjective pairs). Because some pairs of words repeated, the 

versions were controlled such that a pair that appears as a source cannot appear as a target later 
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in the session. However, pairs that appeared as a target may appear as a source later in the 

version. Additionally, the display position of the target/distractor pair was randomized 

between trials such that the correct pair appeared on the left side of the screen in half of the 

trials and on the right side of the screen in the other half.   

Results 

Due to an error in counterbalancing, one of the adjective targets appeared in both the 

training and test trials. We removed the trial from our analyses.  

Similarly to the experiment in Chapter IIA, we implemented a Bayesian logistic 

regression model using the R package brms (Burkner, 2018). We tested hypotheses by fitting a 

logistic regression model predicting responses on the analogy task based on the interaction 

between condition (Reference = Label) and analogy type (Reference = “same” trials). This model 

included group-level effects of subject and item and allowed for heterogeneity in the intercepts 

of the effects of condition and analogy type. The model also included a grouping of the item 

types into two parts of speech to analyze differences between analogies based on adjectives vs. 

nouns. For the prior distributions in our model, we used a uniform (i.e., uninformative) 

distribution for the main effects and interaction coefficient, and used a t(3,0,2.5) for the random 

intercepts and their standard deviation. Specified in brms syntax, the model is:  

Response ~ Condition*Analogy Type + PartofSpeech +Age + (1| Subject) + (1| Item) 

The model revealed that being given the relational label of “opposite” credibly predicted 

higher accuracy on the analogy task (b= 0.64, 95% CI [0.11, 1.20]) (see Table 5 and Figure 27). 
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However, the interaction between condition (label vs. no label) and the analogy type (same vs. 

mixed) did not credibly predict the responses on the analogy task (b= 0.06, 95% CI [-0.39, 0.51]). 

Table 5. Estimates of Posteriors for Bayesian Logistic Regression Model 

 
 

 
Figure 27. Proportion accuracy across both parts of speech tested in the pictorial analogy task as a function of age, 

separated by condition. 

 



 

 

69 

 
Figure 28. These plots represent correlations between the variables in our model with response as our dependent 

variable. “Rating” refers to condition, “trial_type” refers to “analogy type” and “pos” refers to “part of speech.” 

 

Looking at the correlations between our variables, we see that the intercept is highly 

correlated with age, suggesting that age increase has a strong linear effect on starting accuracy, 

despite the main effect of age not showing a credible effect on the responses (b= 0.34, 95% CI [-

0.10, 0.78]) (see Figure 28). 

We conducted an additional ANOVA to examine whether there are age differences 

between five- and six-year-olds for overall performance. We found that there were no 

differences in overall performance on the analogy task between five-year-olds (M= .743, SD= 
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.173) and six-year-olds (M= .778, SD= .210), F(1, 111) = .927, p=.338. There were also no 

differences in how they performed overall on trials involving the same part of speech, F(1,111)= 

.050, p = .823, and no differences in how they performed on trials involving mixed parts of 

speech, F(1,111) = 2.381, p= .126.  

Furthermore, when examining performance strictly in the label condition, we found no 

significant differences in accuracy on same (M= .84, SD= .21) vs. mixed (M= .85, SD= .21) trials 

when the target pairs are adjectives, t(51) = -.337, p= .738 (see Figure 29). Similarly, there was 

also no significant difference between same (M = .719, SD= .25) and mixed (M= .785, SD= .23) 

trials when the target pairs were nouns, t(51)= -1.723, p= 0.91 (Figure 29).  

 
Figure 29. Proportion accuracy on same vs. mixed trials in the label condition. The x axis shows the part of speech 

that corresponds to the target words. The data is collapsed across ages. Error bars reflect ±1 standard error. 
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Figure 30. Proportion accuracy on same vs. mixed trials in the no-label condition. The x axis shows the part of 

speech that corresponds to the target words. The data is collapsed across ages. Error bars reflect ±1 standard error. ** 

represents a p-value lower than .01. 

              

Figure 31. Proportion accuracy on same vs. mixed trials in both conditions. The data is collapsed across ages and 

part of speech. Error bars reflect ±1 standard error. ** represents a p-value lower than .01. 
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When examining performance strictly in the no-label condition, we found that accuracy 

on mixed trials in which the target pairs are adjectives (M= .784, SD= .208) is significantly higher 

than same trials (M= .697,  SD= .267) in which the target pair is adjectives, t(60) = -3.167, p= .002 

(see Figure 30). However, there was no significant difference between same (M = .630, SD= .228) 

and mixed (M= .682, SD= .262) trials when the target pairs were nouns, t(60)= -1.372, p= 0.175 

(Figure 30).  

When collapsing across the parts of speech, we found that performance on mixed trials 

(M= .733, SD= .204) is higher than that on same trials (M= .659, SD= .209) in the no-label 

condition, t(60)= -3.130, p=.003 (see Figure 31). However, in the label condition, we found no 

significant difference between mixed (M= .815, SD= .184) and same (M= .771, SD= .209) trials, 

t(51) = -1.759, p= .085 (see Figure 31).  

 
Figure 32. Correlations between accuracy on the antonym analogy task and parent reports of children's word 

knowledge. The accuracy on the task is shown as a total, as well as broken down by part of speech. Parent reported 

language ability is reflected by the language survey label. “MCDI Opposite” reflects parents’ reports of whether 

children know the word “opposite.” 
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We also conducted correlations between parent reports of children’s language 

knowledge involving the words specifically used in our experiment and performance on the 

antonym analogy task. We found that overall performance on the antonym generation task and 

the knowledge of the words we expected children to know in order to complete this task was 

not significantly correlated r(111)= 0.05, p=0.59. However, there was a significant correlation 

between overall performance on the task and whether the parents reported if the children knew 

the word “opposite” r(111)= 0.19, p=0.05 (see Figure 32).  

IIIB. Computational 

 In the computational portion of the final chapter, we implemented BART and GPT3.5. 

We administered the same task to GPT3.5 using both the no-label condition and the label 

condition. In the label condition, similar to children, the source pair was identified as depicting 

“opposites.” In the no label condition, GPT3.5 was simply given the word pair, then asked 

which of the subsequent pairs (target and distractor) are like the source pair. GPT3.5 was given 

the verbal (written) input as that given to children, but it did not receive any visual input.  

Results 

 We conducted the same task on BART. In our results, we included all the trials since 

BART did not need to be given training trials and thus the counterbalancing error in the 

behavioral data did not apply. We found that while BART performed similarly on trials 

involving both same and mixed analogies, GPT3.5 showed a similar performance on both 
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analogy types when given a label for the relation, but considerably better on the mixed trials 

when not given a label for the relation (see Table 6). 

Table 6. Model performance on the antonym analogy task, separated by analogy type. 

 Models Same Mixed  

Relation model BART-270dim 0.70 0.70  

LLM model GPT3.5 (no label) 0.70 0.90  

 GPT 3.5 (label) 0.95 1  

     

     

 

 
Figure 33. Model and human accuracy on the antonym analog task in the “no label” condition, separated by 

analogy type. 

 

When comparing the performance of BART and GPT3.5 simulations to the performance 

of children in the no-label condition, we see that children perform comparably to the models for 
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both same- and mixed trials (see Figure 33). However, when given the label, GPT3.5 performs 

nearly perfectly on the task, outperforming children. 

Chapter III Discussion 

 Chapter III served as an extension of Chapter II because we were interested in 

examining whether mixing the parts of speech within an analogy trial would lead to a 

difference in performance as opposed to only receiving trials in which there is only one lexical 

class for both the source the target/distractor. In this chapter, we also targeted a more advanced 

age range than the previous chapter: We tested five- and six-year-old children instead of four-

year-olds due to at-chance performance on the verbal analogy task for four-year-olds in Chapter 

II. The experiments in Chapter III replicated those in Chapter II, namely by examining whether 

children can solve analogies in which each trial involves only one part of speech and 

manipulating whether language cues in the form of labels helped performance on these verbal 

analogies. However, we also presented children with trials in which the verbal analogy 

involved mixed parts of speech, namely, nouns and adjectives. Thus, the central goal of this 

chapter was to examine differences in children’s and models’ performance on verbal analogies 

that involved both the same part of speech within a trial as well as mixed parts of speech all in 

one trial. 

 In this chapter, we replicated Chapter II's findings, showing that giving children the 

label “opposite” when solving verbal analogies facilitates their performance on the analogy 

problems. This suggests that even as children’s language abilities develop with age, providing a 

language cue to represent an abstract relation enhances their ability to detect the relation and 
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solve verbal analogies involving the relation. More surprisingly, we did not find significant age 

differences in this experiment, suggesting that although six-year-olds’ performance on the 

analogy task is higher than that of five-year-olds, the differences are not significant, unlike those 

between four- and five-year-olds.  

 When looking at differences between trials involving the same part of speech and mixed 

parts of speech, we did not find differences between the same and mixed trials in the label 

condition. However, we found that performance on the mixed trials was significantly higher in 

the no-label condition compared to the same part of speech trials. These findings could be due 

to the fact that when not given a label, children have to rely on the comparison between source 

and target/distractor, and it could be that having the pairs contain different parts of speech 

highlights the abstract relation that the individual pairs share. These findings correspond to 

previous research showing that even by second grade, children are still susceptible to 

incorrectly categorizing two words as antonyms strictly because those words share a close 

association (e.g., salt and sea) (Landis et al., 1987). Similarly, GPT3.5 showed the same patterns 

of responses, suggesting that when both children and models are required to draw analogies 

based on the word pairs alone, without a relational language cue, it is easier for them to draw 

the analogy between word pairs that are less semantically related than those that belong to the 

same lexical classes. 

 Furthermore, because BART’s performance is the same between same and mixed trials, 

this suggests that the pairs chosen reliably share the antonym relation. Though we had 

predicted that words from different lexical classes would have greater semantic distance 

between them, both combinations of problems (same part of speech vs. mixed parts of speech) 
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reliably form a strong relational vector with equal distances between the source and target 

relation vectors.  

General Discussion 

The goal of Chapter I was to examine how children generate antonyms and the types of 

antonym responses they generate. This chapter also sought to compare children’s performance 

with relational models such as Bart-Gen on generating the antonym pair of a given query word. 

We sought to examine patterns in the generated responses of both children and the models in 

order to examine whether the generated words were semantically related to the target words 

even if they were not explicitly the target word. Overall, we found no age effect between 4- and 

5-year-olds on the antonym generative task. We found differences in each age group’s ability to 

produce antonyms across different parts of speech. Namely, we saw that children of both ages 

had an easier time generating antonym pairs when the query and target words were adjectives 

and nouns as opposed to verbs. 

Additionally, we found that children’s success on the antonym generative task was 

significantly correlated with their knowledge of the individual words. These findings show that 

children as young as four already have a surprising ability to generate various instantiations of 

the antonym relation, even when not presented with contextual aids, such as pictures. While 

previous work also found success with four- and five-year-olds’ ability to produce antonyms, 

they relied on pictures to facilitate this performance (Phillips & Pexman, 2015). Previous work 

has also focused exclusively on adjective pairs, and this chapter expands our understanding of 

how lexical class knowledge interacts with children’s ability to produce antonyms.  
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Our findings in Chapter I also demonstrate that semantic clusters are formed for 

adjective and noun responses more so than for verb responses. This suggests that the ability to 

use adjectives, nouns, and verbs in order to generate antonyms is consistent with patterns of 

lexical development that typically developing children tend to follow. Namely, children tend to 

learn adjectives and nouns first, followed by verbs, which coincides with our data showing that 

verbs pose a particular challenge for children solving the antonym task. Thus, older children 

may be able to reliably generate antonym pairs across all parts of speech once they gain more 

advanced semantic familiarity with all the words that the task requires them to know. 

Chapter II aimed to expand on the experiment from Chapter I and examine how 

children can use pairs of antonyms to solve analogy problems. This study examined analogy 

problems involving the same three parts of speech from Chapter I. We aimed to examine 

whether giving the children relational language cues in labels such as the word “opposite” 

would help them solve verbal analogies involving antonyms. Additionally, we created a 

pictorial task so that children could see depictions of the words in the verbal task, reducing the 

cognitive load of remembering all the words from the source, target, and distractor for these 

preliterate children. We found that, indeed, language cues did facilitate performance on the 

analogy task, particularly for older kids. Relational labels make abstract relations more concrete 

and thus highlight the exact relation children are expected to detect from the word pairs. 

Additionally, we found that children performed similarly to or better than the models 

even when not given a language cue. In contrast, we did not find significant differences 

between different parts of speech, though children performed the lowest on trials involving 

nouns. The ability to match a target pair to the source pair in these types of verbal analogies 
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becomes commonplace for adults. Therefore, examining the developmental origins of when and 

how children begin to reason about verbal analogies informs the processes involved in making 

relational analogies. Furthermore, this study provides an additional investigation into the role 

of relational language in facilitating reasoning about these abstract relations before children are 

formally taught about them in school and before they begin to use them in their daily lives.  

Chapter III aimed to examine how children use the antonym relation to reason by 

analogy, both when the verbal analogy is between pairs of words that belong to the same lexical 

class and when the words belong to different lexical classes. This chapter was intended to serve 

as both a replication of the previous chapter through the trials that involved the same part of 

speech and to examine potential differences in performance between trials involving the same 

part of speech vs mixed parts of speech (nouns and adjectives combined in one trial). In this 

chapter, we also examined how language cues affect performance for comparably older 

children than in the previous chapter (5- and 6-year-olds compared to 4- and 5-year-olds in 

Chapter II). We also compared children’s performance on various models in order to compute 

whether the potential increased semantic distance between different parts of speech would hurt 

performance for both children and models when solving these analogy problems.  

We replicated the findings from Chapter II, showing that relational language cues 

facilitate performance for children. Furthermore, we found an effect of analogy type, in which 

children who were not given a label performed better on trials involving mixed parts of speech 

than those involving the same part of speech for both source and target/distractor pairs. These 

findings suggest that children benefit from comparing pairs of words belonging to different 

lexical classes when solving analogy problems without relational language cues. Given BART’s 
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comparable performance on same vs. mixed trails, we conclude that the pairs of words that 

were chosen reliably demonstrate the antonym relation and thus lower the importance of 

semantic distance between the individual words that compose the pairs, making the task have 

similar levels of difficulty regardless of the type of analogy problem they are given.  

These experiments demonstrate that children can successfully generate and use 

antonyms to reason by analogy long before formally being taught about them in school. This 

body of work provides evidence for how children can first grasp these abstract relations and 

produce them in various instantiations. While there is evidence showing that an understanding 

of antonyms, specifically, develops before other semantic relations (Landis et al., 1987; 

Heidenheimer, 1978), previous work suggests that this understanding is fully formed in middle 

school. Here, we examine the first emergence of this ability, and the types of responses children 

produce when completing an antonym generative task. Moreover, we were able to examine 

how current models fare against the ability of young children and how different parts of speech 

might play a role in their ability to solve these tasks successfully.  

Beyond the generative task, Chapters II and III used a novel task that incorporates the 

typical verbal analogies that adults would be given on semantic relation analogy tasks and 

made it potentially more accessible for young children by including pictures that represent each 

of the words in the verbal analogy and thus acted as an anchor for what each pair represents, 

reducing the cognitive load required of the task. While the analogy task remained difficult for 

four-year-olds, we found that five- and six-year-olds showed high performance, especially 

when given relational language cues in the form of a label. We found the same for models like 

BERT, in which performance improves when provided with input that facilitates its search for 
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the correct relation. The findings from these chapters suggest that children can successfully 

draw analogies using the antonym relation even long before they are formally taught to do so, 

and their performance either matches or is better than that of models intended to match adult 

performance.  

In conclusion, this series of studies highlights i) the importance of examining potential 

variability across different parts of speech in semantic relations and verbal analogies; ii) how 

relational cues can facilitate solving verbal analogies; iii) how varying lexical class within an 

analogy problem might highlight the relation for both children and models. Overall, these 

studies provide a comprehensive examination of the development of antonymy understanding 

in young children and identifies key factors that can enhance the ability of both children and 

models to solve verbal analogies. 
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Appendices 

A. Pairs of words used in Chapter I. Adjectives are marked in green, nouns in blue, and verbs in 

orange.  

 

Training Trials 

QW1 QW2 

clean dirty 

day night 

win lose 

  

Test Trials  

QW1 QW2 

big little 

cold hot 

dry wet 

fast slow 

good bad 

happy sad 

weak strong 

girl boy 

love hate 

outside inside 

queen king 

sun moon 

teacher student 

winter summer 

frown smile 

give take 

open close 

pull push 

throw catch 

walk run 

whisper shout 
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B. Pairs of words used in Chapter II.  

Training Trials     

Target   Target  Distractor  

on off clean dirty clean sad 

top bottom day night day summer 

stop go win lose win sit 

Test Trials      

Source   Target    Distractor   

strong weak cold hot cold dirty 

wet dry short tall short angry 

fast slow weak strong weak happy 

good bad empty full empty small 

happy sad fast slow fast happy 

cold hot dry wet dry tired 

empty full big little big dirty 

on off good bad good wet 

tall short awake asleep awake sad 

clean dirty happy sad happy surprised 

outside inside winter summer winter night 

teacher student queen king queen woman 

floor ceiling food drink food plate 

summer winter sun moon sun sea 

king queen friend enemy friend mother 

friend enemy girl boy girl teacher 

top bottom person crowd person girl 

boy girl teacher student teacher mother 

outside inside love hate love smile 

night day outside inside outside city 

sit stand throw catch throw stop  

open close frown smile frown hate 

cry laugh break fix break open 

work play build destroy build stop  

stop go whisper shout whisper talk 

win lose open close open break 

enter exit walk run walk stand 

give take pull push pull stand 

build destroy play work play stop  

throw catch give take give close 
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C. Pairs of words used in Chapter III. Note that source/target pair combinations were 

randomized between versions, with each target/distractor used in both “same” and “mixed” 

analogies.  

 

Training Trials       

Source  Target  Distractor  

Analogy 
Type 

Target Part 
of Speech 

big little clean dirty sad dirty same adjective 

big little night day day summer mixed noun 
Test 
Trials        

Source  Target  Distractor  

Analogy 
Type 

Target Part 
of Speech 

tall short good bad good wet same adjective 

dry wet big little dirty big same adjective 

summer winter outside inside outside city same noun 

good bad fast slow happy slow same adjective 

fast slow happy sad surprised sad same adjective 

outside inside person crowd person girl same noun 

happy sad strong weak happy weak same adjective 

boy girl friend enemy friend mother same noun 

teacher student moon sun sun sea same noun 

friend enemy food drink food plate same noun 

cold hot king queen mother queen mixed noun 

outside inside cold hot strong cold mixed adjective 

king queen asleep awake sad awake mixed adjective 

clean dirty love hate hate smile mixed noun 

strong weak boy girl teacher girl mixed noun 

asleep awake teacher student mother teacher mixed noun 

top bottom tall short angry short mixed adjective 

floor ceiling dry wet tired dry mixed adjective 

night day empty full small empty mixed adjective 

empty full summer winter winter night mixed noun 
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D. Pictures used in Chapters II and III. Note that the target/distractor remain together 

regardless of the trial (only the location might be flipped left/right), but the combination with 

the source pair is randomized across versions. These are examples of trials from one version of 

Chapter II. Chapter III did not include any verb pairs.  The italicized pair represents the 

distractor. 

 
clean:dirty:: happy:weak or strong:weak 

 

 
 

day:night:: food:plate or food:drink 

 

 
enter:exit::throw:catch or stop:throw 
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on:off:: happy:slow or fast:slow 

 

 
top:bottom:: night:winter or summer:winter 

 

 

 
throw:catch:: open:break or break:fix 
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strong:weak::big:little or dirty:big 

 

 
floor:ceiling::king:queen or mother:queen 

 

 
go:stop:: open:close or break:close 
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fast:slow::angry:short or tall:short 

 

 
food:drink::person:girl or person:crowd 

 

 
win:lose::push:pull or pull:stop 
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tall:short::surprised:sad or happy:sad 

 

 
big:little::clean:dirty or sad:dirty 

 

 

 
moon:sun::night:day or day:summer 
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walk:run::sit:lose or win:lose 

 

 
king:queen::teacher:girl or boy:girl 

 

 
open:close:: build:destroy or destroy:stop 
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happy:sad::dry:wet or tired:dry 

 

 
boy:girl::friends:enemies or friends:mother 

 
cry:laugh:: smile:frown or frown:hate 
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dry:wet::small:empty or empty:full 

 

 
summer:winter:: love:hate or hate:smile 

 

 

 
build:destroy::play:work or play:stop 
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empty:full:: cold:hot or strong:cold 

 

 
friends:enemies::teacher:student or mother:teacher 

 
play:work::close:give or give:take 
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cold:hot:: good:bad or good:wet 

 

 
teacher:student::outside:city or outside:inside 

 

 
open:close::stand:walk or walk:run 
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good:bad::asleep:awake or sad:awake 

 

 
outside:inside::moon:sun or sun:sea 

 

 
give:take::whisper:shout or whisper:talk 
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