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FISTA : Fast Iterative Shrinkage-Thresholding Algorithm

FLIM : Fluorescence Lifetime Imaging
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FMT : Fluorescence Molecular Tomography

GASV : Geometric Analysis of Structural Variants

GPSR : Gradient Projection for Sparse Reconstruction

GST : Generalized Soft-Thresholding

IEEE : Institute of Electrical and Electronics Engineers

JP : Justice Pursuit

LASSO : Least Absolute Shrinkage and Selection Operator

L-BFGS : Limited-Memory Broyden-Fletcher-Goldfarb-Shanno

MRI : Magnetic Resonance Imaging

MSE : Mean-Squared Error

NUMOS : Non-Uniform Multiplicative Weighting with Ordered Subsets

PET : Positron Emission Tomography

PSNR : Peak Signal to Noise Ratio

QR : Quick Response

RGB : Red, Green and Blue

RMSE : Root-Mean-Square Error

ROC : Receiver Operating Characteristic

SNR : Signal to Noise Ratio

SPECT : Single Photon Emission Computed Tomography

SPIRAL : Sparse Poisson Intensity Reconstruction ALgorithm

SV : Structural Variant

TrustSpa : Trust-Region Method for Sparse Relaxation

TV : Total Variation

VR : Volume Ratio

YALL1 : Your ALgorithm for L1
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Critical to accurate reconstruction of sparse signals from low-dimensional obser-

vations is the solution of nonlinear optimization problems that promote sparse

solutions. Sparse signal recovery is a common problem of many different appli-

cations ranging from photography to tomography and from radiology to biology.

Within the compressive imaging community, minimizing the `1-norm or the total

variation (TV) seminorm penalized least-squares problem is the most conventional

approach for sparse signal recovery. The least-squares data-fidelity term assumes

a Gaussian noise model. However, there are many real-world applications that

do not follow Gaussian noise statistics. For an instance, when the number of ob-

served photon counts is relatively low at the camera detector, they are corrupted

by Poisson noise. This phenomenon can be seen in a variety of different appli-

cations including astronomy, night vision, and medical imaging. Therefore, the

contribution of the dissertation to sparse signal recovery is two-fold. First, we

propose several nonconvex algorithms operate on Poisson statistics to promote

sparsity. Second, we will present methods based on trust-region and alternating

minimization techniques for sparse signal recovery under Gaussian statistics.

While convex optimization for low-light imaging has received some attention

by the imaging community, non-convex optimization techniques for photon-limited

imaging are still in their nascent stages. Theoretically, the non-convex `p-norm

regularization (0 ≤ p < 1) would lead to more accurate reconstruction than the
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convex `1-norm relaxation. In this dissertation, we explore sparse Poisson inten-

sity reconstruction methods using gradient based optimization approach with the

nonconvex regularization techniques: `p-norm, TVp-seminorm, and the generalized

Shannon entropy. The proposed methods lead to more accurate and high strength

reconstructions in medical imaging and computational genomics. In particular, we

developed a stage-based nonconvex approach to solve time dependent biolumines-

cence and fluorescence lifetime imaging problems in the Poisson noise context.

In Gaussian noise context, we solve the `2-`1 and `2-`p sparse recovery problems

by transforming the objective function into an unconstrained differentiable function

and apply a limited-memory trust-region method. Unlike gradient projection-type

methods, which uses only the current gradient, our approach uses gradients from

previous iterations to obtain a more accurate Hessian approximation. Numeri-

cal experiments with simulated compressive sensing 1D and 2D data are provided

to illustrate that our proposed approach eliminates spurious solutions more ef-

fectively while improving the computational time to converge in comparison to

standard approaches. Moreover, we employ nonconvex `p-norm regularization for

better recovery and demixing of sparse signals arise in image inpainting and source

separation applications.
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Chapter 1

Introduction

Over the course of this dissertation, I will present methods for accurate recon-

struction of sparse signals from low dimensional observations with applications to

medical imaging, signal processing, and computational genomics. In particular,

we will discuss algorithms that can be used for sparse recovery in Gaussian noise

and Poisson noise contexts separately. Before we begin, I would like to motivate

our research work and outline our main contributions to sparse recovery in this

chapter.

1.1 Sparse Signal Recovery

Most signals such as images and sounds seem to carry an overwhelming amount

of data, however, they contain a lot of redundant information and repeated hidden

patterns. These signals have a high level of sparsity – signals can be represented

by relatively few number of crucial information components. For example, natural

images are often sparse in wavelet (see Fig. 1.1(b)) or discrete cosine basis. These

transformations typically help to discard redundant information before we store

them in electronic devices. In medical imaging, magnetic resonance images have

sparsity properties in Fourier basis, while some fluorescence molecular tomography

signals are known to be sparse in the canonical basis with relatively small targets

(see Fig. 1.1(c)). Moreover, sparse signal representations can be seen in many

different applications including seismic imaging, DNA microarray sensing, com-

1
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(a) (b) (c)

Figure 1.1: (a) The “Cameraman” image. (b) Sparse wavelet coefficients of the
“cameraman” image in (a). (c) Sparse fluorescence target in medical imaging.

munication, and networks [103]. Due to the diversity of its applications, sparse

signal recovery has attracted the attention of statistician, mathematicians, and

engineers. Mathematically, if f∗ ∈ Rn represents the true signal or image vector

to be recovered, then the measurement process is typically modeled as a discrete

linear system of the form

yt = Af∗, (1.1)

where yt ∈ Rm is a vector of observed true measurements and A ∈ Rm×n is a

projection matrix. If f∗ is sparse in sparsifying basis W ∈ Rn×n, then f∗ in (1.1)

can be replaced by Wθ∗ (i.e., yt = AWθ∗), where the sparse coefficients are

now given by θ∗ ∈ Rn (if f∗ is sparse itself, then f∗ = θ∗ and W = I). The linear

projection matrix A is constructed based on the application. For example, in image

deblurring applications, A is computed using a convolution with a blur kernel. In

optical tomography, A is constructed based on light propagation inside of a tissue

sample. In practice, the true measurements yt are corrupted by noise which is due

to measuring hardware issues, quantization error, and transmission channel errors

[84]. Next I describe sparse recovery under two noise settings: Gaussian noise and

Poisson noise.
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1.1.1 Recovery under Gaussian Noise

Under Gaussian noise, we modify the measurement process in (1.1) by adding

a noise vector w ∈ Rm to the true measurement vector yt, which is generated from

Gaussian distribution with zero-mean and variance σ2:

yt + w ≈ Af∗ (1.2)

b ≈ Af∗, (1.3)

where measurement vector b = yt + w ∈ Rm is corrupted by Gaussian noise.

In the inverse problem setting, i.e., f∗ is to be recovered when b and A are

given, a most straightforward method is to follow the least squares approach that

estimates f∗ by minimizing the discrepancy between corrupted measurements and

its prediction:

f̂ = arg min
f∈Rn

‖Af − b‖22. (1.4)

It can be shown that this least squares model is proportional to the negative

Gaussian log-likelihood function:

‖Af − b‖22 ∝ −
m∑
i=1

log [p(bi|(Af)i)] .

However, in some applications such as medical imaging, we observe only low-

dimensional measurements at the tissue boundary. In that case, the optimization

problem in (1.4) becomes ill-posed. In addition, the system matrix A often be-

comes ill-conditioned in many applications (e.g., high scattering and high absorp-

tion of light inside tissue make A ill-conditioned [51]) that leads f̂ to be unstable

[28]. To obtain a stable and unique solution, we incorporate a regularization term

to the problem (1.4). The Tikhonov regularization [126] is one of the most popular

techniques in which an `2-norm term is added to the objective function of (1.4):

f̂ = arg min
f∈Rn

‖Af − b‖22 + τ‖f‖22, (1.5)

where τ > 0 is a regularization parameter. The `2-norm regularized problem (1.5)

is simple and efficient to solve using gradient based methods; however, the resulting
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solution is over smoothed [82]. In sparse recovery, since the true signal is sparse or

sparse in some other basis, the reconstruction f̂ also should be sparse. With this

prior knowledge, a sparse solution can be achieved by incorporating the `0-norm

regularization term, which counts the number of nonzero entries in the solution,

to the original problem:

f̂ = arg min
f∈Rn

‖Af − b‖22 + τ‖f‖0,

Solving the `0-norm minimization problem is NP-hard and computationally infea-

sible for high-dimensional problems [94]. As a good approximation to the `0-norm,

the `1-norm regularization has been used to promote the sparsity of the solution:

f̂ = arg min
f∈Rn

‖Af − b‖22 + τ‖f‖1,

where ‖f‖1 =
∑

i |fi|. Recovering such a sparse signal only using fewer mea-

surements is the main problem of compressed sensing (CS) [48]. Much of the

early research work on sparse signal recovery with the `1-norm can be found in

[38, 49, 134, 91, 61, 142], to name just a few.

Theoretically, nonconvex `p-norm (0 < p < 1) should lead to more accurate

sparse reconstruction than the convex `1-norm relaxation. The optimization prob-

lem with `p-norm relaxation is given by

f̂ = arg min
f∈Rn

‖Af − b‖22 + τ‖f‖pp, (1.6)

where ‖f‖pp =
∑

i |fi|p. The problem (1.6) is nonconvex and global minimum is

difficult to trace. However, Chartrand demonstrated that the local minimum of

this nonconvex problem can produce exact sparse reconstruction with many fewer

measurements than the `1-norm required. Accurate reconstruction of sparse sig-

nals/image from few number of measurements is crucial in application such as

radiation-based medical imaging (to reduce radiation doses for patients). Ac-

cording to the literature, `p-norm regularization has garnered significant recent

attention due to the better recovery performance in many applications (see e.g.,

[101, 81, 146, 89, 137]).
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1.1.2 Recovery under Poisson Noise

There are many real world situations, where the measurement noise does not

follow a Gaussian distribution but a Poisson distribution. This phenomena occurs

in a wide variety of real world applications, including astronomy [66, 117], medical

imaging [115] (such as Positron Emission Tomography (PET), Single Photon Emis-

sion Computed Tomography (SPECT), and fluorescent tomohraphy), night vision,

traffic models [129], and computational genomics [18]. Under the inhomogeneous

Poisson process model [113], we can write our measurement process as

y ∼ Poisson(Af∗), (1.7)

where measurement y ∈ Zm+ is corrupted by Poisson noise (also known as shot

noise), A ∈ Rm×n
+ is a linear projection matrix, and f∗ ∈ Rn

+ is the nonnegative

true signal/image of interest.

Under the Poisson process model (1.7), an unknown true signal f∗ is estimated

by minimizing the negative Poisson log-likelihood function

F (f) = 1TAf −
m∑
i=1

yi log(eTiAf), (1.8)

where 1 is an m-vector of ones, ei is the i-th column of the m×m identity matrix.

In particular, the function F (f) in (1.8) is derived using the maximum likelihood

principle: given y, choose the parameter of interest Af∗ in such a way that the

data are most likely (see Appendix A.1 for details).

In our research, f∗ is estimated from measurement vector y, when

1) the true signal f∗ is known to be sparse or sparse in some basis W (i.e.,

f∗ = Wθ, where θ is sparse approximation), and

2) the dimension of the true signal f∗ is larger than the dimension of the mea-

surement y.

Therefore, the estimation of f∗ is related to the compressed sensing framework

[48], but our research is mostly connected to the general problem of sparse signal

recovery in the context of Poisson noise. In particular, Poisson sparse recovery
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problems such as tomographic reconstruction in photon-limited medical imaging

will restrict the matrix A and the signal f∗ to be nonnegative. This nonnegativity

of f∗ will introduce a set of inequality constraints to the problem and would lead

to a more challenging optimization problem.

To avoid the singularity of negative Poisson log-likelihood function (1.8) when

f = 0, a small parameter β > 0 (typically β � 1) is used inside the log function

[57]. Then the function (1.8) can be rewritten as

F (f) = 1TAf −
m∑
i=1

yi log(eTiAf + β), (1.9)

which is convex. Approximating f∗ by minimizing F (f) in (1.9) is ill-posed if the

dimension of the measurement vector y is smaller than the dimension of the true

signal f∗. Therefore, various penalization schemes are usually incorporated to pose

the problem better as we explain in Section 1.1.1. The regularized Poisson intensity

reconstruction problem has the following constrained optimization form:

f̂ = arg min
f∈Rn

F (f) + τ pen(f)

subject to f � 0, (1.10)

where τ > 0 is the regularization parameter, and pen: Rn −→ R is an usually

nonsmooth and potentially nonconvex penalty functional (see e.g., [56]).

1.2 Contribution of the Dissertation

In this dissertation, we explicitly model noise using Poisson or Gaussian statis-

tics for low-dimensional measurements and further enforce sparsity and structure

in the solution using nonconvex sparsity promoting regularizers. We developed the

following novel optimization methods for solving sparse recovery problems arising

in medical imaging, signal/image processing, and computational genomics:

(1) SPIRAL-`p is a method for minimizing the negative Poisson log-likelihood

with nonconvex `p-norm regularization (0 ≤ p < 1) to infer sparse signals

from low-count measurements. We have analyzed zero-finding methods for
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solving the `p-norm regularized minimization subproblems arising from a

sequential quadratic approach. We have also provided a local convergence

proof for the nonconvex method under mild conditions. To the best of my

knowledge, this is the first method to bridge the gap between convex `1-norm

and `0 counting seminorm in Poisson noise context. We applied this method

to solve a 3D fluorescence molecular tomography problem in collaboration

with the Li Lab in Bioengineering at UC Merced.

(2) SPIRAL-TVp is an algorithm to recover image from photon-limited obser-

vations when the image is not sparse. This nonconvex p-th power total

variation (TV) regularization problem is solved in a convex setting by using

a reweighting strategy for each iteration. We have shown that the proposed

algorithm converges to a reasonably good local solution that is more accurate

than the existing TV1 global solution.

(3) SPIRAL-Shannon, a sparsity promoting algorithm in which we propose to

regularize the Poisson log-likelihood by the generalized nonconvex Shannon

entropy function. In particular, this non-separable Shannon regularization

function is approximated using its first-order Taylor series. We explore the

effectiveness and efficiency of the proposed method using numerical experi-

ments. Unlike previous nonconvex methods, the proposed method achieved

comparable results with less computational effort.

(4) Bounded-SPIRAL-`1 is a method for minimizing the negative Poisson log-

likelihood where upper and lower bounds on the true signal are known a

priori. This method incorporates additional information beyond sparsity,

such as signal support and maximal signal intensity, to improve signal re-

construction. We applied this method to deblur Quick Response (QR) codes

and phantoms from medical imaging under low-light conditions.

(5) We designed and implemented stage-based methods to solve time-dependent

bioluminescence tomography and fluorescence lifetime imaging problems.

Our approach is different in the following manner: (a) We incorporate a

nonconvex `p-norm regularization to promote further sparsity and highlight
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different structural properties of the solution, (b) we explicitly model CCD

camera measurements using Poisson noise model, and (c) we recover the sup-

port of the signal using the time-averaged data and reconstruct the signal

intensity and lifetime using the time-dependent data. We demonstrate the

effectiveness of the proposed stage-based methods through numerical exper-

iments in 2D imaging.

(6) TrustSpa-`1 and TrustSpa-`p (0 < p < 1) are two limited-memory trust-

region methods for minimizing a least-squares fidelity term with a convex

and nonconvex regularization penalties, respectively. Our approach is novel

in the transformation of the sparse recovery problem to a differentiable un-

constrained minimization problem and in the use of eigenvalues for efficiently

solving the trust-region subproblem. Unlike gradient projection-type meth-

ods, which use only the current gradient, our approach uses gradients from

previous iterations to obtain a more accurate Hessian approximation. Nu-

merical experiments show that our proposed approach eliminates spurious

solutions more effectively while improving the computational time to con-

verge.

In addition, I have collaborated on sparse signal recovery methods for next-

generation DNA sequence data with the Sindi Lab at UC Merced. Most of this work

involves developing novel computational methods to predict structural variants,

which are rearrangements of an individual’s genome. Furthermore, as a result of

another collaborative work with Dr. Fei Wen from Shanghai Jiao Tong University,

I proposed to employ the `p-norm (0 ≤ p < 1) regularization for demixing problems

in signal and image processing.

1.3 Organization of the Dissertation

Generally, this dissertation is divided into two parts: The first part of the

dissertation (i.e., Chapter 2 and 3) will discuss nonconvex sparse Poisson intensity

reconstruction methods with their applications and the second part (i.e., Chapter
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4) is concerned with nonconvex sparse recovery methods with Gaussian noise.

Chapters in this dissertation are organized as follows:

Chapter 2: Photon-Limited Imaging

In this chapter, We propose four novel optimization methods for sparse signal

recovery under low-light conditions: (1) A bounded photon-limited image recovery

algorithm, (2) a non-convex `p-norm regularization method (SPIRAL-`p) with an

analysis for the subproblem minimization. We are also able to provide local con-

vergence guarantees under mild conditions for SPIRAL-`p, (3) a non-convex p-th

power total variation regularization method, (4) a non-convex Shannon entropy

regularization method for efficient sparse recovery from photon-limited observa-

tions.

Chapter 3: Applications with Poisson Process Model

In this chapter, We concern on demonstrating the effectiveness of proposed

Poisson sparse recovery algorithms in Chapter 2 with real world applications. First,

we investigate the effectiveness of our `p-norm regularized method in solving the

fluorescence molecular tomography problem with low photon counts. Second, we

propose two novel stage-based methods to solve tomography problems in func-

tional imaging: A two-stage method for bioluminescence tomography and three-

stage method for fluorescence lifetime imaging problem in low photon context.

Lastly, we will discuss my contribution on structural variants detection algorithms

in computational genomics with the Sindi Lab.

Chapter 4: Sparse Recovery Methods with Gaussian Noise

This chapter focuses on sparse recovery methods and their applications under

Gaussian noise. First, we propose two novel methods (using convex regulariza-

tion and nonconvex regularization) to solve the `2-`1 problem by transforming

its objective function into an unconstrained differentiable function and apply a

limited-memory trust-region method. After that, we will briefly discuss a collab-
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orative work with Dr. Fei Wen on sparse recovery and demixing signals with an

image inpainting example.

Chapter 5: Conclusion

Finally, this chapter concludes the dissertation and suggests several new av-

enues in photon-limited imaging for future research.



Chapter 2

Photon-Limited Imaging

Reconstructing high-dimensional sparse signals from low-dimensional low-count

photon observation is a challenging nonlinear optimization problem. In low photon

context, the arrival of photons at the detector is typically modeled by the inho-

mogeneous Poisson process (1.7). In this chapter, we propose three algorithms

to minimize the Poisson log-likelihood function using three nonconvex sparsity-

promoting regularizers: (1) `p-norm (0 ≤ p < 1), (2) p-th power (0 ≤ p < 1)

total variation, and (3) generalized Shannon entropy, for accurate sparse signal

recovery. In addition, I will discuss a bounded photon-limited image recovery al-

gorithm where maximum and minimum amplitudes at specific regions of an image

are known a priori.

2.1 Prior Work

According to the literature, inverse problems with Poisson data has garnered

significant attention by applied mathematicians and statisticians in many applica-

tions including medicine, engineering and astronomy (see e.g., [118, 67, 20, 30, 73]).

A Poisson intensity reconstruction algorithm to solve the Poisson problem in (1.10)

has been investigated in several works using different techniques. In particular,

Fessler proposed a algorithm in [57] based on finding paraboloidal surrogate func-

tions for the log-likelihood at each iteration and maximized these surrogate func-

tions using existing algorithms such as coordinate ascent. In [97] and [96], Nowak

11
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and Kolaczyk introduced a Bayesian multiscale framework with the expectation-

maximization algorithm for linear inverse problems involving Poisson data. Other

recent effort [58] known as the alternating direction method of multipliers (ADMM)

solved the problem of restoring Poissonian images based on an alternating direction

optimization method. The main hurdle of the ADMM method is that it requires

to solve a linear system at each iteration with a matrix inverse operation. In [77],

Jansen proposed a wavelet-based Poisson estimation method, which leads to inac-

curate solutions when the observed number of photons per pixel is very low. In

our research, we consider the recent Sparse Poisson Intensity Reconstruction AL-

gorithm (SPIRAL) [70], which is a flexible framework to solve the Poisson inverse

problem with state-of-the-art performance by modifying the penalty term.

2.1.1 Sparse Poisson Intensity Reconstruction ALgorithm

(SPIRAL)

In SPIRAL [70], we approximate the negative Poisson log-likelihood function

F (f) in (1.9) with a sequence of quadratic subproblems. Each iterate is obtained

from the previous iterate by solving

fk+1 = arg min
f∈Rn

F k(f) + τ pen(f),

subject to f � 0,

where F k(f) denotes the second order Taylor series approximation to the F (f) at

fk:

F k(f) ≈ F (fk) + (f − fk)T∇F (fk) +
1

2
(f − fk)T∇2F (fk)(f − fk). (2.1)

Then the Hessian ∇2F (fk) in (2.1) is approximated by a scaled identity matrix

αkI, with αk > 0 [134]. This yields

F k(f) ≈ F (fk) + (f − fk)T∇F (fk) +
αk
2
‖ f − fk ‖22, (2.2)

where αk is chosen by a modified Barzilai-Borwein (BB) method [23] as

αk =

∥∥√y · (Aδk)/(Afk + β 1)
∥∥2
2

‖ δk ‖22
,
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where δk = fk − fk−1 and
√
·, ·, / are component-wise operators. As described in

the Appendix A.2, simplifying the second-order approximation in (2.2) yields a

sequence of subproblems of the form

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
pen(f)

subject to f � 0, (2.3)

where

sk = fk − 1

αk
∇F (fk).

In SPIRAL, the Poisson intensity reconstruction was achieved by replacing the

penalty function pen(f) in (2.3) by a variety of convex penalty terms such as `1-

norm, `1-norm with noncanonical basis, and total variation (TV) seminorm. In

our research, we introduce nonconvex penalty functionals to SPIRAL to promote

sparse solutions with more accuracy.

2.2 Bounded Sparse Photon-Limited Image

Recovery

The work describes in this section is based on the paper by Adhikari and Marcia

[6]. Photon-limited recovery methods typically incorporate sparsity and nonneg-

ativity through constraints and penalizers (see e.g., [57, 58, 70]). In addition to

sparsity and nonnegativity, other information about the true signal may be known

in practice. In particular, its maximum and minimum amplitudes at specific re-

gions might be known a priori. In medical imaging, structural information such as

tissue geometries are used to improve the accuracy of tomography. For example,

in near infrared diffuse optical tomography, structural priors from magnetic reso-

nance imaging are incorporated to limit smoothing across their shared boundaries

and adjust the image smoothness [135, 136, 33]. These structural priors can be

expressed as bounds on the signal intensity, and as such, they can be incorpo-

rated into the photon-limited image recovery problem to enhance the quality of

the reconstruction. Here, we describe an optimization method (based on the SPI-

RAL approach [70]) that includes upper and lower bound constraints that model
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additional signal intensity information. We demonstrate the effectiveness of the

proposed approach on two different low-light deblurring examples.

Problem Formulation

When the maximum and minimum signal intensity information is known, the

sparsity-promoting Poisson intensity reconstruction problem has the following con-

strained minimization form:

f̂ = arg min
f∈Rn

F (f) + τ‖f‖1

subject to bL � f � bU,

where F (f) is the negative Poisson log-likelihood function (1.9), τ > 0 is the

regularization parameter, and bL and bU are the lower and upper bounds on

signal f , respectively (note these bounds take the dimension as the signal/image).

Based on the SPIRAL framework [70], our subproblems are of the form

fk+1 = arg min
f∈Rn

1
2
‖ f − sk ‖22 + τ

αk
‖f‖1

subject to bL � f � bU,

where sk = fk − 1
αk
∇F (fk). If the signal of interest is sparse in some orthonormal

basis W, then the penalty term ‖f‖1 is replaced by ‖θ‖1, where θ = WTf . Then

the minimization subproblem becomes

θk+1 = arg min
θ∈Rn

φk(θ) = 1
2
‖θ − sk‖22 + τ

αk
‖θ‖1,

subject to bL �Wθ � bU. (2.4)

We note that typically, bL = 0, but we do not make that assumption here. We can

solve this minimization problem by solving its Lagrangian dual. The discussion

below follows [70] very closely. Our main contribution is the extension of the

constraints to general bounds and the inclusion of a convergence proof for the

subproblem minimization.

First, we introduce u,v ∈ Rn with u,v � 0 and write θ = u− v so that φk(θ)
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in (2.4) is differentiable [58, 70]:

(uk+1,vk+1) = arg min
u,v∈Rn

1
2
‖u− v − sk‖22 + τ

αk
1T(u + v)

subject to u,v � 0, bL �W(u− v) � bU. (2.5)

Note, however, that the new problem now has twice as many parameters and has

additional nonnegativity constraints on the new parameters. The last constraints

can be expressed as W(u−v)−bL � 0 and bU−W(u−v) � 0. The Lagrangian

function corresponding to (2.5) is given by

L (u,v,λ1,λ2,λ3,λ4) = 1
2
‖u− v − sk‖22 + τ

αk
1T (u + v)− λT1 u− λT2 v

− λT3 (W(u− v)− bL)− λT4 (bU −W(u− v)),

where λ1,λ2,λ3,λ4 ∈ Rn are the Lagrange multipliers corresponding to the con-

straints in (2.5). Differentiating L with respect to u and v and setting the deriva-

tives to zero yields

u− v = sk + λ1 − τ
αk

1 + WTλ3 −WTλ4, and (2.6)

λ2 = 2τ
αk

1− λ1.

Then it follows that τ
αk

1T (u + v)−λT1 u−λT2 v = τ
αk

1T (u− v)−λT1 (u− v) in L .

Therefore

L (u,v,λ1,λ2,λ3,λ4) = 1
2
‖u− v‖22 + 1

2
‖sk‖22

−(u− v)T (sk + λ1 − τ
αk

1 + WTλ3 −WTλ4)

+λT3 bL − λT4 bU.

Substituting u−v from (2.6) in L , we obtain the Lagrangian dual function inde-

pendent of the primal variables, u and v:

g(λ1,λ3,λ4) =− 1
2
‖sk + λ1 − τ

αk
1 + WT(λ3 − λ4)‖22

+ λT3 bL − λT4 bU +
1

2
‖sk‖22.

Next, let γ = λ1 − τ
αk

1. For the Lagrange dual problem corresponding to (2.5),

the Lagrange multipliers λi � 0 for i ∈ {1, 2, 3, 4}. Since

0 � λ2 = 2τ
αk

1− λ1 = τ
αk

1− γ and

0 � λ1 = γ + τ
αk

1,
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then γ satisfies − τ
αk

1 � γ � τ
αk

1. The Lagrange dual problem associated with

(2.5) is thus given by

minimize
γ,λ3,λ4∈Rn

h(γ,λ3,λ4) = 1
2
‖sk + γ + WT(λ3 − λ4)‖22

− λT3 bL + λT4 bU − 1
2
‖sk‖22

subject to λ3,λ4 � 0, − τ
αk

1 � γ � τ
αk

1. (2.7)

At the dual optimal values γ?, λ?3, and λ?4, the primal iterate θk+1 is given by

θk+1 = uk+1 − vk+1 = sk + γ? + WT(λ?3 − λ?4).

We note that the duality gap for (2.5) and its dual (2.7) is zero, i.e., φk(θk+1) =

−h(γ?,λ?3,λ
?
4) because (2.5) satisfies (a weakened) Slater’s condition [32]. In ad-

dition, the function −h(γ,λ3,λ4) is a lower bound on φk(θ) at any dual feasible

point. We note that the objective function h(γ,λ3,λ4) can be written as

h(γ,λ3,λ4) = {1
2
‖γ‖22 + γT sk}+ γTW T (λ3 − λ4) +

{1
2
‖λ3 − λ4‖22 + (λ3 − λ4)

TW sk − λT3 bL + λT4 bU}.

We minimize the objective function h(γ,λ3,λ4) by solving for γ, λ3, and λ4

alternatingly, which is done by taking the partial derivatives of h(γ,λ3,λ4) and

setting them to zero. Each component is then constrained to satisfy the bounds

in (2.7). We now describe each step more explicitly.

Step 1. Given λ
(j−1)
3 and λ

(j−1)
4 from the previous iterate, solve

γ(j) = arg min
γ∈Rn

1
2
‖γ‖22 + γTsk+ γTW T(λ

(j−1)
3 −λ(j−1)

4 )

subject to − τ
αk

1 � γ � τ
αk

1. (2.8)

The solution to (2.8) is obtained via thresholding:

γ(j) = mid
{
− τ

αk
1,−sk −WT

(
λ

(j−1)
3 − λ(j−1)

4

)
, τ
αk

1
}
, (2.9)

where the operator mid{a,b, c} chooses the middle value of the three arguments

component-wise.
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Step 2. Given γ(j), solve

(λ
(j)
3 ,λ

(j)
4 ) = arg min

λ3,λ4∈Rn

L(λ3,λ4) ≡ 1
2
‖λ3 − λ4‖22

+ λT3
(
W(sk + γ(j))− bL

)
+ λT4

(
bU −W(sk + γ(j))

)
subject to λ3,λ4 � 0. (2.10)

The minimization problem (2.10) has the following solution. Noting 1
2
‖λ3−λ4‖22 =

1
2
‖λ3‖22 − λT3λ4 + 1

2
‖λ4‖22, and letting rL

(j) = W(sk + γ(j)) − bL and rU
(j) =

bU − W(sk + γ(j)), then (2.10) can be written as

(λ
(j)
3 ,λ

(j)
4 ) = arg min

λ3,λ4∈Rn

1
2
‖λ3‖22 + λT3 rL

(j)−λT3λ4

+ 1
2
‖λ4‖22 + λT4 rU

(j)

subject to λ3,λ4 � 0. (2.11)

Note that if rL
(j) � 0 and rU

(j) � 0, i.e., bL � W(sk + γ(j)) � bU, then

L(λ3,λ4) � 0 for λ3,λ4 � 0, and is therefore minimized at λ3 = λ4 = 0. We now

assume otherwise. Computing the gradient of L(λ3,λ4) with respect to λ3 and λ4

yields

∇λ3L(λ3,λ4) = λ3 + rL
(j) − λ4

and

∇λ4L(λ3,λ4) = λ4 + rU
(j) − λ3.

For each i, unless (bL)i = (bU)i, both (∇λ3L)i and (∇λ4L)i cannot be simultane-

ously 0 (since this implies (rL
(j))i+(rU

(j))i = 0, or equivalently, (bU)i−(bL)i = 0).

Therefore, the components of the gradient of the minimizer must be 0 or the corre-

sponding components of the minimizer must lie on the boundary, i.e., (∇λ3L)i = 0

and (λ4)i = 0, or (λ3)i = 0 and (∇λ4L)i = 0. These conditions define the values

of the solutions λ
(j)
3 and λ

(j)
4 :

λ
(j)
3 = [−rL(j)]+ = [−W(sk + γ(j)) + bL]+

λ
(j)
4 = [−rU (j)]+ = [ W(sk + γ(j))− bU]+.

where the operator [ · ]+ = max{ · ,0} component-wise.
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Convergence. We prove the convergence of this alternating minimization strategy

from techniques found in [25]. Let

ψ(γ,λ3,λ4) = γTWT (λ3 − λ4)

g1(γ) = 1
2
‖γ‖22 + γT sk

g2(λ3,λ4) = 1
2
‖λ3 − λ4‖22 + (λ3 − λ4)

TWsk

−λT3 bL + λT4 bU

so that h(γ,λ3,λ4) = ψ(γ,λ3,λ4) + g1(γ) + g2(λ3,λ4). Note the following: (A)

Both functions g1 and g2 are continuous functions whose domains are closed. Con-

sequently, they are closed (see Sec. A.3.3 in [32]). (B) ψ is bilinear in γ and in

(λ3,λ4). Therefore, it is a continuously differentiable convex function. (C) The

gradient of ψ with respect to γ is constant, and therefore ∇γψ is Lipschitz con-

tinuous. (D) The gradient of ψ with respect to (λ3,λ4) is constant, and therefore

∇λ3,λ4ψ is Lipschitz continuous. (E) Since the primal problem (2.4) has a con-

tinuous objective function and has a closed and bounded domain, it must have a

minimum by the Extreme Value Theorem. Because the duality gap is zero, i.e.,

φk(θk+1) = −h(γ?,λ?3,λ
?
4), the dual problem (2.7) must have a solution. In addi-

tion, the subproblems (2.8) and (2.10) have explicit minimizers. With these, the

assumptions needed to apply Lemma 3.2 in [25] are satisfied. In particular, we

obtain the following convergence result:

Theorem 1: Let {(γ(j),λ
(j)
3 ,λ

(j)
4 )}j�0 be the sequence generated by the proposed

alternating minimization method. Any accumulation point of {(γ(j),λ
(j)
3 ,λ

(j)
4 )} is

a stationary point of problem (2.7).

Feasibility. We now show that at the end of each iteration j, the approximate

solution θ(j) = sk + γ(j) + WT (λ
(j)
3 − λ

(j)
4 ) to (2.4) is feasible with respect to the

constraint bL �Wθ � bU. First, note that

Wθ(j) = Wsk + Wγ(j) + λ
(j)
3 − λ

(j)
4

= W(sk + γ(j)) +
[
bL −W(sk + γ(j))

]
+

−
[
W(sk + γ(j))− bU

]
+
. (2.12)



19

We note that (2.12) is equivalent to

Wθ(j) = mid{bL,W(sk + γ(j)),bU}.

Thus, we can terminate the iterations for the dual problem early and still obtain

a feasible point.

Numerical Results

We investigate the effectiveness of the proposed bounded SPIRAL-`1 (B-SPIRAL-

`1) method by solving two image deblurring problems. In both experiments, the

blurry observations are obtained from Af∗, where the signal f∗ is convolved with a

5× 5 blur matrix, whose action is represented by the matrix A. The MATLAB’s

poissrnd function is used to add Poisson noise. Here, we used the Daubechies-2

(DB-2) wavelet basis for W.

We implemented the B-SPIRAL-`1 algorithm by including constraints to the

existing SPIRAL approach [69] to solve subproblem (2.4). The algorithm is ini-

tialized using the lower and upper bound information incorporated ATy and

terminates if the relative difference between consecutive iterates converged to

‖fk+1 − fk‖2/‖fk‖2 ≤ 10−6. Similar to the SPIRAL approach, we define 30 as

the minimum number of iterations to avoid any issues with premature termina-

tion. Finally, we compare the results with nonnegatively constrained SPIRAL-`1

method based on RMSE (%) = 100 · ‖f̂ − f∗‖2/‖f∗‖2. The final SPIRAL-`1 re-

constructions are thresholded using the same bounds used in B-SPIRAL-`1. The

regularization parameters (τ) for both experiments are optimized to get the mini-

mum RMSE value.
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QR code deblurring

(a) True image f∗ (b) Observation y (c) Zoomed region

Figure 2.1: Experimental setup: (a) True QR code image f∗, (b) noisy and blurry
observation y with mean photon count 5.7, (c) a zoomed region of y.

In this experiment, we wish to recover a Quick Response (QR) code of size

512×512 (see Fig. 2.1(a)) from the Poisson-noise corrupted blurry image (see Fig.

2.1(b) and the red zoomed region in Fig. 2.1(c)). We set bU as the peak intensity

of f∗, i.e., bU = 3e+4, and bL as the zero intensity.

The SPIRAL-`1 method took 16.52 sec (32 iterations) to converge, and its

reconstruction (f̂S) has RMSE = 18.92%. In contrast, the proposed B-SPIRAL-

`1 method took 25.06 sec (30 iterations) to converge, but its reconstruction (f̂B)

has RMSE = 16.42%. The B-SPIRAL-`1 improvements can be best seen in the

magnitude of the log error between the true signal f∗ and the reconstructions (see

Figs. 2.2(a) and (b)). Note that the f̂B reconstruction more closely matches the

original signal f∗ than the f̂S reconstruction by the prevalence of blue regions in

Fig. 2.2(b).
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(a) log(1 + |f∗ − f̂S|) (b) log(1 + |f∗ − f̂B|)
(RMSE = 18.92%) (RMSE = 16.42 %)

Figure 2.2: (a) Log magnitude of error between the true image, f∗, and the
SPIRAL-`1 reconstruction f̂S, (b) Log magnitude of error between f∗ and the pro-
posed B-SPIRAL-`1 reconstruction f̂B. RMSE (%) = 100 · ‖f̂ − f∗‖2/‖f∗‖2. Note
the lower RMSE for the proposed method’s reconstruction, f̂B, whose log error is
closer to zero (represented in blue) than the original method.

Shepp-Logan phantom image deblurring

In the reconstruction of optical images, anatomical information (the tissue

shape and/or structure) from x-ray computed tomography (CT) or magnetic res-

onance imaging (MRI) can be used to improve the spatial resolution [22, 87]. In

this experiment, we wish to apply a similar approach to recover the Shepp-Logan

phantom image of size 128× 128 from the observed image (see Fig. 2.3(a) and (b)

respectively), when the tissue outer boundary is known. More specifically, we in-

corporate that outer boundary as a structural information (see Fig. 2.3(c)), where

the lower and upper bound intensities are known based on the region (i.e., 0 and

1e+6 are outside and inside tissue maximum intensities respectively).

For this problem, the SPIRAL-`1 method took 1.89 sec (39 iterations) to con-

verge, and its reconstruction (f̂S) has RMSE = 21.57%. The proposed B-SPIRAL-

`1 method took 1.98 sec (30 iterations) to converge, and its reconstruction (f̂B)

has a lower RMSE = 18.85% (see Figs. 2.4(a) and (b)). Note the more accurate

reconstruction along the top edges as well as the overall improved accuracy within
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the body (represented in yellow) in comparison to the f̂S reconstruction.
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(a) True image f∗ (b) Observation y (c) Mask

Figure 2.3: Experimental setup: (a) True phantom image f∗, (b) noisy and blurry
observation y with mean photon count 45.8, (c) a mask with prior structural
information.
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(a) log(1 + |f∗ − f̂S|) (b) log(1 + |f∗ − f̂B|)
(RMSE = 21.57%) (RMSE = 18.85%)

Figure 2.4: (a) Log magnitude of error between the true image, f∗, and f̂S, and
(b) log magnitude of error between f∗ and f̂B. RMSE (%) = 100 · ‖f̂ − f∗‖2/‖f∗‖2.
Note the proposed method’s log error is lower on the whole (represented in yellow)
in contrast to the mostly orange in (a).
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Conclusion

In this method, we formulated a sparsity-promoting bound-constrained photon-

limited image recovery method by solving the dual problem based on an alternating

minimization strategy. The utilization of any available prior image information

has proven very successful for accurately recovering images. We demonstrate that

the proposed B-SPIRAL-`1 method leads to more accurate reconstructions than

the simply thresholded solutions from the nonnegatively constrained minimization

method.

2.3 Nonconvex Regularization for Photon-Limited

Imaging

Reconstructing high-dimensional sparse signals from low-dimensional low-count

photon observations is a challenging nonlinear optimization problem. Theoreti-

cally, non-convex regularization would lead to more accurate reconstruction than

the convex relaxation commonly used in sparse signal recovery. In this Section,

we propose to regularize the negative Poisson log-likelihood objective function us-

ing three different nonconvex regularizers: `p-norm, TVp-norm (0 ≤ p < 1), and

nonconvex Shannon entropy.

2.3.1 Non-convex `p-norm Regularization

The method describes in this section is based on the paper by Adhikari and

Marcia [5]. Here, we consider the recent Sparse Poisson Intensity Reconstruction

ALgorithm (SPIRAL) [70], which is a flexible framework to solve the Poisson in-

verse problem with state-of-the-art performance by modifying the penalty term.

Solving the `0-norm regularized minimization problem is NP-hard and computa-

tionally infeasible for high-dimensional problems. The `1-norm has been shown

to be a very good approximation to the `0-norm in sparse signal recovery [125].

While the SPIRAL method with `1-norm (SPIRAL-`1) yielded reasonably good

results, its reconstruction contained some spurious artifacts. These artifacts can
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be corrected by using a nonconvex `p penalty term (p < 1) while keeping the recon-

struction error low (see Fig. 2.5 for comparison between `1-norm ball and `p-norm

ball in 2D).

(a) (b)

Figure 2.5: (a) The `1-norm ball with its contour lines in 2D. (b) The `p-norm ball
when p = 0.5 with its contour lines in 2D. Note that the `p-norm ball is nonconvex.

In the proposed method called SPIRAL-`p (0 ≤ p < 1), we consider pen(f) =

‖f‖pp as the penalty term in (1.10). Then the corresponding subproblems in (2.3)

can be written as

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
‖ f ‖pp

subject to f � 0. (2.13)

Note that the subproblems (2.13) can be separated into scalar minimization prob-

lems of the form

f ∗ = arg min
f∈R

Ω(f) =
1

2
(f − s)2 + λ|f |p

subject to f ≥ 0, (2.14)

where f and s denote elements of the vectors f and sk respectively and λ = τ/αk.

Recently, Zuo et al. [148] proposed a simple and efficient iterative algorithm to

solve the nonconvex scalar minimization problem in (2.14), which was an extension

to the popular soft-thresholding operator [47].
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Generalized Soft-Thresholding (GST) Function

As shown in Figure 2.6, for a given regularization parameter λ > 0 and p-value

for Ω(f) in (2.14), there exists a threshold value γp(λ) (that explicitly depends on

p and λ) such that if s ≤ γp(λ), the global minimum of (2.14) is f ∗ = 0; otherwise,

the global minimum will be a non-zero value. We now show how to compute the

threshold value γp(λ) so that we can compute f ∗.
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Ω( f ) 

s < γp(λ) s = γp(λ) s > γp(λ)

(a) (b) (c)
f *

Figure 2.6: The plot of the scalar quadratic function Ω(f) with p-norm penalty
term in (2.14), where p = 0.5 and λ = 1.0. (a) If s is less than the specific threshold
value γp(λ), then f ∗ = 0 is the global minimum. (b) If s = γp(λ), there are global
minima at f ∗ = 0 and f ∗p (to promote sparsity, we pick f ∗ = 0 as the solution).

(c) If s > γp(λ), then the global minimum is uniquely at f ∗ > 0.

Note that Ω(f) is symmetric in s (i.e., if s > 0, we can prove that the solution

f ∗ ≥ 0; otherwise, f ∗ ≤ 0). Thus, without loss of generality, we consider the case

s > 0. When s = γp(λ), there exists f ∗p (see Figure 2.6(b)) such that

Ω(f ∗p ) = Ω(0) and (2.15)

Ω′(f ∗p ) = 0. (2.16)

By solving (2.15) and (2.16) simultaneously (see Appendix A.3), we can explicitly

find the threshold value γp(λ) for given p and λ values. Specifically, γp(λ) is given

by

γp(λ) = (2λ(1− p))
1

2−p + λp(2λ(1− p))
p−1
2−p . (2.17)

For any s > γp(λ), the unique minimum f ∗ = Sp(|s|, λ) of Ω(f) is greater than 0

and is obtained by setting Ω′ to 0 :

Ω′(Sp(|s|, λ)) = Sp(|s|, λ)− s+ λp(Sp(|s|, λ))p−1 = 0. (2.18)
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The root of Ω′ can be computed using fixed-point iteration (we analyze root finding

methods more thoroughly in Section 2.3.2). Then the solution f ∗ to (2.14) is given

by the generalized soft-thersholding (GST) function

Tp(s, λ) =

{
0, if |s| ≤ γp(λ)

sgn(s)Sp(|s|, λ), if |s| > γp(λ).
(2.19)

When p = 0, the GST function T0(s, λ) becomes the hard-thresholding function,

and when p = 1, the GST function T1(s, λ) becomes the soft-thresholding function.

In both cases, we do not compute Sp(|s|, λ) in (2.18) iteratively, but rather we

compute it explicitly (see Appendix A.4).

Employing Nonnegativity Constraint

Since the subproblems in (2.13) are nonnegatively constrained, the solution of

the scalar minimization problem (2.14) also needs to be nonnegative. Therefore

the theresholding operator is employed to obtain the next iterate:

fk+1 = max(0, Tp(s, λ)).

Convergence Proof

Here, we prove the convergence of SPIRAL-`p to a critical point from techniques

found in [70, 134]. Suppose a problem of the form

minimize
f∈Rn

Φ(f) = ϕ(f) + ρ(f) (2.20)

follows the following three mild assumptions:

(A1) ϕ is proper convex and Lipschitz continuously differentiable on Rn
+,

(A2) ρ is continuous on Rn
+ (not necessarily convex),

(A3) Φ is coercive (i.e., lim‖f‖→∞Φ(f) =∞).

If ϕ is the negative Poisson log-likelihood function as defined in (1.9) and the

function ρ : Rn → R̄ = R ∪ {−∞,∞} is defined as

ρ(f) = τ‖f‖pp + δ+(f), (2.21)
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where

δ+(f) =

{
0 if f � 0,

∞ otherwise,

then solving (2.20) is equivalent to solving the SPIRAL-`p optimization problem

minimize
f∈Rn

F (f) + τ ‖f‖pp
subject to f � 0. (2.22)

Now note the following: (A1) The negative Poisson log-likelihood function F is

convex and Lemma 1 in [70] proves that F is Lipschitz continuously differentiable

on Rn
+ with parameter β > 0. (A2) The penalty function ρ defined in (2.21) with

nonconvex `p-norm term is continuous on Rn
+. (A3) Objective function Φ becomes

infinite along any path for which ‖f‖ becomes infinite. Therefore, Φ is coercive

even with the `p-norm term.

With these, we can obtain convergence results to a critical point through the

following theorem:

Theorem 1. Suppose the SPIRAL framework [70] with its acceptance test is ap-

plied to solve (2.20) with the assumption that (A1) to (A3) hold. Then all accu-

mulation points are critical.

Proof. For contradiction, assume an accumulation point generated by SPIRAL-`p

is not critical. We follow the same proof of Theorem 1 in [70], which we summarize

as follows. Lemma 2 [70] shows that in the vicinity of a non-critical point, the

solution is a substantial distance away from the current iterate. That is, if the

sequence {αkj}j∈Z+ were bounded, then ‖fkj+1 − fkj‖2 ≥ ε for some ε > 0 and

all j large enough. However, Lemma 4 [70] shows that the sequence {fk}k∈Z+

generated by the algorithm is such that the step length ‖fkj+1− fkj‖2 approaches 0

as k →∞. Therefore, the Lemma 2 result contradicts Lemma 4, hence {αkj}j∈Z+

must be unbounded. We can now assume that {αkj} increases monotonically to∞.

In order this assumption to be true, αkj must fail the acceptance test by violating

the upper safeguard αmax. Then this contradicts Lemma 3 [70]; Lemma 3 assures

us to satisfy the acceptance criteria for all sufficiently large values of αk. All these
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contradictions show that any noncritical point can not be an accumulation point.

Hence, all accumulation points are critical points.

Note the function Φ is nonconvex due to the nonconvexity of ρ in SPIRAL-

`p. Therefore, we can not claim that critical points are always global solutions of

the problem (2.22). Although it is not guaranteed to converge to a solution, any

accumulation point of the SPIRAL-`p iterations will be a critical point.

Numerical Results

We evaluated the effectiveness of the proposed SPIRAL-`p method by com-

paring it to the existing SPIRAL-`1 method. We implemented the SPIRAL-`p

method in MATLAB (on a PC with Intel Corei7 2.7GHz Processor, 2 cores, 8GB

RAM) by modifying the existing MATLAB code of the SPIRAL method [69]. In

the experiment, the true signal f is of length 100,000 with 1,500 nonzero entries

(1.5% of sparsity), and the observed vector y is of length 40,000. We generated

Poisson intensity reconstructions for 23 different p-values ranging from 0.99 to 0.

For that, we used the parameters in SPIRAL-`1 experiment as our default param-

eters in SPIRAL-`p. More specifically, SPIRAL-`p is initialized using AT (y) and

terminates if consecutive iterates do not significantly change. The regularization

parameter τ in (1.10) is optimized to get the minimum root-mean-square (RMS)

error ‖f∗ − f̂‖2/‖f∗‖2 for each p-value.
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Figure 2.7: The plot of the RMS error and the number of nonzero entries in the
reconstruction over the p-values ranging from 0.99 to 0. The left most data points
in both curves correspond to the error and number of non-zeros of SPIRAL-`1.
There is a steep decrease in the RMS error after p = 0.4 while, non-zeros attain
their exact value 1500 at p = 0.35. Note RMS error (%) = 100 · ‖f∗ − f̂‖2/‖f∗‖2.

The RMS error curve in the Fig. 2.7 shows that there is no considerable change

in the error for the p-values ranging from 0.99 to 0.4. But when p < 0.4, the RMS

error decreases drastically and is less than the SPIRAL-`1 RMS error. Meantime,

the number of nonzero entries of the reconstruction also converge to the exact

sparsity as p value decreases. These results reveal that the SPIRAL-`p with p

value ranging from 0.35 to 0 can generate better reconstruction than SPIRAL-`1

method. For instance, when p = 0.05, Fig. 2.8 depicts the high accurate SPIRAL-

`p reconstruction without the spurious solutions appear in the SPIRAL-`1 recon-

struction. Furthermore, the SPIRAL-`0.05 intensity reconstruction exactly matches

the sparsity of the true signal. In additional, we note that the amplitude of the

SPIRAL-`0.05 reconstruction is greater than the SPIRAL-`1 reconstruction.
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Figure 2.8: SPIRAL-`p intensity reconstruction with p = 0.05 (green diamond
stems) compared with the SPIRAL-`1 intensity reconstruction (red filled circle
stems). The blue stems depict the true signal. There are 12 spurious solutions in
the SPIRAL-`1 reconstruction. (A) SPIRAL-`0.05 reconstruction eliminates spuri-
ous solutions in the SPIRAL-`1 reconstruction. (B) SPIRAL-`0.05 solution gener-
ally matches the SPIRAL-`1 solution with high strength.

Finally, we ran the proposed SPIRAL-`p method with p = 0.05 for ten different

simulated measurement vectors y1,y2, . . . ,y10 with Poisson noise. Specifically,

the Poisson noise levels in yi’s are around 16%, where noise (%) = 100 · ‖Af∗ −
yi‖2/‖yi‖2. The resulting RMS error and the number of nonzeros for each of the

final reconstruction are shown in the Table 2.1. In particular, we were able to

recover the exact sparsity of the true signal in all ten different experiments with

an average of 5.998% RMS error. Therefore, we conclude that for this experimental

setup, the proposed SPIRAL-`p method is robust with respect to different Poisson
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Experiment RMSE (%) Non-zeros

1 5.945 1500

2 5.947 1500

3 5.959 1500

4 5.991 1500

5 6.140 1500

6 6.077 1500

7 5.827 1500

8 5.955 1500

9 5.973 1500

10 6.162 1500

Average 5.998 1500

Table 2.1: RMS error and number of non-zeros in reconstructions using 10 different
Poisson measurements. Here, RMSE (%) = 100 · ‖f∗ − f̂‖2/‖f∗‖2.

noise realizations.

While SPIRAL-`p generates high accurate, high strength reconstruction for

small p-values, it requires more computational time than the SPIRAL-`1 method.

More precisely, SPIRAL-`1 takes less than 1 second to obtain the reconstruction,

while SPIRAL-`p takes on average, 66 seconds. However, initializing the SPIRAL-

`p with the SPIRAL-`1 solution improves the computational time approximately

by 30%.

Conclusion

In this method, we have formulated the nonnegatively constrained sparse Pois-

son intensity reconstruction algorithm as a `p nonconvex regularized minimization

problem (2.13). We have showed that this approach can be uncoupled into the

separable `p-minimization problems in the form of (2.14), with each scalar min-

imization problem is solved using Generalized Soft-Thresholding (GST) function

(2.19). We have demonstrated that the proposed SPIRAL-`p reconstruction for

small p values eliminates the spurious artifacts found in the SPIRAL-`1 recon-

struction. While the proposed method leads to more accurate and high strength
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reconstructions, it requires more computational effort because evaluating the GST

function requires solving a zero-finding problem (2.18) iteratively. We have found

that computational time can be decreased significantly by using the SPIRAL-`1

solution to initialize the SPIRAL-`p method.

2.3.2 Analysis of the p-Norm Subproblem Minimization

The collaborative work describes in this section is based on the paper by

Orkusyan et al.[100]. Recall that the subproblem (2.13) can be uncoupled into

scalar minimization problems of the form (2.14), i.e.,

f ∗s = arg min
f∈R

Ωs(f) =
1

2
(f − s)2 + λ|f |p,

subject to f ≥ 0. (2.23)

where f and s denote elements of the vectors f and sk respectively and λ = τ/αk.

Recall from Section 2.3.1, given a regularization parameter λ > 0 and p-norm for

Ωs(f) in (2.23), there exists a threshold value γp(λ) (that explicitly depends on p

and λ) such that if s ≤ γp(λ), the global minimum of (2.23) is f ∗s = 0; otherwise,

the global minimum will be a non-zero value (see Fig. 2.9). When s = γp(λ), there

exists f ∗γ such that

Ωγ(f
∗
γ ) = Ωγ(0) and Ω′γ(f

∗
γ ) = 0. (2.24)

By solving (2.24) simultaneously, we can explicitly find the threshold value γp(λ)

for given p and λ values. For any s > γp(λ), the unique minimum f ∗s of Ωs(f) is

greater than 0 and is obtained by setting Ω′s to 0:

Ω′s(f
∗
s ) = f ∗s − s+ λp(f ∗s )p−1 = 0. (2.25)

We now describe zero-finding algorithms to compute the root f ∗s .

Fixed-Point Iteration Method

A point f ∗ is said to be a fixed point of a function G(f) if G(f ∗) = f ∗. Setting

Ω′s(f) equal to zero, we have s−λp(f ∗)p−1 = f ∗. The fixed-point iteration method
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Figure 2.9: The plot of the scalar quadratic function Ωs(f), where p = 0.5 and
λ = 1.0. (a) When s is less than the specific threshold value γp(λ), then f ∗s = 0
is the unique global minimum. (b) When s = γp(λ), there are global minima at
f ∗ = 0 and f ∗γ . If s > γp(λ), then the global minimum is uniquely at some f ∗s > 0.

is an iterative method for finding fixed points of a function. In particular, it defines

a sequence of points {fn} given by fn+1 = G(fn). In the previous Section 2.3.1,

we used the fixed point iteration for finding the root of Ω′s(f):

fn+1 = g(fn) = s− λpfp−1n . (2.26)

Newton’s Method

There are various ways of defining fixed point iterations. One particular fixed-

point formulation is Newton’s method, which is given by the iterations

fn+1 = G(fn) = fn −
Ω′s(fn)

Ω′′s(fn)
.

In our case, the iterations for Newton’s method are given by

fn+1 = fn −
fn − s+ λpfp−1n

1 + λp(p− 1)fp−2n

=
s+ λp(p− 2)fp−1n

1 + λp(p− 1)fp−2n

.

In order to simplify the computation of this iteration and avoid computing two

different roots fp−1n and fp−2n , we multiply the numerator and denominator by

f 2−p
n :

fn+1 =
sf 2−p

n + λp(p− 2)fn

f 2−p
n + λp(p− 1)

. (2.27)
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The performance of fixed-point iteration and Newton’s method very much depend

on the choice of the initial point f0, which we discuss next.

Initialization

When s = γp(λ), the solution f ∗γ such that

Ω′(f ∗γ ) = f ∗γ − γp(λ) + λp(f ∗γ )p−1 = 0

is given explicitly by

f ∗γ = (2λ(1− p))
1

2−p .

Then if s = γp(λ) + ε for some ε > 0, we now analyze how to estimate f ∗s to

initialize the zero-finding methods described previously.

First-order Taylor series approximation. To define the initial point, we can

linearize Ω′s(f) around f ∗γ and find the zero of the linearization. More specifically,

Ω′s(f
∗
γ + δ) ≈ Ω′s(f

∗
γ ) + δΩ′′s(f

∗
γ )

= f ∗γ − (γp(λ) + ε) + λp(f ∗γ )p−1

+ δ(1 + λp(p− 1)(f ∗γ )p−2)

= −ε+ δ(1 + λp(p− 1)(f ∗γ )p−2).

Setting this equal to zero and solving for δ suggests the use of the initialization

f 0
s = f ∗γ + δ, where δ =

ε

1 + λp(p− 1)(f ∗γ )p−2
.

Second-order Taylor series approximation. Similarly, we can use a second-

order Taylor approximation to Ω′s around f ∗γ :

Ω′s(f
∗
γ + δ) ≈ Ω′s(f

∗
γ ) + δΩ′′s(f

∗
γ ) +

δ

2
Ω′′′s (f ∗γ ),

which yields the following approximation:

f 0
s = f ∗γ + δ, where δ =

−b+
√
b2 − 4ac

2a
,
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Figure 2.10: Approximations to Ω′γ(f) centered at f ∗γ . As f increases, both the
linear and quadratic Taylor approximation diverge from Ω′γ(f). In contrast, the
approximation `(f) = f−s, which are the first two terms in Ω′γ(f), is more accurate

for large values of f .

where

a =
λp(p− 1)(p− 2)

2
(f ∗γ )p−3

b = 1 + λp(p− 1)(f ∗γ )p−2

c = −ε.

The linearization and second-order Taylor approximation, however, diverge

quickly from the true solution as f ∗s becomes large (see Fig. 2.10). We now

discuss bounds on f ∗s that allow us to make more effective initial approximations

to f ∗s . We first prove a lemma, which will be useful in showing bounds on f ∗s as

well as other results.

Lemma 1. Let λ > 0 and 0 ≤ p < 1. Then for s ≥ γp(λ), λp(1− p)(f ∗s )p−2 ≤ p
2
.

Proof. Recall that for s = γp(λ), there exists an f ∗γ > 0 such that (??) hold. From

Ωγ(f
∗
γ ) = Ωγ(0), we can obtain

1

2
f ∗γ + λ(f ∗γ )p−1 = γp(λ), (2.28)
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and from Ω′γ(f
∗
γ ) = 0, we have

f ∗γ + λp(f ∗γ )p−1 = γp(λ). (2.29)

Setting (2.28) equal to (2.29) and with some algebraic manipulation, we have

λp(1− p)(f ∗γ )p−2 = p
2
. For s > γp(λ), the unique minimizer f ∗s > f ∗γ . Thus,

λp(1− p)(f ∗s )p−2 < λp(1− p)(f ∗γ )p−2 =
p

2
,

which completes the proof.

This result allows us to prove the following theorem, which bounds the mini-

mizer, f ∗s , of Ωs(f):

Theorem 2. For λ > 0 and 0 ≤ p < 1, the minimizer, f ∗s , of Ωs is bounded by

f ∗s ≤ s. If 0 ≤ p ≤ 1
2
, then the minimizer is further bounded by 2

3
s ≤ f ∗s ≤ s.

Proof. Recall that the minimizer of Ωs solves Ω′s(f
∗
s ) = 0. Solving for f ∗s , we have

f ∗s =
s

1 + λp(f ∗s )p−2
. (2.30)

Rewriting the main result of Lemma 1, we obtain λp(f ∗s )p−2 ≤ p
2(1−p) . Observe that

if p ≤ 1
2
,

λp(f ∗s )p−2 ≤ p

2(1− p)
≤ 1

2
and 1 ≤ 1 + λp(f ∗s )p−2 ≤ 3

2
.

Using these bounds in (2.30) yields the desired results.

Note that Theorem 1 implies that as s increases, so does f ∗s . Moreover, as s→∞,

(f ∗s )p−2 → 0, and therefore, by (2.25), f ∗s → s. Thus, a sensible initial estimate for

f ∗s is s.

Fixed-point initialized Newton’s Method. We can improve the initial guess

from s by finding a point between f ∗s and s. The mean-value theorem guarantees

the existence of ξ ∈ (f ∗s , s) such that

Ω′′s(ξ) =
Ω′s(s)− Ω′s(f

∗
s )

s− f ∗s
.
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Rearranging, we find that

f ∗s = s− Ω′s(s)− Ω′s(f
∗
s )

Ω′′s(ξ)
= s− λpsp−1

1− λp(1− p)ξp−2
.

By Lemma 1, 2−p
2
≤ 1− λp(1− p)ξp−2 ≤ 1, and thus,

f ∗s ≈ s− λpsp−1 ∈ (f ∗, s).

We note that this is precisely the first fixed point iteration initialized at s.

Guarantee of Convergence

Let en = fn − f ∗ and en+1 = fn+1 − f ∗ represent the errors on the n-th and

n+1-th iterations respectively. For fixed point iteration, we have

en+1 = fn+1 − f ∗ = G(fn)− f ∗

= G(f ∗ + en)− f ∗,

= G(f ∗) + enG
′(f ∗) + e2nG

′′(ξ)− f ∗

= f ∗ + enG
′(f ∗) + e2nG

′′(ξ)− f ∗

= enG
′(f ∗) + e2nG

′′(ξ).

For small en, en+1 ≈ enG
′(f ∗). In our context,

G(f) = s− λpfp−1 and G′(f) = λp(1− p)fp−2.

By Lemma 1, G′(f) < 1. Therefore, the error is decreasing and the fixed point

iteration method is guaranteed to converge.

To show Newton’s method is guaranteed to converge, let fc be a critical point

of Ω′s(f) i.e. Ω′′s(fc) = 0. In particular, fc = (λp(1 − p))
1

2−p and for any f > fc,

Ω′′s(f) = 1 + λp(p − 1)fp−2 > 0 i.e. Ω′s(f) is increasing in the interval (fc,∞).

Then, Ω′′′s (f) = λp(p− 1)(p− 2)fp−3 > 0 for all f ∈ (0,∞), which implies Ω′s(f) is

convex. Finally, we note that fc < (2λp(p− 1))
1

2−p = f ∗γ ≤ f ∗, i.e Ω′s(f) has a root

in (fc,∞). Therefore, Ω′s(f) is increasing, convex, and has a zero in (fc,∞), and

Newton’s method is guaranteed to converge from any starting point in the interval

(fc,∞) (see Theorem 2 pg. 86 in [80]).
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Rate of convergence. Let ε be some set tolerance such that on the n-th iteration

if |en| = |fn − f ∗s | ≤ ε then we will consider the algorithm to have converged to

the root. For fixed point iteration, we have convergence when

ε ≥ |en| = C1|en−1| = Cn
1 |e0| (2.31)

where C1 = G′(f ∗s ) = λp(1 − p)(f ∗s )p−2. Solving for n, the number of iterations

required to converge, we have

nFixed Point ≥
ln ε− ln |e0|

lnC1

. (2.32)

For Newton’s method, we have convergence when

ε ≥ |en| = C2|en−1|2 = C2n−1
2 |e0|2

n

(2.33)

where C2 =
1

2

λp(1− p)(2− p)(f ∗s )p−3

1− λp(1− p)(f ∗s )p−2
. Solving for n in (2.33) yields

nNewton ≥
1

ln 2
ln

(
lnC2 + ln ε

lnC2 + ln e0

)
. (2.34)

Fig. 2.11 shows the theoretical number of iterations for fixed-point iterations and

Newton’s method to converge. Note that when s is near γp(λ), fixed-point iter-

ations take many more iterations than Newton’s method. However, for large s,

fixed-point iterations only require four iterations. Although this is still twice as

many as the iterations for Newton’s method, the number of floating point oper-

ations for fixed-point iterations is much smaller than that for Newton’s method

(compare (2.26) and (2.27)). Since s can take on any real value, we expect the aver-

age performance of fixed-point iteration and Newton’s method will be comparable,

which we see in the next section.

Numercal experiments

We simulated a 3D cubic phantom with two embedded fluorescence capillary

rod targets. For the finite element mesh, there are a total of 8,690 nodes inside

the 3D cube while only 36 nodes are located inside the two rods. The fluorophore

concentration of the nodes is set to 7,000 inside the two rods and 0 outside. We
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Figure 2.11: Theoretical number of iterations required to converge as a function
of s. Here p = 0.5, λ = 1, ε = 10−8, e0 = s− f ∗, and γp(λ) ≤ s ≤ 11 .

chose a total of 20 excitation source positions and 1, 057 detector positions on

the top surface of the cube, which gives us 20 × 1,057 = 21,140 measurements.

About one-tenth of all the measurements were used (i.e. 2,120 measurements). We

assumed that the excitation wavelength is 650 nm and the emission wavelength is

720 nm in the construction of the system matrix A. The tissue optical properties

were µa = 0.0022 mm−1, µ′s = 1.41 mm−1 at both 650 nm and at 720 nm. For this

experiment, the simulated measurement vector y is corrupted by Poisson noise

with signal-to-noise ratio (SNR) of 3 dB (≈ 57% noise). In our method, we used

p = 0.74 and ATy as the initial guess. Fig. 2.12 shows the true signal (f∗) and our

reconstruction.

Time (sec) Iterations

Fixed-point iteration 21.2829 1,281,974

Newton’s method 21.0128 476,585

Table 2.2: Time and iteration average over 10 trials for fixed-point iteration and
Newton’s method to reconstruct the fluorescence molecular tomography data.
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Figure 2.12: (a) Horizontal slices of a simulated fluorescence capillary rod targets.
(b) Reconstruction using p-norm regularized subproblem minimization.

Conclusion

Here, we analyzed methods for solving the p-norm regularized subproblems

arising from minimizing the Poisson-log likelihood for reconstructing sparse sig-

nals from photon-limited measurements. These non-convex subproblems do not

have closed form solutions, and as such, they require numerical approaches for

computing the minimizers. While Newton’s method in theory should converge to

the solution faster than fixed-point iterations, the number of floating-point op-

erations needed to perform each iteration offsets the computational advantage of

using derivative information.

2.3.3 p-th Power Total Variation Regularization

The sparse recovery method describes in this section is based on the paper by

Adhikari and Marcia [4]. When the signal to be reconstructed is known to be

sparse in the canonical basis, it can be recovered accurately using a nonconvex

`p-norm regularization technique as we discussed in Section 2.3.1. However, when

the image is not sparse, a different regularization technique must be employed.

The total variation (TV) seminorm penalty [104] has been commonly used as a

sparsity measure and has been shown to be very effective as a regularization term

for image reconstruction. More specifically, the TV seminorm measures the first-

order difference between adjacent pixels in images. Thus, an image with a small

TV seminorm means that generally, it has homogeneous signal levels with few
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abrupt changes or edges. The recent work of Yan and Lu [138] generalizes this

TV seminorm to the p-th power (TVp), where 0 < p ≤ 1, by using a weighted TV

minimization where the weights are computed to approximate the TVp regularized

problem locally.

TV seminorm regularized Poisson intensity reconstruction problem (2.4) has

been solved in many previous works. In the efforts [60] and [107], the split Bergman

approach [65] was used to solve the Poisson problem, but the proposed methods

are not suitable for large scale problems due to a matrix inversion operation in-

volve with those approaches. In this study, we propose to regularize the negative

Poisson log-likelihood function (1.9) using the TVp penalization method in [138].

Specifically, we use the SPIRAL approach [70] to define a sequence of minimization

subproblems with the TVp penalty. These subproblems are solved using the FISTA

method for modified TV-based denoising approach [27]. We explore the effective-

ness of the proposed method through numerical experiments in image deblurring

and compare the results with the state-of-the-art SPIRAL-TV1 results.

We propose to regularize the negative Poisson log likelihood function in (1.10)

using a p-th power total variation [138], denoted by TVp (0 < p ≤ 1). Then the

sequence of subproblems in (2.3) can be written as

fk+1 = arg min
f∈Rmn

1

2
‖ f − sk ‖22 +

τ

αk
‖f‖TVp (2.35)

subject to f � 0,

where ‖f‖TVp is defined as the anisotropic TV seminorm

‖f‖
TV

(A)
p

=
m−1∑
i=1

n∑
j=1

|fi,j−fi+1,j|p +
m∑
i=1

n−1∑
j=1

|fi,j−fi,j+1|p, (2.36)

or as the isotropic TV seminorm

‖f‖
TV

(I)
p

=
m−1∑
i=1

n−1∑
j=1

√
(fi,j−fi+1,j)2p + (fi,j−fi,j+1)2p

+
m−1∑
i=1

|fi,n−fi+1,n|p +
n−1∑
j=1

|fm,j−fm,j+1|p. (2.37)

When p = 1 in (2.36) and (2.37), TV
(A)
p and TV

(I)
p recover the standard TV

(A)
1

and TV
(I)
1 respectively. Note that when p < 1, both TVp penalty functions are
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nonconvex, making the global minimum of (2.35) difficult to trace. In [138], the

minimization of the nonconvex problem (2.35) is accomplished through the con-

vexification of the nonconvex penalty function ‖f‖TVp using a reweighting strategy.

More specifically, a weighted TV seminorm is used to approximate the anisotropic

TVp seminorm in (2.36) as

‖f‖
TV

(A)
w

=
m−1∑
i=1

n∑
j=1

αi,j|fi,j − fi+1,j| +
m∑
i=1

n−1∑
j=1

βi,j|fi,j − fi,j+1|, (2.38)

and the isotropic TVp seminorm in (2.37) as

‖f‖
TV

(I)
w

=
m−1∑
i=1

n−1∑
j=1

√
(αi,j(fi,j − fi+1,j))2 + (βi,j(fi,j − fi,j+1))2

+
m−1∑
i=1

αi,n|fi,n − fi+1,n|+
n−1∑
j=1

βm,j|fm,j − fm,j+1|. (2.39)

In the above weighted TV definitions, αi,j > 0 and βi,j > 0 are coefficients whose

values are computed using f in the previous iterate k:

αi,j = (|f (k)
i,j − f

(k)
i+1,j|+ ε)(p−1), (2.40)

βi,j = (|f (k)
i,j − f

(k)
i,j+1|+ ε)(p−1), (2.41)

where ε > 0 to prevent the weights from being zero. By substituting (2.40) and

(2.41) for αi,j and βi,j in the weighted TV definitions (2.38) and (2.39), it can be

shown that ‖f‖
TV

(A)
w
≈ ‖f (k)‖

TV
(A)
p

and ‖f‖
TV

(I)
w
≈ ‖f (k)‖

TV
(I)
p

(see [138] for details).

Modified Dual Approach with Weighted TV Norms

Using the weighted TV functions as defined in (2.38) and (2.39), we now show

how to modify the FISTA approach of dual problem construction [27, 39]. In

particular, we use the exact same set of notations used in Sec. 4.1 of [27] with the

exception of the linear operator L .

Let PA be the set of matrix-pairs (p1,q1) where p1 ∈ R(m−1)×n and q1 ∈
Rm×(n−1) satisfying

|pi,j| ≤ 1, i = 1, . . . ,m− 1, j = 1, . . . , n,

|qi,j| ≤ 1, i = 1, . . . ,m, j = 1, . . . , n− 1.
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Similarly, let PI be the set of matrix-pairs (p2,q2) where p2 ∈ R(m−1)×n and

q2 ∈ Rm×(n−1) that satisfy

p2i,j + q2i,j ≤ 1, i = 1, . . . ,m− 1, j = 1, . . . , n− 1,

|pi,n| ≤ 1, i = 1, . . . ,m− 1,

|qm,j| ≤ 1, j = 1, . . . , n− 1.

We redefine the linear operator L : R(m−1)×n × Rm×(n−1) −→ Rm×n as follows:

L (p`,q`)i,j = αi,jpi,j − αi−1,jpi−1,j + βi,jqi,j − βi,j−1qi,j−1,

where ` is 1 or 2, and we assume that

p0,j = pm,j = qi,0 = qi,n ≡ 0 for i = 1, . . . ,m, j = 1, . . . , n.

The operator L T : Rm×n −→ R(m−1)×n × Rm×(n−1) is given by

L T (x) = (p`,q`),

where p` ∈ R(m−1)×n and q` ∈ Rm×(n−1) are the matrices defined by

pi,j = xi,j − xi+1,j, i = 1, . . . ,m− 1, j = 1, . . . , n,

qi,j = xi,j − xi,j+1, i = 1, . . . ,m, j = 1, . . . , n− 1.

Since our subproblems (2.35) are non-negatively constrained, PC is the orthogonal

projection operator on to the set C = [0,∞).

Now note that the following two relations

α|x| = max
p
{αxp : |p| ≤ 1},√

α2x2 + β2y2 = max
p1,p2
{αxp1 + βyp2 : p21 + p22 ≤ 1},

hold true for weights α > 0 and β > 0 (see Appendix A.6). Therefore, the

anisotropic weighted TV seminorm can be written as the maximization problem

‖f‖
TV

(A)
w

= max
(p1,q1)∈PA

T1(f ,p1,q1),
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where

T1(f ,p1,q1) =
m−1∑
i=1

n∑
j=1

αi,j(fi,j − fi+1,j)pi,j +
m∑
i=1

n−1∑
j=1

βi,j(fi,j − fi,j+1)qi,j.

Similarly, the isotropic weighted TV seminorm also can be written as the maxi-

mization problem

‖f‖
TV

(I)
w

= max
(p2,q2)∈PI

T2(f ,p2,q2),

where

T2(f ,p2,q2) =
m−1∑
i=1

n−1∑
j=1

[αi,j(fi,j − fi+1,j)pi,j + βi,j(fi,j − fi,j+1)qi,j]

+
m−1∑
i=1

αi,n(fi,n − fi+1,n)pi,n +
n−1∑
j=1

βm,j(fm,j − fm,j+1)qm,j.

With the above defined notations, we have

T1(f ,p1,q1) = Tr(L (p1,q1)
T f),

T2(f ,p2,q2) = Tr(L (p2,q2)
T f).

Hereafter we can follow the same procedure explained in [27] to obtain the dual

problem with the weighted TV norm. This dual problem is iteratively solved using

a fast gradient projection method [27].

Numerical Results

In this section, we demonstrate the effectiveness of the proposed algorithm,

which we call SPIRAL-TVp. In particular, we consider an image deblurring prob-

lem for which TV norm regularization is highly suitable.

In this experimental setup, we used the Shepp-Logan phantom image of size

128× 128 available in the MATLAB’s image processing toolbox as the true image

f∗ (see Fig. 2.13(a)). The true detector blurred image (see Fig. 2.13(b)) was

obtained by Af∗, where A is a blurring operator (f∗ is convolved with some blur

matrix). Finally, a Poisson noisy observation matrix of size 128×128 was simulated

by MATLAB’s poissrnd function. The Poisson noisy observation matrix is shown

in Fig. 2.13(c), where the mean photon count is 45.8 with a maximum of 398.
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(a) Truth image (f*) (b) True detector 
    intensity (Af*)

(c) Observed photon
         counts (y)

Figure 2.13: Experimental setup: (a) Shepp-Logan head phantom as true image,
(b) blurred phantom image, (c) Poisson noisy phantom image with mean count
45.8.

We implemented the SPIRAL-TVp algorithm in MATLAB R2013a (on a PC

with Intel Core i7 2.7GHz Processor with 8GB memory) by modifying existing

codes of the SPIRAL method [69] and the TV-based FISTA denoising method [26].

SPIRAL-TVp follows a warm-start strategy, where we start the method by solving

the p = 1 case first, and then using its solution to initiate the next problem with a

smaller p value, say, p = 0.9. (This can be viewed as a homotopy or continuation

method.) In Eqs. (2.40) and (2.41), ε = 10−13 in our numerical experiments.

We run the algorithm until the relative difference between consecutive iterates

converged to ‖fk+1 − fk‖2/‖fk‖2 ≤ 10−8 with a minimum of 50 iterations. For

each p-value, the regularization parameter in (2.35) is optimized to get minimum

RMSE value. Finally, we compared SPIRAL-TVp reconstruction with SPIRAL-

TV1 reconstruction for both isotropic and anisotropic TV types using RMSE values

and peak signal-to-noise ratios (PSNR (dB) = 10 log10(max(f∗)2/MSE)).

The results of the experiments for anisotropic and isotropic TV regularization

are presented in Figs. 2.14 and 2.15 respectively. For the anisotropic TV regular-

ization, the SPIRAL-TV0.8 reconstruction has RMSE = 11.57% and PSNR =30.95

dB while the reconstruction for SPIRAL-TV1 reconstruction has RMSE = 11.90%

and PSNR = 30.70 dB. For the isotropic TV regularization, the SPIRAL-TV0.8

reconstruction has RMSE = 14.45% and PSNR = 29.02 dB while the reconstruc-

tion for SPIRAL-TV1 reconstruction has RMSE = 14.80% and PSNR = 28.80 dB.
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(a) SPIRAL-TV1
 PSNR = 30.70 dB  

(d) SPIRAL-TV0.8
  PSNR = 30.95 dB  

(b) Truth - SPIRAL-TV1
          RMSE = 11.90%     

(e) Truth - SPIRAL-TV0.8
         RMSE = 11.57% 
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(c) Zoomed region

(f) Zoomed region

Figure 2.14: Anisotropic TV based reconstructions and error images. Top row:
(a) SPIRAL-TV1 reconstruction, (b) magnitude of error between the true image
and the SPIRAL-TV1 estimated image, (c) SPIRAL-TV1 reconstruction has more
artifacts. Bottom row: (d) SPIRAL-TV0.8 reconstruction, (e) magnitude of error
between the true image and the SPIRAL-TV0.8 estimated image, (f) SPIRAL-
TV0.8 reconstruction has more homogeneous signal levels.

In both cases and both metrics, the SPIRAL-TV0.8 reconstructions show improve-

ment over the SPIRAL-TV1 reconstructions. Furthermore, the SPIRAL-TV0.8

reconstructions recovered the actual gray area in the phantom body without los-

ing the edge details and has less prominent cloud noise-like texture (see red zoomed

areas in Fig. 2.14 (c) and (f) and Fig. 2.15 (c) and (f)).

Conclusion

Here, we have formulated a TVp regularized negative log-likelihood function for

photon-limited imaging problems. This nonconvex TVp regularization problem is

solved in a convex setting by using a reweighting strategy for each iteration. The
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(a) SPIRAL-TV1
  PSNR = 28.80 dB   

(d) SPIRAL-TV0.8
  PSNR = 29.02 dB 

(b) Truth - SPIRAL-TV1
        RMSE = 14.80% 

(e) Truth - SPIRAL-TV0.8
        RMSE = 14.45% 
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Figure 2.15: Isotropic TV based reconstructions and error images. Top row:
(a) SPIRAL-TV1 reconstruction, (b) magnitude of error between the true image
and the SPIRAL-TV1 estimated image, (c) SPIRAL-TV1 reconstruction has more
artifacts. Bottom row: (d) SPIRAL-TV0.8 reconstruction, (e) magnitude of error
between the true image and the SPIRAL-TV0.8 estimated image, (f) SPIRAL-
TV0.8 reconstruction also has more homogeneous signal levels.

SPIRAL-TV1 solution is used as the warm initial point in the proposed SPIRAL-

TVp method, and we proceed with this strategy by reducing the p-value. Under

the warm-start strategy, the proposed SPIRAL-TVp algorithm will converge to a

reasonably good local solution that is more accurate than the SPIRAL-TV1 global

solution. Since the anisotropic TV is related to the `1-norm, the SPIRAL-TVp

with the anisotropic TV leads to more accurate results than with the isotropic

TV. In our experience with this particular data set, there is no any significant

improvement in reconstructions for p-values less than 0.8. While the proposed

SPIRAL-TVp method leads to more accurate results with less artifacts, it requires

more computational effort than SPIRAL-TV1 due to the iterative nature of the
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warm-start strategy.

2.3.4 Non-Convex Shannon Entropy Regularization

The work describes in this section is based on the paper by Adhikari and Marcia

[7]. In this method, we propose to regularize the Poisson log-likelihood objective

function (1.9) by the generalized nonconvex Shannon entropy function:

Hp(f) = −
n∑
i=1

|fi|p

‖f‖pp
log
( |fi|p
‖f‖pp

)
, (2.42)

where p > 0. This regularizer enforces sparsity by driving the solution towards

axes (see Fig. 2.16). Then the corresponding subproblems (1.10) can be written

as

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
Hp(f) (2.43)

subject to f � 0.

Figure 2.16: The generalized nonconvex Shannon entropy function Hp(f) with
p = 0.5 in 2D space.

The nonconvex Shannon entropy function (2.42) was recently proposed by

Huang et al. [75] as a sparse-promoting penalizer for Gaussian noise based re-
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constructions. A Shannon form of entropy [108] based Bayesian image reconstruc-

tion method has been studied by Nunez et al. [98] for the Hubble space telescope

data. Skilling et al. [112] maximized the Shannon entropy: −
∑n

j=1 pj log(pj),

where pj = fj/
∑n

i=1 fi, for image recovery in astronomy. Moreover, Donoho et

al. [50] recovered nearly-black objects by minimizing the Shannon entopy regu-

larized least-squares function. Our approach is novel in regularizing the Poisson

log-likelihood using the sparsity promoting generalized Shannon entropy function

(2.42) in photon-limited context. In order to make the problem (2.43) separable,

we replace Hp(f) using its first-order Taylor series approximation at current iterate

fk:

Hk
p (f) ≡ Hp(f

k) +∇Hp(f
k)T (f − fk),

where the gradient of Hk
p (f) is computed by

∇Hp(f) =


∂Hp(f)

∂|f1|
∂Hp(f)

∂|f2|
...

∂Hp(f)

∂|fn|

 ,
where

∂Hp(f)

∂|fi|
= −p|fi|

p−1

‖f‖pp
log |fi|p +

p|fi|p−1

‖f‖2pp

n∑
`=1

|f`|p log |f`|p, for i = 1 . . . n.

Manipulating this Taylor approximation and ignoring constant terms yield a se-

quence of subproblems of the form

fk+1 = arg min
f�0

1

2

n∑
i=1

(fi − ski )2 +
n∑
i=1

τ

αk
(∇Hp(f

k))ifi, (2.44)

where ski is the i-th element of the vector sk. The minimizer fk+1 can be computed

analytically by solving each scalar function of the form

f ∗ = arg min
f≥0

1

2
(f − s)2 + γ f, (2.45)

where f and s denote i-th element of the vectors f and sk respectively and γ =

τ
αk

(∇Hp(f
k))i. Then the minimum of (2.45) is given by

f ∗ = [s− γ]+,
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where a thresholding operator [ · ]+ = max{0, ·} is employed to get a nonnegative

solution.

Numerical Experiments

We investigate the effectiveness and efficiency of the proposed method, which

we call SPIRAL-Shannon, by comparing it to the existing SPIRAL-`1 [70] and

SPIRAL-`p [5] methods (on a MacBook Pro with Intel Core i7 2.8GHz 4 cores

Processor with 16GB memory). Here, we use 16% Poisson noise corrupted observed

vector y of length 4×104 to recover a true signal f of length 105 with 1.5% sparsity.

All algorithms are initialized with AT (y) and terminate if consecutive iterates do

not change significantly.

Figure 2.17: Number of nonzeros in the reconstructions of SPIRAL-`1, SPIRAL-
`p and the proposed SPIRAL-Shannon over the p-values. Note that the number of
nonzeros are started to decrease after p = 1 for both the SPIRAL-`p and SPIRAL-
Shannon.

The number of nonzeros in the reconstruction of SPIRAL-Shannon (see Fig.

2.17) decreases drastically after p < 1 and recover the exact sparsity (i.e., 1, 500) at

p = 0.2. Even though the SPIRAL-`p converges monotonically to the exact spar-

sity at p = 0.3, it requires more computational effort than the SPIRAL-Shannon
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method (see Fig. 2.18). On average, SPIRAL-Shannon and SPIRAL-`p methods

recover the true signal with root mean square error 0.059.

Figure 2.18: Computation time of the SPIRAL-`1, SPIRAL-`p and SPIRAL-
Shannon over the p-values. Note that the proposed SPIRAL-Shannon requires
significantly low computational effort to obtain comparable results.

Conclusion

We proposed a novel Poisson intensity reconstruction method by introduc-

ing sparsity promoting Shannon entropy penalizer to the photon-limited imaging.

Unlike previous nonconvex methods, the proposed method achieved comparable

results with less computational effort.

2.4 Summary of Contribution

In this chapter, we proposed four novel sparse signal recovery methods in

the Poisson noise context: (1) A bounded photon-limited image recovery algo-

rithm: Proposed to incorporate upper and lower bound constraints that model

additional signal intensity information, (2) a non-convex `p-norm regularization

method (SPIRAL-`p). Here, we provided local convergence proof under some mild
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conditions for SPIRAL-`p. Furthermore, we analyzed zero-finding methods for

solving the p-norm regularized minimization subproblems arising from a sequen-

tial quadratic approach, (3) a non-convex p-th power total variation (TVp) reg-

ularization method. This work introduced TVp regularization for image recovery

problems in photon-limited context using iterative reweighting, (4) a non-convex

Shannon entropy regularization method. To the best of our knowledge, this is the

first time to use the generalized version of the Shannon entropy for sparse Poisson

intensity reconstruction.



Chapter 3

Applications with Poisson Process

Model

In this chapter, we demonstrate the effectiveness of the proposed nonconvex

sparse Poisson intensity reconstruction algorithms that we discussed in Chapter

2 with real world application in medical imaging and computational genomics.

Specifically, we propose two novel stage-based approaches to solve time-dependent

tomography problems in medical imaging: Bioluminescence tomography and fluo-

rescence lifetime imaging.

3.1 Fluorescence Molecular Tomography

The work describes in this section is based on the paper by Adhikari et al. [9].

As an emerging near-infrared molecular imaging modality, fluorescence molecular

tomography (FMT) has great potential in resolving the molecular and cellular

processes in 3D objects through the reconstruction of the injected fluorescence

probe concentration. In practice, when a charge-coupled device (CCD) camera is

used to obtain FMT measurements, the observations are corrupted by noise which

follows a Poisson distribution [68]. To reconstruct the original concentration, the

standard least-squares function for data-fitting is not a suitable objective function

to minimize since this model assumes measurement noise which follows a Gaussian

distribution. Most of recent studies [130, 146] in solving FMT problem, assumed

53
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Gaussian type noise and are based on the least-square model. In the rare cases

where the Poisson noise was considered in solving the FMT problem, such as in a

recent work of Yu [140], the least-squares model was still used as objective function.

Based on the SPIRAL-`p approach explained in Section 2.3.1, we propose to

solve the ill-posed, ill-conditioned FMT reconstruction problem only using a rela-

tively small number of observations with Poisson noise. Using simulated FMT data

with different Poisson noise levels, we compare the performance of the proposed

method with the newest Gaussian-based Non-Uniform Multiplicative weighting

with Ordered Subsets (NUMOS) algorithm [147] with respect to different image

quality metrics (VR, Dice, CNR, and MSE) as mentioned in Appendix A.5.

3.1.1 Numerical Results
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Figure 3.1: The true image of the simulated cube.

In this experiment, we simulated a 3D cubic phantom with two embedded

fluorescence capillary rod targets as shown in Fig.3.1. For the finite element mesh,

there are a total of 8,690 nodes inside the 3D cube while only 36 nodes are located

inside the two rods. The fluorophore concentration of the nodes is set to 7,000

inside the two rods and 0 outside. More specifically, the true signal f∗ of length

8,690 with 36 nonzero entries (≈ 0.41% of sparsity) and the corresponding system

matrix A of size 2,120 × 8,690 were obtained from Prof. Changqing Li’s medical
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Figure 3.2: Experimental setup. (a) True signal (f∗) of size 8,690 with 36 nonzero
entries. (b) True intensity (Af∗) at 2,120 detectors. (c) Very low mean photon
count measurements (y) with 57% Poisson noise (SNR ≈ 3). Note that the di-
mension of the measurement vector y is four times smaller than the dimension of
the true signal (f∗).

imaging lab. We simulated measurement vector y is of length 2,120 having Poisson

noises with signal-to-noise ratio (SNR) of 20 (≈ 10% noise), 10 (≈ 30% noise) and

3 (≈ 57% noise), where noise (%) = 100 · ‖Af∗ − y‖2/‖y‖2. Fig. 3.2 shows the

true signal (f∗), the true detector intensity (Af∗), and the measurement vector y

for the case SNR ≈ 3.
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Table 3.1: Reconstructed horizontal slice images of the simulated cube using
SPIRAL-`1, SPIRAL-`p(p = 0.74) and NUMOS method: (a) when SNR ≈ 3 dB
(57% Poisson noise), (b) when SNR ≈ 10 dB (30% Poisson noise), and (c) when
SNR ≈ 20 dB (10% Poisson noise).

 

The true image

Truth NUMOS

(a) (b) (c) (d)

Figure 3.3: Zoomed version of a reconstructed slice image (see red box) using the
three different methods when SNR ≈ 3: (a) Truth slice, (b) SPIRAL-`1 recon-
structed slice, (c) more localized and high contrast SPIRAL-`p(p = 0.74) recon-
structed slice, (d) NUMOS reconstructed slice with smooth-out edges.
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The reconstructed results for each method for different Poisson noise levels are

shown in Table 3.1, and the corresponding detailed image quality metrics are given

in Table 3.2. When the SNR is high (SNR ≈ 20 or 10% noise), we can see that

the all methods perform well. NUMOS performs particularly well in obtaining

more localized targets with high location accuracy. For low SNR measurements

(SNR ≈ 3), SPIRAL-`p method outperforms the NUMOS and SPIRAL-`1 methods

in obtaining locationally accurate targets with more strength (see Fig. 3.3). In

the 30% Poisson noise experiment (SNR ≈ 10), even though the both SPIRAL-

`1 and SPIRAL-`p perform quite well with relatively close image quality metrics,

SPIRAL-`p image has very low background artifacts. For the SNR ≈ 3 setting,

on average, SPIRAL-`p requires about 30 seconds for reconstruction, SPIRAL-`1

requires 15 seconds, and NUMOS requires 3 seconds.

SNR Algorithm VR Dice CNR MSE

≈ 3

SPIRAL-`1 0.95 0.30 7.40 9.1 × 104

SPIRAL−`p 1.10 0.35 7.90 8.8 × 104

NUMOS 1.10 0.32 7.20 9.3 × 104

≈ 10

SPIRAL-`1 1.01 0.43 10 7.0 × 104

SPIRAL−`p 0.98 0.47 10 7.8 × 104

NUMOS 0.94 0.42 8.70 8.3 × 104

≈ 20

SPIRAL-`1 0.73 0.61 16 3.8 × 104

SPIRAL-`p 1.01 0.61 12 5.5 × 104

NUMOS 0.94 0.63 14 4.5 × 104

Table 3.2: Metrics of the best reconstructions under different SNR levels (≈
3, 10, 20) using SPIRAL-`1, SPIRAL-`p (p = 0.74), and NUMOS algorithms. In
the best case, VR and Dice metrics have to be closed to 1, CNR value should
be higher, and MSE value should be lower. Those best selections are in boldface
letters.
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3.2 Time-Dependent Bioluminescence

Tomography

The work describes in this section is based on the paper by Adhikari et al. [2]. In

bioluminescence imaging one seeks to reconstruct sources of light contained within

a tissue sample from boundary measurements of scattered light. This imaging

modality provides valuable insight into in vivo cellular and molecular processes in

small animals, for example [55]. For this imaging problem, measured signals are

modeled by solutions of an initial-boundary value problem of a partial differential

equation modeling the multiple scattering of light by tissues. Hence, the main

challenge in this problem lies in processing signals that are constrained by partial

differential equations.

For this problem, it is reasonable to assume a sparse distribution of sources.

In that regard, there have been several recent results that have employed sparsity-

promoting methods to solve this bioluminescence imaging problem, e.g. [62, 63, 71,

24, 54, 143]. For all of those studies, the sources did not vary in time. In contrast,

Unlu and Gulsen [127] identify the importance of considering a time-dependent

source for these imaging problems.

Motivated by this study, we take on the problem of reconstructing time-dependent

bioluminescent sources. In particular, we consider measurements with relatively

low photon counts so that one must explicitly consider Poisson noise in the data.

For that case, we employ the nonconvex Sparse Poisson Intensity Reconstruc-

tion ALgorithm (SPIRAL-`p) [5] to solve the nonconvex problem for the negative

Poisson log-likelihood function. We show that this approach applied to the time-

averaged data provides an effective method for reconstructing the spatial support

of the bioluminescent sources. Upon determining these supports, we recover the

characteristic time decay of each of the sources from the time-dependent data.

We show using numerical simulations that this two-stage reconstruction method

effectively solves this time-dependent bioluminescence problem.

The remainder of this section is as follows. In Section 3.2.1, we describe the

forward model and inverse problem that make up this time-depdendent biolumines-
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cence imaging problem. In Section 3.2.2, we describe the details of our two-stage

method to recover the sources from boundary measurements of scattered light cor-

rupted by Poisson noise. We give results from numerical simulations demonstrating

this method in Section 3.2.3. Section 3.2.4 gives our conclusions.

3.2.1 Problem Formulation

Consider the domain Ω with boundary ∂Ω composed of a uniform absorbing

and scattering medium. We assume that the optical properties of this medium

are known to reasonable precision. Contained within Ω are a sparse distribu-

tion of time-dependent sources. For the time-dependent bioluminescence imaging

problem, we seek to recover the spatial locations of these sources as well as their

characteristic time behavior. In what follows, we describe the forward model and

then the corresponding inverse problem for this bioluminescence problem.

Forward model

We model light scattering and absorption in the medium using the diffusion

approximation [131, 12]. Let φ(r, t) denote the optical fluence rate at position r

at time t. It satisfies the diffusion equation,

1

c

∂φ

∂t
− κ∇2φ+ µaφ = S in Ω× (0, T ], (3.1)

with κ denoting the diffusion coefficient, µa denoting the absorption coefficient, and

S denoting the time-dependent bioluminescent sources contained in the medium.

We solve (3.1) subject to initial condition

φ(r, 0) = 0 in Ω, (3.2)

and boundary condition

φ+ 2κ∂nφ = 0 on ∂Ω× (0, T ] (3.3)

Here, ∂nφ denotes the outward normal derivative of φ. Note that S provides the

only source of light in this problem. Upon solution of the initial-boundary value
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problem consisting of (3.1) subject to (3.2) and (3.3), we model measurements of

scattered light leaving the boundary of the medium, u(r, t), through evaluation of

u(r, t) = −κ∂nφ =
1

2
φ on ∂Ω× (0, T ]. (3.4)

Note that we have substituted (3.3) into the first result of (3.4) to obtain the final

result of (3.4).

Suppose we consider the time-averaged data defined as

ū(r) =
1

2
φ̄(r) =

1

2T

∫ T

0

φ(r, t)dt on ∂Ω. (3.5)

The steady-state optical fluence rate, φ̄, satisfies the steady-state diffusion equation

− κ∇2φ̄+ µaφ̄ = S̄ in Ω, (3.6)

subject to the boundary condition

φ̄+ 2κ∂nφ̄ = 0 on ∂Ω. (3.7)

We will make use of this boundary value problem consisting of (3.6) subject to

(3.7) in the analysis that follows.

Bioluminescent 
Source 

Detectors 

Tissue&
Sample&

u(rm, t)rm

Figure 3.4: Schematic diagram of time-dependent bioluminescence tomography.
Photon-count measurements u(rm, t) are collected at detectors, which are placed
at boundary locations rm for m = 1, . . . ,M .



61

Inverse problem

Suppose we take measurements of the scattered light leaving the boundary

of the medium at M distinct locations denoted by rm ∈ ∂Ω for m = 1, · · · ,M .

Moreover, suppose we collect N samples these measurements in time with sampling

rate, ∆t with T = N∆t. This entire collection of data is given by the vector

u ∈ RMN with

u = [u(r1, t1), · · · , u(rM , t1), · · · , u(rM , tN)]. (3.8)

Because these measurements have relatively low photon counts, these data are

subject to Poisson noise.

The inverse problem seeks to reconstruct S(r, t) appearing in (3.1) from the set

of noisy measurements in u. Because the optical properties of the medium are as-

sumed known, this inverse problem is a linear, inverse source problem. Nonetheless,

it is severely ill-posed. We propose the following two-stage method for reconstruct-

ing the sources.

1. Assuming a sparse distribution of sources that does not change over [0, T ],

we apply SPIRAL-`p, a nonconvex, sparsity promoting optimization method

(see Section 2.3.1 for more details), to determine the spatial support of the

sources from the time-averaged data (3.19).

2. Using the determined support of the sources from Step 1, we recover the

characteristic time of decay for each of the sources.

In what follows, we give the details for this two-stage reconstruction method and

then show results from numerical simulations to evaluate its effectiveness in solving

this problem.

3.2.2 Methodology

Finite difference discretization

We solve the initial-boundary value problem (3.1) subject to the initial condi-

tion (3.12) and the boundary condition (3.3) using the Crank-Nicolson method
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[86]. We discretize the spatial domain Ω with a 2D spatial grid of the form

xi = i∆x and yj = j∆y for i = 0, . . . , Nx, j = 0, . . . , Ny. We also discretize

the temporal domain [0, T ] into N equally spaced intervals of length ∆t. We let

the vector VÑ have entries (V Ñ
0,0, V

Ñ
1,0, . . . , V

Ñ
Nx−1,Ny−1), where V Ñ

i,j ≈ φ(xi, yj, Ñ∆t)

and 1 ≤ Ñ < N . Similarly, we let the vector SÑ = (SÑ0,0, S
Ñ
1,0, . . . , S

Ñ
Nx−1,Ny−1),

where SÑi,j = S(xi, yj, Ñ∆t). Then the Crank-Nicolson method leads to a linear

model at time Ñ∆t in the form

L−VÑ+1 − L+VÑ = S̃Ñ+1, (3.9)

where

L− =

(
1 +

cµa∆t

2

)
I− Lb,

L+ =

(
1− cµa∆t

2

)
I + Lb,

and

S̃Ñ+1 = (SÑ+1 + SÑ)
c∆t

2
.

Here, Lb is the NxNy ×NxNy finite difference operator given by

LbV
Ñ =

cκ∆t

2∆x2
(V Ñ

i−1,j − 2V Ñ
i,j + V Ñ

i+1,j) +
cκ∆t

2∆y2
(V Ñ

i,j−1 − 2V Ñ
i,j + V Ñ

i,j+1).

For all time levels, (3.9) can be written as a system of linear equations of the form
L− 0 . . . 0

−L+ L−
. . .

...

0
. . . . . . 0

0 0 −L+ L−


︸ ︷︷ ︸

L



V1

V2

...

VN


︸ ︷︷ ︸

V

=



S̃1

S̃2

...

S̃N


︸ ︷︷ ︸

S̃

,

where L is a sparse lower triangular block matrix of size NNxNy ×NNxNy, con-

taining L− and L+. As defined in (3.4), in the discrete setting, time-dependent

measurements are obtained by restricting the numerical solution V at the bound-

ary:

u =
1

2
RV =

1

2
RL−1S̃,
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where boundary restriction operator R is a sparse matrix of size MN×NNxNy and

1
2
RL−1 is defined as the system matrix A. Instead of generating the system matrix

A explicitly, we compute the action A(x) and AT (x) on-the-fly using the forward

and backward substitution techniques. Similarly, the actions of time-independent

system matrix also has to be constructed to solve the steady-state boundary value

problem in (3.6) and (3.7). Next we briefly recall our sparsity-promoting nonconvex

optimization technique from Section 2.3.1 to recover interior sources.

Poisson intensity reconstruction

The arrival of photons at the detector is typically modeled by the Poisson noise

model [113]:

y ∼ Poisson(Af∗),

where y ∈ Zm+ is a vector of observed photon counts, f∗ ∈ Rn
+ is the vector of true

signal intensity, and A ∈ Rm×n
+ is the system matrix. Therefore, the nonconvex

Poisson reconstruction problem has the following constrained optimization form:

minimize
f∈Rn

F (f) + τ ‖f‖pp
subject to f � 0, (3.10)

where F (f) is the negative Poisson log-likelihood function (1.9):

F (f) = 1TAf −
m∑
i=1

yi log(eTiAf + β).

We solve (3.10) using the SPIRAL-`p approach proposed in [5], which was described

in detail in Sections 2.3.1 and 2.3.2.

Computational details

As we explained in inverse problem, our proposed method consists of two steps.

In Step 1, we set the time-averaged measurements ū as the observation vector y

of SPIRAL-`p algorithm, i.e., y = ū, while in Step 2, we set y = u. Similarly, the

true signal f∗ of SPIRAL-`p is set to the time-averaged S̃ in Step 1, while f∗ is S̃

in Step 2. Note that the relevant system matrix also needs to be defined similarly

according to each step.
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Figure 3.5: Time-dependent measurements u corrupted by 15% Poisson noise.

3.2.3 Numerical Results

We apply the proposed two-stage method for two 2D bioluminescence tomogra-

phy problems. For the MATLAB simulations, we used the following optical prop-

erties: the absorption coefficient µa = 0.02 and the diffusion coefficient κ = 0.22

[21]. We set Ω = (0, 1) × (0, 1). Although this domain is considered to be small

for the physical problem, it is sufficient to test and evaluate the method presented

here. For both experiments, Nx = Ny = 21 and collected N = 1000 samples from

M = 72 boundary detectors with sampling rate ∆t = 0.01. Also, the decay rate

of sources are set to 1.5. The simulated boundary measurements are corrupted

by Poisson noise using the MATLAB’s poissrnd function. The noise level (%)

is computed as 100 · ‖Af∗ − y‖2/‖y‖2. The SPIRAL-`p algorithm is initialized

using ATy and terminates if the relative difference between consecutive iterates

converged to ‖fk+1 − fk‖2/‖fk‖2 ≤ 10−8. The regularization parameters (τ) for

both experiments are manually optimized to get the minimum RMSE (RMSE

(%) = 100 · ‖f̂ − f∗‖2/‖f∗‖2).
We are unaware of any other open source methods for solving time-dependent

photon-limited bioluminescence problems, and thus, we do not present any com-

parisons with other methods.

Experiment 1

In this experiment, we wish to recover two bioluminescent point sources con-

tained in the medium from approximately 15% Poisson noise corrupted time-

dependent boundary measurements (see Fig. 3.5). In the first step of our pro-

posed method, we obtained the time-averaged measurements ū (see Fig. 3.6) and
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Figure 3.6: Time-averaged measurements ū at the 72 boundary detectors.

recovered the two locations accurately by solving the steady-state inverse problem

using the SPIRAL-`p algorithm (see Fig. 3.7). Using the identified support in Fig.

3.7(b) and the time-dependent boundary measurements u in Fig. 3.5, we approxi-

mated the bioluminescent source intensities in space-time (see Fig. 3.8) by solving

the time-dependent inverse problem using the SPIRAL-`1 approach. Specifically,

since we have already identified the support for this intensity reconstruction, we

use the `1-penalized SPIRAL without regularization (i.e., we set τ < ε, where ε is

machine precision) to reconstruct S̃.
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Figure 3.7: Spatial support of the point sources from the time-averaged data in
Fig. 3.6. (a) True locations of the sources, (b) SPIRAL-`p(p = 0.5) reconstructed
support. Note the SPIRAL-`p method recovered the true support accurately.
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Figure 3.8: (a) The true source intensities in space-time, (b) Reconstructed source
intensities in space-time with RMSE = 5.63%. RMSE (%) = 100 · ‖f̂ − f∗‖2/‖f∗‖2.

The decay rate for two point sources is computed by plotting the maximum

intensity reconstruction of each time step in Fig. 3.8(b) over the time in semi-log

scale (see Fig. 3.9). In particular, the decay rate is approximated by the negative

reciprocal of the slope of the linear fit (represented by the orange line in Fig. 3.9)

to the reconstruction (represented in red). In this experiment, the decay rate is

approximately 1.54, while the true rate is 1.5.
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Figure 3.9: Approximation of the decay rate of the two point sources. The es-
timated decay rate using a linear fit to the reconstruction is 1.54, while the true
decay rate is 1.50. The decay rate is equal to the negative reciprocal of the slope of
the curve in semi-log scale and the half-life period from the peak time-dependent
measurement is used as the time window.

Experiment 2

In this experiment, we wish to recover the support and the decay rate of two

islands of pixels (see Fig. 3.10(a)) using 5% Poisson noise corrupted time-dependent

measurements. By following the same approach as explained in Experiment 1,

SPIRAL-`p identified the support of the sources (see Fig. 3.10(b)) with one spurious

location (see the red box in Fig. 3.10(b)). To identify the support more accurately,

we lowered the value of p from Experiment 1 to p = 0.3.

We used the recovered support (including the spurious location in Fig. 3.10(b))

to approximate the decay rate of the group of sources. Using a linear fit to the log

of the intensity reconstruction (see Fig. 3.11), we estimated the decay rate to be

1.53, while the true decay rate is 1.50.
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Figure 3.10: Spatial support of the two group of sources from the time-averaged
data. (a) True locations of the sources, (b) SPIRAL-`p(p = 0.3) reconstructed
support. Note that there is a spurious support in the reconstruction which is
marked by red color box.
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Figure 3.11: Decay rate of the two group of interior sources. Approximated decay
rate through a linear fit to the reconstruction is 1.53, while the true decay rate is
1.50. The decay rate is equal to the negative reciprocal of the slope of the curve in
semi-log scale and the half-life period from the peak time-dependent measurement
is used as the time window.
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3.2.4 Conclusion

We proposed a novel two-stage method to recover time-dependent biolumi-

nescent sources from Poisson noise corrupted boundary measurements. Unlike

previous methods, the first stage of our approach uses a nonconvex sparse Pois-

son intensity reconstruction method (SPIRAL-`p) to recover the support of the

bioluminescent sources using the time-averaged data. In the second stage, we use

the determined support of the sources to recover the characteristic time decay

using the time-dependent data. Numerical experiments show that the proposed

two-stage reconstruction method accurately solves this time-dependent biolumi-

nescence problem. Furthermore, while this approach is efficient for small scale

problems, it can be parallelized for large-scale problems.

3.3 Time-Dependent Fluorescence Lifetime

Tomography

The work describes in this section is based on the paper by Adhikari et al. [3].

Fluorescence microscopy provides the ability to study in vivo cellular and molecu-

lar dynamics in real time, because of its sensitivity, specificity, and versatility [122].

In particular, fluorescence lifetime imaging (FLIM) is becoming increasingly im-

portant. The lifetime of a fluorophore provides useful information about the local

environment (pH, ion, or oxygen concentration), but not on the local fluorophore

concentration or absorption in the sample, etc [122, 76].

In fluorescence lifetime imaging, one seeks to reconstruct the spatial distri-

bution of the fluorescence decay rates within the tissue sample. Typically, this

spatial distribution is sparse. Consequently, there have been several recent studies

that employed sparsity-promoting methods to solve this FLIM problem. However,

these methods minimize the least-squares cost functional with Gaussian noise,

e.g. [10, 31]. Implicitly, these studies assume that there is enough signal in the

measurements made by photon counting detectors that Gaussian noise is a valid

assumption. In contrast, we consider here time-dependent measurements with rela-
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tively low photon counts. For that case, we must consider measurements corrupted

by Poisson noise [13]. To do so, we use the nonconvex Sparse Poisson Intensity

Reconstruction ALgorithm (SPIRAL-`p) [5] to minimize the `p-norm penalized

negative Poisson log-likelihood function. We show that this approach applied to

the time-averaged data provides an effective method for reconstructing the spatial

support of the fluorophores. Upon determining these supports, we recover the flu-

orescence decay rates from the time-dependent data. Using numerical simulations,

we show that this reconstruction method effectively solves this time-dependent

FLIM problem.

3.3.1 Problem Formulation

For the fluorescence-lifetime imaging problem, we seek to reconstruct the flu-

orophore concentration along with the support and fluorescence-lifetime from the

time-dependent measurements of emitted light due to pulsed excitation of a strongly

scattering medium. We assume that the optical properties of the medium are

known to reasonable precision. In what follows, we describe the forward model

and then the corresponding inverse problem for this fluorescence-lifetime imaging

problem.

Forward model: Let Ω denote the domain with boundary ∂Ω. A pulse of exciting

light is injected into Ω on ∂Ω. Let S(r, t) for r ∈ ∂Ω and t > 0 denote that exterior

time-dependent source of exciting light. Let Ie(r, t) denotes the intensity of this

exciting light source at position r ∈ Ω at time t ∈ [0, T ]. It is governed by the

following initial-boundary value problem for the diffusion approximation [131, 12]:

1

c

∂Ie

∂t
−∇ · (κe∇Ie) + µeaI

e = 0 in Ω× (0, T ], (3.11)

with κe denoting the diffusion coefficient and µea denoting the absorption coefficient

at the exciting wavelength. We solve (3.11) subject to initial condition

Ie(r, 0) = 0 in Ω, (3.12)
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and boundary condition

Ie + αeκe
∂Ie

∂n
=

γeS(r, t) on r ∈ rs

0 on r ∈ ∂Ω\rs
(3.13)

Here, ∂Ie/∂n denotes the outward normal derivative of Ie, constants αe and γe

are defined in terms of µea and κe as part of the diffusion approximation and rs

denotes the source location at the boundary.

Next, we consider that a portion of Ie is absorbed by the fluorophores and

re-emitted. The transportation of emitted light If is then modeled by

1

c

∂If

∂t
−∇ · (κf∇If ) + µfaI

f = Q(r, t) in Ω× (0, T ], (3.14)

with κf denoting the diffusion coefficient and µfa denoting the absorption coefficient

at the exciting wavelength. Here, the emission of fluorescent light is due to the

excited interior source [13],

Q(r, t) = χ(r)h(r)

∫ t

0

e−(t−t
′)/τ(r)Ie(r, t′)dt′, (3.15)

where χ(r) is the indicator function, h(r) is the fluorophore concentration, and

τ(r) is the fluorescence-lifetime. We solve (3.14) subject to initial condition

If (r, 0) = 0 in Ω, (3.16)

and boundary condition

If + αfκf
∂If

∂n
= 0 on ∂Ω. (3.17)

Upon solution of the initial-boundary value problem for emission light consisisting

of (3.14) subject to (3.16) and (3.17), we model measurements of scattered light

leaving the boundary of the medium, u(r, t), through evaluation of

u(r, t) = −κf ∂I
f

∂n
=

1

αf
If on ∂Ω× (0, T ]. (3.18)

Note that we have substituted (3.17) into the first result of (3.18) to obtain the

final result of (3.18).
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Suppose we consider the time-averaged data defined as

ū(r) =
1

αf
Īf (r) =

1

αfT

∫ T

0

If (r, t)dt on ∂Ω. (3.19)

The steady-state optical fluence rate for emission light, Īf , satisfies the steady-state

diffusion equation

− κf∇2Īf + µaĪ
f = Q̄ in Ω, (3.20)

subject to the boundary condition

Īf + αfκf∂nĪ
f = 0 on ∂Ω. (3.21)

We will make use of this boundary value problem consisting of (3.20) subject to

(3.21) in the analysis that follows.

Inverse problem: The measurements of the scattered light leaving the boundary

of the medium are taken at M distinct locations denoted by rm ∈ ∂Ω for m =

1, · · · ,M . Moreover, N samples of these measurements in time are collected with

sampling rate, ∆t with T = N∆t. The observed collection of data is given by

the vector u ∈ RMN with u = [u(r1, t1), · · · , u(rM , t1), u(r1, t2), · · · , u(rM , tN)].

Because these measurements have relatively low photon counts, we model the

noise in the data using Poisson statistics.

The inverse problem seeks to reconstruct the sparse spatial distribution of fluo-

rescence lifetime appearing in (3.15) from the set of noisy measurements in u. We

assume that the fluorophores are concentrated only in a small area. Furthermore,

we assume that the optical properties of the medium for excitation and emission

are known, i.e., κe, κf , µea, and µfa are known. Therefore, this inverse problem

is linear. However, the problem is ill-posed. Hence, we include a regularization

term that promotes sparsity in the solution. We propose the following three-stage

method for reconstructing the fluorescence sources:

Step 1: Assuming a sparse distribution of fluorescence sources that does not

change over [0, T ], we apply SPIRAL-`p [5], a nonconvex, sparsity promoting opti-

mization method (see Section 2.3.1), to determine the spatial support, χ(r) of the

sources from the time-averaged data in (3.19).
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Step 2: Using the determined support χ(r) of the sources from Step 1, we apply

SPIRAL-`1 [70] to determin Q(r, t) from the time-dependent measurements. Since

we have identified the support in Step 1 and therefore no longer need to promote

sparsity in the solution, we use SPIRAL-`1 with a negligible regularization penalty

parameter.

Step 3: Using χ(r) and Q(r, t) from Steps 1 and 2, we apply a nonlinear least

squares solver to recover the fluorophore concentration h(r) and the lifetime τ(r)

from (3.15).

Previous work for solving Poisson inverse problems include statistical multiscale

modeling and analysis frameworks [97], nonparametric estimators using wavelet

decompositions [11], and combination expectation-maximization algorithms with a

total variation-based regularization [105]. Our proposed approach uses a sequence

of separable approximations to the objective function with non-convex p-norm

regularization to identify the support of the time-dependent fluorescence sources

and to recover their lifetime parameters.

3.3.2 Methodology

Finite difference discretization: Both initial-boundary value problems (3.11)

and (3.14) subject to the initial and boundary conditions ((3.12), (3.13) and (3.16),

(3.17) respectively) are solved using the Crank-Nicolson method [86]. As defined

in (3.18), in the discrete setting, the measurements are obtained by restricting the

numerical solution of emission light, say V, to the boundary:

u =
1

αf
RV =

1

αf
RL−1Q̃, (3.22)

where R is a boundary restriction operator, L is the finite difference operator and

Q̃ is averaged Q between consecutive time steps. More over, 1
αf RL−1 is defined as

the system matrix A for the inverse algorithm. Instead of generating the system

matrix A explicitly, we compute the action A(x) and AT (x) on-the-fly using the

forward and backward substitution techniques. Similarly, actions of the steady-

state boundary value problem in (3.20) and (3.21) also have to be constructed in

a similar technique.
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Poisson intensity reconstruction: The arrival of photons at a detector is typi-

cally modeled by a Poisson noise model [113], y ∼ Poisson(Af∗), where y ∈ Zm+ is

the vector of observed photon counts, f∗ ∈ Rn
+ is the vector of true signal intensity,

and A ∈ Rm×n
+ is the system matrix. The negative Poisson log-likelihood function

(1.9) corresponding to observing y given Af is given by

F (f) = 1TAf −
m∑
i=1

yi log(eTiAf).

We formulate our Poisson reconstruction problem as the following constrained

optimization problem:

f̂ = arg min
f∈Rn

Φ(f) ≡ F (f) + β ‖f‖pp

subject to f � 0. (3.23)

where ‖f‖pp (0 ≤ p < 1) is a penalty function that promotes sparsity in our solution

and β > 0 is a scalar regularization parameter. The nonnegativity constraint

on f ensures that the solution, which corresponds to the fluorescence sources, is

nonnegative. Our optimization problem formulation is different from the more

commonly used least-squares minimization problem [13] in three ways: (1) instead

of a least-squares data-fidelity term, we use a negative log-likelihood function to

model the noise statistics more accurately; (2) instead of a Tikhonov regularization

or a sparsity-promoting `1-norm, we use a non-convex p-norm, where 0 ≤ p < 1,

to bridge the convex `1-norm and the `0 counting semi-norm; and (3) we enforce

a nonnegativity constraint on our solution. We solve the minimization problem

(3.23) using the SPIRAL-`p approach (see Section 2.3.1 for further details).
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3.3.3 Numerical Experiments

(a)

(b)

Figure 3.12: Measurements for Experiment 1: (a) Time-dependent measurements
u corrupted by 7.5% Poisson noise, (b) Time-averaged measurements ū at the 360
boundary detectors (72 detectors per one exterior source).

Figure 3.13: Support reconstruction for Experiment 1 for all 5 sources using
SPIRAL-`p method (p = 0.3) in stage 1 of our proposed method. Here, RMSE =
0.79 and 23 nonzero components are in the reconstruction.
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We apply the proposed three-stage reconstruction method to solve 2D fluo-

rescence lifetime imaging problem. For the MATLAB simulations, we used a

unit square domain Ω = (0, 1) × (0, 1) with the following non-dimensionalized

optical properties: the absorption coefficient µa = 0.05 and the diffusion coef-

ficient κ = 0.0476 [10]. For all experiments, N = 200 time-level samples from

M = 72 boundary detectors with sampling rate ∆t = 0.05 are colloected using 5

exterior near-infrared source points. Also, the fluorescence-lifetime and the fluo-

rophore concentration are set to 5.7 and 2000, respectively [123]. The simulated

boundary measurements are corrupted by Poisson noise using the MATLAB’s

poissrnd function. The noise level (%) is computed as 100 · ‖Af∗ − y‖2/‖y‖2.
The SPIRAL-`p and SPIRAL-`1 algorithms in stage (1) and (2) are initialized us-

ing ATy and terminate if the relative objective values do not significantly change,

i.e., |Φ(fk+1) − Φ(fk)|/|Φ(fk)| ≤ 10−7. The regularization parameters (β) for

both experiments are manually optimized to get the minimum RMSE (RMSE

(%) = 100 · ‖f̂ − f∗‖2/‖f∗‖2, where f̂ is an estimate of f∗). Next we show numerical

results for two experiments: two point source and two island source reconstruction.
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(a) True support (b) SPIRAL-`p(p = 0.3) Support

(c) SPIRAL-`1 Support (d) GPSR Support

Figure 3.14: (a) True fluorophore locations in the 2D grid. (b) Final reconstructed
support of the fluorophore by thresholding and computing the mode of the results
in Fig. 3.13. (c) SPIRAL-`1 support reconstruction. (d) GPSR support recon-
struction. Note the reconstructed support from existing methods in (c) and (d)
are very inaccurate.

Here, we consider two experiments. Experiment 1 consists of a fluorescence

reconstruction problem with two fluorophore point sources (see Fig. 3.14(a)) while

Experiment 2 consists of two islands of fluorophore sources (see Fig. 3.16(a)). The

observations u are time dependent and are corrupted by Poisson noise (see e.g.,

Fig. 3.12(a)). Step 1 of our proposed method uses the time-averaged measurements

ū (see e.g., Fig. 3.12(b)) to obtain an estimate for the support of the fluorophores

for all 5 exterior sources (see e.g., Fig. 3.13). The final reconstructed support
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Figure 3.15: Experiment 1 SPIRAL-`1 reconstruction of Q̃ with the given recon-
structed support in Fig. 3.14(b). RMSE of the reconstruction is 0.108.

of the fluorophores is obtained by thresholding and computing the mode of the

SPIRAL-`p reconstruction since the location of the fluorophores must be the same

for each source (see Figs. 3.14(b) and 3.16(b)). Then given the estimated support

from Step 1, in Step 2 we reconstructed Q̃ in (3.22) using SPIRAL-`1 with negli-

gible regularization since we already identified the support and no longer need to

promote sparsity in the solution (see e.g., Fig. 3.15). In Step 3, we used the built-in

Matlab nonlinear least-squares command lsqnonlin to compute the estimate ĥ

at the two source locations using the initial concentration value ĥ0 = 1.0 for both

locations and initial fluorescence lifetime value τ̂0 = 1.0. Results are presented in

Tables 3.3 and 3.4.

Ground Truth Estimate

h(r1) 2.00× 103 2.07× 103

h(r2) 2.00× 103 1.95× 103

τ 5.70 5.64

Table 3.3: A comparison between the true and the computed fluorophore con-
centrations, h, at point locations r1 and r2 and between the true and computed
fluorescence lifetimes, τ for Experiment 1.



79

(a) True support (b) SPIRAL-`p support

(c) SPIRAL-`1 support (d) GPSR support

Figure 3.16: (a) True fluorophore islands in the 2D grid. (b) Reconstructed support
of the fluorophore by thresholding and computing the mode of the SPIRAL-`p (p =
0.1) reconstruction. (c) SPIRAL-`1 support reconstruction. (d) GPSR support
reconstruction. Note the reconstructed islands from existing methods in (c) and
(d) are very inaccurate.

3.3.4 Conclusion

We proposed a novel three-stage method to solve the fluorescence lifetime

imaging problem from Poisson noise corrupted boundary measurements. For this

imaging problem, measured signals are modeled by solutions of a coupled initial-

boundary value problem for light scattering and absorption inside the sample.
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Ground Truth Range of Estimate

h(I1) 2.00× 103 1.29× 103 to 2.72× 103

h(I2) 2.00× 103 0.58× 103 to 0.95× 103

τ 5.70 5.76

Table 3.4: A comparison between the true and the computed fluorophore concen-
trations, h, at islands I1 and I2 and between the true and computed fluorescence
lifetimes, τ , for Experiment 2.

Furthermore, unlike previous methods, Poisson noise is explicitly modeled in the

inverse problem and a nonconvex sparse recovery method (SPIRAL-`p) is used to

determine the support of the fluorophores. Numerical experiments demonstrate

that the proposed method accurately solves the FLIM problem than the existing

methods.

3.4 Inferring Structural Variants from

Sequencing Data

In this section, I briefly discuss my work on sparse recovery methods for struc-

tural variant detection in collaboration with the Sindi Lab at UC Merced. In

particular, the work discribed here is based on conference proceeding papers co-

authored with the Sindi Lab, [18, 19, 17], summarized with the explicit permission

of Mario Banuelos and Prof. Suzanne Sindi.

Structural variants (SVs) are rearrangements of DNA sequences. SVs typi-

cally consist of many kinds of variation in genome such as inversions, insertions,

deletions, and duplications (see Fig. 3.17). These structural variations make an

important contribution to human diversity through complex traits such as behav-

iors and to disease traits such as Mendelian diseases [116, 110]. SVs are typically

predicted by sequencing fragments from an unknown individual genome and map-

ping those fragments to a previously identified reference genome [92, 111]. If the

starting points of the genomic fragments are chosen uniformly and randomly from

the genome, then the expected number of fragments covering any position in the
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(a) No Variant (b) Deletion

(c) Inversion (d) Novel Insertion

Figure 3.17: Different structural variations in a sample genome in comparison to
the reference genome. Image courtesy of Mario Banuelos.

genome is given by a Poisson distribution [83]. The mean of this Poisson distribu-

tion is referred to as the coverage of the genome. Since, in most large sequencing

studies, many individuals will be sequenced at low coverage, even if an individual

carries a genetic variant, we may not sample a fragment from that particular region

of the genome. Similarly, if we observe a single fragment supporting a variant, it

may represent an erroneous mapping rather than a true observation.

There have been many published methods to identify SVs from sequencing data

(see, e.g., [109, 74, 44]). However, these approaches almost universally rely on high-

coverage of a single individual genome and not on the scenario emerging from many

large-scale sequencing efforts where there is low-coverage of many individuals. In

addition, prior approaches when applied to populations typically consider each

individual in isolation when – in fact – common variants would be shared by

many individuals. Finally, most methods utilize a threshold – minimum number

of supporting fragments – to prioritize predicted variants rather than a likelihood

based statistic. Indeed, inferring SV information from sequencing data has proven

to be challenging because true SVs are rare and are prone to low-coverage noise.

In this work, we attempt to mitigate the deleterious effects of low-coverage

sequences by following a maximum likelihood approach to SV prediction. Specif-

ically, we model the noise using Poisson statistics and constrain the solution to

promote sparsity, i.e., SV instances should be rare. Further, we consider multiple
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individuals and use relatedness among individuals as a constraint on the solu-

tion space – to our knowledge, this is the first SV detection algorithm to do so.

Specifically, in our work below we use the assumption that a parent and child are

sequenced and require that any SVs predicted in the child be present in the parent.

Numerical analysis of both simulated and real sequencing data suggest that our

approach has the promise to improve SV detection in studies of many low-coverage

individuals.

3.4.1 Problem Formulation

We propose to model the measurements through the Poisson process and to

minimize the negative Poisson log-likelihood objective function with sparsity pro-

moting regularizer: `1-norm or `p-norm (0 ≤ p < 1), following the SPIRAL frame-

work [70]. For simplicity, if we have only two individuals, i.e., one parent and one

child, then the Poisson noise-corrupted measurements yp ∈ Zn+ and yc ∈ Zn+ can

be modeled as

yp ∼ Poisson(Apf
∗
p )

yc ∼ Poisson(Acf
∗
c ),

where f∗p and f∗c are the true genomic variants of n-vector of {0, 1} for the parent

and child, respectively, and

Ap = (cp − ε)I ∈ Rn×n

Ac = (cc − ε)I ∈ Rn×n,

where constant sequence coverages cp, cc ∈ R and ε is an error term associated

with the measurements. These observations can be written in the form (1.7) by

stacking the signals, that is

y ∼ Poisson(Af∗),

where y = [yp; yc] ∈ Z2n
+ , A ∈ R2n×2n is a block-diagonal matrix with diagonal

(Ap; Ac), and f∗ is also stacked similarly. The unknown signal f∗ is recovered by

minimizing the negative Poisson log-likelihood F (f) as we defined in (1.9). With
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additional constraints on variants, the regularized SPIRAL subproblem minimiza-

tion can be written in the form:

fk+1 = arg min
f∈R2n

1

2
‖f − sk‖22 +

τ

αk
pen(f)

subject to 0 � fc � fp � 1,

(3.24)

where

sk =

skp

skc

 = fk − 1

αk
∇F (fk),

where the penalty term pen(f) is replaced by a sparsity promoting functional,

such as ‖f‖1 or ‖f‖pp (0 ≤ p < 1). If ‖f‖1 is the penalty term, then (3.24) can be

expanded as

fk+1 = arg min
fp,fc∈Rn

1

2
‖fp − skp‖22 +

τ

αk
‖fp‖1 +

1

2
‖fc − skc‖22 +

τ

αk
‖fc‖1

subject to 0 � fc � fp � 1.

(3.25)

We can now uncouple the objective function of (3.25) to scalar minimization prob-

lems of the form

minimize
fp, fc∈R

1

2
(fp − sp)2+λ|fp|+

1

2
(fc − sc)2+λ|fc|

subject to 0 ≤ fc ≤ fp ≤ 1,

(3.26)

where λ = τ/αk, fp, fc and sp, sc denote elements of the vectors fp, fc and skp, s
k
c ,

respectively. The solution to (3.26) is obtained by completing the squares and

projecting to the feasible region (see Fig. 2 in [18]). This problem formulation also

can be extended to two-parent and one-child case using a similar approach (see

e.g., [19, 17]).

3.4.2 Numerical Results

The proposed method is implemented in Matlab by following the SPIRAL

framework [70]. We evaluate the effectiveness of the proposed method through

numerical experiments on both simulated and real genomic data. Specifically, I

have contributed on performing experiments using simulated data to demonstrate

the effectiveness of the proposed method with family constraints in (3.24) over the
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regular constraints model (i.e., non-negativity constraints on both parent and child

signals) and the thresholded observations (generic GASV).

(a) (b)

Figure 3.18: Reconstruction of the parent signal with cp = 2, cc = 5 and 70%
similarity. (a) False positives vs. true positives in the reconstruction. (b) False
positive rate vs. true positives rate of the reconstruction. Note the model with
family constraints enhances the accuracy of SV detection.

We simulated both parent and child signals with length 105, where the child

is chosen to have 70% of structural variants from the parent. In particular, 500

variants are present in the parent signal (i.e., sparsity is 0.5%), while the child

has only 350 variants. We set cp = 2, cc = 5, and ε = 0.01. The proposed fa-

miliarly constrained model recovers signals with high accuracy than the regular

constraint method (see Figs. 3.18 (a) and (b) for true positives and true positive

rates of parent signal reconstruction, respectively). We did not see any signifi-

cant improvement of the regular constraint method over the simply thresholded

observations with this simulated data.

3.4.3 Conclusion

This work presents a novel approach for inferring structural variants from Pois-

son noise-corrupted obervations. It is very challenging to accurately recovering

SVs due to their scarcity and low-coverage. In this work, we explicitly model the

rare occurrence of structural variants through Poisson statistics and incorporate
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sparsity-inducing `1-norm penalty term for accurate recovery of sparse signals.

Furthermore, we incorporate the relatedness of individuals as a constraint on the

solution space. Specifically, we use the assumption that a parent and child are se-

quenced and require that any SVs predicted in the child be present in the parent.

Moreover, if we replace the penalty term by the nonconvex `p-norm (0 ≤ p < 1),

then we can demonstrate that the solution is more accurate and sparser than the

solution of `1-norm penalty functional (see [15]). Since humans are diploid – they

have two copies of their genome and child receives one copy from each parent –

this Poisson noise modeling method has been recently extended for sparse diploid

biosignal recovery (see [16]).

3.5 Summary of Contribution

In this chapter, we investigated the effectiveness of the proposed nonconvex

Poisson sparse recovery algorithms with applications. In particular, we solved

the fluorescence molecular tomography problem with low photon counts using the

SPIRAL-`p method. Here, we showed that the proposed nonconvex method is

particularly effective in low SNR settings. More importantly, we proposed novel

stage-based methods to solve time-dependent tomography problems: A two-stage

method for bioluminescence tomography (BLT) and three-stage method for fluo-

rescence lifetime imaging (FLIM) problem in low photon context. To the best of

our knowledge, this is the first time to investigate time-dependent BLT and FLIM

problems with Poisson noise corrupted measurements. Our proposed SV detection

approaches are also the first SV detection algorithms to follow sparsity constrained

Poisson log-likelihood objective function.



Chapter 4

Sparse Recovery Methods with

Gaussian Noise

Sensing a sparse signal from underdetermined linear measurements is the main

problem of compressed sensing. Sparse recovery is important in a variety of dif-

ferent applications such as medical imaging, photography, face recognition and

network tomography. Basis Pursuit and the Least Absolute Shrinkage and Se-

lection Operator (LASSO) are few popular models for sparse recovery. In this

chapter, we minimize an objective function with a quadratic data-fidelity term

(`2-norm) combined with a sparsity-promoting penalty function (such as `1-norm

or `p-norm (0 ≤ p < 1)). In Section 4.2, we propose to solve the `2 − `1 sparse

recovery problem by transforming the objective function into an unconstrained dif-

ferentiable function and applying a limited-memory trust-region method. Unlike

gradient projection-type methods, which use only the current gradient, our method

uses gradients from previous iterations to obtain a more accurate Hessian approx-

imation. Moreover, we compute a global solution to the trust-region subproblem

using a formula which makes use of an efficient partial spectral decomposition of

the Hessian approximation via a QR factorization. In Section 4.3, we will extend

this trust-region approach to solve the nonconvex `2− `p sparse recovery problem.

Lastly, we will propose a sparsity inducing `p-norm regularized formulation for

recovery and demixing problems.

.

86
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4.1 Prior Work

In the literature, there are several types of optimization algorithms have been

proposed to solve sparse recovery problems with Gaussian noise, many of them

use a gradient decent-type approach. Figueiredo et al. proposed the Gradient

Projection Sparse Reconstruction (GPSR) method, which is a gradient projection

algorithm operates on a bound-constraints [61]. The SpaRSA is another closely

related approach introduced by Wright et al. [134] to solve `2− `1 problem, where

each subproblem is constructed by approximating the Hessian using a scaled iden-

tity matrix. Based on the classic augmented Lagrangian function and alternating

minimization approach, Yang and Zhang proposed YALL1 (Your ALgorithm for

L1) to solve the `1-norm regularized problem [139]. Non-convex regularizers to

bridge the sparsity promoting `1-norm and the `0 counting semi-norm have been

previously investigated in [41, 40, 42, 43, 148]

Our proposed approaches in Sections 4.2 and 4.3 are based on quasi-Newton

methods, which have been previously shown to be effective for sparsity recovery

problems (see e.g., [141, 85, 145]). (For example, Becker and Fadili use a zero-

memory rank-one quasi-Newton approach for proximal splitting [29].) Trust-region

methods have also been implemented for sparse reconstruction (see e.g., [132, 72]).

Our approach is novel in the transformation of the sparse recovery problem to a

differentiable unconstrained minimization problem and in the use of eigenvalues

for efficiently solving the trust-region subproblem.

4.2 Trust-Region Methods for Sparse Relaxation

This section concerns solving the sparse recovery problem of the form

minimize
f∈Rn

1

2
‖Af − b‖22 + τ‖f‖1, (4.1)

where A ∈ Rm̃×ñ, f ∈ Rñ, b ∈ Rm̃, m̃� ñ, and τ > 0 is a constant regularization

parameter (see [125, 37, 48]). The work describes here is based on the paper by

Adhikari et al. [1]. By letting

f = u− v,
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where u,v � 0, we write (4.1) as the constrained but differentiable optimization

problem

minimize
u,v∈Rñ

1

2
‖A(u− v)− b‖22 + τ1Tñ (u + v) s.t. u,v � 0, (4.2)

where 1ñ is the ñ-vector of ones (see, e.g., [61]). We transform (4.2) into an

unconstrained optimization problem by the change of variables

(u)i = log(1 + e(ũ)i) and

(v)i = log(1 + e(ṽ)i),

where (u)i, (v)i ∈ R for 1 ≤ i ≤ ñ denotes i-th component of the vector (·)i (see

[14, 99]). With these definitions, u and v are guaranteed to be non-negative. Thus,

(4.2) is equivalent to the following minimization problem:

min
ũ,ṽ∈Rñ

Φ(ũ, ṽ) 4=
1

2

m̃∑
i=1

[{
ñ∑
j=1

(A)i,j log

(
1 + e(ũ)j

1 + e(ṽ)j

)}
−(b)i

]2

+ τ
ñ∑
j=1

log

(
(1 + e(ũ)j)(1 + e(ṽ)j)

)
. (4.3)

We propose solving (4.3) using a limited-memory quasi-Newton trust-region opti-

mization approach, which we describe in the next section.

4.2.1 Trust-Region Methods

In this section, we outline the use of a trust-region method to solve (4.3). We

begin by combining the unknowns ũ and ṽ into one vector of unknowns

x = [ũT ṽT ]T ∈ Rn,

where n = 2ñ. (With this substitution, Φ can be considered as a function of x.)

Trust-region methods to minimize Φ(x) define a sequence of iterates {xk} that are

updated as follows:

xk+1 = xk + pk,

where pk is defined as the search direction. Each iteration, a new search direction

pk is computed from solving the following quadratic subproblem with a two-norm
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constraint:

pk = arg min
p∈Rn

qk(p) 4= gTk p +
1

2
pTBkp s.t. ‖p‖2 ≤ δk, (4.4)

where gk
4
= ∇Φ(xk), Bk is an approximation to ∇2Φ(xk), and δk is a given posi-

tive constant. In large-scale optimization, solving (4.4) represents the bulk of the

computational effort in trust-region methods.

Methods that solve the trust-region subproblem to high accuracy are often

based on the optimality conditions for a global solution to the trust-region sub-

problem (see, e.g., [64, 93, 45]) given in the following theorem:

Theorem 3. Let δ be a positive constant. A vector p∗ is a global solution of the

trust-region subproblem (4.4) if and only if ‖p∗‖2 ≤ δ and there exists a unique

σ∗ ≥ 0 such that B + σ∗I is positive semidefinite and

(B + σ∗I)p∗ = −g and σ∗(δ − ‖p∗‖2) = 0. (4.5)

Moreover, if B + σ∗I is positive definite, then the global minimizer is unique.

4.2.2 Quasi-Newton Matrices

In this section we show how to build an approximation Bk of ∇2Φ(xk) using

limited-memory quasi-Newton matrices.

Given the continuously differentiable function Φ and a sequence of iterates {xk},
traditional quasi-Newton matrices are genererated from a sequence of update pairs

{(sk,yk)} where

sk
4
= xk+1 − xk

and

yk
4
= ∇Φ(xk+1)−∇Φ(xk).

In particular, given an initial matrix B0, the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) update (see e.g., [88, 95]) generates a sequence of matrices using the fol-

lowing recursion:

Bk+1
4
= Bk −

1

sTkBksk
Bksks

T
kBk +

1

yTk sk
yky

T
k , (4.6)
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provided yTk sk 6= 0. In practice, B0 is often taken to be a nonzero constant multiple

of the identity matrix, i.e., B0 = γI, for some γ > 0. In large -scale optimization,

so-called limited-memory BFGS (L-BFGS) methods store and use only the m most-

recently computed pairs {(sk,yk)}, where m � n. Often m may be very small

(for example, Byrd et al. [36] suggest m ∈ [3, 7]). The BFGS update is the most

widely-used rank-two update formula that

(i) satisfies the secant condition Bk+1sk = yk,

(ii) has hereditary symmetry,

(iii) provided that yTi si > 0 for i = 0, . . . k, then {Bk} exhibits hereditary

positive-definiteness.

Often in practice, the condition yTk sk > 0 can be enforced by either skipping up-

dates when yTk sk ≤ 0 or using a Wolfe line search to help generate the sequence

{xk} (for more details, see, e.g., [95]). For the proposed trust-region method,

∇2Φ(x) is approximated by an L-BFGS matrix.

The L-BFGS matrix Bk+1 in (4.6) can be defined recursively as follows:

Bk+1 = B0 +
k∑
i=0

{
− 1

sTi Bisi
Bisis

T
i Bi +

1

yTi si
yiy

T
i

}
.

Then Bk+1 is at most a rank-2(k + 1) perturbation to B0, and thus, Bk+1 can be

written as

Bk+1 = B0 +

Ψk


[

Mk

][
ΨT
k

]

for some Ψk ∈ Rn×2(k+1) and Mk ∈ R2(k+1)×2(k+1). Byrd et al. [36] showed that

Ψk and Mk are given by

Ψk =
[
B0Sk Yk

]
and Mk = −

[
STkB0Sk Lk

LT
k −Dk

]−1
,

where Sk
4
= [ s0 s1 s2 · · · sk ] ∈ Rn×(k+1), and Yk

4
= [ y0 y1 y2 · · · yk ] ∈

Rn×(k+1), and Lk is the strictly lower triangular part and Dk is the diagonal part

of the matrix STkYk ∈ R(k+1)×(k+1), i.e., STkYk = Lk + Dk + Uk, where Uk is a

strictly upper triangular matrix.
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4.2.3 Solving the Trust-Region Subproblem

In this section, we show how to solve (4.4) efficiently. First, we transform (4.4)

into an equivalent expression. For simplicity, we drop the subscript k. Let Ψ =

QR be the “thin” QR factorization of Ψ, where Q ∈ Rn×2(k+1) has orthonormal

columns and R ∈ R2(k+1)×2(k+1) is upper triangular. Then

Bk+1 = B0 + ΨMΨT = γI + QRMRTQT .

Now let VΛ̂VT = RMRT be the eigendecomposition of RMRT ∈ R2(k+1)×2(k+1),

where

V ∈ R2(k+1)×2(k+1) is orthogonal,

Λ̂ ∈ R2(k+1)×2(k+1) is diagonal,

with Λ̂ = diag(λ̂1, . . . , λ̂2(k+1)). We assume that the eigenvalues λ̂i are ordered in

increasing values, i.e., λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂2(k+1). Since Q has orthonormal columns

and V is orthogonal, then P‖
4
= QV ∈ Rn×2(k+1) also has orthonormal columns.

Let P⊥ be a matrix whose columns form an orthonormal basis for the orthogonal

complement of the column space of P‖. Then P 4
= [ P‖ P⊥] ∈ Rn×n is such that

PTP = PPT = I. Thus, the spectral decomposition of B is given by

B = PΛPT , where Λ 4
=

[
Λ1 0

0 Λ2

]
=

[
Λ̂ + γI 0

0 γI

]
, (4.7)

where Λ = diag(λ1, . . . , λn), Λ1 = diag(λ1, . . . , λ2(k+1)) ∈ R2(k+1)×2(k+1), and

Λ2 = γIn−2(k+1). Since the λ̂i’s are ordered, then the eigenvalues in Λ are also

ordered, i.e., λ1 ≤ λ2 ≤ . . . ≤ λ2(k+1). The remaining eigenvalues, found on the

diagonal of Λ2, are equal to γ. Finally, since B is positive definite, then 0 < λi for

all i.

Defining v = PTp, the trust-region subproblem (4.4), can be written as

v∗ = arg min
v∈Rn

qk(v) 4= g̃Tv +
1

2
vTΛv s.t. ‖v‖2 ≤ δ, (4.8)

where g̃ = PTg. From the optimality conditions in Theorem 1, v∗ is a solution to

(4.8) if and only if ‖v∗‖2 ≤ δ and satisfies the following equations:

(Λ + σ∗I)v∗ = −g̃ and σ∗(‖v∗‖2 − δ) = 0 (4.9)
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for some scalar σ∗ ≥ 0. Note that the usual requirement that σ∗ + λi ≥ 0 for all

i is not necessary here since λi > 0 for all i (i.e., B is positive definite). Note

further that (4.9) implies that if σ∗ > 0, the solution must lie on the boundary,

i.e., ‖v∗‖2 = δ. In this case, the optimal σ∗ can be obtained by finding solving the

so-called secular equation:

φ(σ) =
1

‖v(σ)‖2
− 1

δ
= 0, (4.10)

where ‖v(σ)‖2 = ‖ − (Λ + σI)−1g̃‖2. Since λi + σ > 0 for any σ ≥ 0, v(σ) is

well-defined. In particular, if we let

g̃ =

[
PT
||

PT
⊥

]
g =

[
PT
||g

PT
⊥g

]
=

[
g||

g⊥

]
,

then

‖v(σ)‖22 =


2(k+1)∑
i=1

(g||)
2
i

(λi − σ)2

+
‖g⊥‖22

(γ − σ)2
. (4.11)

We note that φ(σ) ≥ 0 means v(σ) is feasible, i.e., ‖v(σ)‖2 ≤ δ. Specifically,

the unconstrained minimizer v(0) = −Λ−1g̃ is feasible if and only if φ(0) ≥ 0

(see Fig. 4.1(a)). If v(0) is not feasible, then φ(0) < 0 and there exists σ∗ > 0

such that v(σ∗) = −(Λ + σ∗I)−1g̃ with φ(σ∗) = 0 (see Fig. 4.1(b)). Since B

is positive definite, the function φ(σ) is strictly increasing and concave down for

σ ≥ 0, making it a good candidate for Newton’s method. In fact, it can be shown

that Newton’s method will converge monontonically and quadratically to σ∗ with

initial guess σ(0) = 0 [45].

The method to obtain σ∗ is significantly different that the one used in [35] in

that we explicitly use the eigendecomposition within Newton’s method to compute

the optimal σ∗. That is, we differentiate the reciprocal of ‖v(σ)‖ in (4.11) to com-

pute the derivative of φ(σ) in (4.10), obtaining a Newton update that is expressed

only in terms of g‖, g⊥, and the eigenvalues of B. In contrast to [35], this approach

eliminates the need for matrix solves for each Newton iteration (see Alg. 2 in [35]).

Given σ∗ and v∗, the optimal p∗ is obtained as follows. Letting τ ∗ = γ + σ∗,
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Figure 4.1: Plot of the secular function φ(σ) given in (4.10). (a) The case when
φ(0) ≥ 0, which implies that the unconstrained minimizer of (4.8) is feasible. (b)
When φ(0) < 0, there exists σ∗ > 0 such that φ(σ∗) = 0, i.e., v∗ = −(Λ + σ∗I)−1g̃
is well-defined and is feasible.

the solution to the first optimality condition, (B + σ∗I)p∗ = −g, is given by

p∗ = −(B + σ∗I)g

= −(γI + ΨMΨT + σ∗I)−1g

= − 1

τ ∗
[
I−Ψ(τ ∗M−1 + ΨTΨ)−1ΨT

]
g, (4.12)

using the Sherman-Morrison-Woodbury formula. Algorithm 1 details the proposed

approach for solving the trust-region subproblem. Algorithm 2 outlines our overall

limited-memory L-BFGS trust-region approach.

The method described here guarantees that the trust-region subpoblem is

solved to high accuracy. Other L-BFGS trust-region methods that solve to high

accuracy include [53], which uses a shifted L-BFGS approach, and [34], which uses

a “shape-changing” norm in (4.4).

Convergence. Global convergence of Algorithm 2 can be proven by modifying

the techniques found in [35, 102] that require that the following assumptions are

satisfied: [A.1] There are constants l and u such that l ≤ ‖Bk‖ ≤ u for all k.

[A.2] ∇Φ is Lipschitz continuous. For Assumption A.1, since Bk is symmetric

and positive definite, ‖Bk‖2 = λmax. Because we are able to explicitly compute

the eigenvalues of Bk in (4.7), we can satisfy Assumption A.1 by accepting an
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ALGORITHM 1: L-BFGS Trust-Region Subproblem Solver

Compute R from the “thin” QR factorization of Ψ;

Compute the spectral decomposition

RMRT = VΛ̂V
T

with λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂2(k+1);

Let Λ1 = Λ̂ + γI;

Define P‖ = ΨR−1V and g‖ = PT
‖ g;

Compute ‖PT
⊥g‖2 =

√
‖g‖22 − ‖g‖‖22;

if φ(0) ≥ 0 then

σ∗ = 0 and compute p∗ from (4.12) with τ ∗ = γ;

else

Use Newton’s method to find σ∗;

Compute p∗ from (4.12) with τ ∗ = γ + σ∗;

end

update pair (sk,yk) only if l ≤ λmax ≤ u. For Assumption A.2, the gradient of the

function Φ(x) is continuously differentiable, and therefore, ∇Φ must be Lipschitz

continuous.

With these assumptions satisfied and noting that Φ(xk) ≥ 0 for all xk (since

each term in (4.3) is nonnegative), then by [35, Theorem 5.4] the sequence of

iterates generated by Algorithm 2 converges to a critical point of Φ.

4.2.4 Numerical Experiments

We call the proposed method, Trust-Region Method for Sparse Relaxation

(TrustSpa Relaxation, or simply TrustSpa). We compared the performance of

TrustSpa with the Gradient Projection for Sparse Reconstruction (GPSR) method

[61] (with the Barzilai and Borwein (BB) approach and without the debiasing op-

tion) and YALL1 (Your ALgorithm for L1) method [139]. We note that GPSR

is among the most widely used sparse reconstruction methods available and has

been cited by 479 IEEE publications alone. In [61], GPSR is shown to outperform

the l1 ls [79] and IST [59] methods. The more recent YALL1 method is also citied

more than 693 publications and is shown to outperform SpaRSA [134], FISTA [28],
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ALGORITHM 2: TrustSpa: Limited-Memory BFGS Trust-Region Method

for Sparse Relaxation

Define parameters: m, 0 < τ1 < 0.5, 0 < ε;

Initialize x0 ∈ Rn and compute g0 = ∇Φ(x0);

Let k = 0;

while not converged

if ‖gk‖2 ≤ ε then done

Use Algorithm 1 to find pk that solves (4.4);

Compute ρk = (Φ(xk + pk)− Φ(xk))/qk(pk);

Compute gk+1 and update Bk+1;

if ρk ≥ τ1 then

xk+1 = xk + pk;

else

xk+1 = xk;

end if

Compute trust-region radius δk+1;

k ← k + 1;

end while

and SPGL1 [128] in [139]. We evaluate the effectiveness of the proposed TrustSpa

method by solving 1D and 2D signal reconstruction problems.

We implemented TrustSpa in Matlab R2015a using a MacBook Pro with In-

tel Core i7 2.8GHz processor with 16GB memory. Both TrustSpa and GPSR-BB

methods are initialized at the same starting point, i.e., zero and terminate if the rel-

ative objective values do not significantly change, i.e, |Φ(xk+1)−Φ(xk)|/|Φ(xk)| ≤
10−8. Similarly, YALL1 method is also initialized with zero and is terminated as

authors instructed in the YALL1 User’s Guide [144] and its Matlab implementa-

tion, i.e., ‖xk+1 − xk‖2/‖xk‖2 ≤ 10−4. The regularization parameter τ in (4.1) is

optimized independently for each algorithm to minimize the mean-squared error

(MSE = 1
ñ
‖f̂ − f‖22, where f̂ is an estimate of f).
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1D signal recovery

Similar to the experiment found in [61, Sec. IV.A], the true signal f is of size

4,096 with 160 randomly assigned nonzeros with amplitude ±1 (see Fig. 4.2(a)).

We obtain compressive measurements b of size 1,024 (see Fig. 4.2(b)) by projecting

the true signal using a randomly generated system matrix (A) from the standard

normal distribution with orthonormalized rows. In particular, the measurements

are corrupted by 5% of Gaussian noise.

(a) Truth f (ñ = 4096, number of nonzeros = 160)

0 500 1000 1500 2000 2500 3000 3500 4000

-1

0

1

(b) Measurements b (m̃ = 1024, noise level = 5% )

0 200 400 600 800 1000

-1

0

1

Figure 4.2: Experimental setup: (a) True signal f of size 4,096 with 160 ± spikes,
(b) compressive measurements b with 5% Gaussian noise.

We ran the experiment 10 times with 10 different Gaussian noise realizations.

The average MSE for GPSR-BB for the 10 trials is 1.758 × 10−4 and the average

computational time is 4.45 seconds. The average MSE for YALL1 is 1.753× 10−4

and the average computational time is 0.86 seconds. Note that the YALL1 is

terminated with a lower tolerance value, i.e., 10−4. If we use 10−8 as the YALL1’s

stopping tolerance, then we will get same solution with higher computational time.

In comparison, the average MSE for TrustSpa is 9.827 × 10−5, and the average

computational time is 3.52 seconds. For one particular trial with 5% noise, the

GPSR-BB reconstruction, f̂GPSR (see Fig. 4.3(a)), has MSE 1.624 × 10−4 and the
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(a) GPSR-BB reconstruction f̂GPSR (MSE = 1.624e-04)
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(b) YALL1 reconstruction f̂YALL1 (MSE = 1.621e-04)
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(c) TrustSpa reconstruction f̂TS (MSE = 9.347e-05)
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Figure 4.3: (a) GPSR-BB reconstruction, f̂GPSR, (b) YALL1 reconstruction, f̂YALL1,
(c) TrustSpa reconstruction, f̂TS. MSE = (1/ñ)‖f̂ − f‖22. Note the lower MSE for
the proposed method.

YALL1 reconstruction f̂YALL1 (see Fig. 4.3(b)), has MSE 1.621 × 10−4 while the

TrustSpa reconstruction, f̂TS (see Fig. 4.3(c)), has MSE 9.347×10−5. Note that the

f̂TS has fewer reconstruction artifacts (see Fig. 4.4). Quantitatively, f̂GPSR has 786

nonzeros, where the spurious solutions are between the order of 10−2 and 10−3. In

contrast, because of the variable transformations used by TrustSpa, the algorithm

terminates with no zero components in its solution; however, only 579 components

are greater than 10−6 in absolute value. This has the effect of rendering most

spurious solutions less visible.
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(a) Zoomed region of f̂GPSR
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(b) Zoomed region of f̂YALL1
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(c) Zoomed region of f̂TS
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Figure 4.4: Zoomed boxed regions in the reconstructions in Fig. 4.3: (a) A zoomed
region of f̂GPSR, (b) A zoomed region of f̂YALL1, (c) a zoomed region of f̂TS. Note
the presence of artifacts in GPSR-BB and YALL1 reconstructions that are absent
in the proposed method’s reconstruction.

2D image deblurring

In this experiment, we wish to recover a Quick Response (QR) code of size

512 × 512 (see Fig. 4.5(a)) from the 3% zero-mean Gaussian noise corrupted

blurry image (see Fig. 4.5(b) and the blue zoomed region in Fig. 4.5(c)). GPSR-

BB took 20 seconds (129 iterations) to converge, and its reconstruction f̂GPSR has

MSE 5.3 × 10−1. YALL1 took 40 seconds (1450 iterations) to converge to 10−4

stopping tolerance, and its reconstruction f̂YALL1 has MSE 4.03×10−1. In contrast,

the proposed TrustSpa took only 16 seconds (42 iterations) to converge (see Fig.

4.6(a)), and its reconstruction f̂TS has only MSE 3.9× 10−1. Here, f̂TS has a lower

MSE value due to the low variance of reconstructed amplitudes.
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(a) True image f (b) Observation b (c) Zoomed region
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Figure 4.5: Experimental setup: (a) true QR code image f , (b) blurry observation
b with 3% Gaussian noise, (c) a zoomed region of b.

(a) f̂TS (b) f̂TS log-error
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(c) f̂GPSR log-error (d) f̂YALL1 log-error
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Figure 4.6: (a) TrustSpa reconstruction in true image scale, (b) (c) and (d) a
zoomed-in region of the error plots log(1 + |f − f̂TS|), log(1 + |f − f̂YALL1|) and
log(1 + |f − f̂GPSR|) respectively. Note the log error of f̂GPSR has higher amplitude
and YALL1 has more artifacts than the TrustSpa.

In particular, f̂GPSR is in the range [-3, 6.5], f̂YALL1 is in the range [-1.4, 4.4] and
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f̂TS is in [-1.5, 4.5]. These very high and very low amplitude artifacts in f̂GPSR can

be mostly found around edges of the black codes (compare zoomed-in log error

plots in Fig. 4.6(b) and 4.6(c) for yellow and orange areas). Even though YALL1

gives competitive results in MSE, it does not recover edges of QR image as good

as TrustSpa does (compare circled areas in Fig. 4.6(d) with 4.6(b)).

4.2.5 Conclusion

We proposed an approach for solving the `2-`1 minimization problem that arises

in compressed sensing and sparse recovery problems. Unlike gradient projection-

type methods, which uses only the current gradient, our approach uses gradients

from previous iterations to obtain a more accurate Hessian approximation. Nu-

merical experiments in 1D and 2D show that our proposed approach mitigates

spurious solutions more effectively with a lower average MSE in a smaller amount

of time.

4.3 Trust-Region Methods for Nonconvex Sparse

Recovery Optimization

In Section 4.2, we proposed limited memory trust-region methods to solve a

`1-norm penalized sparse recovery problem. This section concerns solving `p-norm

(0 < p < 1) regularized sparse recovery problem of the form

minimize
f∈Rñ

1

2
‖Af − b‖22 + τ‖f‖pp, (4.13)

where A ∈ Rm̃×ñ, f ∈ Rñ, b ∈ Rm̃, m̃ � ñ, 0 < p < 1, and τ > 0 is a

constant regularization parameter. Non-convex regularizers have been previously

investigated in [41, 40, 42, 43, 148] and this work is based on the paper by Adhikari

et al. [8]. By letting

f = u− v,
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where u,v � 0, we write (4.13) as a constrained optimization problem

minimize
u,v∈Rñ

1

2
‖A(u− v)− b‖22 + τ

ñ∑
j=1

((u)j + (v)j)
p

subject to u,v � 0, (4.14)

where (·)j denotes the jth element of the vector (·). We transform (4.14) into an

unconstrained optimization problem by the change of variables

(u)j = log(1 + e(ũ)j) and (v)j = log(1 + e(ṽ)j),

where (ũ)j, (ṽ)j ∈ R for 1 ≤ j ≤ ñ (see [14, 99]). With these definitions, u and

v are guaranteed to be non-negative. Thus, (4.14) is equivalent to the following

minimization problem:

min
ũ,ṽ∈Rñ

Φ(ũ, ṽ) 4=
1

2

m̃∑
i=1

[{
ñ∑
j=1

(A)i,j log

(
1 + e(ũ)j

1 + e(ṽ)j

)}
−(b)i

]2

+ τ
ñ∑
j=1

(
log(1 + e(ũ)j) + log(1 + e(ṽ)j)

)p
, (4.15)

where (·)i,j indicates the (i, j)-th element of the matrix (·). To compute the gra-

dient of Φ(ũ, ṽ), we define the following: Let w̃1, w̃2 ∈ Rñ with

(w̃1)i = log((1 + e(ũ)i)/(1 + e(ṽ)i)),

(w̃2)i =
(
log(1 + e(ũ)i) + log(1 + e(ṽ)i)

)p−1
,

and let

Φ1(ũ, ṽ) = ATAw̃1 and Φ2(ũ, ṽ) = τp w̃2.

Furthermore, let Dũ,Dṽ ∈ Rñ×ñ be diagonal matrices with

(Dũ)i,i =
e(ũ)i

1 + e(ũ)i
and (Dṽ)i,i =

e(ṽ)i

1 + e(ṽ)i
,

Then the gradient of the function Φ(ũ, ṽ), i.e., ∇Φ = [∇ũΦ;∇ṽΦ] is given by

∇ũΦ = Dũ

[
Φ1(ũ, ṽ)−ATb + Φ2(ũ, ṽ)

]
,

∇ṽΦ = Dṽ

[
−Φ1(ũ, ṽ) + ATb + Φ2(ũ, ṽ)

]
.
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We propose solving (4.15) using a limited-memory quasi-Newton trust-region

optimization approach (this is similar to Sections 4.2.1, 4.2.2, and 4.2.3), which we

describe briefly in next sections. we begin by describing quasi-Newton matrices

and then demonstrate their use in a trust-region method to solve (4.15).

4.3.1 Limited-Memory Quasi-Newton Matrices

Given a continuously-differentiable function Φ(x) as in (4.15), i.e., x = [ũ, ṽ]T ∈
Rn, and a sequence of iterates {xk}, quasi-Newton matrices can be used to approx-

imate ∇2Φ(x). Traditionally, a quasi-Newton matrix is generated by updating an

initial matrix B0 using a sequence of pairs {(sk,yk)}, where

sk
4
= xk+1 − xk and yk

4
= ∇Φ(xk+1)−∇Φ(xk).

One of the most widely-used update formulae is the Broyden-Fletcher-Goldfab-

Shanno (BFGS) update given by

Bk+1
4
= Bk −

1

sTkBksk
Bksks

T
kBk +

1

yTk sk
yky

T
k , (4.16)

provided yTk sk 6= 0 and B0 is a symmetric positive-definite matrix. For simplicity,

B0 is often taken to be a scalar multiple of the identity matrix, i.e., B0 = γI for

some γ > 0. As we discussed in Section 4.2.2, the compact representation for an

L-BFGS matrix will be used in the trust-region method for solving (4.15).

4.3.2 Trust-Region Methods

Trust-region methods are one of two important classes of methods for uncon-

strained optimization (see, e.g., [95, 45]). As we explained in Section 4.2.1,

basic trust-region methods generate a sequence of iterates {xk} by the relation

xk+1 = xk + pk, where pk is an approximate solution to the trust-region subprob-

lem given by

pk = arg min
p∈Rn

qk(p) 4= gTk p +
1

2
pTBkp (4.17)

subject to ‖p‖2 ≤ δk,
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where gk
4
= ∇Φ(xk), Bk is an approximation to ∇2Φ(xk), and δk is a given positive

constant. At the end of each trust-region iteration, the trust-region radius δk is

used to update δk+1; depending on how well the quadratic model predicted actual

decreases in the function Ψ(x) from xk to xk+1, the trust-region radius is possibly

increased or decreased for the next iteration. To solve (4.15), Bk is taken to be an

L-BFGS matrix.

Generally speaking, computing an approximate solution to the trust-region

subproblem is the computational bottleneck for most trust-region methods. While

trust-region subproblems can be defined using any norm, there is an important

advantage in using the Euclidean two-norm: There are well-known optimality con-

ditions for a global solution to (4.17) (see [64, 93]). These optimality conditions

allow one to monitor how close iterates for solving the subproblem are to a global

solution; they have also inspired algorithms that solve (4.17) by explicitly trying

to satisfy the optimality conditions. There are two important advantages in taking

Bk to be an L-BFGS matrix: (i) the trust-region subproblem is convex and (ii) Bk

has structure that can be exploited to solve (4.17) efficiently.

4.3.3 Solving the Trust-Region Subproblem

To solve the trust-region subproblem when Bk is an L-BFGS matrix, we use

the method described in Section 4.2.3. This method solves each trust-region sub-

problem to high accuracy using the optimality conditions for a global solution to

(4.17). Tailored to the case when Bk is positive definite, the optimality conditions

in [64] and [93] are given in Theorem 3 in Section 4.2.3 (see [8] for details).
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4.3.4 Numerical Results

(a) Truth f∗ (ñ = 4096, number of nonzeros = 160)
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(b) Observations b (m̃ = 1024, noise level ≈ 5% )
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Figure 4.7: Experimental setup: (a) True signal f∗ of size 4,096 with 160 ± spikes,
(b) low-dimensional observations b with 5% Gaussian noise. Noise level (%) =
100 · ‖Af∗ − b‖2/‖b‖2.

We demonstrate the effectiveness of the proposed method, called TrustSpa-`p,

by reconstructing a sparse signal (in the canonical basis) of size 4,096 with 160

randomly assigned nonzeros with maximum amplitude ±1 (see Fig. 4.7(a)). The

system matrix (A) is randomly generated with samples from a standard Gaussian

distribution, which linearly projects the true signal (f∗) to the low-dimensional ob-

servations b (see Fig. 4.7(b)). These observations are corrupted by 5% of Gaussian

noise, where the noise level (%) = 100 · ‖Af∗ − b‖2/‖b‖2.
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(a) TrustSpa-`p reconstruction f̂TS-`p (MSE = 1.403e-05)
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(b) Zoomed region of f̂TS-`p
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(c) Zoomed region of TrustSpa-`1 reconstruction f̂TS-`1
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Figure 4.8: (a) TrustSpa-`p reconstruction, f̂TS-`p , with p = 0.7, (b) a zoomed

region of f̂TS-`p , (c) the corresponding zoomed region of TrustSpa-`1 reconstruction,

f̂TS-`1 . MSE = (1/ñ)‖f̂ − f∗‖22. Note the presence of artifacts (represented in black
spikes) in the TrustSpa-`1 reconstruction that are rarely present in the TrustSpa-`p
reconstruction.

We implemented the proposed TrustSpa-`p method in MATLAB R2015a using

a MacBook Pro with Intel Core i7 2.8GHz 4-core processor with 16GB memory.

The results are compared with the widely-used Gradient Projection for Sparse Re-

construction (GPSR) method [61] without the debiasing option and our TrustSpa-

`1 method (see Section 4.2). In these experiments, all the methods are initialized

at the same starting point, i.e., zero and terminate if the relative objective values
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do not significantly change, i.e, |Φ(xk+1) − Φ(xk)|/|Φ(xk)| ≤ 10−8. The regular-

ization parameter τ in (4.13) is tuned for the minimum mean-squared error

(MSE = 1
ñ
‖f̂ − f∗‖22, where f̂ is an estimate of f∗).
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Figure 4.9: Magnitude of error between the true signal f∗ and reconstructions: (a)
magnitude of error of the GPSR reconstruction f̂GPSR vs. magnitude of error of
f̂TS-`p , (b) magnitude of error of f̂TS-`1 vs. magnitude of error of f̂TS-`p . Note the
lower error for the proposed TrustSpa-`p when p = 0.7 (represented in red), whose
values are more closer to zero.

Using the compressive measurements b (see Fig. 4.7(b)), a single-trial optimal

reconstruction using the proposed TrustSpa-`p for p = 0.7 is given by Fig. 4.8(a).

The TrustSpa-`p reconstruction, f̂TS-`p , has MSE 1.403×10−5, while the TrustSpa-

`1, f̂TS-`1 (see Fig. 4.8(c) for a zoomed region of f̂TS-`1) has MSE 9.347 × 10−5,

and the GPSR reconstruction (see Fig. 4.3(a) for the full reconstruction) has

MSE 1.624 × 10−4. Specifically, notice that the f̂TS-`1 has more spurious artifacts

(shown in black in Fig. 4.8(c)) than the artifacts in f̂TS-`p (see black spikes in Fig.

4.8(b)). Quantitatively, f̂TS-`p has only 263 nonzero components greater than 10−6

in absolute value, while f̂TS-`1 has 579 nonzeros.

In addition, we analyzed the discrepancy between the true and approximated
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amplitudes from each method using magnitude error plots (see Fig. 4.9). In par-

ticular, the magnitude of error of the f̂TS-`p is much closer to zero (see the red color

spikes in Fig. 4.9(a) and (b)) than the magnitude of error of the GPSR reconstruc-

tion f̂GPSR (see blue spikes in Fig. 4.9(a)) and the f̂TS-`1 (see blue spikes in Fig.

4.9(b)). These results indicate that the TrustSpa-`p method better approximates

the truth in terms of signal amplitude.

Furthermore, ten-trial average MSE values and average computational times

for each method are reported in Table 4.1, showing that the above single trial

claims are robust with different Gaussian noise realizations.

Ten-trial average

Method MSE Time (seconds)

GPSR 1.758× 10−4 4.45

TrustSpa-`1 9.827× 10−5 3.52

TrustSpa-`p 1.791× 10−5 1.57

Table 4.1: Reconstruction MSE and computational time for the results averaged
over ten-trials. MSE = (1/ñ)‖f̂ − f∗‖22.

In our experience with this 5% Gaussian noise corrupted dataset, there is no

any significant improvement in MSE value for p-values less than 0.7. Therefore,

we have used the TrustSpa-`p reconstruction with p = 0.7 as a representative for

the TrustSpa-`p method.

4.3.5 Conclusion

Here, we proposed a quasi-Newton trust-region method for solving a non-convex

penalized sparsity recovery problem. We formulate the minimization problem as

a smooth unconstrained optimization problem using a change of variables. We

bridge the commonly-used convex `1 norm with the `0 quasi-norm using a non-

convex `p norm. Numerical results show that the proposed TrustSpa-`p approach

eliminates spurious solutions more effectively than using an `1-regularization term.

Furthermore, the proposed method converges faster over the 10-trial average.
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4.4 Recovery and Demixing of Sparse Signals

using Nonconvex Regularization

In many real-world applications such as separation of texture in images (this

is so-called source separation) [52], image inpainting and super-resolution [90], we

have to recover and demix signals. In this collaborative work with Dr. Fei Wen,

we address the sparse recovery and demixing problem of signals that are sparse in

some known dictionary. In particular, I propose to employ the `p-norm (0 ≤ p < 1)

penalty term to enforce the sparsity of the reconstructions. This nonconvex formu-

lation is typically difficult to solve. We propose two first-order algorithms based on

block coordinate descent (BCD) and alternative direction method of multipliers

(ADMM) to solve this noncovex sparse recovery problem. The new algorithms

are convergent in the nonconvex case under some mild conditions and scale well

for high-dimensional problems. Various numerical experiments showed that the

new algorithms can achieve considerable performance gain over the existing `1-

regularized algorithms. The techinical detilas and experiemntal results in this

section are based on our paper [133] with the explicit permission from Dr. Fei

Wen.

4.4.1 Introduction

This work concerns of solving the problem of identifying two sparse signals

fk ∈ Rnk , k = 1, 2, from linear measurements b ∈ Rm. Specifically, in the presence

of noise, the measurement model can be written as

b = A1f1+A2f2 + n, (4.18)

where Ak ∈ Rm×nk are known system matrices and n is the additive Gaussian

noise. Here, signals f1 and f2 are known to be sparse. For example, in source

separation applications [119], A1 and A2 are two dictionaries allowing for sparse

representation of the two distinct features, and f1 and f2 are the corresponding

sparse coefficients describing these features. In image inpainting, A1 be a basis

for the image (e.g., inverse discrete cosine transformation) and f1 holds the cor-
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responding sparse coefficients. Since image corruptions such as over-written text

and salt-and-pepper noise are sparse in canonical basis, we can select corruptions

as f2 while A2 = I.

To recover f1 and f2 from noise corrupted measurements b, we propose to solve

the following `p-norm regularized constrained minimization problem:

(f̂1, f̂2) = arg min
f1,f2

{
µ ‖f1‖p1p1 + ‖f2‖p2p2

}
subject to ‖A1f1 + A2f2 − b‖2 ≤ ε,

(4.19)

where 0 ≤ p1, p2 < 1, ε > 0, µ is a positive parameter which takes the statistic

difference between the two components into consideration and its optimal value is

related with the statistical information of the true signals f1 and f2. Further, this

constrained optimization problem (4.19) can also be written as an unconstrained

optimization problem:

minimize
f1,f2

Φ(f1, f2) =

{
1

β
‖A1f1 + A2f2 − b‖22 + µ ‖f1‖p1

p1
+ ‖f2‖p2

p2

}
(4.20)

where β > 0 is a penalty parameter. When p1 = p2 = 1, the problem (4.20)

reduces down to an `1-norm regularization problem which is widely used as a sparse

promoting method. Since the problem is convex under the `1-norm, it is easy to

trace the global minimum. However, with the `1-norm regularization we can not

expect to recover a much sparser signal, which always has small artifacts [121].

Moreover, minimum number of measurements required for a perfect recontruction

can also be reduced as the p-value reduces below 1 [42]. Therefore, according to

the literature, the `p-norm regularization has shown significantly better recovery

performance in many applications (see eg., [101, 81]).

4.4.2 Methodology

In the following, I briefly explain two algorithms that we developed to solve the

problem (4.20) based on the BCD and ADMM, which are two popular first-order

frameworks for solving nonsmooth problems.
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Proximal BCD Algorithm

The block coordinate descent (BCD) method minimizes Φ cyclically over each

variable f1 and f2, while fixing one variable at their last updated value. Specifically,

for the problem (4.20), at the k+1-th iteration, f1 and f2 are alternatingly updated

by minimizing the objective as

fk+1
1 = arg min

f1

{
1

β

∥∥A1f1 + A2f
k
2 − b

∥∥2
2

+ µ ‖f1‖p1p1

}
, (4.21)

fk+1
2 = arg min

f2

{
1

β

∥∥A1f
k+1
1 + A2f2 − b

∥∥2
2

+ ‖f2‖p2p2

}
. (4.22)

The resulting subproblems (4.21) and (4.22) are difficult to solve analytically

due to the nonsmoothnesses and nonconvexity of the `p-norm terms. Therefore,

we propose to adopt an linearizion to the `2-norm terms in (4.21) and (4.22) and

use proximity operator to solve for k + 1-th iterate (see Section III-A in [133]).

ADMM Algorithm

The alternative direction method of multipliers (ADMM) is a powerful frame-

work which is well suited to solve high-dimensional optimization problems arising

in image processing applications. Here, we use two auxiliary variables z1 = f1 and

z2 = f2 to reformulate the problem (4.20) as

minimize
f1,f2,z1,z2

{
‖A1f1 + A2f2 − b‖22 + βµ ‖z1‖p1p1 + β ‖z2‖p2p2

}
subject to f1 = z1, f2 = z2. (4.23)

Even though the reformulation (4.23) seems trivial, the resulting problem now be

solved using methods of constrained optimization – the augmented Lagrangian

method (see Section III-B in [133]).

Moreover, the above proposed BCD and ADMM methods can be extended to

recover 3 channel RGB color images where each channel is assumed to have a

similar sparsity pattern.



111

(a) True image (f∗) (b) Salt-and-pepper noise corrupted image

(c) JP (PSNR = 21.48 dB) (d) YALL1 (PSNR = 25.80 dB)

(e) BCD (PSNR = 34.62 dB) (f) ADMM (PSNR = 34.44 dB)

Figure 4.10: Restoration of a 318× 500 image corrupted by salt-and-pepper noise
(sparsely occurring black and white pixels). (a) True image of interest. (b) Image
corrupted by 30% salt-and-pepper noise. (c) Recovered image using JP method.
(d) Recovered image using YALL1 method. (e) Proposed BCD reconstruction with
p1 = 0.9 and p1 = 0.3. (f) Proposed ADMM reconstruction with p1 = 0.8 and
p1 = 0.4. Note the proposed methods (e) and (f) outperform JP and YALL1 in
PSNR (dB) = 10 log10(max(f∗)2/MSE).
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4.4.3 Numerical Experiments

We investigate the performance of the two proposed methods using image in-

painting experiments, in comparison with two existing `1-norm solvers: JP [120]

and YALL1 [139] solvers. The both proposed BCD and ADMM algorithms are

initialized by standard ADMM with p1 = p2 = 1, µ = 1 and set β = 10−6. With

properly tuned p1 and p2, both the new methods achieve surprisingly better re-

covery performance compared with the JP and YALL1 methods (see 4.10). The

best performance of BCD method (PSNR = 34.62 dB) is given by p1 = 0.9 and

p2 = 0.3, which yields a 8.8 dB recovery PSNR improvement than the YALL1.

The proposed ADMM (PSNR = 34.44 dB) also gives comparable results to the

BCD with 8.6 dB recovery PSNR improvement than the YALL1 reconstruction.

4.4.4 Conclusion

In this method, we proposed a novel formulation for sparse signal recovery

and demixing using the `p-norm (0 ≤ p < 1) for sparsity inducing. Two first-order

algorithms have been developed based on the BCD and ADMM frameworks, which

are convergent under some mild conditions and scale well for high-dimensional

problems. Furthermore, the new algorithms have been extended for the multitask

case. Experiments demonstrated that the new algorithms can achieve considerable

performance gain over the `1-minimization algorithms.

4.5 Summary of Contribution

To solve the `2-`1 problem, we proposed a limited-memory trust-region method.

Here, we formulated the objective function as a smooth unconstrained optimization

problem and use eigenvalues for efficiently solving the trust-region subproblems.

We extended this approach to `p-norm relaxation for better sparse recovery by

bridging the gap between the `1-norm and the `0 quasi-norm. In addition, we

proposed a novel formulation for sparse signal recovery and demixing using the

`p-norm penalization.



Chapter 5

Conclusion

5.1 Summary

Acquisition of a sparse signal from an undersampled set of linear measurements

is the main problem of compressed sensing (CS). Within the CS community, min-

imizing the `1-penalized least-squares problem is the most popular approach for

sparse signal recovery. The least-squares data-fidelity term assumes a Gaussian

noise model. However, there are many real-world applications that do not follow

Gaussian noise statistics. For example, a low number of photons hitting a detec-

tor can not be effectively modeled using a Gaussian noise model, rather require

a Poisson noise model. Therefore, under the Poisson noise model, the signal of

interest has been usually recovered by exploiting signal sparsity through convex

regularizers such as `1-norm or TV1 seminorm [70]. But these convex regularizers

are merely two representative measures of sparsity. Therefore, in our research, we

have investigated relaxations of the regularizers in the Poisson inverse problem to

nonconvex regularizers that prompt sparsity even better.

The following summarizes my contributions of the dissertation towards sparse

Poisson intensity reconstruction algorithms:

• We proposed SPIRAL-`p [5], a nonconvex method for further enforce sparsity

and structure in the solution using the `p-norm (0 ≤ p < 1). We showed that

this approach can be uncoupled into the separable `p-minimization prob-
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lems, with each scalar minimization problem is solved using generalized soft-

thresholding function [100]. We demonstrated that the proposed method for

p < 1 eliminates the spurious artifacts found in the SPIRAL-`1 [70] recon-

struction for simulated data. Moreover, we discussed the convergence of the

proposed nonconvex algorithm to a critical point.

• If the image of interest is not sparse, we proposed a p-th power (0 ≤ p < 1)

total variation regularized optimization approach (SPIRAL-TVp [4]) using

iterative reweighting. The proposed method iteratively convexifies a sequence

of nonconvex subproblems using a weighted TV approach and is solved using

a modification to the FISTA method for TV-based denoising. We explored

the effectiveness of the proposed method through numerical experiments in

image deblurring.

• Recently, we proposed a novel nonconvex Poisson intensity reconstruction

method by introducing sparsity promoting Shannon entropy to the SPIRAL

framework (SPIRAL-Shannon). In particular, the non-separable Shannon

regularization function is approximated using its first-order Taylor series.

We showed that this method achieved comparable results to the SPIRAL-`p

with less computational effort.

• In many photon-limited applications including medical imaging, additional

information on the signal of interest is often available. Specifically, its maxi-

mum and minimum amplitudes at specific regions might be known a priori.

To fill this gap in SPIRAL framework, we proposed an approach that incorpo-

rates this information by the inclusion of upper and lower bound constraints

(B-SPIRAL-`1 [6]).

The following summarizes my contributions of the dissertation towards applica-

tions to the proposed nonconvex sparse Poisson intensity reconstruction methods:

• We demonstrated that the SPIRAL-`p method is effective in solving the

fluorescence molecular tomography (FMT) inverse problem when the obser-

vations are low-dimensional and are corrupted by high Poisson noise levels

[9].
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• We proposed following novel stage-based methods to solve time-dependent

tomography problems under the Poisson point process:

– A two-stage method to recover support and the decay rate of time-

dependent bioluminescent sources [2].

– A three-stage method to recover support, fluorescence lifetime, and flu-

orophore concentration [3].

There are three main challenges in these two problems: (1) Signals are con-

strained by partial differential equations. (2) Low photon counts at the

boundary are corrupted by Poisson noise. (3) Discretized problem becomes

large-scale in space and time.

• We proposed sparse recovery methods for structural variant detection in col-

laboration with the Sindi Lab at UC Merced [18, 19, 17, 15, 16].

In the context of Gaussian noise, there are various methods for solving the

least-squares problem using convex and nonconvex regularization techniques. The

following summarizes my contributions of the dissertation towards solving sparsity

promoting least-squares optimization problem:

• We proposed to solve the `2 − `1 sparse recovery problem using a limited

memory trust-region approach [1]. Unlike gradient projection-type meth-

ods, which uses only the current gradient, our approach uses gradients from

previous iterations to obtain a more accurate Hessian approximation. We

demonstrated that the proposed nonconvex method eliminates spurious so-

lutions more effectively and efficiently in numerical experiments in 1D and

2D settings.

• To promote sparsity and the structure of the solution, we proposed to extend

the above trust-region approach to solve the `2 − `p (0 ≤ p < 1) sparse

recovery problem [8].

• Recentely, we proposed methods for recovery and demixing of sparse signals

using nonconvex regularization in collaboration with Dr. Fei Wen [133].
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5.2 Future Work

We believe that this is the beginning of nonconvex techniques in photon-limited

imaging. Therefore, to fill up some remaining gaps in Poisson noise context, we

would like to propose following future work:

• Poisson regression model assumes that the mean and the variance of the

observed counts are the same, i.e., Var(yi) = E(yi). However, in practice,

photon count data often demonstrate over- or under-dispersion compared to

the Poisson model [106]. Therefore, it might be effective to model the mea-

surements using Conway-Maxwell-Poisson distribution [78] and regularized

using sparsity promoting nonconvex regularizers such as `p-norm to recover

a sparse solution.

• Following a similar approach as in [133], one can research to develop an

algorithm that operates on Poisson noise context to recover and demix two

sparse signals by exploiting their sparsity structure.

• Develop an algorithm for solving potentially nonlinear photon-limited inverse

problems.

Under the Gaussian noise context, we would like to propose trust-region SR1

methods to solve the `2 − `p nonconvex sparsity recovery optimization. In our

recent work, the Hessian of the quadratic subproblem is efficiently approximated

by the limited-memory BFGS method, which preserves the hereditary positive-

definiteness. Since the sparse recovery problem is nonconvex, here we propose

to use the limited-memory SR1 (Symmetric Rank 1) trust-region optimization

approach, where the Hessian approximation is not necessarily positive definite.



Appendix A

A.1 The Negative Poisson Log-Likelihood Func-

tion Formulation

Under the Poisson process model (1.7), the unknown f∗ can be recovered by

maximizing the probability of observing measurements y. By assuming each yi is

mutually independent, the likelihood function can be written as

L(Af∗) =
m∏
i=1

p(yi|(A f∗)i),

=
m∏
i=1

(ei
TAf∗)yie−(ei

TAf∗)

yi!
,

where ei is the ith canonical basis unit vector. Let λi = ei
TAf∗,

=
m∏
i=1

(λi)
yie−λi

yi!
,

=
λy11 λ

y2
2 . . . λymm e−(

∑m
i=1 λi)∏m

i=1 yi!
.
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Then the log-likelihood function is defined as,

l(Af∗) = logL(Af∗),

= y1 log(λ1) + . . .+ ym log(λm)−
m∑
i=1

λi log(e)− log
m∏
i=1

yi!︸ ︷︷ ︸
Independent of f∗

,

=
m∑
i=1

yi log(λi)−
m∑
i=1

λi,

=
m∑
i=1

yi log(ei
TAf∗)− 1TAf∗,

where 1 is an m-vector of ones and we neglected log(yi!) terms since they are

constant with respect to f∗. Thus, the negative Poisson log-likelihood function is

given by

F (f) = −l(Af) = 1TAf −
m∑
i=1

yi log(eTi Af).

A.2 Subproblem Formulation in SPIRAL

The Poisson intensity reconstruction subproblems take the following constrained

minimization form:

fk+1 = arg min
f∈Rn

F k(f) + τ pen(f),

subject to f � 0,

where F k(f) denotes the second order Taylor series approximation to the F (f) at

fk:

F k(f) ≈ F (fk) + (f − fk)T∇F (fk) +
1

2
(f − fk)T ∇2F (fk)︸ ︷︷ ︸

≈αkI

(f − fk)

= F (fk) + (f − fk)T∇F (fk) +
αk
2
‖ f − fk ‖22 .
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Then

fk+1 = arg min
f∈Rn

F (fk)︸ ︷︷ ︸
independent of f

+ (f − fk)T∇F (fk) +
αk
2
‖ f − fk ‖22 +τ pen(f)

= arg min
f∈Rn

(f − fk)T∇F (fk) +
αk
2
‖ f − fk ‖22 +τ pen(f)

= arg min
f∈Rn

1

αk
fT∇F (fk)− 1

αk
fk
T∇F (fk)

+
1

2
(f − fk)T (f − fk) +

τ

αk
pen(f)

= arg min
f∈Rn

1

2
(f − fk)T (f − fk) +

1

2αk
fT∇F (fk)− 1

2αk
fk
T∇F (fk)

+
1

2αk
∇F (fk)T f − 1

2αk
∇F (fk)T fk +

τ

αk
pen(f)

= arg min
f∈Rn

1

2
{(f − fk)T (f − fk) +

1

αk
(f − fk)T∇F (fk)

+
1

αk
∇F (fk)T (f − fk) +

1

α2
k

∇F (fk)T∇F (fk)︸ ︷︷ ︸
add constant

}+
τ

αk
pen(f)

= arg min
f∈Rn

1

2

{[
(f − fk)T +

1

αk
∇F (fk)T

] [
(f − fk) +

1

αk
∇F (fk)

]}
+

τ

αk
pen(f)

= arg min
f∈Rn

1

2
‖ f − (fk +

1

αk
∇F (fk))︸ ︷︷ ︸

sk

‖22 +
τ

αk
pen(f).

A.3 Finding the Thresholding Value γp(λ)

Since the solution f ∗ of (2.14) is nonnegative when s > 0, we can write the

objective function and its first derivative as

Ω(f) =
1

2
(f − s)2 + λfp,

Ω′(f) = f − s+ λpfp−1

respectively. When s = γp(λ), there exists f ∗p such that

Ω(f ∗p ) = Ω(0)

1

2
(f ∗p − γp(λ))2 + λf ∗p =

1

2
(γp(λ))2, (A.1)
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and

Ω′(f ∗p ) = 0

f ∗p − γp(λ) + λp(f ∗p )p−1 = 0

γp(λ) = f ∗p + λp(f ∗p )p−1. (A.2)

Then, we can substitute γp(λ) in Eq. (A.2) to Eq. (A.1), and obtain the following

equation

(f ∗p )p(2λ(1− p)− (f ∗p )2−p) = 0.

Since f ∗p > 0, we can obtain f ∗p as

f ∗p = (2λ(1− p))
1

2−p . (A.3)

Then the thresholding value γp(λ) is obtained by substituting f ∗p in Eq. (A.3) back

into the Eq. (A.2):

γp(λ) = (2λ(1− p))
1

2−p + λp(2λ(1− p))
p−1
2−p .

A.4 Special Cases of GST Function

When p = 0, the GST function T0(s, λ) is called the hard-thresholding function,

and it solves

minimize
f

1

2
(f − s)2 + λ|f |0,

where

|f |0 =

{
0, if f = 0

1, if f 6= 0.

In this case, the GST function is given by

T0(s, λ) =

{
0, if |s| ≤ γ0(λ)

s, if |s| > γ0(λ),
(A.4)

where the thresholding value is obtained by evaluating (2.17) at p = 0, i.e., γ0(λ) =

(2λ)1/2.
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When p = 1, the GST function becomes the soft-thresholding function, where

γ1(λ) = λ, and

T1(s, λ) =

{
0, if |s| ≤ γ1(λ)

sgn(s)(|s| − λ), if |s| > γ1(λ).

A.5 Image Quality Metrics

(1) The Volume Ratio (VR) [124]: The VR measures the ratio between the true

and the reconstructed target volumes and is given by

VR =
|rROI|
|ROI|

,

where ROI is the true region of interest and rROI is the reconstructed region

of interest containing the reconstructed signals whose amplitudes are higher

than half of the maximum amplitude of the reconstructed signal. Here, | · |
denotes the number of elements of the set. Ideally, VR is close to 1.

(2) The dice similarity coefficient (Dice) [46]: Dice measures the location accu-

racy of the reconstructed target with respect to the true location and is given

by

Dice =
2 ∗ |rROI ∩ ROI|
|rROI|+ |ROI|

Here, | · | also denotes the number of elements of the set. Similarly, in the

ideal case, Dice is close to 1.

(3) The Contrast-to-Noise Ratio (CNR) [114]: CNR measures how easy it is to

see the reconstructed target from the background. CNR is given by

CNR =
Mean(fROI)−Mean(fROB)√

ωROIVar(fROI) + (1− ωROI)Var(fROB)
,

where ωROI = |ROI|/(|ROI| + |ROB|), ROB is the true background region

and f denotes the reconstructed signal. A high CNR value means a high

contrast between the reconstructed target and the background.
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(4) The Mean Square Error (MSE): MSE measures the difference between the

approximation and the truth, and it is given by

MSE =
1

n
‖f − f∗‖22,

where f ∈ Rn and f∗ ∈ Rn are the reconstructed and true signals, respectively.

Smaller MSE value is preferred.

A.6 Proof of the Relation

√
α2x2 + β2y2 = max

p1,p2
{f = αxp1 + βyp2 : p21 + p22 ≤ 1}.

p1

p2

∇f = [αx; βy]

p2
1

+ p2
2
≤ 1

(p∗
1
, p∗

2
)

0

Figure A.1: Function f is maximized at the point (p∗1, p
∗
2).

Proof. As shown in the Fig. A.1, f is maximized at the boundary of the circle.

Therefore

p21 + p22 = 1 ⇒ p1 =
√

1− p22.
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Then the objective function can be written as

f = αxp1 + βyp2 = αx
√

1− p22 + βy p2,

and the p2 value at the maximum point is obtained by setting derivative of f to

zero:

df

dp2
= 0

αx
1

2
(1− p22)−

1
2 (−2p2) + βy = 0

p∗2 =

√
β2y2

α2x2 + β2y2
.

Then p∗1 will be

p∗1 =
√

1− p∗22 =

√
α2x2

α2x2 + β2y2
.

Then the maximum function value at the point (p∗1, p
∗
2) is given by

αxp∗1 + βyp∗2 =
√
α2x2 + β2y2.
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with poisson data: from cells to galaxies. Inverse Problems, 25(12):123006,
2009.

[31] S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and
S. Achilefu. Whole-body fluorescence lifetime imaging of a tumor-targeted
near-infrared molecular probe in mice. Journal of Biomedical Optics,
10(5):054003–054003–8, 2005.

[32] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, 2004.

http://iew3.technion.ac.il/~becka/papers/tv_fista.zip


127

[33] B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver,
C. Kogel, and S. P. Poplack. Combining near-infrared tomography and mag-
netic resonance imaging to study in vivo breast tissue: implementation of
a laplacian-type regularization to incorporate magnetic resonance structure.
Journal of Biomedical Optics, 10:051504–051504–10, 2005.

[34] O. Burdakov, L. Gong, Y.-X. Yuan, and S. Zikrin. On efficiently combin-
ing limited memory and trust-region techniques. Technical Report 2013:13,
Linkping University, Optimization, 2015.

[35] J. V. Burke, A. Wiegmann, and L. Xu. Limited memory BFGS updating in
a trust-region framework. Technical report, University of Washington, 1996.

[36] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton
matrices and their use in limited-memory methods. Math. Program., 63:129–
156, 1994.

[37] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans.
Inform. Theory, 15(12):4203–4215, 2005.

[38] E.J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information. IEEE
Transactions on information theory, 52(2):489, 2006.

[39] A. Chambolle. An algorithm for total variation minimization and applica-
tions. Journal of Mathematical Imaging and Vision, 20(1-2):89–97, 2004.

[40] R. Chartrand. Exact reconstruction of sparse signals via nonconvex mini-
mization. Signal Processing Letters, IEEE, 14(10):707–710, Oct 2007.

[41] R. Chartrand. Nonconvex compressed sensing and error correction. In Pro-
ceedings of 2007 IEEE ICASSP, Honolulu, Hawaii, April 2007.

[42] R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex
compressive sensing. Inverse Problems, 24(3):035020, 2008.

[43] R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressive
sensing. In Proc. IEEE International Conference on Acoustics, Speech, and
Signal Processing, pages 3869–3872, 2008.

[44] K. Chen, J. W. Wallis, M. D. McLellan, D. E. Larson, J. M. Kalicki, C. S.
Pohl, S. D. McGrath, M. C. Wendl, Q. Zhang, D. P. Locke, et al. Break-
dancer: an algorithm for high-resolution mapping of genomic structural vari-
ation. Nature methods, 6(9):677–681, 2009.

[45] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.



128

[46] L. R. Dice. Measures of the amount of ecologic association between species.
Ecology, 26:297–302, 1945.

[47] D. L. Donoho. De-noising by soft-thresholding. IEEE Trans. Information
Theory, 41(3):613–627, 1995.

[48] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory,
52(4):1289–1306, 2006.

[49] D. L. Donoho and M. Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization. Proceedings of the Na-
tional Academy of Sciences, 100(5):2197–2202, 2003.

[50] D. L. Donoho, I. M. Johnstone, J. C. Hoch, and A. S. Stern. Maximum
entropy and the nearly black object. Journal of the Royal Statistical Society.
Series B (Methodological), pages 41–81, 1992.

[51] J. Dutta, S. Ahn, C. Li, S. R Cherry, and R. M. Leahy. Joint `1 and total
variation regularization for fluorescence molecular tomography. Physics in
medicine and biology, 57(6):1459, 2012.

[52] M. Elad, J. L Starck, P. Querre, and D. L. Donoho. Simultaneous cartoon
and texture image inpainting using morphological component analysis (mca).
Applied and Computational Harmonic Analysis, 19(3):340–358, 2005.

[53] J. B. Erway and R. F. Marcia. Algorithm 943: MSS: MATLAB software
for L-BFGS trust-region subproblems for large-scale optimization. ACM
Transactions on Mathematical Software, 40(4):28:1–28:12, June 2014.

[54] J. Feng, C. Qin, K. Jia, S. Zhu, K. Liu, D. Han, X. Yang, Q. Gao, and
J. Tian. Total variation regularization for bioluminescence tomography with
the split bregman method. Applied Optics, 51(19):4501–4512, 2012.

[55] J. Feng, C. Qin, K. Jia, S. Zhu, X. Yang, and J. Tian. Bioluminescence
tomography imaging in vivo: recent advances. Selected Topics in Quantum
Electronics, IEEE Journal of, 18(4):1394–1402, 2012.

[56] J. A. Fessler and A. O. Hero. Penalized maximum-likelihood image recon-
struction using space-alternating generalized EM algorithms. IEEE Trans.
on Image Proc., 4(10):1417–1429, Oct 1995.

[57] J.A. Fessler and H. Erdogan. A paraboloidal surrogates algorithm for conver-
gent penalized-likelihood emission image reconstruction. In Nuclear Science
Symposium, 1998. Conference Record. 1998 IEEE, volume 2, pages 1132–
1135 vol.2, 1998.



129

[58] M. A. T. Figueiredo and J. M. Bioucas-Dias. Restoration of poissonian im-
ages using alternating direction optimization. IEEE Transactions on Image
Processing, 19(12):3133–3145, 2010.

[59] M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based
image restoration. Image Processing, IEEE Transactions on, 12(8):906–916,
2003.

[60] M.A.T. Figueiredo and J.M. Bioucas-Dias. Deconvolution of poissonian im-
ages using variable splitting and augmented lagrangian optimization. In
Statistical Signal Processing, 2009. SSP ’09. IEEE/SP 15th Workshop on,
pages 733–736, Aug 2009.

[61] M.A.T. Figueiredo, R.D. Nowak, and S.J. Wright. Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse
problems. IEEE Journal of Selected Topics in Signal Processing, 1(4):586–
597, 2007.

[62] H. Gao and H. Zhao. Multilevel bioluminescence tomography based on radia-
tive transfer equation part 1: l1 regularization. Optics Express, 18(3):1854–
1871, 2010.

[63] H. Gao and H. Zhao. Multilevel bioluminescence tomography based on ra-
diative transfer equation part 2: total variation and l1 data fidelity. Optics
Express, 18(3):2894–2912, 2010.

[64] D. M. Gay. Computing optimal locally constrained steps. SIAM J. Sci.
Statist. Comput., 2(2):186–197, 1981.

[65] T. Goldstein and S. Osher. The split bregman method for l1-regularized
problems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[66] J. W. Goodman and J. F. Belsher. Fundamental limitations in linear invari-
ant restoration of atmospherically degraded images. Proc. SPIE, 0075:141–
154, 1976.

[67] P. J. Green. Bayesian reconstructions from emission tomography data using
a modified em algorithm. IEEE transactions on medical imaging, 9(1):84–93,
1990.

[68] D. Han, J. Tian, S. Zhu, J. Feng, C. Qin, B. Zhang, and X. Yang. A
fast reconstruction algorithm for fluorescence molecular tomography with
sparsity regularization. Opt. Express, 18(8):8630–8646, 2010.

[69] Z. T. Harmany, R. F. Marcia, and R. M. Willett. The Sparse Poisson Inten-
sity Reconstruction ALgorithms (SPIRAL) Toolbox. http://drz.ac/code/
spiraltap/.

http://drz.ac/code/spiraltap/
http://drz.ac/code/spiraltap/


130

[70] Z. T. Harmany, R. F. Marcia, and R. M. Willett. This is SPIRAL-TAP:
Sparse Poisson intensity reconstruction algorithms; theory and practice. Im-
age Processing, IEEE Trans. on, 21(3):1084–1096, March 2012.

[71] X. He, J. Liang, X. Wang, J. Yu, X. Qu, X. Wang, Y. Hou, D. Chen, F. Liu,
and J. Tian. Sparse reconstruction for quantitative bioluminescence tomogra-
phy based on the incomplete variables truncated conjugate gradient method.
Optics Express, 18(24):24825–24841, 2010.

[72] M. Hintermüller and T. Wu. Nonconvex TVq-models in image restoration:
Analysis and a trust-region regularization–based superlinearly convergent
solver. SIAM Journal on Imaging Sciences, 6(3):1385–1415, 2013.

[73] T. Hohage and F. Werner. Inverse problems with poisson data: statisti-
cal regularization theory, applications and algorithms. Inverse Problems,
32(9):093001, 2016.

[74] F. Hormozdiari, C. Alkan, E. E. Eichler, and S. C. Sahinalp. Combinatorial
algorithms for structural variation detection in high-throughput sequenced
genomes. Genome research, 19(7):1270–1278, 2009.

[75] S. Huang, D. N Tran, and T. D. Tran. Sparse signal recovery based on
nonconvex entropy minimization. In 2016 IEEE International Conference
on Image Processing (ICIP), pages 3867–3871. IEEE, 2016.

[76] H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. C. Drummen. Advanced
fluorescence microscopy techniques – FRAP, FLIP, FLAP, FRET and FLIM.
Molecules, 17(4):4047, 2012.

[77] M. Jansen. Multiscale poisson data smoothing. Journal of the Royal Statis-
tical Society. Series B (Statistical Methodology), 68(1):27–48, 2006.

[78] J. B. Kadane, G. Shmueli, T. P. Minka, S. Borle, P. Boatwright, et al.
Conjugate analysis of the Conway-Maxwell-Poisson distribution. Bayesian
analysis, 1(2):363–374, 2006.

[79] S Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. A method for
large-scale `1-regularized least squares problems with applications in signal
processing and statistics. IEEE J. Select. Topics Signal Process, 1(4):606–
617, 2007.

[80] D. R. Kincaid and E. W. Cheney. Numerical Analysis: Mathematics of
Scientific Computing. American Mathematical Society, 3rd edition, 2002.

[81] M. Lai, Y. Xu, and W. Yin. Improved iteratively reweighted least squares
for unconstrained smoothed `q minimization. SIAM Journal on Numerical
Analysis, 51(2):927–957, 2013.



131

[82] P. K. Lamm. Variable-smoothing regularization methods for inverse prob-
lems. 1999.

[83] E. S. Lander and M. S. Waterman. Genomic mapping by fingerprinting
random clones: a mathematical analysis. Genomics, 2(3):231–239, 1988.

[84] J. N Laska, M. A. Davenport, and R. G. Baraniuk. Exact signal recovery
from sparsely corrupted measurements through the pursuit of justice. In
2009 Conference Record of the Forty-Third Asilomar Conference on Signals
Systems and Computers, pages 1556–1560. IEEE, 2009.

[85] J. Lee, Y. Sun, and M. Saunders. Proximal Newton-type methods for convex
optimization. In Advances in Neural Information Processing Systems, pages
836–844, 2012.

[86] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems. SIAM, Society for
Industrial and Applied Mathematics, classics in applied mathematics edition,
7 2007.

[87] C. Li, G. Wang, J. Qi, and S. R. Cherry. Three-dimensional fluorescence
optical tomography in small animal imaging using simultaneous positron
emission tomography priors. Optics letters, 34:2933–2935, 2009.

[88] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large
scale optimization. Math. Program., 45:503–528, 1989.

[89] Q. Lyu, Z. Lin, Y. She, and C. Zhang. A comparison of typical `p minimiza-
tion algorithms. Neurocomputing, 119:413–424, 2013.

[90] S. G. Mallat and G. Yu. Super-resolution with sparse mixing estimators.
IEEE Transactions on Image Processing, 19(11):2889–2900, 2010.

[91] R. F. Marcia and R. M. Willett. Compressive coded aperture superresolu-
tion image reconstruction. In IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 833–836. IEEE, 2008.

[92] P. Medvedev, M. Stanciu, and M. Brudno. Computational methods for dis-
covering structural variation with next-generation sequencing. Nature meth-
ods, 6:S13–S20, 2009.
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