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Abstract

Computational drug repositioning or repurposing is a promising and efficient tool for discovering new uses from existing
drugs and holds the great potential for precision medicine in the age of big data. The explosive growth of large-scale genomic
and phenotypic data, as well as data of small molecular compounds with granted regulatory approval, is enabling new devel-
opments for computational repositioning. To achieve the shortest path toward new drug indications, advanced data process-
ing and analysis strategies are critical for making sense of these heterogeneous molecular measurements. In this review, we
show recent advancements in the critical areas of computational drug repositioning from multiple aspects. First, we summar-
ize available data sources and the corresponding computational repositioning strategies. Second, we characterize the com-
monly used computational techniques. Third, we discuss validation strategies for repositioning studies, including both com-
putational and experimental methods. Finally, we highlight potential opportunities and use-cases, including a few target
areas such as cancers. We conclude with a brief discussion of the remaining challenges in computational drug repositioning.

Key words: computational drug repositioning; integrative strategies; genome; phenome; chemical structure; drug combin-
ation; prediction validation

Introduction

Over the past decades, de novo drug discovery has grown to be
time-consuming and costly, despite the advances in genomics,
life sciences and technology. Investments in pharmaceutical
R&D have steadily increased, while the number of new drug ap-
provals has stagnated [1]. Indeed, failures are spread through-
out the drug development pipeline, and it takes billions of

investment dollars and an average of about 9–12 years to bring a
new drug to the market [2]. Improving R&D productivity re-
mains the most important priority for pharmaceutical industry
[3]. In light of these challenges, drug repositioning, which con-
cerns the detection and development of new clinical indications
for those existing drugs, or for those that are in the develop-
ment pipeline, has emerged as an increasingly important
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strategy for the new drug discovery. It could substantially re-
duce the risks of development and the costs, and shorten the
lag between drug discovery and availability [4]. Among the 84
drug products introduced to market in 2013, new indications of
existing drugs accounted for 20% [5]. Drug repositioning has
played a key role in drug discovery and precision medicine para-
digm [6].

In recent years, drug repositioning is becoming strongly sup-
ported by governments, non-trading organizations and aca-
demic institutions. For example, both the United States
(National Center for Advancing Translational Sciences) and the
United Kingdom (Medical Research Council) have launched
large-scale funding programs in this area with a goal to extend
molecules that already have undergone significant research
and development by the pharmaceutical industry to more new
indications. Furthermore, the US Food and Drug Administration
(FDA) is also enabling drug repositioning, with the creation of
several public databases specifically for computational drug re-
positioning. There are also substantial economic incentives to
reposition marketed drugs for the treatment of orphan and rare
disorders [7]. All of these efforts significantly promoted drug re-
positioning research.

Historically, the discovery of new uses of old drugs is mostly
through serendipity [8] or resulted from a better understanding
of the drugs’ mechanism of action. For example, the monoclo-
nal antibody bevacizumab, originally developed to treat pa-
tients with metastatic colon cancer and non-small cell lung
cancer by inhibiting angiogenesis, is now being used to slow or
reverse abnormal vascularization of the retina in exudative
(wet) macular degeneration [9]. With the accumulation of the
large volumes of omics data, bioinformatics plays an increas-
ingly important role in the discovery of new drug indications
[4]. Depending on where the discovery comes from, these newly
proposed computational methods can be categorized as either
‘drug based’ or ‘disease based’ [10]. Traditional studies mostly
focus on exploring the shared characteristics among drug com-
pounds such as chemical structures [11, 12] and side effects [13].
Other methods include rescreening the existing pharmacopeia
against new targets to uncover the novel drug indications [14],
looking for similarities of molecular activities [15], or exploring
the relationships between drugs and diseases.

With the drug-related data growth and open data initiatives,
a set of new repositioning strategies and techniques has
emerged with integrating data from various sources, like
pharmacological, genetic, chemical or clinical data. These
methods can accumulate evidence supporting discovery of new
uses or indications of existing drugs. In this review, we sum-
marize recent progress in computational drug repositioning as
the following four parts (see Figure 1): repositioning strategies
(with available data sets), computational approaches, validation
methods and application areas.

Computational repositioning strategies
Genome

Rapid advances in genomics have led to the generation of large
volumes of genomic and transcriptomic data for a diverse set of
disease samples, normal tissue samples, animal models and
cell lines. Much of these data are publicly available. Together
with other phenotypic, and clinical database, these data sets
provide a unique opportunity to understand disease mechan-
ism, elucidate drug mechanism of actions and identify new use
of old drugs. Among those, transcriptomic profiles, such as gene

expression data are most widely used, while other genomic and
genetic profiles have been explored for drug repositioning as
well.

One key source of data behind several repurposing efforts is
the Connectivity Map (CMap) [16] project and its extended pro-
ject Library of Integrated Network-Based Cellular Signatures
(LINCS) [17], which produced large-scale gene expression pro-
files from human cancer cell lines treated with different drug
compounds under different conditions. CMap aims to construct
a detailed map for functional associations among diseases, gen-
etic perturbations and drug actions. By integrating with other
functional genomics databases [e.g. NCBI Gene Expression
Omnibus (GEO)] [18], its data have been extensively explored in
drug repositioning studies. One approach using these data is to
look for inverse drug–disease relationships by comparing drug
gene expression profiles and disease gene expression profiles.
This approach is also referred as ‘signature reversion’. For ex-
ample, by systematically comparing gene expression signatures
of inflammatory bowel disease (IBD) derived from GEO against a
set of drug gene expression signatures comprising 164 drug com-
pounds from CMap, Dudley et al. [19] inferred several new inter-
esting drug–disease pairs and validated one pair in IBD
preclinical models. In another case, Jahchan et al. [20] used a simi-
lar systematic drug-repositioning bioinformatics approach to
query a large compendium of gene expression profiles to identify
antidepressant drugs for the treatment of small cell lung cancer.

Another approach, ‘guilt-by-association’, looks for drugs
that provoke similar transcriptional responses, positing that
they could share similar mode of action (MoA) [21]. The avail-
ability of many public repositories, such as the Drug versus
Disease (DvD) [22], the database for Annotation, Visualization
and Integrated Discovery (DAVID) [23] and the Gene Set
Enrichment Analysis (GSEA) [24], provides such an opportunity
for the comparison of drug and disease signatures from gene
expression profiles.

Recently, noncoding RNAs, especially the microRNA
(miRNAs), have been shown in regulating kinds of cell activities
[25, 26], thus becoming promising therapeutic targets for drug
repositioning [27]. For example, Liu et al. [28] developed an in sil-
ico drug repositioning strategy based on miRNA-TF feed-
forward loops (FFLs). miRNAs and transcript factors (TFs) were
found to be significantly enriched in cystic fibrosis (CF) associ-
ated gene regulations from public available data sources. Then
they constructed FFLs in CF by defining specific TFs and
miRNAs as two regulatory elements. Forty-eight existing drugs
showing ability to influence the expression of miRNA that are
part of FFLs were repurposed for the treatment of CF patients.
Jiang et al. [29] predicted new indications for existing drugs by
constructing small molecule-miRNA network for each cancer.
Rukov et al. [30] developed a web server that links miRNA
expression and drug function by combining data on miRNA tar-
geting and protein–drug interactions. SM2miR is a database
containing manually curated relationships between experimen-
tally validated molecules and miRNA [31].

In addition to transcriptomic data, other genomic profiles
(e.g. genetic mutations) can be applied to drug repositioning. For
instance, Garnett et al. [32] carried out a large-scale screening of
human cancer cell lines with 130 clinical/preclinical drugs. A
multivariate analysis of genetic and gene expression profiles of
cancer cell lines showed that a few mutated cancer genes that
are associated with drug sensitivity may serve as potential
biomarkers of drug response. To some extent, these mutations
reflect the molecular activity of drugs, and can be regarded as
drug signatures during the repositioning process. In another

Computational Drug Repositioning | 3

: NCATS
: MRC
,
-
,
,
Repositioning 
Strategies 
is
is 
,
,
(
)
s
is
-
``
''
-
-
 (SCLC)
``
''
c
48 
 (SMirN)
which 
-


case, Okada et al. [33] performed a three-stage genome-wide
association study (GWAS) meta-analysis of rheumatoid arthritis
(RA) patients and linked the risk loci to known RA drug targets.
In their study, logistic regression models assuming additive ef-
fects of the allele dosages were used to assess the relationship
of the single-nucleotide polymorphisms (SNPs) and RA. In total,
101 RA risk loci were identified (e.g. 42 are novel), and they
showed significant overlapping with approved RA drug target
genes. Furthermore, several drugs approved for other diseases
were connected to RA risk genes, indicating they could be repos-
itioned for RA. In another GWAS [34], a catalog of disease-
associated genes from published genome-wide associations
studies were further integrated with targets of drugs from
pharmaceutical projects. In this way, the drugs with targets
mapped to the disease-associated genes from GWAS data may
be repositioned.

Phenome

The phenome, defined as the comprehensive collection of
phenotypic information, was emerged as a new source for drug
repositioning. In recent years, the phenome-wide association
study (PheWAS) has become increasingly popular as a system-
atic approach to identify important genetic associations with
human diseases [35]. For instance, Denny et al. [36] performed a

large-scale application of the PheWAS using electronic medical
records (EMRs), and demonstrated that PheWAS is a useful tool
to enhance the analysis of the genomic basis and to detect novel
associations between genetic markers and human diseases.

Meanwhile, clinical side effects are shown to be capable of
profiling drug-related human phenotypic information and can
subsequently help discover new therapeutic uses. For example,
Yang et al. [37] used drug side effects as features to predict its in-
dications. Ye et al. [38] identified novel indications based on the
hypothesis that similar side-effect profiles may share similar
therapeutic properties. Bisgin et al. [39] developed a Latent
Dirichlet Allocation model for drug repositioning that adopted
the phenome information from the Side Effect Resource (SIDER)
[40]. Using drug side-effect profiles to suggest its novel indica-
tions has shown to be attractive but its practical use would re-
quire deep understanding of the underlying molecular/
pathological mechanisms.

Finally, the phenome can be incorporated with other kinds
of data for drug repositioning. As an example, Hoehndorf et al.
[41] developed an integrated system to predict novel drug–
disease associations by linking genotype-disease associations
with drug–gene associations. In this model, beginning with inte-
grating phenotype ontologies for disease and gene or genotype,
they derived a semantic similarity-based score to measure
genotype–disease associations. With this approach, most of the

Figure 1. Overview of recent progress in computational drug repositioning.
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known drug–disease associations have been retrieved and the
new associations may indicate a new repositioning opportunity.
Although some researchers have demonstrated the potential
correlations between genome and phenome [42], there is still an
urgent need to understand these correlations better and turn
them into disease treatment or personalized health care. For ex-
ample, the BRCA mutation (mutation in either BRCA1 or BRCA2
genes) was found to be associated with the risk of getting breast
cancer for ovarian cancer patients [43]. Because BRCA mutations
are clinically significant [44], a deeper understanding of the rela-
tionship between BRCA mutation status and cancer phenotype
will be important for making precise treatment decisions for
patients.

Drug chemical structures

The drug chemical structures can also point toward reposition-
ing opportunities. Moreover, publicly available databases of
chemical structures, high-throughput screening data and litera-
ture-derived biochemical data containing massive amounts of
information useful for repositioning [45–48]. The key insight be-
hind these approaches is that the molecules with similar chem-
ical structures often affect proteins and biological systems in
similar ways. Similarity may be measured in many different
methods using different structural features, including 2D topo-
logical fingerprints or 3D conformations, and is an active area of
research. The way to incorporating similarity between chem-
icals into repositioning inferences is also an active area of
research.

For example, Swamidass et al. [46] proposed to use chemical
structure to infer which targets modulate disease-relevant
phenotype. Knowing which targets modulate disease-relevant
phenotypes is a signal that can indicate what other drugs might
work to treat the disease.

Recently, chemical structure information turned to be inte-
grated with other types of data for computational repositioning.
Wang et al. [49] proposed an integrated repositioning model that
incorporated drug chemical structure, molecular activity and
side effect. All three different types of data were integrated to
define a kernel function used by a support vector machine
(SVM) classifier. This method was further compared with other
methods, and showed high efficiency. Similarly, Tan et al. [50]
incorporated drug chemical structure similarity and gene se-
mantic similarity to construct a drug similarity network, which
was further used to extract novel indications. Ng et al. [51]
proposed a novel algorithm called ‘ligENTS’ to define novel
drug–target associations by mapping the drug to its global
pharmacological space according to its chemical information.
Then structural systems biology platform was integrated to re-
position approved drugs for malaria. A full review of chemical
structure-based approaches to repositioning is beyond our
scope, but these studies show a trend toward including chem-
ical structures alongside other types of data.

Drug combinations

As many diseases are driven by complex molecular and envir-
onmental interactions, targeting a single component may not
be sufficient to disrupt those mechanisms, and interest in early
drug discovery stages has increasingly evolved to target mul-
tiple molecules using combined drugs or multi-target inhibitors.
For example, the activated B-cell–like (ABC) subtype of diffuse
large B-cell lymphoma (DLBCL) is a malignant cancer with poor
prognosis. Constitutive activation of the NF-kB by IkB kinase

(IKK) has shown to be a key pathogenic factor. Ceribelli et al. [52]
screened 466 drugs that have been approved or in early stage
for cancer therapy and found that ibrutinib, a kinase inhibitor
that can block B-cell receptor signaling pathway to activate IKK,
shows a significant synergistic effect with JQ1 in killing ABC
DLBCL cells both in vitro and in vivo, suggesting that the combin-
ation of JQ1 and ibrutinib might be a new effective therapy.

Current combination strategies rely mainly on clinical and
empirical experience, computational prediction is thus highly
demanded [53]. Huang et al. [54] used side effects as features for
drug–drug combinations (DDCs), and further classify the safe
DDCs from the unsafe ones. Sun et al. [55] developed a model to
predict effective drug combinations by integrating gene expres-
sion profiles of multiple drugs. Existing drug combinations were
extracted from the Drug Combination Database (DCDB) [56].
They started to identify important features related to drug com-
binations by using statistical methods that look for side effects,
genes or disease pathways that could be affected by drugs in
the combination. Those features were further used to construct
a machine-learning classifier for predicting effective drug
combinations.

Other than in silico methods, experimental characteriza-
tions of drug efficiency (e.g. library screening and cell viability
assays) were also adopted to identify new drug combinations.
Kang et al. [57] identified antileukemic drugs that could be
combined with imatinib to overcome drug resistance in BCR-
ABLþ leukemia. They first used library screening, literature
search and correlation analysis to select 11 candidate drugs that
might be combined with imatinib. Dose responses for these
candidates with/without imatinib were applied in an iterative
search algorithm to identify effective combinations that can
overcome drug resistance. These predicted combinations were
further confirmed in preclinical models.

Available data sources

Currently, many different kinds of data sources (e.g. genetic,
pharmacogenomics, clinical, chemical agent) are available for
supporting computational drug repositioning, and to some ex-
tent they have promoted the development of various repos-
itioning strategies. In Table 1, we summarize a brief list of those
frequently used data sources.

Computational repositioning approaches
Machine learning

For the various data resources that support the exploration of
repositioning opportunities, machine learning-based models
can leverage the data to study the underlying systems for the
prediction of novel associations between drugs and diseases. In
recent years, an increasing number of machine learning meth-
ods have been proposed when coupled with the elucidation of
various features.

Menden et al. [58] developed machine-learning models to
predict the response of cancer cell lines to drug treatment,
quantified through IC50 values. In the model, cancer genomic
features of the cell lines (e.g. mutation status of 77 oncogenes
and microsatellite status) and chemical properties (e.g. struc-
tural fingerprint) were used to build a feed-forward perceptron
neural network model and a random forest regression model.
The predicted IC50 values were further validated by a cross-
validation and an independent blind test. Napolitano et al. [59]
focused on a drug-centered approach to predict drug
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therapeutic class by using drug-related features (e.g. drug chem-
ical structure similarity, drug molecular target similarity and
drug gene expression similarity). They merged these features
into a single drug similarity matrix, which was used as a kernel
for SVM classification. Other than drug-related features,
Gottlieb et al. [60] integrated various disease-related features
(e.g. phenotypic and genetic features). Based on these features,
drug–drug and disease–disease similarity measures were com-
puted to construct classification features. They further used a
logistic regression classifier to predict novel drug indications.

Moreover, there exist machine learning algorithms that use
collaborative filtering techniques to predict unknown drug–
disease associations. For instance, Zhang et al. [61] proposed a
unified computational framework for integrating multiple as-
pects of drug similarity and disease similarity. Briefly, genome
(e.g. drug target protein, disease gene), phenome (e.g. disease
phenotype, drug side effect) and chemical structure (e.g. drug
chemical structure) were integrated to extract drug similarity
matrix and disease similarity matrix. Based on all this informa-
tion, the authors turned the drug–disease network analysis into
an optimization problem. This computational framework shows
high efficiency in exploring novel drug indications. Yang et al.
[62] used a causal inference-probabilistic matrix factorization
approach to infer drug–disease associations. In this model, they
integrated multilevel relations to construct causal networks
connecting drug–target–pathway–gene–disease, PMF modes
were learned based on known interactions. This approach can
predict novel drug–disease associations, thus providing poten-
tial values for drug repositioning.

Network analysis

Network-based analysis is another widely used strategy for
computational drug repositioning. With the advances of high-
throughput technology and bioinformatics methods, molecular
interactions in the biological systems can be modeled by net-
works. Previous studies have suggested that drug–target net-
work, drug–drug network, drug–disease network, protein
interaction network, transcriptional networks and signaling
networks are useful in the identification of therapeutic targets
or characteristics of drug targets [63–65], thus providing new
opportunities for drug discovery or repositioning.

Li et al. [66] developed a bipartite drug–target network
method to identity potential new indications of an existing drug
through its relation to similar drugs. In the bipartite network
model, drug pair similarity integrated drug chemical structure
similarity, common drug targets and their interactions. Built on
their past success, the same authors recently built a causal net-
work (CauseNet) [67]—a multilayered pathway of gene, disease
and drug target—to identify new therapeutic uses of existing
drugs. In the causal network, the transition likelihood of each
chain is estimated on the basis of known drug–disease treat-
ment association. Wu et al. [68] applied network clustering to a
drug–disease heterogeneous network to identify closely con-
nected modules of disease and drugs, which can be used for ex-
tracting possible drug–disease pairs for drug repositioning. In
the network, two nodes (one drug or one disease) with shared
genes/targets and enriched features (biological process, path-
way and phenotypes) were connected and the connection was
weighted by a Jaccard score. Jin et al. [69] developed a novel
method to repurpose drugs for cancer therapeutics by leverag-
ing off-target effects (OTEs) that may affect important cancer
cell signaling pathways. The OTEs of drugs on signaling proteins
were recognized by a hybrid model composed by a network

component called cancer-signaling bridges and a regression
model called Bayesian Factor Regression Model.

Text mining and semantic inference

The biomedical and pharmaceutical knowledge available in lit-
erature [70, 71] or databases contains vast amount of informa-
tion for drugs and diseases, which can be automatically mined
[72–74] and retrieved [75], thanks to the recent advances in text
mining research [76]. Therefore, it is possible to detect novel in-
dications for existing drugs by finding relevant knowledge
through text mining approaches [77]. One important basis
rooted in this method is the occurrence of biological ontology,
which makes it possible for the comparison and analysis of bio-
logical information from different sources.

A recent study by Andronis et al. [78] summarized several lit-
erature mining approaches and sources for drug repurposing.
For example, if one study finds that disease A was caused by the
lack of nutrition B while another study reports that drug C used
for another disease was an activator of nutrition B, then drug C
might be repurposed for disease A through literature mining.

Moreover, semantic technologies have facilitated the inte-
gration of various data sources and the discovery of new drug
indications. For instance, Zhu et al. [79] developed an ontology
to model FDA-approved breast cancer drugs and their relations
with pathways, drugs, genes, SNPs and diseases. New drug–
disease pairs were inferred from the ontology-based knowledge
base. Chen et al. [80] developed a statistical model to assess
drug–target associations from a semantic linked network com-
prised by drugs, chemical compounds, protein targets, diseases,
side effects and pathways and their relations. The model con-
sidered the topology and semantics of the subgraph between a
drug and a target. The similar drug–drug pair from different dis-
ease areas may indicate a potential repositioning opportunity.

Validation for computational drug repositioning

Computational models often predict a handful interesting hits;
however, the ultimate goal of drug repositioning is to move only
one or two hits into clinical application to benefit patients.
Therefore, experimental validation of these computer-
generated hits becomes important. Despite some known limita-
tions, in vitro and in vivo models (e.g. cell-based targeted assays
and mouse models) have been increasingly used to validate the
candidate hits for preclinical drug evaluation. For example,
Zerbini et al. [81] identified several FDA-approved drugs showed
sensitivity for clear cell renal cell carcinoma (ccRCC). To confirm
the drug efficacy, they further used apoptosis assays and xeno-
graft mouse models and demonstrated pentamidine as a poten-
tial therapeutic agent for ccRCC, as it can significantly induce
apoptosis in tumor cells and slow tumor growth. Kang et al. [57]
used cell viability assays to validate the drug combinations gen-
erated from a computational search algorithm. Subsequently,
drug combinations with significant efficacy in cancer cell killing
were confirmed. Végner et al. [82] performed an experimental
validation study for a previous reported computational drug
repositioning strategy where they confirmed the efficacy of top-
predicted drugs through ACE inhibition assay, COX inhibition
assay, dopaminergic agonist and antagonist assay.

In addition to in vitro and in vivo models, electronic health/
medical records may be helpful to validate the predictions. For
example, Khatri el al. [83] identified atorvastatin as a new thera-
peutic for organ transplantation using meta-analysis of public
microarray data sets and validated the beneficial effect of
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atorvastatin on graft survival by retrospective analysis of EMRs
of a single-center cohort of 2515 renal transplant patients fol-
lowed for up to 22 years. Xu et al. [84] used electronic health re-
cords to validate metformin, a drug for type 2 diabetes mellitus,
associated with cancer mortality.

Understanding and selecting the appropriate validation
model are critical for the success of the prediction, as the con-
texts of the validation models may be different from those used
to make the prediction or some validation models are not reli-
able per se. For example, it is debatable that genomic responses
in mouse models mimic human inflammatory diseases [85, 86].
Half of the hepatocelluar carcinoma (HCC) cell lines are not sig-
nificantly correlated to the HCC tumors from TCGA, while a few
rarely used ovarian cancer cell lines more closely resemble
ovarian tumor profiles than common used cell lines [87]. In add-
ition to the selection of the right model, the selection of the
right hits for validation is also critical. Some drugs may not be
favored by physicians or biologists owing to various reasons
such as high toxicity, high cost and low bioavailability. The
early involvement of all stakeholders would likely be to increase
the rate of success in translational research.

Current and future target areas: cancers, infectious and
orphan diseases and personalized medicine

There are several high potential applications of drug repositioning
in disease or related therapeutic areas. One important application
is the anticancer drug discovery. Motivated by the benefit of drug
repositioning and the high demand for anticancer drugs, search-
ing novel anticancer therapies from existing drugs has become in-
creasingly popular. Drug repositioning also turns out to be a
promising strategy for the discovery of anti-infectious drugs that
can overcome drug resistance, as the emergence of drug resist-
ance is awful to human beings and can largely reduce the drug ef-
ficacy. Alternative therapeutics for orphan and rare diseases can
also be identified from approved drugs, and this strategy has
gained various grants supporting research in this field. Finally,
drug repositioning provides a new accessibility to personalized
treatment. Table 2 shows examples of drug repositioning applied
in cancer, infectious, orphan diseases and personalized medicine.

Discussion

Each of the aforementioned computational repositioning strat-
egies and approaches has their methodological advantages and
limitations. A combination of these methods is often desired for
achieving better results. For example, Wang et al. [49] integrated
drug chemical structures, target protein sequences and pheno-
type data and applied machine learning approach (i.e. SVM) to
identify drug–disease relationships, and further made the
drug–disease network analysis. Gottlieb et al. [60] integrated
chemical structures, drug side effects, drug target protein se-
quences and target protein interactions and phenotype data
and applied network analysis for target protein distance calcu-
lation, applied text mining to identify disease phenotypes and
used machine learning algorithms to classify true and false
drug–disease associations. These integrative methods showed
better performance in both sensitivity and specificity when
comparing with individual methods.

Despite several successful use cases of computational drug re-
positioning, challenges remain. First, the transformation of theor-
etical computational models into practical use is far from
straightforward, due to some inevitable factors like missing data,
data bias and technical limitations of computational methods.
For example, many in silico repositioning approaches search

potential drug–target interactions through chemical structure
information. Thus, the lack of high-resolution structural data for
targets makes such methods inadequate. Large scale of drug-
induced transcriptomic profiles (e.g. gene expression data in
CMap) might have experimental variation across batches.
Additional gene expression normalization techniques are needed
to ensure the systematical genome-wide analysis in an unbiased
way [97]. Second, the lack of structured gold standard for drug
repositioning made it hard to compare and evaluate the perform-
ance of computational methods. In response, several recent
studies focus on curating a comprehensive and public catalog of
existing drug indications [98, 99]. Although common metrics (e.g.
sensitivity, specificity, and area under ROC curve (AUC)) are
adopted, previous studies performed evaluation on their own data
sets rather than a shared gold standard for various reasons. Third,
although computational drug repositioning may merely shorten
the process of drug discovery in preclinical and Phase I trials, chal-
lenges may still exist after Phase II trials for the repositioned drugs.
For instance, as the test population becomes larger for Phase II tri-
als, more resources will be needed for the further drug validation
[100]. Recently, some researchers have proposed the idea of repos-
itioning the approved drugs for the treatment of Ebola, and the de-
bate has been surprisingly intense [101]. Antiviral drugs or drugs
with immune system’s modulation drugs were repositioned to
treat Ebola, but World Health Organization has ignored these pro-
posed FDA-approved drugs, owing to the deficiency of experimen-
tal tests, as well as the potential drug toxicity.

Conclusions

In summary, we believe computational drug repositioning re-
search is of great significance to improve human health through
discovering new uses for existing drugs. In fact, a number of
studies have already been carried out with various degrees of
success. It has great potentials to accelerate drug discovery with
interesting opportunities in several particular disease areas (e.g.
cancer). As both public and private sectors from around the
world are supporting drug-repositioning research with various
funding opportunities and special programs, now is the time for
the research community to further develop techniques and
methods toward new discoveries and breakthroughs.

Key Points

• Various types of big data (e.g. genomic, phenotypic,
clinical data, chemical structure) are publicly available
for computational drug repositioning research.

• Integrative repositioning strategies for heterogeneous
data can help find new uses of old drugs.

• Computational drug repositioning shows promises in
accelerating drug discoveries for cancer and infectious
and orphan diseases.
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