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A B S T R A C T

Invasive coronary plaque imaging such as intravascular ultrasound and optical coherence tomography has been
widely used to observe culprit or non-culprit coronary atherosclerosis, as well as optimize stent sizing, appo-
sition and deployment. Coronary computed tomographic angiography (CTA) is non-invasively available to assess
coronary artery disease (CAD) and has become an appropriate strategy to evaluate patients with suspected CAD.
Given recent technologies, semi-automated plaque software is available to identify coronary plaque stenosis,
volume and characteristics and potentially allows to be used for the assessment of more details of plaque in-
formation, progression and future risk as a surrogate tool of the invasive imaging modalities. This review article
aims to focus on various evidence in coronary plaque imaging by coronary CTA and describes how accurate
coronary CTA can classify coronary atherosclerosis.

1. Introduction

Coronary artery disease (CAD) is the major cause of death in adults
in most countries. Despite “near normal” findings of coronary arteries
by invasive coronary angiography (ICA), numerous patients were later
found to experience myocardial infarction (MI) or cardiac death, im-
plying that the pathogenetic mechanisms underlying atherosclerosis
could be involved.1

Invasive modalities such as intravascular ultrasound (IVUS) or op-
tical coherence tomography (OCT) have been used to identify the pre-
sence, extent, volume, and characteristics of coronary atherosclerosis
and have long contributed to help understand the mechanisms of MI.2,3

“Vulnerable plaque” or “high risk plaque” has been recognized as a key
contributor to the incidence of MI or cardiac death, and commonly
found by IVUS or OCT.2,3 The role of cardiac imaging in the early di-
agnosis of coronary atherosclerosis has grown significantly in the cur-
rent era. Given its high diagnostic yield, coronary computed tomo-
graphy angiography (CTA) has been widely adopted and coronary CTA
has become an initial strategy for the diagnosis among patients with
stable chest pain.4

The pathogenesis of the underlying atherosclerosis is incompletely

understood; therefore, numerous studies have investigated the patho-
physiology of atherosclerosis in order to prevent future cardiovascular
events. In this review article, we summarized the current studies in-
vestigating the current state of the art atherosclerosis imaging by cor-
onary CTA and how it compares to more invasive imaging modalities.

2. Validation of CT measurements

2.1. Qualitative assessment of coronary atherosclerosis by coronary CTA

Numerous studies have assessed coronary plaque using coronary
CTA and compared these measures to IVUS, OCT and histology5–12

(Table 1). Previously, the studies have mainly focused on the detection
of stenosis severity and plaque volume by coronary CTA, but later
studies have been designed to focus on the detection of high-risk plaque
(HRP). In ex vivo data with 284 cross-sections, average plaque burden
correlated well between IVUS and coronary CTA (r= 0.45–0.52,
p < 0.001).13 From the ATLANTA study in 60 patients undergoing
both of IVUS with radiofrequency backscatter analysis (IVUS/VH) and
coronary CTA, Voros et al. reported modest to good correlations be-
tween IVUS/VH and coronary CTA (r= 0.41–0.84)12. Voros et al. have
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subsequently reported a meta-analysis of coronary atherosclerosis
imaging by coronary CTA compared to IVUS-VH from several studies.14

In their analysis, they noted that, while overestimation of luminal area
by coronary CTA was observed, plaque area and volume were com-
parable between coronary CTA and IVUS. These earlier studies included
relatively small numbers of patients ranging from 12 to 50 patients, and
in which some were performed by 16-slice coronary CTAs.14 Although
these studies are important to demonstrate the ability of coronary CTA
to assess coronary atherosclerosis, more detailed assessment of plaque
by advanced coronary CTA techniques remains needed.

2.2. Qualitative assessment of high-risk plaque by coronary CTA

Qualitative measures of HRP by CTA include low attenuation plaque
(LAP), positive remodeling (PR), spotty calcification and napkin ring
sign (NRS) (see Fig. 1). Prior studies have shown that coronary CTA can
confidently identify these features and have demonstrated good con-
cordance with HRP by the invasive imaging modalities and histology
(Table 2). The IVUS or OCT-based definitions of HRP are commonly
applied to coronary CTA and optimal thresholds of HRP features have
been similarly used for coronary CTA-based definitions. Achenbach and
colleagues have observed that coronary CTA based coronary PR showed
high correlation when compared to IVUS (r= 0.82).15 In other study by
Kroner et al., coronary CTA-based PR was also associated with in-
creased volume in necrotic lipid rich cores and thin-cap fibroatheroma
(TCFA) by IVUS.16

The CT-based low attenuation plaque is a HRP feature and thought
to reflect “lipid-rich plaque”. In the study of 105 patients including
acute coronary syndrome (ACS) and stable angina, CT values in the
OCT-derived TCFA group was significantly lower compared to that in
the no OCT-derived TCFA group (35.1 ± 32.3 HU vs. 62.0 ± 33.6 HU,
p < 0.001).17 In addition, OCT-derived TCFA was more associated
with higher incidence of coronary CTA-based PR (> 1.05) compared to
no OCT-derived TCFA (52% vs. 23%, p=0.01).17 The differentiation
between the compositions of plaque features using coronary CTA are
principally led by CT values defined as a Hounsfield unit (HU). In order
to differentiate LAP with other non-calcified plaque components

including fibrous or fibro-fatty plaque, CT values range from 30 to 75
HU,11,18–22 and therefore, the optimal thresholds of HU are not stan-
dardized to date. This is probably because CT values in coronary
plaque, especially non-calcified plaque, are affected by several factors
such as concentration of contrast,18,23,24 acquisition parameters such as
tube potential and convolution kernels used.25,26 In this regard, it re-
mains controversial to define a single cut-off of HUs for the qualitative
identification of LAP. Similar to the cut-off of LAP, the proportion of
LAP volume and PR values may also be more accurate in predicting
plaque vulnerability. Tomizawa et al. have investigated the association
between TCFA by OCT and various HRP features by coronary CTA.21

They found that continuous variables of low attenuation volume
(< 60HU) and PR index by coronary CTA showed better diagnostic
performance to identify OCT-TCFA compared to categorical thresholds
of PR (> 1.1) and the presence of low attenuation plaque (< 30HU).21

With respect to spotty calcification (SC), the length of calcified
plaque with<3mm has been commonly applied for the definition of
SP by coronary CTA.27,28 Several studies, however, have failed to show
the prognostic value of coronary CTA derived SC to predict MACE or
ischemia.29,30 This is due probably to limited special resolution of
coronary CTA to identify IVUS or OCT derived SC,5 and it is thought
that coronary CTA-based SC is more similar to macro-calcification de-
tected by IVUS or OCT. Therefore, a smaller SC by coronary CTA may
more reflect an increased prevalence of necrotic core by IVUS.31

Other HRP features such as ruptured plaque and thrombus that are
commonly present in culprit lesions may also be detectable by coronary
CTA. A recent paper has revealed that coronary CTA has a high speci-
ficity (91%) but low sensitivity (33%) to identify ruptured plaque by
IVUS.32 In another study, Takaoka et al. have retrospectively explored
31 patients who underwent 64-slice CTA and were diagnosed as un-
stable angina pectoris (n= 19) or non-ST elevation acute myocardial
infarction (n= 12). They have found that HUs were similar between
soft plaques and thrombi detected by IVUS (32.9 ± 8.7 vs.
43.2 ± 10.7 HU, p= 0.268), whereas their HUs were significantly
lower compared to those of fibrotic plaques (82.5 ± 22.6 HU).33 Lower
HU in a plaque are therefore suggested as being a high risk because of
LAP or thrombus, however, there is no method to separately distinguish

Table 1
Qualitative assessment of coronary atherosclerosis by coronary CTA.

Authors Number Modality Main findings Reference

Leber AW
J Am Coll Cardiol. 2006

36 vessels in 19 patients IVUS 1. Plaque volume; r2= 0.69, p < 0.001
2. Plaque volume between coronary CTA and IVUS

1. Non-calcified; 59.8 ± 76.6 mm3 vs. 67.7 ± 67.9 mm3

2. Mixed; 47.7 ± 87.5 mm3 vs. 57.5 ± 99.4 mm3

3. Calcified; 65.8 ± 110.0 mm3 vs. 53.2 ± 90.3mm3

5

Achenbach S.
Circulation. 2004

83 coronary segments in 22
patients

IVUS 1. Sensitivity and specificity for the detection of plaque
1. Any; 85% and 88%
2. Calcified; 94% and 94%
3. Noncalcified; 78% and 87%

2. Plaque volume between coronary CTA and IVUS 24 ± 35mm3 vs.
43 ± 60mm3, p < 0.001

6

Leber AW
J Am Coll Cardiol. 2004

68 vessels in 37 patients IVUS 1. Hypoechoic, hyperechoic, calcified plaques 49 ± 22HU vs. 91 ± 22HU vs.
391 ± 156HU

7

Voros S
JACC Cardiovasc Interv. 2011

50 lesions in 50 patients IVUS 1. Plaque volume
1. Noncalcified; r= 0.84, p < 0.001
2. Percentage of noncalcified volume; r= 0.41, p=0.003
3. Calcified; r= 0.65, p < 0.001
4. Percentage of calcified volume; r= 0.41, p= 0.003

2. Percentage of atheroma volume; r= 0.51, p < 0.001
3. Minimal lumen diameter; r= 0.55, p < 0.001
4. Percentage of diameter stenosis; r= 0.44, p= 0.001
5. Minimal lumen area; r= 0.65, p < 0.001
6. Percentage of area stenosis; r = 0.44, p= 0.001

12

Stolzmann P
Eur Radiol. 2012

284 images in donor hearts IVUS 1. Plaque burden
1. Filter back projection; r= 0.45, p < 0.001
2. Adaptive statistical iterative reconstruction; r= 0.52, p < 0.001
3. Model-based iterative reconstruction; r= 0.49, p < 0.001

13

Abbreviations; CTA- Computed tomographic angiography; IVUS – Intravascular ultrasound; HU- Hounsfield Unit.
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the two high-risk features from each other.

2.3. Semi-quantitative plaque assessment: comparison of available
programs for atherosclerosis evaluation

Given the recent technology improvements, numerous coronary
CTA automated quantitative software (QCT) have been released for the
evaluation of plaque volume and composition. Several studies demon-
strate good agreement of plaque volume and composition when com-
pared to histology or IVUS.8–10,34 Assessment of plaque volume by semi-
automated plaque software has been shown to be comparable to qua-
litative measures of coronary plaque. Due to its semi-automated nature
and time-saving method, the clinical use in routine clinical practice to
identify patients who would benefit from primary or secondary pre-
vention could be expected in the near future.

Several QCT vendors can automatically identify lumen boundaries
of the inner and outer vessels, resulting in time-saving for readers,
while manual adjustments are sometimes required based on the image
quality. Plaque volume and characteristics are then calculated by au-
tomated algorithm methods. Several studies regarding the accuracy of
measures of plaque volume/area, especially non-calcified plaque, by
QCT have been reported to date (Table 3). In the study of 70 con-
secutive patients with suspected CAD who underwent both of coronary
CTA and IVUS, by using QCT (AUTOPLAQ (APQ), Cedars-Sinai Medical
Center, Los Angeles, CA), Dey et al. has demonstrated that the agree-
ment between the two modalities to identify non-calcified plaque vo-
lume was excellent with r= 0.92–0.94 (p < 0.001).9 In another study,
Boogers et al. have performed a head-to-head comparison between QCT
(QAngio, Medis medical imaging systems bv, Leiden, The Netherlands)
and IVUS to evaluate the minimal lumen area (MLA), percentage lumen
area stenosis, plaque burden, and degree of PR.8 In the study of 51
patients, the correlation for these plaque features were good (r= 0.75

for MLA, 0.79 for lumen area stenosis, 0.70 for plaque burden, 0.64 for
mean plaque burden, and 0.56 for PR index, respectively). In a sub-
analyses for calcified and non-calcified plaque between QCT and IVUS,
the diagnostic performance showed good (r= 0.70–0.77) correlation
and similar between calcified and non-calcified plaques. There was
slight overestimation of luminal area stenosis by QCT was noted.8 By
utilizing the same software to evaluate minimal lumen area (MLA),
maximal lumen area stenosis percentage (%AS), mean plaque burden
percentage (%PB), and plaque volume, Park et al. have studied the
comparative diagnostic performance between expert reader, non-expert
reader and full-manual automatic quantitative analyses, and compared
them to IVUS among 142 patients.35 These measures by expert readers
demonstrated excellent correlation to the measures by IVUS
(r= 0.84–0.94, p < 0.001 for all). Of note, the results were slightly
attenuated but still reasonable when the measurements were performed
by non-expert reader or full-manual automated quantitative analyses
compared to IVUS, demonstrating the acceptable measurements by use
of full-manual automated analyses.35

Although these data suggested that CT verified plaque volume was
associated with that by IVUS, the non-calcified plaque area was likely to
be overestimated when compared to histology.36 Schlett et al. have
compared non-calcified plaque volume by QCT to those using histology
as a reference standard in five ex vivo hearts. They have shown that,
when the area between the inner and outer lumen boundaries were
considered as a “plaque”, the area of LAP demonstrated a 120% higher
overvalue compared to when non-calcified area between the inner and
outer boundaries were not considered as a plaque.36 Despite good
spatial resolution of coronary CTA, it cannot distinguish the vessel wall
and non-calcified plaque by histology. Indeed, the confirmation of “no
plaque” by coronary CTA and fibrous-plaque by optical frequency do-
main imaging was associated with mild lesions by histology in three
donor hearts.37 In this regard, “no visible plaque” on coronary CTA can

Fig. 1. Sample of non-calcified plaque imaging by coronary CTA, IVUS and OCT/OFDI.
Obstructive coronary stenosis in LAD can be seen on volume rendering image (A). In the proximal segment of the LAD, non-calcified plaque with low attenuation
plaque with ≤30HU was shown by curved multiplanar reconstruction (B). Panel C provides the cross-sectional image of the plaque. Echolucent plaque (yellow
arrows) with acoustic signal is seen on IVUS (SD). Necrotic core (yellow arrows) is seen as a signal-poor region with poorly defined borders and fast signal drop-off
OCT/OFDI.
Abbreviations; CTA- Computed tomographic angiography, IVUS- Intravascular ultrasound, OCT- Optical coherence tomography, OFDI- Optical frequency domain
imaging, LAD-Left anterior ascending artery. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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be accounted for “vessel wall” by histology and should not be con-
sidered as a non-calcified plaque.

“Non-calcified plaque” on coronary CTA contains various compo-
sitions such as fibrous, fibro-fatty and LAP. These plaque compositions
are of importance to validate between high-risk and stable plaques for
stratifying future risk. These software vendors can assess not only
plaque area and volume, but can also evaluate numerous non-calcified
plaque features, such as fibrous, fibro-fatty and LAP, similar to virtual
histology-IVUS (VH-IVUS). Fujimoto et al. have studied whether QCT
using a labeling method was better than traditional CT-number based
method to identify plaque volume and characteristic when compared to
VH-IVUS.10 In the study of 33 consecutive patients, the labeling method
correlated better to VH-IVUS compared to the CT-number based
method in order to identify necrotic core (r= 0.75 vs. 0.42) and fibrous
areas (r= 0.80 vs. 0.59). Non-calcified plaque, especially LAP is prone
to be affected by several factors such as contrast media, calcium and
image noise, resulting in overestimation of the presence and volume of

LAP. Indeed, in the same study by Fujimoto et al., necrotic core area by
CT-number based method was significantly larger compared to that by
IVUS (3.8 ± 3.1 vs. 2.0 ± 1.6 mm2, p= 0.02), while the area be-
tween the labeling methods (2.3 ± 1.7mm2) and VH-IVUS did not
differ (p=0.35).10 The new algorithm of plaque imaging by automated
CT software (i.e. labeling method) can better differentiate LAP from
image noise, demonstrating more accurate detection of LAP.

2.4. Intra-/inter-reader variability of plaque imaging by coronary CTA

Assessment of plaque volume can be affected by different re-
construction algorithms38 or readers experience.35 CT images can be
reconstructed by several post-processing image algorithms, such as
filter back projection and iterative reconstruction, to improve diag-
nostic accuracy of coronary CTA. Since the FBP is likely to lead to in-
creased image noise, streak artifacts and poor low-contrast detect-
ability, the iterative reconstruction algorithms are widely used and

Table 2
Qualitative assessment of high-risk plaque by coronary CTA.

Authors Number Modality Main findings Reference

Achenbach S.
J Am Coll Cardiol. 2004

26 sites in 13 patients IVUS 1. Vessel area; 20 ± 7mm2 vs. 18 ± 8mm2 The mean absolute difference;
3±3mm2

2. PR index (CTA vs. IVUS) 1.1 ± 0.3 vs. 1.1 ± 0.4, R2=0.82, p= 0.001

15

Kröner ES
Am J Cariol. 2011

99 plaques in 45 patients VH-IVUS 1. Percent necrotic core in lesions with and without PR by coronary CTA
15.7 ± 7.8% vs. 10.2 ± 7.2%, p < 0.001

2. TCFA lesions in lesions with and without PR by coronary CTA 43.2% vs. 4.8%,
p < 0.001

16

Han D.
Atherosclerosis 2018

8 post-mortem sudden
coronary death hearts

Histology Accuracy, sensitivity and negative predict value of different CT values for
predicting lipid rich plaque
1. < 30HU; 64%, 14% and 66%
2. < 45HU; 65%, 19% and 67%
3. < 60HU; 64%, 35% and 69%
4. < 75HU; 68%, 57% and 76%
5. < 90HU; 67%, 57% and 75%

11

Kashiwagi M.
JACC Cardiovasc Imaging 2009

105 lesions in 105 patients OCT 1. CT values in the TCFA and non-TCFA lesions 35.1 ± 32.3HU vs.
62.0 ± 33.6HU, p < 0.001

17

Motoyama S
Circ J. 2007

98 plaques in 37 patients IVUS 1 Soft, fibrous, calcified plaques 11 ± 12HU vs. 78 ± 21HU vs. 516 ± 198HU
2 Soft; < 30HU, Fibrous; 31-150HU, Calcified; 151-380HU

19

Marwan M.
Atherosclerosis. 2011

55 plaques in 40 patients IVUS 1. CT values in the fibrous and lipid-rich plaques 96 ± 40HU vs. 67 ± 31HU,
p= 0.006

2. The mean percentage of pixels< 30HU in the fibrous and lipid-rich plaques
6 ± 10% vs. 16 ± 10%, p < 0.001

3. 5.5% pixels with <30HU to identify lipid-rich plaques Sensitivity, specificity,
the negative and positive predictive value 95%, 80%, 86% and 93%

20

Tomizawa
J Cardiovasc Comput Tomogr.
2017

129 plaques in 106 patients OCT 1. To predict TCFA by OCT
1. RI > 1.1, minimum CT number< 30HU and NRS; AUC 0.74
2. RI > 1.1, minimum CT number< 30HU and NRS; AUC 0.72
3. Regression model by RI, proportion of low attenuation volume<60HU and

NRS

21

Yang DH.
Eur Radiol. 2008

31 lesions in 28 symptomatic
patients

OCT 1. Lumen area; R= 0.859 Limits of agreement; −0.5 ± 3.7mm2
2. Coronary CTA characteristics in TCFA vs. no-TCFA by OCT

1. Coronary CTA detected LAP(< 30HU); 58.0% vs. 18.5%
2. Coronary CTA detected NRS; 31.9% vs. 8.8%
3. Coronary CTA detected PR; 68.1% vs. 48.0%

22

Van Velzen JE
J Nucl Cardiol. 2011

300 plaques in 108 patients VH-IVUS Non-calcified vs. small (< 1mm) vs. intermediate (1–3mm) vs. large spotty
(> 3mm) vs. dense calcifications
1. Prevalence of %necrotic core 13% vs. 20% vs. 14% vs. 17% vs. 14%,

p= 0.003
1. Prevalence of %TCFA 22% vs. 31% vs. 17% vs. 9% vs. 6%, (p < 0.05 for

small vs. large spotty)

31

Obaid DR
J Cardiovasc Comput Tomogr
2017

71 plaques in 63 patients VH-IVUS 1 To predict ruptured plaque by coronary CTA features (ulceration or intra-
plaque dye penetration) Sensitivity and specificity; 33% and 91%

2. Prevalence of coronary CTA plaque features in ruptured vs. intact plaque
1. Coronary CTA detected NRP; 56% vs. 31%, p= 0.03
2. Coronary CTA detected spotty calcification; 54% vs. 47%, p= 0.57
3. Coronary CTA detected LAP; 56% vs. 77%, p= 0.21
4. Coronary CTA detected RI; 44% vs. 59%, p= 0.21

32

Takaoka H
Int J Cardiol. 2012

31 lesions in 31 ACS patients IVUS 1. CT values in soft plaque, thrombi and fibrotic plaque 32.9 ± 8.7HU vs.
43.2 ± 10.7HU vs. 82.5 ± 22.6HU

33

Abbreviations; CTA- Computed tomographic angiography; VH-IVUS – Virtual histology intravascular ultrasound; PR- Positive remodeling; HU- Hounsfield Unit;
TCFA- Thin-cap fibroma; OCT- Optical coherence tomography; RI- Remodeling index; LAP- Low attenuation plaque; NRS- Napkin ring sign; ACS- Acute coronary
syndrome.
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provided by different vendors. The iterative reconstruction techniques
can provide better image quality while maintaining low radiation dose,
by more accurately and comprehensively modeling various resolutions
with source-detector position, numerous x-ray photon distributions and
3D scatter images.39 Stolzmann et al. demonstrated that reproducibility
of plaque burden by coronary CTA and IVUS was excellent with no
significant difference between CT reconstruction algorithms.13 These
recent new algorithms for reconstructing the images provide better
image quality with less noise, resulting in more accurate correlation
with IVUS compared to traditional reconstruction algorithms.38 Dual
energy CT (DECT) may have a potential to distinguish between vul-
nerable and stable plaques.40 In the study of 32 ex-vivo coronary ar-
teries scanned by DECT, the energy dispersive X-ray spectroscopy (EDS)
provided high accuracy and area under the curve to differentiate vul-
nerable plaque from stable plaque, with 87% and 0.85, respectively.40

Recent studies demonstrated good agreement for the reproducibility
and reliability of quantitative assessment of coronary atherosclerosis
volume by QCT when using different radiation energy.41 From the
analysis of 95 patients who underwent serial coronary CTAs with same
kilovoltage (kVp) within 90 days, length and volume of coronary
plaque didn't statically differ between the two scans in per-segment
analysis. The trend was similar to the per-lesion analysis. Notably, in
both per-segment and per-lesion analyses among 24 patients with dif-
ferent KVp, the results didn't show significant differences of plaque
length and volume.41 The findings of the study have indicated that the
evaluation of clinical risk or implications for medical interventions
targeting coronary atherosclerosis can be allowed by assessing serial
semi-quantitative CT measures. Indeed, such studies have been ex-
plored in these recent years.42–49

3. The potential utility of coronary CTA for predicting coronary
artery plaque progression and ischemia

Monitoring plaque progression, regression and stabilization is a key
to prevent cardiovascular events. Although IVUS has been historically
used as a golden-standard to observe the natural history of plaque de-
velopment, this technique is not ideal for multiple assessments of
atherosclerosis due to an invasive procedure. Our group has recently
studied the association between local plaque progression by IVUS and
overall atherosclerosis progression by coronary CTA. While the num-
bers were small (n= 11), we have shown the good correlation between
local plaque progression by IVUS and overall plaque progressions by

coronary CTA (r= 0.82; P= 0.002).50 The findings suggested that
coronary CTA can be substituted with IVUS for monitoring plaque
progression or regression in a non-invasive fashion and potentially used
for both of primary and secondary prevention. Indeed, multiple studies
have recently revealed that coronary CTA is a good modality to assess
plaque regression by improvement of cholesterol level,46,47 statin42,51

and dietary supplements.43,44

Another potential utility of coronary CTA is to predict ischemia by
assessing plaque stenosis, morphology and/or volume.52–56 Park et al.
have revealed that increased prevalence of high-risk plaque features
was associated with ischemia, especially when positive remodeling and
low attenuation plaque were present.52 Diaz-Zamudio et al. has in-
vestigated if plaque characteristics assessed by quantitative CT software
can predict ischemia and found that total, non-calcified and low at-
tenuation plaque burden were associated with ischemia.55 Conversely,
there are only few reports on the prediction of ischemia by IVUS or
OCT.57–59 Coronary CTA may be a potential approach because the en-
tire coronary vessel can be evaluated for atherosclerosis, allowing for
detailed information to identify ischemia (as compared to only seg-
mental plaque information by IVUS or OCT). However, there have been
no such studies on head to head comparison of these invasive and non-
invasive imaging modalities for predicting ischemia.

4. Current limitations of coronary CTA ability for plaque imaging

It is still challenging that coronary CTA cannot display some key
elements for high risk plaque, i.e. macrophage activity, thin-cap fi-
broatheroma (TCFA), neovascularization, plaque rupture or plaque
erosion, which can be visualized by OCT. This limitation could be
problematic to more accurately identify patients who are at high risk
for future cardiovascular events, and further who would benefit from
revascularization or aggressive medical therapy. Several studies on the
early revascularization by bioabsorbable vascular scaffolding for vul-
nerable plaque detected by IVUS (The PROSPECT-ABSORB
[Multicentre Prospective Natural History Study Using Multimodality
Imaging in Patients With Acute Coronary Syndromes Combined With a
Randomized, Controlled, Intervention Study], NCT02171065), OCT
(The PECTUS [Pre-Emptive, OCT Guided Angioplasty of Vulnerable,
Intermediate Coronary Lesions: A Randomized Trial], NTR5590) or
NIRS-IVUS (The PREVENT study [The Preventive Implantation of
Bioresorbable Vascular Scaffold on Functionally Insignificant Stenosis
With Vulnerable Plaque Characteristics], NCT02316886) have being

Table 3
Comparison of available semi-quantitative plaque programs for atherosclerosis evaluation.

Authors Number Modality Software Main findings Reference

Boogers MJ.
Eur Heart J. 2012

146 lesions in 51 patients IVUS QAngio 1. Minimal lumen area; r= 0.75, p < 0.001
2. Lumen area stenosis; r= 0.79, p < 0.001
3. Plaque burden; r= 0.70, p < 0.001
4. Mean plaque burden; r= 0.64, p < 0.001
5. Remodeling index; r= 0.56, p < 0.001

8

Dey D.
Radiology. 2010

22 noncalcified plaques in 20
patients

IVUS AUTOPLAQ 1. Plaque volume; r= 0.94, p < 0.001
2. Mean plaque volume; r= 0.92, p < 0.001 105.9 ± 83.5mm3 vs.

116.6 ± 80.1mm3

9

Fujimoto S.
Int J Cardiovasc Imaging.
2014

37 plaques in 33 patients IVUS SurePlaque 1. Necrotic core area; R=0.75, p < 0.0001
2. Fibrous area; R= 0.80, p < 0.0001

10

De Graaf MA
Int J Cardiovasc Imaging.
2013

108 lesions in 57 patients VH-IVUS QAngio 1. Plaque volume; r= 0.928, p < 0.001
2. Fibro-fatty tissue volume; r= 0.714, p < 0.001
3. Fibrotic tissue volume; r= 0.695, p < 0.001
4. Necrotic core volume; r= 0.523, p < 0.001
5. Dense calcium volume; r= 0.736, p < 0.001

34

Park HB
Eur Radiol. 2015

150 segments in 142 patients IVUS QAngio 1. Minimal lumen area; r= 0.80, p < 0.001
2. Maximal lumen area stenosis; r = 0.82, p < 0.001
3. Plaque volume; r= 0.84, p < 0.001
4. Mean plaque burden; r= 0.84, p < 0.001

35
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ongoing in recent years, while such studies using coronary CTA have
not been designed to date.

New technologies such as radiomics or machine learning, however,
may more accurately characterize high risk plaque features visualized
by these modalities.60 In the recent study of 25 patients who underwent
coronary CTA, invasive coronary angiography with both of IVUS and
OCT, as well as sodium-fluoride positron emission tomography (NaF18-
PET), compared to conventional CT parameters, coronary CTA radio-
mics demonstrated higher diagnostic performance to identify atte-
nuated plaque by IVUS (area under the curve (AUC): 0.59 vs. 0.72,
p < 0.001), OCT derived TCFA (0.66 vs. 0.80, p < 0.001) and NaF18-
positivity (0.65 vs. 0.87, p < 0.001).60 Another study by Masuda et al.
has revealed that the Gini index by machine learning showed a higher
AUC to identify fatty or fibro-fatty plaque compared to the conventional
method using the CT number (0.92 vs. 0.83, p=0.001).61 These
techniques allow use of more detailed information from the images
compared to the visualized information that we have currently used
and may potentially result in more accurate assessment using coronary
CTA images. More studies using these novel techniques are required in
the upcoming years.

5. Conclusions

Advances in the current technology of coronary CTA allow accurate
identification of plaque volume and plaque characteristics when com-
pared to invasive imaging modalities or histology. Evolving evidence
from recent studies indicate that coronary atherosclerosis by coronary
CTA can play an essential role in primary/secondary prevention.
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