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Fundamental Limits on Throughput Capacity in
Information-Centric Networks

Bita Azimdoost, Cedric Westphal,Senior Member, IEEE,
and Hamid R. Sadjadpour,Senior Member, IEEE,

Abstract—Wireless information-centric networks consider stor-
age as one of the network primitives, and propose to cache
data within the network in order to improve latency and reduce
bandwidth consumption. We study the throughput capacity and
latency in an information-centric network when the data cached
in each node has a limited lifetime. The results show that with
some fixed request and cache expiration rates, the order of the
data access time does not change with network growth, and the
maximum throughput order is not changing with the network
growth in grid networks, and is inversely proportional to the
number of nodes in one cell in random networks. Comparing
these values with the corresponding throughput and latencywith
no cache capability (throughput inversely proportional to the
network size, and latency of order

√
n and the inverse of the

transmission range in grid and random networks, respectively),
we can actually quantify the asymptotic advantage of caching.
Moreover, we compare these scaling laws for different content
discovery mechanisms and illustrate that not much gain is lost
when a simple path search is used.

I. I NTRODUCTION

In today’s networking situations, users are mostly interested
in accessing content regardless of which host is providing this
content. They are looking for a fast and secure access to data
in a whole range of situations: wired or wireless; heteroge-
neous technologies; in a fixed location or when moving. The
dynamic characteristics of the network users makes the host-
centric networking paradigm inefficient. Information-centric
networking (ICN) is a new networking architecture where
content is accessed based upon its name, and independently
of the location of the hosts [1]–[4]. In most ICN architectures,
data is allowed to be stored in the nodes and routers within
the network in addition to the content publisher’s servers.This
reduces the burden on the servers and on the network operator,
and shortens the access time to the desired content.

Combining content routing with in-network-storage for the
information is intuitively attractive, but there has been few
works considering the impact of such architecture on the
capacity of the network in a formal or analytical manner.
In this work we study a wireless information-centric network
where nodes can both route and cache content. We also assume
that a node keeps a copy of the content only for a finite period
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of time, that is until it runs out of memory space in its cache
and has to rotate content, or until it ceases to serve a specific
content.

The nodes issue some queries for content that is not
locally available. We suppose that there exists a server which
permanently keeps all the contents. This means that the content
is always provided at least by its publisher, in addition to the
potential copies distributed throughout the network. Therefore,
at least one replica of each content always exists in the network
and if a node requests a piece of information, this data is
provided either by its original server or by a cache containing
the desired data. When the customer receives the content, it
stores the content and shares it with the other nodes if needed.

The present paper thus investigates the asymptotic1 orders
of access time and throughput capacity in such content-centric
networks and addresses the following questions:

1) Looking at the throughput capacity and latency, can we
quantify the performance improvement brought about
by a content-centric network architecture over networks
with no content sharing capability?

2) How does the content discovery mechanism affect the
performance? More specifically, does selecting the near-
est copy of the content improve the scaling of the
capacity and access time compared to selecting the
nearest copy in the direction of original server?

3) How does the caching policy, and in particular, the
length of time each piece of content spends in the
cache’s memory, affect the performance?

We state our results in three theorems; Theorem 1 formu-
lates the capacity in a grid network which uses the shortest
path to the server content discovery mechanism considering
different content availability in different caches, and Theorem
2 and 3 answer the above questions studying two different
network models (grid and random network) and two content
discovery scenarios (shortest path to the server and shortest
path to the closest copy of the content) when the information
exists in all caches with the same probability. These theorems
demonstrate that adding the content sharing capability to the
nodes can significantly increase the capacity.

The rest of the paper is organized as follows. After a brief
review of the related work in Section II, the network models,
the content discovery algorithms used in the current work,

1Given two functions f and g, we say thatf(n) = O(g(n)) or
f(n) � g(n) if supn(f(n)/g(n)) < ∞, f(n) = Ω(g(n)) or f(n) �
g(n) if g(n) = O(f(n)), f(n) = Θ(g(n)) or f(n) ≡ g(n) if both
f(n) = O(g(n)) andf(n) = Ω(g(n)), f(n) = o(g(n)) or f(n) ≺ g(n) if
f(n)/g(n) → 0, andf(n) = ω(g(n)) or f(n) ≻ g(n) if g(n)/f(n) → 0.
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and the content distribution in steady-state are introduced
in Section III. The main theorems are stated and proved in
Section IV. We discuss the results and study some simple
examples in Section V. Finally the paper is concluded and
some possible directions for the future work will be introduced
in Section VI.

II. RELATED WORK

Information Centric Networks have recently received con-
siderable attention. While our work presents an analytical
abstraction, it is based upon the principles described in some
ICN architectures, such as CCN [4], NetInf [5], PURSUIT [2],
or DONA [6], where nodes can cache content, and requests for
content can be routed to the nearest copy. Papers surveying the
landscape of ICN [3] [7] show the dearth of theoretical results
underlying these architectures.

Caching, one of the main concepts in ICN networks, has
been studied in prior works [3]. [8] computes the performance
of a Least-Recently-Used (LRU) cache taking into account the
dynamical nature of the content catalog. Some performance
metrics like miss ratio in the cache, or the average number
of hops each request travels to locate the content have been
studied in [9], [10], and the benefit of cooperative caching has
been investigated in [11].

Optimal cache locations [12], cach sizes [13], and cache
replacement techniques [14] are other aspects most commonly
investigated. The work in [15] considers a network of LRU
caches with arbitrary topology and develops a calculus for
computing bounding flows in such network. And an analytical
framework for investigating properties of these networks like
fairness of cache usage is proposed in [16]. [17] considered
information being cached for a limited amount of time at each
node, as we do here, but focused on flooding mechanism to
locate the content, not on the capacity of the network. [18]
investigates the routing in such networks in order to minimize
the average access delay. Rossi and Rossini explore the impact
of multi-path routing in networks with online caching [19],and
also study the performance of CCN with emphasis on the size
of individual caches [20].

However, to the best of our knowledge, there are just a
few works focusing on the achievable data rates in such
networks. Calculating the asymptotic throughput capacityof
wireless networks with no cache has been solved in [21] and
many subsequent works [22] [23]. Some work has studied the
capacity of wireless networks with caching [24] [25] [26] .
There, caching is used to buffer data at a relay node which
will physically move to deliver the content to its destination,
whereas we follow the ICN assumption that caching is trig-
gered by the node requesting the content. [27] uses a network
simulation model and evaluates the performance (file transfer
delay) in a cache-and-forward system with no request for the
data. [28] proposes an analytical model for single cache miss
probability and stationary throughput in cascade and binary
tree topologies. Some scaling regimes for the required link
capacity is computed in [29] for a static cache placement in a
multihop wireless network.

[30] considers a general problem of delivering content
cached in a wireless network and provides some bounds on the

caching capacity region from an information-theoretic point of
view, and [31] proposes a coded caching scheme to achieve the
order-optimal performance. Additionally, the wireless device-
to-device cache networks’ performance with offline caching
phase has been studied in [32]–[34]. This is important to
note that our current work is different from [30]–[34] since
unlike the mentioned works it considers the online caching
and assumes that the cache contents are updated during the
content delivery time.

A preliminary version of this paper [35] has derived the
throughput capacity when all the items have exactly the
same characteristics (popularity), which has been shown to
be one of the important characteristics of such networks [36],
[37]. In this work, we do not assume any specific popularity
distribution and present the results for any arbitrary request
pattern.

III. PRELIMINARIES
A. Network Model

Two network models are studied in this work.
1) Grid Network: Assume that the network consists ofn

nodes{v1, v2, ..., vn} each with a local cache of sizeLi =
Θ(1) located on a grid. In this work we focus on the grid
shown in Figure 1(a), but conjecture the theorems could be
adapted to other regular grid topologies too. Each node can
transmit over a common wireless channel, with bandwidthW
bits per second, shared by all nodes. The distance between
two adjacent nodes equals to the transmission range of each
node, so the packets sent from a node are only received by
four adjacent nodes.

Fig. 1. a) Grid network: the transmission range of nodev contains four
surrounding nodes. The black vertices contain the content in their local caches.
The arrow lines demonstrate a possible discovery and receive path in scenario
i, where nodev downloads the required information fromu. In scenarioii, v
will download the data fromw instead. b) Random network: the grey squares
are the cells that can transmit simultaneously without interference, andr(n)
is the transmission range of each node.

There arem different contents,{f1, ..., fm} with sizes
{B1, ..., Bm}, for which each nodevj may issue a query with
probabilities{αk, k = 1, ...,m}, where

∑m
k=1 αk = 1, and

m andαk are not changing with the network size2. Based on
the content discovery algorithms which will be explained later
in this section, the query will be transmitted in the network
to discover a node containing the desired content locally.vj
then downloadsBk bits of data with rateγ in a hop-by-hop
manner through the pathPxj from either a node (vi, x = i)
containing it locally (f ∈ vi) or the server (x = s). When the

2In this work we are not considering applications like YouTube where the
users are content generators.
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download is completed, the data is cached and shared with
other nodes either by all the nodes on the delivery path, or
only by the end node. In the paper we consider both options.
Pjs denotes the nodes on the path fromvj to server. Without

loss of generality, we assume that the server is attached to
the node located at the middle of the network, as changing
the location of the server does not affect the scaling laws.
Using the protocol model and according to [38], the transport
capacity in such network is upper bounded byΘ(W

√
n). This

is the model studied in Theorem 1 and the first two scenarios
of Theorem 2.

2) Random Network:The next network studied in Theorem
2 is a more general network model where the nodes are
randomly distributed over a unit square area according to a
uniform distribution (Figure 1(b)). We use the same model
used in [38] (section5) and divide the network area into square
cells each with side-length proportional to the transmission
ranger(n), which is decreasing when the number of nodes

increases, and is selected to be at leastΘ
√

log n
n to guarantee

the connectivity of the network [39] and a non-zero capacity.
According to the protocol model [38], if the cells are far
enough they can transmit data at the same time with no
interference; we assume that there areM2 non-interfering
groups which take turn to transmit at the corresponding time-
slot in a round robin fashion. Again, without loss of generality
the server is assumed to be located at the middle of the
network. In this model the maximum number of simultaneous
feasible transmissions will be in the order of1r2(n) as each
transmission consumes an area proportional tor2(n). All other
assumptions are similar to the grid network.

B. Content Discovery Algorithm

1) Path-wise Discovery:To discover the location of the
desired content, the request is sent through the shortest path
toward the server containing the requested content. If an
intermediate node has the data in its local cache, it does
not forward the request toward the server anymore and the
requester will start downloading from the discovered cache.
Otherwise, the request will go all the way toward the server
and the content is obtained from the main source. In case of
the random network when a node needs a piece of information,
it will send a request to its neighbors toward the server, i.e.
the nodes in the same cell and one adjacent cell in the path
toward the server, if any copy of the data is found it will be
downloaded. If not, just one node in the adjacent cell will
forward the request to the next cell toward the server.

2) Expanding Ring Search:In this algorithm the request
for the information is sent to all the nodes in the transmission
range of the requester. If a node receiving the request contains
the required data in its local cache, it notifies the requester
and then downloading from the discovered cache is started.
Otherwise, all the nodes that receive the request will broadcast
the request to their own neighbors. This process continues
until the content is discovered in a cache and the downloading
follows after that. This will return the nearest copy from the
requester.

C. Content Distribution in Steady-State

The time diagram of data access process in a cache is
illustrated in Figure 2. When a query for contentfk is initiated,
the content is downloaded from a cache containing it and is
received by another cache where it is going to be kept. The
same cache may receive the same data after some random
time (T k

2 ) with distributiong2k and mean1/λk. Note that 1)
no specific caching policy is assumed here, and 2) a node will
receive the content only if it does not have it in its local cache.
The solid lines in this diagram denote the portions of time that
the data is available at the cache.

Fig. 2. Data access process time diagram in a cache for content k

As the requests for different contents are assumed to be
independent and holding times are set for each content inde-
pendent of the others, we can do the calculations for one single
content. If the total number of contents is not a function of the
network size, this will not change the capacity order. Assume
that content sizesBk are much larger than the request packet
size, so we ignore the overhead of the discovery phase in our
calculations.

The average portion of time that each node contains a
content in its local cache is

ρ(k)(n) =
1/µk

1/µk + 1/λk
=

λk
λk + µk

, (1)

which is the average probability that a node contains the
contentk at steady-state.λk is the rate of requests for content
k received by a cache in case of the data not being available,
andµk is the rate of the data being expunged from the cache.
Both these parameters can strongly be dependent on the total
number of users, or the topology and configuration of the
network or the cache characteristics like size and replacement
policy.

D. Performance Indices

The performance indices studied in this work are:
1) Throughput Capacity:Throughput capacity is the max-

imum common content download rate which can be achieved
by all users on average.

2) Average Latency:The average amount of time it takes
for a customer to receive its required content from a cache or
server.

3) Total Traffic: The total traffic generated by downloading
item k is the number of itemk bits moving across the netwrok
in a second. In other words, it is the product of total request
rate (the product of the number of requesting nodes and the
rate at which each node is sending the request), the number
of hops between source and destination, and the content size.
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IV. T HEOREM STATEMENTS AND PROOFS

Consider a grid wireless network consisting ofn nodes,
transmitting over a common wireless channel, with shared
bandwidth ofW = Θ(1) bits per second. Assume that there
is a server which contains all the information. Without lossof
generality we assume that this server is located in the middle of
the network. Each node contains some information in its local
cache. Assume that according to the symmetry, the probability
of each contentk being in all the caches with the same distance
(j hops) from the server is the same (ρ

(k)
j (n)).

Theorem 1. The maximum achievable throughput capacity
order (γmax) in the above network when the nodes use the
nearest copy of the required content on the shortest path
toward the server is given by3

γmax ≡ n
∑m

k=1
αk

∑

√
n

i=1 4i
∑i−1

j=0(i−j)ρ
(k)
j (n)

∏i
l=j+1

(1−ρ
(k)
l

(n))
,

where ρ(k)0 (n) = 1, which means that the server always
contains all the contents.

Proof: Considering the grid topology and large number
of nodes, each cache may receive requests and downloaded
contents originated from different nodes. Since the users
are sending requests independent of each other, the requests
received by different caches can be assumed independent of
each other. Thus, the information in each cache is independent
of the contents in the other caches. This assumption has been
made in some other works too, among which are [28], [40]–
[43] to name a few.

A request initiated by a uservi in i-hop distance from the
server (located in leveli = 1, ..,

√
n) is served by cacheuj

located in levelj, 1 ≤ j ≤ i on the shortest path fromvi to
the server if no caches beforeuj , including vi, on this path
contains the required information, anduj contains it. This
request is served by the server if no copy of it is available on
the path. LetP (k)

i,j denote the probability ofvi’s request for

item k being served byuj , this probability is given byP (k)
i,j =

(1− ρ
(k)
i (n))(1 − ρ

(k)
i−1(n))...(1 − ρ

(k)
j+1(n))ρ

(k)
j (n) (2)

whereρ(k)j (n) is the probability of contentk being available
in a cache in levelj, 1 ≤ j ≤ √

n, andj = 0 shows the server
andρ(k)0 (n) = 1. Thus a contentk requested byvi is traveling
i− j hops with probabilityP (k)

i,j . There are4i nodes in level
i so the average number of hops (E[hk]) traveled by itemk
from the serving cache (or the original server) to the requester
is

E[hk] =
1
n

∑

√
n

i=1 4i
∑i−1

j=0(i− j)P
(k)
i,j (3)

Therefore the average number of hops in the network is given
by E[h] =

∑m
k=1 αkE[hk].

Assume that each user is receiving data with rateγ. The
transport capacity in this network, which equals tonγE[h],
is upper bounded byΘ(

√
n) bits-meters/sec divided by the

3Since no online caching assumption is used in this Theorem, it can be used
for offline caching networks as well. However, we skip the offline results and
target the networks with online caching which is the scope ofthis paper.

distance of each hopΘ( 1√
n
), which isΘ(n) bits-hops/sec. So

γmax = Θ( 1
E[h]) and the Theorem is proved.

Now consider a wireless network consisting ofn nodes,
with each node containing informationk in its local cache with
common probability4,5, ρ(k)(n) 9 1 (meaning that it does not
tend to 1 whenn increases.), otherwise forρ(k)(n) → 1, the
request is served locally and no data is transferred betweenthe
nodes. Assume that the request process and cache look up time
in each node is not a function of the number of nodes. Here,
based on the network models and content discovery methods,
we define the following different scenarios, and then study the
corresponding performance of caching in Theorems 2 and 3;

• Scenarioi- The nodes are located on a grid and search for
the contents just on the shortest path toward the server,

• Scenarioii- The nodes are located on a grid and use ring
expansion to find contents,

• Scenarioiii- The nodes are randomly distributed over
a unit square area and use path-wise content discovery
algorithm. Each node has a transmission range ofr(n)

which at least equals toΘ(
√

logn
n ) so the network is

connected.

Theorem 2. The average latency order in the three scenarios
defined above is

• Scenarioi- Θ(min(
√
n, 1

min
k

(ρ(k)(n))
)).

• Scenarioii- Θ(min(
√
n, 1

√

min
k

(ρ(k)(n))
)).

• Scenarioiii- Θ(max[1,min( 1
r(n) ,

1
min

k
(ρ(k)(n))nr2(n)

)]).

Here we prove Theorem 2 by utilizing some Lemmas. The
proof of lemmas are presented in the Appendix.

Lemma1. Consider the wireless networks described in The-
orem 2. The average number of hops between the customer
and the serving node (a cache or original server) for itemk is

• Scenarioi- E[hk] asymptotically equals to

1

n

√
n

∑

i=1

i2(1− ρ(k)(n))i+

ρ(k)(n)

n

√
n

∑

i=1

i

i−1
∑

l=1

l(1− ρ(k)(n))l (4)

• Scenarioii- E[hk] asymptotically equals to

1

n
{
√

n∑

i=1

i
2(1− ρ

(k)(n))2i
2−2i+1+

√
n∑

i=2

i

i−1∑

l=1

l(1− ρ
(k)(n))2l

2−2l+1(1− (1− ρ
(k)(n))4l)}

(5)

• Scenarioiii- E[hk] asymptotically equals to

4The proof does not need the probabilities to be exactly the same, they just
need to be of the same order in terms ofn.

5Note that this assumption is correct for networks with online caching.
In offline caching scenarios each content is present in some specific caches.
However, offline caching can be considered as a special case of online caching,
and we still can use this theorem by assigning the value of thefraction of
caches containing the item to the probability of each item being in a cache.
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r
2(n){

1
r(n)∑

i=2

i
2(1− ρ

(k)(n))inr2(n)+

(1− (1− ρ
(k)(n))nr2(n))

1
r(n)∑

i=2

i

i−1∑

l=1

l(1− ρ
(k)(n))lnr2(n)}

(6)

Lemma2. Consider the wireless networks described in Theo-
rem 2. For sufficiently large networks, the average number of
hops between the customer and the serving node (a cache or
the original server) for itemk is

• Scenarioi- E[hk] equals
√
n for ρ(k)(n) � 1√

n
, and

1
ρ(k)(n)

for ρ(k)(n) � 1√
n

.

• Scenarioii- E[hk] equals
√
n for ρ(k)(n) � 1

n , and
1√

ρ(k)(n)
for ρ(k)(n) � 1

n .

• Scenarioiii- E[hk] equals 1
r(n) for ρ(k)(n) � 1

nr(n) ,
1

ρ(k)(n)nr2(n)
for 1

nr(n) � ρ(k)(n) � 1
nr2(n) , and 1 for

ρ(k)(n) � 1
nr2(n) .

Theorem 2 is now simply proved using the above Lemmas.
Proof: The average number of hops each content is

traveling isE[h] =
∑m

k=1 αkE[hk].
We assume that the number of contents and also the

popularity of each item is not changing with the network size
(number of users). In the three scenarios mentioned above for
the cases ofρ(k)(n) � 1√

n
, ρ(k)(n) � 1

n , andρ(k)(n) � 1
nr(n) ,

when there is at least one node with average number of hops
equal to

√
n,

√
n, and 1

r(n) respectively, then that node’sE[hk]

in E[h] defined above becomes the dominant factor.
If ρ(k)(n) � 1√

n
, ρ(k)(n) � 1

n , andρ(k)(n) � 1
nr2(n) for all

the contents, in the three scenarios, respectively, thenE[h] in
the three scenarios is given by

∑m
k=1

αk

ρ(k)(n)
≡ 1

min
k

(ρ(k)(n))
,

∑m
k=1

αk√
ρ(k)(n)

≡ 1
√

min
k

(ρ(k)(n))
, and

∑m
k=1 αk = 1.

In the third scenario, if there is no item for whichρ(k)(n) �
1

nr(n) , but there is at least one item such thatρ(k)(n) � 1
nr2(n) ,

thenE[h] =
∑m

k=1
αk

ρ(k)(n)nr2(n)
≡ 1

min
k

(ρ(k)(n)nr2(n))
.

The totalE[h] can be simply written as the results shown
in Theorem 2.

Assuming that the delay of the request process and cache
look up in each node is not increasing when the network size
(the number of nodes) increases, and that there is enough
bandwidth to avoid congestion, then the latency of getting the
data is directly proportional to the average number of hops
between the serving node and the customer. Thus, the latency
and the average number of hops the data is traveling to reach
the customer are of the same order andTheorem 2is proved.

Theorem 3. Consider the networks of Theorem 2, and assume
each node can transmit over a common wireless channel, with
W = Θ(1) bits per second bandwidth, shared by all nodes.
The maximum achievable throughput capacity orderγmax in
the three discussed scenarios are

• Scenarioi- Θ(max( 1
n ,mink

((ρ(k)(n))2))).

• Scenarioii- Θ(max( 1n ,mink
(ρ(k)(n)))).

• Scenarioiii-
Θ(max[ 1n ,min(

1
nr2(n) ,mink

((ρ(k)(n))2)nr2(n))]).

To prove Theorem 3 we use Lemma 2, and the following
two Lemmas.

Lemma3. Consider the wireless networks described in The-
orem 2. In order not to have interference, the maximum
throughput capacity is upper limited by

• Scenarioi- Θ(max( 1√
n
,min

k
(ρ(k)(n)))).

• Scenarioii- Θ(max( 1√
n
,
√

min
k

(ρ(k)(n)))).

• Scenarioiii- Θ(min[ 1
nr2(n)

,max( 1
nr(n)

,min
k

(ρ(k)(n)))]).

In the previous Lemma, the maximum throughput capacity
in a wireless network utilizing caches has been calculated such
that no interference occurs. Now it is important to verify if
this throughput can be supported by each node (cell), i.e. the
traffic carried by each node (cell) is not more than what it can
support (Θ(1)).

Lemma4. The maximum supportable throughput capacities in
the studied scenarios are as follows.

• Scenarioi- Θ(max( 1
n ,mink

((ρ(k)(n))2))).

• Scenarioii- Θ(max( 1n ,mink
(ρ(k)(n)))).

• Scenarioiii-
Θ(max[ 1n ,min(

1
nr2(n) ,mink

((ρ(k)(n))2)nr2(n))]).

The maximum throughput capacity is the value which can
be supported by all the nodes while no interference occurs.
Thus the throughput capacity will be the minimum of the two
values derived in Lemmas 3 and 4, and Theorem 3 is proved.

V. D ISCUSSION

The Theorems above express the maximum achievable data
download rate in terms of the availability of the contents in
the caches(ρ(k)(n)), in networks with specific topology and
content discovery mechanisms. However, no assumption on
the caching policy, which is an important factor in determining
ρ(k)(n) have been made. In this section, we discuss our results
based on two examples and try to study the affect of caching
policy on the performance.

In these examples we consider two different cache replace-
ment policies based on Time-To-Live (TTL). First example
uses exponentially distributed TTL, and the second one con-
siders constant TTL. According to [44] this can predict metrics
of interest on networks of caches running other replacement
algorithms like LRU, FIFO, or Random.

In order to use the stated theorems, the probability of each
item being in each cache is first calculated, and then, the
appropriate theorem is used to give the throughput capacity. In
the first example, in addition to the capacity, we analyze the
total request rate (n(1 − ρ(k))λk) and total generated traffic
for an itemk (n(1− ρ(k))λkBkE[hk]) as well. This gives us
an idea about how the request rates and cache holding times
affect the traffic in the network and how the resources are
utilized.
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A. Example 1

1) Network Model:Consider a network where the received
data is stored only at the receivers (edge caching [45], [46])
and then shared with the other nodes as long as the node keeps
the content. Assume that receiving a datak in the local cache
of the requesting user sets a time-out timer with exponentially
distributed duration with parameterηk and no other event will
change the timer until it times-out, meaning that in equation
(1) µk = ηk, which is not a function ofn. Considering the
request process for each contentk from each user being a
Poisson process with rateβk not changing withn, and using
the memoryless property of exponential distribution (internal
request inter-arrival times), and assuming that the received
data is stored only in the end user’s cache (the caches on
the download path do not store the downloading data), it can
be proved that in equation (1)λk = βk. Thus we can write
the presence probability of each contentk in each cache as
ρ(k)(n) = βk

βk+ηk
(equal order probability of all the caches

containing an itemk).
2) Results:Figures 3 (a),(b) respectively illustrate the total

request rate and the total traffic generated in a fixed size
network in scenarioi for each itemk for different request
rates when the time-out rate is fixed. Smallλk means that
each node is sending requests fork with low rate, so fewer
caches have that content, and consequently more nodes are
sending requests with this low rate. In this case most of the
requests are served by the server. The total request rate of
item k will increase by increasing the per node request rate.
High λk shows that each node is requesting the content with
higher rate, so the number of cached contentk in the network
is high, thus fewer nodes are requesting it with this high rate
externally. Here most of the requests are served by the caches.
The total request rate then is determined by the content drop
rate. So for very largeλk, the total request rate is the total
number of nodes in the network times the drop rate (nµk)
and the total traffic isnµkBk. As can be seen there is some
request rate at which the traffic reaches its maximum; this
happens when there is a balance between the requests served
by the server and by the caches. For smaller request rates,
most of the requests are served by the server and increasing
λk increases the total traffic. For largerλk, on the other hand,
most of the requests are served by the caches and increasing
the request rate will not change the distance to the nearest
content and the total traffic.
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Fig. 3. Scenarioi (a) Total request rate for an itemk in the network (λkn(1−
ρ(k)(n))), (b) Total traffic in the network (Bkλkn(1− ρ(k)(n))E[hk]) vs.
the request rate (λk) with fixed time-out rate (µk = 1).

Figures 4 (a),(b) respectively illustrate the total request rate
and the total traffic generated in a fixed size network in
scenarioi for different time-out rates when the request rate is
fixed. For low1/µk (high time-out rates or small lifetimes),
most of the itemk requests are served by the server and
caching is not used at all. For large time-out times, all the
requests are served by the caches, and the only parameter in
determining the total request rate is the time-out rate.

However, when the network grows the traffic in the network
will increase and the download rate will decrease. If we
assume that the new requests are not issued in the middle
of the previous download, the request rate will decrease with
network growth. If the holding time of the contents in a cache
increases accordingly the total traffic will not change, i.e. if by
increasing the network size the requests are issued not as fast
as before, and the contents are kept in the caches for longer
times, the network will perform similarly.
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Fig. 4. Scenarioi (a) Total request rate in the network (λkn(1−ρ(k)(n))),
(b) Total traffic in the network (Bkλkn(1− ρ(k)(n))E[hk]) vs. the inverse
of the time-out rate (1/µk) with fixed request ratio (λk = 1).

In Figure 5 we assume that the request rate is roughly7
times the drop rate for all the contents, soρ(k)(n) = 7/8,
and show the maximum throughput order as a function of
the network size. In scenarioiii, we set the transmission
range to the minimum value needed to have a connected

network (r(n) ≡
√

logn
n ). According to Theorem 3 and as

can be observed from this figure, the maximum throughput
capacity of the network in a grid network with the described
characteristics is not changing with the network size if the
probability of each item being in each cache is fixed, while
in a network with no cache this capacity will be inversely
proportional to the network size. Similarly in the random
network the maximum throughput is inversely proportional to
nr2(n), which is the logarithm of the network size, while in
a no cache network it is diminishing with the rate of network
growth.

Moreover, comparing scenarioi with ii, we observe that
the throughput capacity in both cases are almost the same;
meaning that using the path discovery scheme will lead to
almost the same throughput capacity as the expanding ring
discovery. Thus, we can conclude that just by knowing the
address of a server containing the required data and forwarding
the requests through the shortest path toward that server wecan
achieve the best performance, and increasing the complexity
and control traffic to discover the closest copy of the required
content does not add much to the capacity.
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Fig. 5. Maximum download rate (γmax) vs. the number of nodes (n) for
ρ = 7/8.

On the other hand with a fixed network size, if the
probability of an item being in each cache is greater than
a threshold (Θ( 1√

n
), Θ( 1n ), and Θ( 1

nr2(n) ) = Θ( 1
logn ) in

casesi, ii and iii, respectively), most of the requests will
be served by the caches and not the server, so increasing
the probability of an intermediate cache having the content
reduces the number of hops needed to forward the content to
the customer, and consequently increases the throughput. For
content presence probability orders less than these thresholds
(Θ( 1

nr(n) ) = Θ( 1√
n logn

) in casesiii) most of the requests
are served by the main server, so the maximum possible
number of hops will be traveled by each content to reach
the requester and the minimum throughput capacity (Θ( 1n ))
will be achieved. Note that in these networks, the maximum
throughput is limited by the maximum supportable load on
each link, and more specifically on the server.

As may have been expected and according to our results,
the obtained throughput is a function of the probability of
each content being available in each cache, which in turn is
strongly dependent on the network configuration and cache
management policy.

B. Example 2

1) Network Model:Assume ann-cache grid wireless net-
work with one server containing all the items located in the
middle of the network. Each cache in leveli (nodes ati
hops away from the server) receives requests for a specific
documentk according to a Poisson distribution with rateβ(k)

from the local user, and with rateβ(k)′

i (n) from all the other
nodes. Note that rateβ(k)′

i (n) is a function of the individual
request rate of users for itemk (β(k)) and also the location of
the cache in the network. The content discovery mechanism
is path-wise discovery, and whenever a copy of the required
data is found (in a cache or server), it will be downloaded
through the reverse path, and either all the nodes on the
download path or only the requester node store it in their local
caches. Moreover, we assume that receiving the itemk and
also any request for the available cached datak by a node in
level i refreshes a time-out timer with fixed durationD(k)

i (n).
According to [47], this is a good approximation for caches
with LRU replacement policy when the cache size and the
total number of documents are reasonably large. Furthermore,
according to the same work this value is a constant for all
contents and is a function of the cache size, so we can use
Di(n) for all contents in caches in leveli. We will calculate

the average probability of itemk being in a cache in leveli
(ρ(k)i (n)) based on these assumptions and then use Theorem
1 to obtain the throughput capacity.

2) Results: Let random variablet(k)ion (T ) denote the total
time of the datak being available in a cache in leveli (i
hop distance from the server) during constant timeT . Assume
that itemk is receivedN (k)i(T ) times during timeT by each
node vi in level i (according to the symmetry all nodes in
one level have similar conditions.). The data available time
between any two successive receipt of itemk is Di(n) if the
timer set by the first receipt is expired before the second one
comes, or is equal to the time between these two receipts.
Let τreq(k)i denote the time between two successive receipts.
This process has an exponential distribution with parameter
β
(k)
i = β(k) + β

(k)′

i . So the total time of datak availability in
a level i cache is

t(k)ion (T ) =

N(k)i(T )
∑

j=0

min(τ
req(k)
i , Di(n)), (7)

and the average value of this time is (E[t
(k)i
on (T )])

∞
∑

l=0

E[

l
∑

j=0

min(τ
req(k)
i , Di(n))]Pr(N

(k)i(T ) = l),

=

∞
∑

l=0

lE[min(τ
req(k)
i , Di(n))]Pr(N

(k)i(T ) = l),

= E[min(τ
req(k)
i , Di(n))]E[N (k)i(T )]. (8)

According to the Poisson arrivals of requests (data down-
loads) with parameterβ(k)+β

(k)′

i , the rightmost term in equa-
tion (8) (E[N (k)i(T )]) equals(β(k) + β

(k)′

i )T . The leftmost
term in this equation (E[min(τ

req(k)
i , Di(n))]) can also be

easily calculated and equals to1−e−Di(n)(β(k)+β
(k)′

i
)

β(k)+β
(k)′
i

. There-

fore, E[t
(k)i
on (T )] = (1 − e−Di(n)(β

(k)+β
(k)′

i ))T . And finally
the probability of an itemk being available in a leveli cache

is ρ(k)i =
E[t(k)i

on (T )]
T = 1 − e−Di(n)(β

(k)+β
(k)′

i (n)). Note that
D0 = ∞ so thatρ(k)0 = 1.

Now we need to calculate the rate of itemk received by
each node in leveli. First, assume that when an item is
downloaded , only the end user (the node which has requested
the content) keeps the downloaded content, and storing a new
content refreshes the time-out timer with fixed durationDi(n).
Thus β(k)′

i (n) = 0, and ρ(k)i (n) = 1 − e−Di(n)β
(k)

. It is
obvious that in such network where all the caches have the
same size and the request patterns,Di(n) will not depend on
the cache location, and since the request rate and the caches
sizes are not changing withn this value does not depend on the
network size either. Thus,Di(n) can be replaced by fixed and
constantD. Therefore,ρ(k)i (n) = 1−e−Dβ(k)

which is similar
for all the caches, and the maximum throughput capacity or-
der (γmax) is n

∑m
k=1 αk

∑

√
n

i=1 i
∑i−1

j=0(i−j)(1−e−Dβ(k)
)e−(i−j)Dβ(k) ,
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which is
1

∑m
k=1

αke−Dβ(k)

1−e−Dβ(k)

≡ 1. (9)

As the second case, we assume that all the nodes on the
download path keep the data, and the shortest path from the
requester to the server is selected such that all the nodes in
level i receive the requests for itemk with the same rate. There
are 4i nodes in leveli and4(i + 1) nodes in leveli + 1. So
the request initiated or forwarded from a node in leveli + 1
will be received by a specific node in leveli with probability
i

i+1 if it is not locally available in that node, soβ(k)′

i (n) can
be expressed as

β
(k)′

i =
(1− ρ

(k)
i+1)(β

(k) + β
(k)′

i+1 )(i+ 1)

i
(10)

Combining equation (10), the relationship betweenρ(k)i

and β
(k)′

i , and the fact that there is no external request
coming to the nodes at the edge boundary of the net-
work (β(k)′√

n
= 0), together with the result of Theorem

1 we can obtain the capacity (γmax) in the grid network
with path-wise content discovery and on-path storing scheme
which is n divided by

∑m
k=1 αk

∑

√
n

i=1 i
∑i−1

j=0(i − j)(1 −
e−Dj(n)(β

(k)+β
(k)′

j ))e−
∑i

l=j+1 Dl(n)(β
(k)+β

(k)′

l ).
The result of this equation cannot exceedΘ(1) since this is

the maximum possible throughput order in the grid network.
Thus, caching the downloaded data in all the caches on the
download path does not add any asymptotic benefit in the
capacity of the network, and keeping the downloaded items
only in the requester caches will yield the maximum possible
throughput.

VI. CONCLUSION AND FUTURE WORK

We studied the asymptotic throughput capacity and latency
of ICNs with limited lifetime cached data at each node.
The grid and random networks are two network models we
investigated in this work. Representing all the results in terms
of the probability of the items being in the caches while
not considering any specific content popularity distribution,
or cache replacement policy has empowered us to have a
generalized result which can be used in different scenarios.
Our results show that with fixed content presence probability
in each cache, the network can have the maximum throughput
order of1 and 1

nr2(n) in cases of grid and random networks,
respectively, and the number of hops traveled by each data to
reach the customer (or latency of obtaining data), can be as
small as one hop.

Moreover, we studied the impact of the content discovery
mechanism on the performance in grid networks. It can be
observed that looking for the closest cache containing the
content will not have much asymptotic advantage over the
simple path-wise discovery whenmin

k
ρ(k)(n) is sufficiently

small (min
k
ρ(k)(n) � 1

n ) or big enough (min
k
ρ(k)(n) 9 0).

For other values ofmin
k
ρ(k)(n), looking for the nearest copy

at most decreases the throughput diminishing rate by a factor
of two. Consequently, downloading the nearest available copy

on the path toward the server has similar performance as
downloading from the nearest copy. A practical consequence
of this result is that routing may not need to be updated
with knowledge of local copies, just getting to the source
and finding the content opportunistically will yield the same
benefit.

Another interesting finding is that whether all the caches on
the download path keep the data or just the end user does it,
the maximum throughput capacity scale does not change.

In this work, we represented the fundamental limits of
caching in the studied networks, proposing a caching and
downloading scheme that can improve the capacity order is
part of our future work.

APPENDIX

Proof of Lemma 1: Let hk, dsr , and dmax denote the
number of hops between the customer and the serving node
(cache or original server) for contentk, the number of hops
between the customer and the serving node (cache or original
server), and the maximum value ofdsr, respectively. The
average number of hops between the customer and the serving
node (E[hk]) is given by

E[hk] =

dmax
∑

i=1

E[hk|dsr = i]Pr(dsr = i). (11)

Scenarioi- This case can be considered as a special case
of the network studied in Theorem 1, whereρ(k)i (n) is the
same for alli6. Thus, we can drop the indexi and letρ(k)(n)
denote the common value of this probability. Using equation
(2) and (3) we will haveE[hk] equal to

4

n

√
n∑

i=1

i{i(1−ρ
(k)(n))i+

i−1∑

j=1

(i−j)(1−ρ
(k)(n))i−j

ρ
(k)(n)} (12)

The constant factor4 does not change the scaling order and
it can be dropped. By definingl = i−j, then the proof follows.

Scenarioii - dmax in this network isΘ(
√
n), and there are

4i nodes at distance ofi hops from the original server. Thus,
Pr(dsr = i) ≡ i

n . Each customer may have the required item
k in its local cache with probabilityρ(k)(n). If the requester is
one hop away from the original server, it gets the required item
from the server with probability1 − ρ(k)(n). The customers
at two hops distance from the server (8 such customers)
download the required item from the original server (traveling
hk = 2 hops) if no cache in a diamond of two hops diagonals
contains it (with probability(1−ρ(k)(n))2), and gets it from a
cache at distance one hop if one of those caches has the item
(with probability (1 − ρ(k)(n))(1 − (1 − ρ(k)(n))4)). Using
similar reasoning, the customers at distancei from the server
get the item from the server (distancehk = i hops) with proba-
bility (1−ρ(k)(n))1+4(1+2+...+(i−1)) = (1−ρ(k)(n))2i2−2i+1,
and from a cache at distancehk = l < i with probability
(1−ρ(k)(n))2l2−2l+1(1−(1−ρ(k)(n))4l) as there are4l nodes
at distance ofl hops. Therefore, using equations (11), (2), and
(3)

6We will give examples in Section V using this assumption.
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E[hk] ≡
1

n

√
n

∑

i=2

i

i−1
∑

l=1

l(1− (1− ρ(k)(n))4l)(1 − ρ(k)(n))2l
2−2l+1

+
1

n

√
n

∑

i=1

i2(1− ρ(k)(n))2i
2−2i+1 (13)

Scenarioiii - The number of caches within transmission
range (one hop) isΘ(nr2(n)). dmax in this network is of the
order of 1

r(n) andPr(dsr = i) ≡ ir2(n).

Each customer may have the required itemk in its lo-
cal cache with probabilityρ(k)(n). If the requester is one
hop away from the original server (4Θ(nr2(n)) nodes), it
receives the required item from the server with probability
1 − ρ(k)(n). The customers at two hops distance from the
server (8Θ(nr2(n)) such customers) download the required
item from the original server (travelinghk = 2 hops) if no
cache in the cell at one hop distance contains it (probability
(1 − ρ(k)(n))2nr

2(n)), and gets it from a cache at distance
one hop if one of those caches has the item (probability
(1 − ρ(k)(n))(1 − (1 − ρ(k)(n))2nr

2(n))). Using similar rea-
soning the customers at distancei from the server receive the
item from the server (distancehk = i hops) with probability
(1− ρ(k)(n))inr

2(n), and from a cache at distancehk = l < i
with probability(1−ρ(k)(n))lnr2(n)(1− (1−ρ(k)(n))nr2(n)).
Therefore, according to equation (11)E[hk] equals to

r
2(n){(1− ρ

(k)(n)) +

1
r(n)∑

i=2

i
2(1− ρ

(k)(n))inr2(n)

+ (1− (1− ρ
(k)(n))nr2(n))

1
r(n)∑

i=2

i

i−1∑

l=1

l(1− ρ
(k)(n))lnr2(n)}.

(14)

Noting thatr2(n)(1−ρ(k)(n)) is always less than one, and
tends to zero for sufficiently largen, the Lemma is proved.

Proof of Lemma 2: To simplify the notations, we have
dropped the indexk when there is no ambiguity.

To prove this Lemma we use (A):limN→∞(1 − x)N ≈
e−xN approximation, which is≈ 1 for x = o( 1

N ) (region 1),
≈ e−1 for x = Θ( 1

N ) (region 2), and≈ 0 for x = ω( 1
N )

(region 3).

Scenarioi - Let us define

E
i
s =

1

n

√
n∑

i=1

i
2(1− ρ(n))i , E

i
c =

ρ(n)

n

√
n∑

i=1

i

i−1∑

l=1

l(1− ρ(n))l.

(15)

Thus equation (4) is written asE[h] = Ei
s + Ei

c. First we
investigate the value ofEi

s for different ranges ofρ(n). The
summation forEi

s can be decomposed into two summations.

E
i
s ≡ 1

n
{
∑

i≺√
n

i
2(1− ρ(n))i +

∑

i≡√
n

i
2(1− ρ(n))i} (16)

Assumeρ(n) ≡ 1√
n

, then using first and second region of

equation (A) we have

Ei
s ≡

1

n
{
∑

i≺
√
n

i2 +
∑

i≡
√
n

i2} ≡ n3/2

n
≡

√
n. (17)

Moreover it can easily be seen thatEi
s is a decreasing

function of ρ(n), so for ρ(n) with order less than 1√
n

it is
more than

√
n. Sincedmax =

√
n, we can sayEi

s ≡ √
n for

ρ(n) � 1√
n

. Now we expand the summation to obtain

E
i
s ≡ (1− ρ(n))(2− ρ(n))

nρ3(n)
− (1− ρ(n))

√
n+1

nρ3(n)

× {n(1− ρ(n))2 − (1− ρ(n))(2n+ 2
√
n− 1) + (

√
n+ 1)2}

(18)

If ρ(n) ≻ 1√
n

, then using third region in equation (A),

(1 − ρ(n))
√
n+1 is going to zero exponentially, son(1 −

ρ(n))
√
n+1 → 0. Thus,Ei

s ≡ 1
nρ3(n) , and in summary

Ei
s ≡

{ √
n ρ(n) � 1√

n
1

nρ3(n) ρ(n) ≻ 1√
n

(19)

According to equation (19) and sinceE[h] = Ei
s+E

i
c, when

Ei
s ≡ √

n (for ρ(n) � 1√
n

) which is the maximum possible
order forE[h], then addingEi

s to E[h] cannot increase its
order beyond the maximum possible value. Now to derive the
order of E[h] for other values ofρ(n), we decompose the
equation ofEi

c = Ei1
c +Ei2

c to the following summations and
investigate their behaviors whenρ(n) ≻ 1√

n
.

Ei1
c = 1

n

∑

i≡
√
n i

∑i−1
l=1 lρ(n)(1− ρ(n))l,

Ei2
c = 1

n

∑

i≺
√
n i

∑i−1
l=1 lρ(n)(1− ρ(n))l (20)

The number ofi ≡ √
n is in the order ofΘ(1). Therefore

using the following series
∑n

x=1 xa
x = an+1(na−n−1)+a

(a−1)2 , we

haveEi1
c ≡ 1√

n

∑

√
n

l=1 lρ(n)(1 − ρ(n))l ≡ 1−ρ(n)
ρ(n)

√
n
(1 − (1 −

ρ(n))
√
n(1 + ρ(n)

√
n)), which is equivalent to 1

ρ(n)
√
n

when

ρ(n) ≻ 1√
n

.
Utilizing the same series, the first summation inEi2

c is
Θ(

√
n). Hence we arrive at

Ei2
c ≡ 1−ρ(n)

ρ(n)n

∑
i≺√

n

i[1− {1− ρ(n) + ρ(n)i}(1− ρ(n))i−1]

≡
1−ρ(n){1− 1

n

∑

i≺
√

n

i(1−ρ(n))i− 1
n

∑

i≺
√

n

i2ρ(n)(1−ρ(n))i−1}

ρ(n)

≡ 1−ρ(n)
ρ(n)

− (1−ρ(n))2

ρ3(n)n
− 1

ρ3(n)n
≡ 1

ρ(n)
(21)

Sinceρ(n) ≻ 1√
n

, Ei2
c is the dominant factor inEi

c, and
also it is dominant factor inE[h]. Thus,E[h] ≡ Ei

s ≡
√
n for

ρ(n) � 1√
n

, andE[h] ≡ Ei2
c ≡ 1√

ρ(n)
for ρ(n) ≻ 1√

n
.

Scenarioii - Let us define

E
ii
s =

1

n

√
n∑

i=1

i
2(1− ρ(n))2i

2−2i+1
,

E
ii
c =

1

n

√
n∑

i=2

i

i−1∑

k=1

l(1− ρ(n))2l
2−2l+1(1− (1− ρ(n))4l) (22)
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SoE[h] = Eii
s + Eii

c . Assume thatρ(n) ≡ 1
n , then

Eii
s ≡ 1

n

√
n

∑

i=1

i2(1− 1

n
)2i

2−2i+1 ≡ 1

n

√
n

∑

i=1

i2 ≡
√
n. (23)

Since Eii
s is increasing whenρ(n) is decreasing and its

maximum possible order is
√
n, then Eii

s ≡ √
n for all

ρ(n) � 1
n .

For ρ(n) ≻ 1
n , we approximate the summation with the

integral.

Eii
s ≡ 1

n

∫

√
n

v=1
v2(1− ρ(n))2v

2−2v+1

≡ {
(1 − log(1 − ρ(n)))

√

2π(1− ρ(n))erf(
(2v−1)

√
− log(1−ρ(n))√

2
)

n log3/2(1− ρ(n))

+
−2

√

− log(1− ρ(n))(2v + 1)(1 − ρ(n))2v
2−2v+1

n log3/2(1 − ρ(n))
}|

√
n

v=1 (24)

where erf is the error function which is always limited by
[−1, 1] and is zero at zero. Ifρ(n) → 1, then it is obvious that
Eii

s → 0. For other values ofρ(n) ≻ 1
n we use the third ap-

proximation in equation (A), and also− log(1−ρ(n)) ≡ ρ(n),
which is true whenρ(n) tends to zero whilen approaches
infinity, and − log(1 − ρ(n)) ≡ 1 for ρ(n) 9 0 to prove
that Eii

s ≡ √
n for ρ(n) � 1

n , and Eii
s ≡ 1

nρ3/2(n)
for

ρ(n) ≻ 1
n . Since forρ(n) � 1

n theEii
s reaches the maximum

E[h], thereforeEii
c cannot increase the scaling value ofE[h]

anymore. Forρ ≻ 1
n we haveEii

c ≡
√

1
ρ(n) . Thus it can

easily be verified thatE[h] ≡ Eii
s ≡ √

n for ρ(n) � 1
n , and

E[h] ≡ Eii
c ≡

√

1
ρ(n) for ρ(n) ≻ 1

n .

Scenarioiii - Let us defineE[h] = Eiii
s + Eiii

c , where

Eiii
s = r2(n)

1
r(n)
∑

i=2

i2(1− ρ(n))inr
2(n)

Eiii
c = r2(n)(1 − (1− ρ(n))nr

2(n))

×{
1

r(n)
∑

i=2

i
i−1
∑

l=1

l(1− ρ(n))lnr
2(n)} (25)

First we check the behavior ofEiii
s when ρ(n) ≡ 1

nr(n) .
Using the second region in equation (A) we will haveEiii

s ≡
1

r(n) . E
iii
s is increasing whenρ(n) is decreasing and the

maximum possible value for the number of hops is1r(n) , then
Eiii

s ≡ 1
r(n) for all ρ(n) � 1

nr(n) .
By approximating the summation with integral, we arrive at

Eiii
s ≡ r2(n)

∫

1
r(n)

2 v2(1 − ρ(n))vnr
2(n)dv, (26)

which equals to

{(v2 log2 (1− ρ(n))nr2(n) − 2v log (1− ρ(n))nr2(n) + 2)

× r2(n)(1−ρ(n))vnr2(n)

log3 (1−ρ(n))nr2(n)
}|

1
r(n)

v=2 . (27)

If 1
nr(n) � ρ(n) � 1

nr2(n) , using the fact that

log (1− ρ(n))nr
2(n) ≡ −ρ(n)nr2(n) and also equation (A),

we will haveEiii
s ≡ 1

n3ρ3(n)r4(n) .

Whenρ(n) � 1
nr2(n) , equation (27) tends to zero.

Using the previous approximations along with1 − (1 −
ρ(n))nr

2(n) ≡ 1 for ρ(n) � 1
nr2(n) , and ρ(n)nr2(n) for

ρ(n) � 1
nr2(n) , we can approximateEiii

c as its dominant terms

(Eiii
c ≡ 1

nρ(n)

∑

1
r(n)

i=2 i ≡ 1
ρ(n)nr2(n) ).

Whenρ(n) � 1
nr2(n) , the dominant term isΘ(1). Thus,

E[h] ≡











Eiii
s ≡ 1

r(n) ρ(n) � 1
nr(n)

Eiii
c ≡ 1

ρ(n)nr2(n)
1

nr(n) � ρ(n) � 1
nr2(n)

Eiii
c ≡ 1 1

nr2(n) � ρ(n)
(28)

It can be seen that for large enoughρ(n) the average number
of hops between the nearest content location and the customer
is justΘ(1) hops. This is the result of havingnr2(n) caches
in one hop distance for every requester. Each one of these
caches can be a potential source for the content. When the
network grows, this number will increase and ifρ(n) is large
enough ( 1

nr2(n) � ρ(n)) the probability that at least one of
these nodes contain the required data will approach 1, i.e.,
limn→∞(1− (1− ρ(n))nr

2(n)) = 1.
Proof of Lemma 3:Assume that each content is retrieved

with rate γ bits/sec. The traffic generated because of one
download from a cache (or server) at average distance ofE[h]
hops from the requester node isγE[h]. The total number
of requests for a content in the network at any given time
is limited by the number of nodesn. Thus the maximum
total bandwidth needed to accomplish these downloads will
be nE[h]γ, which is upper limited by (Θ(n)) in scenarios
i, ii, and (Θ( 1

r2(n) )) in scenarioiii. Thus,nE[h]γ � n and
γmax ≡ 1

E[h] in scenariosi, ii, and nE[h]γ � 1
r2(n) and

γmax ≡ 1
E[h]nr2(n) in scenarioiii. Therefore the maximum

download rate is easily derived using the results of Lemma 2.

Proof of Lemma 4: Each link between two nodes in
scenariosi andii, or two cells in scenarioiii can carry at most
Θ(1) bits per second. Here we calculate the maximum traffic
passing through a link considering the throughput capacities
derived in previous theorems, and check if any link can be a
bottleneck.

Scenarioi- Each one of the four links connected to the
server will carry all the traffic related to the items not found
in the on-path caches. Thus, the total traffic related to itemk

carried by each of those links isψk =
∑

√
n

i=1 γi(1−ρ(k)(n))i.
When ρ(k)(n) � 1√

n
, we have(1 − ρ(k)(n))i ≡ 1 for all

i ≤ √
n. So this traffic is equal toψk =

∑

√
n

i=1 γi ≡ nγ.
When ρ(k)(n) � 1√

n
, using equation (A) the above sum-

mation can be written as

γ (−1+ρ(k)(n))(
√
nρ(k)(n)(1−ρ(k)(n))

√
n+(1−ρ(k)(n))

√
n−1)

(ρ(k)(n))2

≡ γ
(ρ(k)(n))2

.(29)

The total traffic isψ =
∑m

k=1 αkψk which must be less than
one. If ρ(k)(n) � 1√

n
for all the items, then the item with

minimum ρ(k)(n) will be the dominant factor in the above
equation (ψ ≡ Θ( γ

min
k

(ρ(k)(n))2)
)), and if at least one item
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has ρ(k)(n) � 1√
n

, it will put the bound on the maximum
rate (ψ ≡ nγ). Thus,ψ ≡ min(nγ, γ

min
k

(ρ(k)(n))2)
) � 1, then

γmax ≡ max( 1
n ,mink

((ρ(k)(n))2)).

Therefore, the links directly connected to the server will be
a bottleneck ifγ is more than the above values. On the other
hand, the traffic related to itemk carried by a node to cache
content in levelj is

∑

√
n−j

i=1 γi(1− ρ(k)(n))i � ∑

√
n

i=1 γi(1−
ρ(k)(n))i, so the server links carry the maximum load, and
thus the derived upper limits are supportable in every link.

Scenarioii- Each one of the four links connected to the
server will carry all the traffic related to the items not found
in any caches closer to the requester. Thus, the total traffic
related to itemk (ψk) carried by each of those links is

γ(1− ρ(k)(n)) +
∑

√
n

i=1 4γi(1− ρ(k)(n))(1+4
∑i

j=1 j)

≡ γ(1− ρ(k)(n)) +
∑

√
n

i=1 γi(1− ρ(k)(n))2i
2+2i+1,

≡ γ{(1− ρ(k)(n)) + (1−ρ(k)(n))n−(1−ρ(k)(n))4

log(1−ρ(k)(n))/(1−ρ(k)(n))

+

√

− log(1−ρ(k)(n))

1−ρ(k)(n)
erf(

√
−n log(1−ρ(k)(n)))

log(1−ρ(k)(n))/(1−ρ(k)(n))

−

√

− log(1−ρ(k)(n))

1−ρ(k)(n)
erf(

√
− log(1−ρ(k)(n)))

log(1−ρ(k)(n))/(1−ρ(k)(n))
}. (30)

If ρ(k)(n) � 1
n , then (1 − ρ(k)(n))2i

2+2i+1 ≡ 1 for all
1 ≤ i ≤ √

n. Thus the above traffic will beψk ≡ nγ. If
ρ(k)(n) � 1

n the above equation is equivalent toψk ≡ γ
ρ(k)(n)

.
The total traffic then isψ ≡ ∑m

k=1 αkψk � 1. If
ρ(k)(n) � 1

n for all the items, thenψ ≡ γ
min

k
(ρ(k)(n))

.

If ρ(k)(n) � 1
n for at least one item, thenψ ≡ nγ.

Thus, ψ ≡ min(nγ, γ
min

k
(ρ(k)(n))

) � 1, then γmax ≡
max( 1n ,mink

(ρ(k)(n))).

Using similar reasoning as in scenarioii other links carry
less traffic, so the above capacities are supportable for allthe
other links.

Scenarioiii- The traffic load for itemk between the server
cell and each of the four neighbor cells (ψk) is given by

γnr2(n){(1− ρ(k)(n)) +

1
r(n)
∑

i=2

i(1− ρ(k)(n))inr
2(n)}

≡ γnr2(n){(1− ρ(k)(n))

+
(1− ρ(k)(n))nr(n)(nr(n) log(1− ρ(k)(n))− 1)

log2(1 − ρ(k)(n))nr2(n)

− (1− ρ(k)(n))nr
2(n)(log(1 − ρ(k)(n))nr

2(n) − 1)

log2(1− ρ(k)(n))nr2(n)
}(31)

If ρ(k)(n) � 1
nr(n) , then(1 − ρ(k)(n))inr

2(n) → 1 for 2 ≤
i ≤ 1

r(n) , thus the traffic load equals toγnr2(n)
∑

1
r(n)

i=2 i ≡ nγ.

If 1
nr(n) � ρ(k)(n) � 1

nr2(n) , then the maximum traffic load
ψk on a link is

γnr2(n) + γnr2(n)
1 + 2ρ(k)(n)nr2(n)

(ρ(k)(n))2n2r4(n)

≡ γ

(ρ(k)(n))2nr2(n)
(32)

If ρ(k)(n) � 1
nr2(n) , then equation (31) is equivalent

to γnr2(n). Therefore, if ρ(k)(n) � 1
nr2(n) for all the

items, then the total traffic (ψ =
∑m

k=1 αkψk) is simply
ψ ≡ γnr2(n). If ρ(k)(n) � 1

nr(n) for all items but there

is at least one item for whichρ(k)(n) � 1
nr2(n) , then the

total traffic is dominated by the traffic generated by the
item with the leastρ(k)(n) (ρ(k)(n) � 1

nr2(n) ). And finally

if there is at least one item for whichρ(k)(n) � 1
nr(n) ,

then it will generate the dominant traffic (ψ ≡ nγ). Thus,
ψ ≡ min[nγ, max(γnr2(n), γ

min
k

(ρ(k)(n))2nr2(n)
)] � 1,

γmax � max[ 1n ,min(
1

nr2(n) ,mink
((ρ(k)(n))2)nr2(n))]. Note

that if there is no cache in the system, orρ(n) is very low,
less than the stated threshold values, almost all the requests
would be served by the server, and the maximum download
rate would beΘ( 1n ).
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Xerox Palo Alto Research Center-PARC, 2010.

[2] “PURSUIT: Pursuing a pub/sub internet,” http://www.fp7-pursuit.eu/,
Sep. 2010.

[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A
survey of information-centric networking,”Communications Magazine,
IEEE, vol. 50, no. 7, July 2012.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” inACM CoNEXT,
2009, pp. 1–12.

[5] B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz,
B. Ohlman, K. Pentikousis, O. Strandberg, R. Rembarz, and V.Ver-
cellone, “Design considerations for a network of information,” in ACM
CoNEXT, 2008, pp. 1–6.

[6] T. Koponen, M. Chawla, B. G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” inACM SIGCOMM, 2007, pp. 181–192.

[7] A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and
J. Wilcox, “Information-Centric networking: Seeing the forest for the
trees,” inHotNets, 2011.

[8] F. Olmos, B. Kauffmann, A. Simonian, and Y. Carlinet, “Catalog dy-
namics: Impact of content publishing and perishing on the performance
of a LRU cache,” inIEEE ITC26, 2014, pp. 1–9.

[9] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical
web caching systems,” inIEEE INFOCOM, 2001, pp. 1416–1424.

[10] E. Rosensweig, J. Kurose, and D. Towsley, “Approximatemodels for
general cache networks,” inIEEE INFOCOM, 2010, pp. 1–9.

[11] A. Wolman, M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. M. Levy, “On the scale and performance of cooperative Web proxy
caching,”SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 16–31, Dec. 1999.

[12] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, Best-Effort
content location in cag networks,” inIEEE INFOCOM, 2009, pp. 2631–
2635.

[13] B. Azimdoost, G. Farhadi, N. Abani, and A. Ito, “Optimalin-network
cache allocation and content placement,” inIEEE INFOCOM WKSHPS,
Apr. 2015, pp. 263–268.

[14] L. Yin and G. Cao, “Supporting cooperative caching in adhoc networks,”
Mobile Computing, IEEE Transactions on, no. 1, pp. 77–89, 2005.

[15] E. J. Rosensweig and J. Kurose, “A network calculus for cache net-
works,” in INFOCOM, 2013 Proceedings IEEE. IEEE, Apr. 2013, pp.
85–89.

[16] M. Tortelli, I. Cianci, L. A. Grieco, G. Boggia, and P. Camarda, “A
fairness analysis of content centric networks,” inIEEE NOF, Nov. 2011,
pp. 117–121.

[17] C. Westphal, “On maximizing the lifetime of distributed information in
ad-hoc networks with individual constraints,” inACM MobiHoc, 2005,
pp. 26–33.



12

[18] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis,J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal routing
and content caching in heterogeneous networks,” inIEEE INFOCOM,
Apr. 2015, pp. 936–944.

[19] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),”Relatório técnico, Telecom
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