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Abstract

Purpose: Capture-recapture methods estimate the size of hidden populations by leveraging the 

proportion of overlap of the population on independent lists. Log-linear modeling relaxes the 

assumption of list independence, but best model selection criteria remain uncertain. Incorrect 

model selection can deliver incorrect and even implausible size estimates.

Methods: We used simulations to model when capture-recapture methods deliver biased or 

unbiased estimates and compare model selection criteria. Simulations included five scenarios for 

list dependence among three incomplete lists of population of interest. We compared metrics 

of log-linear model selection, accuracy, and precision. We also compared log-linear model 

performance to the decomposable graph approach (a Bayesian model average), the sparse multiple 

systems estimation (SparseMSE) approach that accounts for zero or low cell counts, and the 

Sample Coverage approach.

Results: Log-linear models selected by Akaike’s information criterion (AIC) calculated accurate 

population size estimates in all scenarios except for those with sparse or zero cell counts. In these 

scenarios, the decomposable graph and the Sample Coverage models produced more accurate size 

estimates.

Conclusion: Conventional capture-recapture model selection fails with sparse cell counts. This 

naïve approach to model selection should be replaced with the implementation of multiple 

different models in order triangulate the truth in real-world applications.
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INTRODUCTION

In public health, valid estimates of population sizes are needed to understand disease burden, 

distribution, and the impact of control efforts.1 Many populations of special interest lack 

a census or representative sample. Numerous methods have been developed to leverage 

incomplete information from biased samples to estimate the total size of target populations.2 

Capture-recapture (CRC) is a well established population size estimation (PSE) method 

that estimates the population size based on the degree of overlap between two or more 

incomplete lists (samples) of the population.3,4 Intuitively, with a high level of overlap (i.e., 

the same individuals seen on multiple lists), then most individuals in the population are 

likely already observed on the combined lists. With little overlap across lists, the size of the 

population is likely much larger than what has been observed. CRC has broad applications 

for estimating unobserved populations, including disease and injury surveillance,5–10 and 

is commonly used to estimate the size of key populations for HIV surveillance.11–14 The 

major challenges of surveillance during the COVID-19 pandemic highlight the importance 

of flexible feasible tools to monitor the size of hidden populations.

A key assumption for CRC estimation is that lists are statistically independent from one 

another. Presence or absence of an individual on one list does not affect the probability 

that individual is included on another list. This theoretical assumption is difficult to meet in 

practice, but methodologic innovations offer opportunities to estimate population size even 

when there is dependence between lists.

To account for potential bias due to list dependencies, at least three lists must be included 

and log-linear regression models (LLMs) can be fit to the data. LLM is a common approach 

for the analysis of cross-classified categorical data.15 In CRC estimation with LLMs, data 

are structured with indicator variables for presence on each list (L1, L2, or L3), and a 

dependent variable representing the count of individuals with that combination of list 

inclusion (Y). These models can include up to 2k−1 parameters (where k is the number of 

lists), with interaction terms between list indicators to control list dependency. An example 

of a three-list model with no list dependency is log(Y) = β0 + β1L1 + β2L2 + β3L3. β0 is the 

log expected count for the number of people not observed on any list. β1 is the difference 

of the log of the number of people uniquely observed on L1 and the log of the number of 

people not observed on any list (β1 can also be interpreted as the log of the ratio of the 

number of people on L1 alone to the number of people not on any list). β2 and β3 offer 

the same contrast for L2 and L3, respectively. The row in which L1, L2, and L3 are 0 is 

unobserved in the data. The intercept β0 is identified because of the constraints implied by 

the lack of interaction terms in the model. For example, the number of people on both L1 

and L2 but not on L3 is predicted by β0+β1+β2. This model can be modified to include 

combinations of possible two-way interactions (e.g., L1*L2) or a three-way interaction 

(L1*L2*L3), but at least one of these interaction terms must be omitted to identify β0. The 

k-way interaction is often not modeled because of the hierarchy principle, which instructs 

that all lower level interactions must first be modeled before a k-way interaction is included.

Conventionally, the model with the lowest information criterion (e.g. Akaike Information 

Criterion [AIC]), a data-based statistic reflecting the fit of the statistical model to the 
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observed data adjusted for the complexity of the model, is selected as the best estimate. This 

model selection approach is referred to as naïve CRC. Alternatively, as recommended by 

Cormack et al., researchers may select the fully saturated model (i.e., the model with all 

possible pairwise interaction terms) as the best estimate.16 In contrast, Wesson et al applied 

CRC models to evaluate the completeness of the HIV surveillance system in Alameda 

County, CA and found that as the models became more saturated population size estimates 

of people living with HIV became more biased, less precise, and ultimately implausible 

(Table 1).17

Other researchers have advised against naïve CRC, as multiple LLMs can fit the data 

equally well yet generate very different size estimates.18 The non-identifiability of 

PSE through CRC, as well as the weak identifiability through various constraints, has 

been well-described in other disciplines.19,20 While these fundamental concerns are not 

wholly unknown to epidemiologists, naïve CRC remains common, potentially introducing 

unreliable denominators to characterize populations and disease surveillance. Therefore, 

we conducted a simulation study to test the robustness and limits of CRC estimators in 

different data-generating systems and inform the more critical application of this tool among 

epidemiologists.

METHODS

Simulation Study

We simulated a population of 1000 individuals and three incomplete lists generated by 

randomly sampling from this source population. Four scenarios were specified, varying 

the probabilities that individuals were sampled and the degree of list dependence, while 

maintaining the marginal probabilities with which each list sampled the population. A fifth 

scenario was simulated that varied the marginal probabilities to test the performance of 

estimators when sampling probabilities are small.

Scenario 1 depicts perfect independence: L1 randomly sampled 20% of the population, L2 

randomly sampled 25% of the population, and L3 randomly sampled 30% of the population.

Scenario 2 depicts direct positive dependency between L1 and L3. L1 randomly sampled 

20% of the population, L2 randomly sampled 25%, and, if an individual was not included 

on L1, L3 randomly sampled 24%. However, if an individual was included on L1 their 

probability of inclusion on L3 increased by 30 percentage points (PP). This scenario could 

occur in practice if a medical center had a policy of referring their patients to a specialty 

clinic.

Scenario 3 includes a third-order interaction. L1 and L2 randomly sampled 20% and 25% of 

the population, respectively. The probability of inclusion on L3 is 25% if not on L1 or L2. 

Inclusion on L3 increases by 45 PP if included on L1, and increases by 20 PP if included on 

both L1 and L2. In this case, L3 could represent a surveillance system that receives reports 

of cases from multiple sources – presence on one source substantially increases inclusion on 

the surveillance list and presence on multiple other sources nearly guarantees inclusion.
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Scenario 4 depicts dependency between two lists due to a shared variable. Individuals coded 

as “0” for this binary third variable, U (e.g., males, if the third variable is sex) have 0% 

chance of being sampled by L1 or L2 (e.g., being on OB/Gyn clinic patient lists), violating 

the capture homogeneity assumption (i.e., for each sample, each individual has the same 

probability of being included in the sample). U has probability of 50%. L1 samples 40% 

of the population when U=1. L2 samples 50% of the population when U=1. L3 randomly 

samples the entire target population, irrespective of U.

Scenario 5 also depicts dependency between two lists due to a shared third variable and 

tests model performance when sampling probabilities are small. The probability of being 

observed on L1 or L2 increases for people coded as “1” for the binary third variable, U (e.g., 

females, if the third variable is sex). U has a probability of 50%. The probability of being 

observed on L1 when U=0 is 2% (and is increased by 20 PP if U=1). The probability of 

being observed on L2 when U=0 is 3% (and is increased by 20 PP if U=1). The probability 

of being observed on L3 is 6%, irrespective of U.

Each scenario was simulated 500 times. We used four modeling frameworks for estimation. 

First, the R package Rcapture estimated the population size using conventional LLMs.21 

Each scenario built all possible combinations of interaction terms, except the 3-way 

interaction term. Second, the R package DGA estimated the population size using the 

decomposable graph approach (DGA).22 DGA uses a Bayesian approach to average the 

posterior probability distributions from all possible models of list dependencies, weighted 

by the marginal likelihood of each model.17,22,23 DGA does not involve model selection 

because information from all models is used to calculate a single posterior probability 

distribution, from which the mean is calculated as the point estimate, bounded by a 95% 

credible interval. The third approach was the R package SparseMSE, a recently developed 

model from the human trafficking literature to account for small or no overlap between 

lists.24,25 In conventional LLMs, the statistical model will search the parameter space for 

the value that maximizes the likelihood of the sparse or zero cell count. The model will 

iterate towards negative infinity in search of, but never reaching, the maximum likelihood 

until the default maximum number of iterations for the program is reached. This search 

of the extreme range of the parameter space impacts the estimation of the remaining 

parameters in the model and drives down the value of the information criterion, making 

the model appear more favorable. The SparseMSE model prevents this iterative search of the 

extreme range of the parameter space by selecting a large negative value for the maximum 

likelihood of the parameter for sparse or zero cell count, effectively making that value 

zero and removing its contribution to the maximization of the likelihood of the remaining 

parameters. The remaining parameters are then fit through a stepwise process to determine 

which dependencies should be modeled, resulting in a single model for the population size. 

The final approach was the Sample Coverage approach, developed by Chao and Tsay,20,26,27 

implemented using the R package CARE1.28 This model estimates the population size based 

on the fraction observed on two or more lists. Three estimators are calculated: N0, assumes 

list independence; N, accounts for list dependence and estimates the population size when 

sample coverage is sufficient (>= 55%); and N1, estimates an upper (lower) bound when 
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there is negative (positive) dependence and sample coverage is insufficient to estimate the 

population size parameter itself (<55%).

Model accuracy for each scenario was evaluated according to the bias and root mean squared 

error (RMSE). Additional model performance metrics included the percent of simulations 

each model was selected as the best estimate (lowest AIC) and the percent of simulations 

the 95% confidence interval (CI) included the true population size. As a sensitivity analysis, 

we repeated simulations for population sizes of 10,000 and 50,000. The relative RMSE 

(RRMSE) was calculated by dividing the RMSE by the true population size to compare 

standardized results across population sizes.

RESULTS

Table 2 shows simulation results. Under scenario 1, perfect independence, all LLMs 

produced valid estimates with negligible bias. The correct model assuming list independence 

was selected 66.4% of the time and nominal coverage of the 95% CI. Although models 

incorrectly including interactions were selected in over a third of simulations, these models 

delivered similar point estimates. Including gratuitous interactions when the underlying 

sampling processes were independent widened CIs but did not substantially bias estimated 

population size.

In scenario 2 the correct model was selected the majority of simulations (74.2%). In most 

cases when the correct model was not selected, another model that included the L1L3 

interaction among other interaction terms was chosen. These models calculated valid size 

estimates with moderately wider CIs.

In scenario 3, generated with a third-order dependency, the model selected most often (93%) 

grossly over-estimated the population size (9.7 billion times higher than the truth). The CIs 

had poor coverage, containing the truth only 26.8% of the time. The two models selected the 

remaining 7% of simulations, each included the L1L3 interaction and accurately estimated 

the population size with valid CIs.

In scenario 4, the correct model was selected 74.4% of the time, with valid CIs. Other 

models selected almost always included the L1L2 interaction and had accurate estimates 

with appropriate (albeit wider) coverage.

In scenario 5, where sampling probabilities were greatly reduced, the correct model, which 

included an L1L2 interaction term, calculated valid size estimates on average, but was 

only selected in half of simulations (50.6%). The CI for this model, and most others in 

this scenario, could not be calculated due to undefined upper limits. The next most oft 

selected model assumed independence and resulted in nearly four times the bias and poor CI 

coverage. Other selected models increased in bias to unacceptable levels.

The DGA model provided approximately correct estimates for most scenarios. Although this 

model underestimated the truth in scenario 4, the 95% credible intervals were conservative, 

including the truth nearly 100% of simulations. When capture probabilities were small 
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(scenario 5), results indicated moderate bias and 95% credible intervals that never included 

the truth.

The SparseMSE model produced reasonably accurate estimates for most scenarios. In 

scenarios 3 and 5, which were most likely to include small list intersections (Figure 1), 

the model did not overcome the statistical bias. Bias was moderate in scenario 3, though far 

preferable to the best-fitting LLMs, and CIs had appropriate coverage. In scenario 5, the bias 

was again moderate, though comparable to or less than most other models, however the CI 

included the truth in less than 1/3 of simulations.

In nearly all scenarios, at least one of the three Sample Coverage estimators demonstrated 

high accuracy and appropriate CI coverage. The estimator with the least bias did not always 

align with the true data structure (e.g., N0 was most biased in scenario 1 and the least biased 

in scenario 2; Table 2). Although model robustness declined in scenario 5, performance 

metrics still outperformed other leading models (including DGA and SparseMSE). As the 

true population size increased, relative accuracy of each of the estimators improved as well 

(Figure 2).

DISCUSSION

Naïve CRC calculated the population size with minimal bias and appropriate CIs in most 

scenarios. Results from scenario 4 were surprising because some members of the population 

had zero probability of capture on two of the three lists. Our simulations suggest that the 

assumption that all members of the population must have non-zero chance of being on 

all lists may be relaxed if there is at least one list for which all members have a positive 

probability of representation.

However, the naïve CRC approach selected biased estimates with third-order list 

dependencies so extreme that they produced sparse or zero list overlaps (scenario 3). In this 

scenario, the model selected by naïve CRC overestimated the truth, producing implausibly 

large size estimates with CIs that contained the truth only a quarter of the time. We observed 

this result in our empirical study in Alameda County.9 Our simulation demonstrates that as 

list overlaps shrink, uncertainty in the model increases as two- and three-way interaction 

coefficients are determined by a small number of people. In addition, small cell counts 

for some overlaps will impact the entire model because coefficients are jointly determined, 

which in turn further alters the prediction. We observe similar findings in scenario 5, 

which also suffers from small counts at list intersections, resulting in models selected with 

moderate to severe bias in nearly half of simulations.

Our results align with a recent simulation study by Gutreuter, which highlights the 

unreliability of naïve CRC to select the model that matches the correct data structure 

and variation in encounter probabilities.29 The performance of naïve CRC improves with 

the number of lists and encounter probabilities but, as shown here as well, is generally 

outperformed by the DGA model.

The DGA model produced accurate estimates in nearly every scenario, along with 95% 

credible intervals with excellent coverage. Even with complex third-order interaction and 
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sparse or zero overlap counts (scenario 3), the DGA model produced 95% CIs that contained 

the truth in nearly every simulation. In scenario 3, the magnitude of the bias for estimates 

from this model was minimal compared to the enormous and implausible over-estimates 

produced by naïve CRC. Notably, in scenario 5, where sampling probabilities were low, the 

95% CIs for the DGA model never covered the truth. This persisted at higher population 

sizes (Supplementary Tables). Our results build upon Gutreuter’s simulation study by 

evaluating the performance of two additional models applied less often in epidemiology. 

Suprisingly, the SparseMSE model did not overcome the bias resulting from sparse cells in 

scenarios 3 and 5. While accuracy and CI coverage improved with higher population sizes 

in scenario 5 (Figure 2, Supplementary Table), both worsened at higher population sizes in 

scenario 3. In contrast, results from the Sample Coverage estimators were generally robust 

to variations in capture probabilities and performance improved with increasing population 

size.

LIMITATIONS

We were not exhaustive in our selection of models. For example, multinomial logit models 

have been applied to capture-recapture problems to model heterogeneities in capture 

probabilities due to individual-level covariates.30,31 Latent class modeling has also been 

used to satisfy the list independence assumption, conditional on assigning individuals to 

latent classes.32,33 Additional innovative estimators using machine learning and doubly 

robust methods are currently in the pipeline.34,30 While our simulation study does not 

comment on these specific estimators, the conclusion of our study encourages using multiple 

different estimators for triangulation, as the direction and magnitude of the overall bias 

brought on by assumption violations may be unknown.

CONCLUSIONS

Results from our simulation study reveal the dramatic impact of just a few cells with sparse 

cell counts (as both a function of the underlying population size and the list sampling 

probabilities). Uncritical reliance on the information criterion for model selection often 

performed well but sometimes failed spectacularly. We warn against routinely relying on 

this practice without evaluating more robust models. Our simulation study also demonstrates 

the importance of including multiple different types of statistical modeling. When the DGA 

model and the best fitting model gave similar estimates, the best-fitting model was generally 

acurate and had slightly narrower CIs. When they diverged, the DGA model was more 

accurate and gave informatively wide CIs. Although not consistently the most accurate, the 

Sample Coverage model was among the most robust to variations in capture probabilities 

and population size. Therefore, we recommend both the DGA and Sample Coverage as 

default models in future CRC studies. However, we, like Gutreuter, caution against inferring 

the underlying data structure from the selected model(s). The true correlations between 

administrative lists and the selection factors that compose those lists are likely complex 

in epidemiologic applications. Implementing a combination of models that each address 

different potential limitations of CRC analysis can reduce the impact of some biases and 

better triangulate the truth.
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Refer to Web version on PubMed Central for supplementary material.
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LIST OF ABBREVIATIONS AND ACRONYMS

AIC Akaike Information Criterion

CI Confidence Interval

CRC Capture-Recapture

DGA Decomposible Graph Approach

L1 List 1

L2 List 2

L3 List 3

LLM Log-Linear (Regression) Model

PP Percentage Points

PSE Population Size Estimation
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Figure 1. 
Plotted interquartile ranges of the distribution of cell counts for each list intersection from 

500 simulations for each scenario featuring a different list dependency structure.

L1= (List 1=1, List 2=0, List 3=0); L2 = (List 1=0, List 2=1, List 3=0); L3 = (List 1=0, List 

2=0, List 3=1); L1xL2 = (List 1=1, List 2=1, List 3=0); L1xL3 = (List 1=1, List 2=0, List 

3=1); L2xL3 = (List 1=0, List 2=1, List 3=1); L1xL2xL3 = (List 1=1, List 2=1, List 3=1). 

Where 1=observed on list, 0=not observed on list
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Figure 2. 
Relative Root Mean Squared Error (RRMSE) for each capture-recapture model under 

varying list dependency structure scenarios and true population sizes.

Model 1 = Base

Model 2 = Base + L1*L2

Model 3 = Base + L1*L3

Model 4 = Base + L2*L3

Model 5 = Base + L1*L2 + L1*L3

Model 6 = Base + L1*L2 + L2*L3

Model 7 = Base + L1*L3 + L2*L3

Model 8 = Base + L1*L3 + L2*L3 + L1*L2

Model 9 = Decomposable Graph Approach (DGA; Bayesian Model Averaging)

Model 10 = SparseMSE

Model 11 = Sample Coverage − N0
Model 12 = Sample Coverage − N
Model 13 = Sample Coverage − N1
Base= main terms corresponding to each individual list, does not include list interactions 

(log-linear model)
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Table 2.

Population size estimation results from five different simulation scenarios and four capture-recapture modeling 

frameworks.

Scenario 1: L1=20%; L2=25%; L3=30%

Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width

1. Independence† 0.3 52.8 332 (66.4) 475 (95) 205.7

2. L1*L2 −0.2 61.3 50 (10) 470 (94) 235.0

3. L1*L3 0.3 61.0 50 (10) 479 (95.8) 245.3

4. L2*L3 −3.9 66.6 43 (8.6) 476 (95.2) 266.7

5. L1*L2, L1*L3 −1.6 76.3 6 (1.2) 472 (94.4) 302.1

6. L1*L2, L2*L3 −9.3 88.9 7 (1.4) 473 (94.6) 347.3

7. L1*L3, L2*L3 −11.4 92.9 12 (2.4) 479 (95.8) 386.4

8. L1*L3, L2*L3, L1*L2 −30.2 195.0 0 469 (93.8) 752.8

9. DGA 0.7 54.9 NA 481 (96.2) 225.6

10. SparseMSE 0.5 53.0 NA 475 (95) 298.9

11. N0 −18.8 196.5 NA 489 (97.8) 1117

12. N −1.1 52.5 NA 473 (94.6) 211.9

13. N1 −0.1 69.6 NA 481 (96.2) 281.3

Scenario 2: L1=20%; L2=25%; L3=24% + (30%*L1)

Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width

1. Independence 193.5 196.9 0 3 (0.6) 134.0

2. L1*L2 232.5 235.4 0 1 (0.2) 130.8

3. L1*L3
† −0.6 66.2 371 (74.2) 479 (95.8) 271.7

4. L2*L3 275.3 277.3 0 0 124.8

5. L1*L2, L1*L3 −3.4 87.8 56 (11.2) 471 (94.2) 355.8

6. L1*L2, L2*L3 333.8 335.0 6 (1.2) 0 99.4

7. L1*L3, L2*L3 −17.7 120.6 67 (13.4) 482 (96.4) 517.7

8. L1*L3, L2*L3, L1*L2 −30.1 195.8 0 475 (95) 789.0

9. DGA 0.2 71.0 NA 487 (97.4) 332.1

10. SparseMSE 0.2 67.8 NA 166 (33) 206.5

11. N0 −22.7 154.1 NA 492 (98.4) 716.7

12. N 191.5 194.9 NA 4 (0.8) 136.7

13. N1 136.8 146.1 NA 173 (34.6) 201.5

Scenario 3: L1=20%; L2=25%; L3=25% + (45%*L1) + (20%*L1*L2)

Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width

1. Independence 249.3 251.6 0 0 98.0
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2. L1*L2 297.4 299.1 0 0 89.9

3. L1*L3 −1.6 70.5 27 (5.4) 478 (95.6) 267.6

4. L2*L3 286.4 288.5 0 0 81.0

5. L1*L2, L1*L3 −6.5 101.0 8 (1.6) 476 (95.2) 347.2

6. L1*L2, L2*L3 356.6 357.8 0 0 58.6

7. L1*L3, L2*L3 −9.70e+9 1.39e+11 465 (93) 134 (26.8) ND**

8. L1*L3, L2*L3, L1*L2 −6.32e+11 8.29e+12 0 120 (24) ND**

9. DGA 225.1 316.4 NA 499 (99.8) 869.3

10. SparseMSE −661.7 2,539.3 NA 473 (94.6) 254.7

11. N0 −1,054.2 1,290.1 NA 236 (47.2) 16,677.2

12. N 219.4 222.4 NA 2 (0.4) 136.7

13. N1 32.1 68.2 NA 448 (89.6) 235.7

Scenario 4: U=50%; L1=40%*U; L2=50%*U; L3=30%

Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width

1. Independence 183.8 187.6 0 7 (1.4) 137.5

2. L1*L2
† −9.8 66.3 372 (74.4) 481 (96.2) 266.9

3. L1*L3 237.9 240.9 0 0 133.5

4. L2*L3 266.0 268.4 0 0 128.9

5. L1*L2, L1*L3 −16.8 95.0 61 (12.2) 479 (95.8) 379.3

6. L1*L2, L2*L3 −22.3 116.8 66 (13.2) 477 (95.4) 464.0

7. L1*L3, L2*L3 347.1 348.3 1 (0.2) 0 92.5

8. L1*L3, L2*L3, L1*L2 −42.5 185.7 0 481 (96.2) 771.7

9. DGA −10.8 72.4 NA 488 (97.6) 320.2

10. SparseMSE −9.8 66.3 NA 498 (99.6) 248.2

11. N0 −30.7 162.6 NA 490 (98) 479.9

12. N 196.7 200.0 NA 5 (1) 135.3

13. N1 139.3 148.3 NA 168 (33.6) 204.5

Scenario 5: U=50%; L1=2% + (20%*U); L2=3% + (20%*U); L3=6%

Model Bias RMSE # of times selected (%) CI includes N (%) Average CI width

1. Independence 257.7 273.0 76 (15.2) 168 (33.6) 356.6

2. L1*L2
† −67.0 287.2 253 (50.6) ND** ND**

3. L1*L3 300.9 314.5 42 (8.4) ND** ND**

4. L2*L3 306.9 320.6 41 (8.2) ND** ND**

5. L1*L2, L1*L3 −7.11e+9 1.59e+11 28 (5.6) ND** ND**

6. L1*L2, L2*L3 −3.53e+10 4.96e+11 27 (5.4) ND** ND**

7. L1*L3, L2*L3 365.9 377.1 33 (6.6) ND** ND**
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8. L1*L3, L2*L3, L1*L2 −2.09e+11 2.69e+12 ND** ND**

9. DGA 312.7 319.7 NA 0 338.7

10. SparseMSE 258.6 296.1 NA 144 (28.8) 359.1

11. N0 −454.6 3,373.5 NA 411 (82.2) 67,275.0

12. N 206.8 229.4 NA 279 (55.8) 426.2

13. N1 175.4 217.4 NA 382 (76.4) 536.6

L1= List 1; L2= List 2; L3= List 3; U= binary third variable; CI= confidence interval; DGA= Decomposable Graph Approach; N0= Sample 

Coverage model assuming independence; N = Sample Coverage model allowing list dependence and sufficient sample coverage fraction (>=55%); 

N1= Sample Coverage model estimating lower(upper) bound estimate due to insufficient sample coverage fraction (<55%); RMSE = Root Mean 

Squared Error

N=1,000 (the true population size)

†
Indicates the correct log-linear model for each scenario

ND**=Not Defined. Upper limit of confidence interval not defined in simulations; therefore, average confidence interval width could not be 
calculated.

Bias = (E⌈Ni⌉ − N); RMSE = 
1
m ∑i = 1

m (N − Ni)
2

); where Ni is the estimated population size from simulation i, m is the number of 

simulations, and N is the true population size.
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