UCLA

UCLA Previously Published Works

Title

Identification, genomic structure, and screening of the vacuolar proton-ATPase membrane sector-associated protein M8-9 gene within the COD1 critical region (Xp11.4)

Permalink https://escholarship.org/uc/item/20d626dz

Authors Gorin, MB Demirci, FY White J., Nicola <u>et al.</u>

Publication Date 2023-12-11

Peer reviewed

Identification, genomic structure, and screening of the vacuolar proton-ATPase membrane sector-associated protein M8-9 gene within the COD1 critical region (Xp11.4)

F. Yesim K. Demirci,^{1,2} Nicola J. White,³ Brian W. Rigatti,¹ Karen F. Lewis,³Michael B. Gorin^{1,2}

Departments of ¹Ophthalmology and ²Human Genetics, University of Pittsburgh, Pittsburgh, PA; ³Discovery Genetics, GlaxoSmithKline Research and Development, Stevenage, UK

Purpose: Our goal is to identify the gene responsible for X-linked cone-rod dystrophy (COD1) that has been localized to a limited region of Xp11.4.

Methods: A complete physical contig of the COD1 region was partially sequenced and subjected to BLAST searches to identify homologies with GenBank ESTs. ESTs were analyzed for overlapping or related cDNA sequences and retinal expression by PCR screening of multiple human retina cDNA libraries. RACE was performed to complete the missing 5' end of the transcripts. Transcripts were compared with genomic sequences to specify intron-exon boundaries. Genomic DNAs from COD1-affected males from 3 families were screened for mutations using direct PCR sequencing of the exons. **Results:** The vacuolar proton-ATPase membrane sector-associated protein M8-9 (APT6M8-9) gene was identified within our critical region. We confirmed its retinal expression and its genomic location in our physical contig. Eight exons (with flanking intronic sequences) were characterized from partial cDNA sequence and genomic sequence data. An additional 5' end exon was identified using RACE. No mutations were found in the COD1-affected males.

Conclusions: The combination of disease mapping and information from the Human Genome project has enabled us to identify candidate genes within the COD1 region, including APT6M8-9 gene. We found no evidence that this gene is responsible for COD1 in our families, but it may be an important candidate for other diseases that have been mapped to this region of the X chromosome.

X-linked cone-rod dystrophy (COD1;) is a rare, progressive visual disease primarily affecting the cone photoreceptors. Affected males present with decreased visual acuity, myopia, photophobia, abnormal color vision, full peripheral visual fields, decreased photopic electroretinographic (ERG) responses and granularity of the macular retinal pigment epithelium (RPE). Complete atrophy of the macular RPE may develop late in life, accompanied by a progressive decline in visual acuity [1-3]. The degree of rod-photoreceptor involvement can be variable, with increasing degeneration as the disease progresses. While penetrance appears to be nearly 100%, there is variable expressivity, with respect to age of onset and severity of symptoms and findings [4].

COD1 was originally mapped to Xp11.3-21.1 in 1989 [3,5]. Additional evidence supporting this map location was presented by Bergen et al. [6,7], Meire et al. [8] and Hong et al. [4]. These linkage studies, however, were unable to resolve COD1 as an independent locus distinct from the retinitis pigmentosa (RP) 2 and RP3 loci and supported the hypothesis that COD1 could be an allelic variant of either RP2 or RP3 based on the chromosomal location as well as clinical phenotypes. Subsequent linkage studies by our group with the original families described by Jacobson et al. [3] and Hong et al. [4], as well as with a new large pedigree, refined COD1 as separate genetic locus to a limited region of Xp11.4, between the RP2 and RP3 loci, which is suitable for a combined positional and candidate gene screening methodology [9].

There are no known retina-specific genes within COD1 critical region, nor genes that are known to participate in the phototransduction process. During our effort to identify the gene responsible for COD1, we have identified sequences from within our physical contig, that matched ESTs corresponding to the transcript of vacuolar proton-ATPase membrane sector-associated protein M8-9 (APT6M8-9), previously reported in GenBank. Proton-translocating adenosine triphosphatases have been demonstrated to have important roles in energy conservation, secondary active transport, and cellular pH homeostasis in a wide range of cell populations [10]. As a potential candidate, we have characterized APT6M8-9 gene and screened for mutations in our COD1 families.

METHODS

COD1 Families: Sixteen members of a five-generation family (family 1), 36 members of a six-generation family (family 2), and 35 members of a six-generation family (family 3) were genotyped to map the COD1 locus between the RP2 and RP3 loci [9]. The clinical descriptions and diagnostic criteria for these families have been previously described [3,4,9,11]. The participation of family members in this study was approved

Correspondence to: Michael B. Gorin, M.D. Ph.D., Department of Ophthalmology, University of Pittsburgh, Eye and Ear Institute Building, 203 Lothrop Street, Room 1027, Pittsburgh, PA, 15213; Phone: (412) 647-2211; FAX: (412) 647-5880; email: gorinmb@msx.upmc.edu

by the University of Pittsburgh Biomedical IRB in accordance with OPRR (Office for the Protection from Research Risks) guidelines and informed patient consent was obtained prior to participation.

Identification of the APT6M8-9 transcript as a potential candidate: A complete physical contig of the COD1 critical region, comprised of PACs (P1-derived artificial chromosomes), BACs (bacterial artificial chromosomes) and YACs (yeast artificial chromosomes), has been characterized and has been used for high throughput sequencing and BLAST searches to identify homologies with ESTs and cDNAs in GenBank. The ESTs have been analyzed for overlapping or related cDNA sequences and particular attention was made to ESTs that were initially derived from a retina cDNA library.

Confirmation of the retinal expression and of the location in COD1 critical region: PCR was performed using gene specific primers (forward: 5' TCC TGT TGT TTT GCA GTT GG 3', reverse: 5' CTT GAA ACA GGC GAT TAC GG 3') to confirm its expression in human retina using three different human retina cDNA libraries, and its location in our region, using the genomic clones comprising the physical contig of the critical region. PCR products were confirmed by their expected mobility in polyacrylamide gels and then by direct sequencing of the observed bands. The size of the PCR product was expected to be 119 bp in the retina libraries, and 301 bp in the genomic clones because of the presence of a small intron (that was later identified as intron 4) between flanking exon primers.

Determination of full-length cDNA: Two different strategies were used to complete the missing 5' end and obtain the full-length cDNA. First, RACE PCR was performed with a retina cDNA library using 5' end cDNA reverse primer (5' CTT GAA ACA GGC GAT TAC GG 3') and vector primers. PCR conditions were: initial denaturation at 95 °C for 5 min, followed by 35 cycles of 45 s of denaturation at 95 °C, and 4 min of annealing+extension (2 step PCR) at 65 °C. PCR was done in a 20 µl reaction volume containing 1X PCR buffer II, 1.5 mM MgCl₂, 200 µM each dATP, dCTP, dGTP, dTTP, 0.5 µM each forward and reverse primer, and 0.04 U/µl AmpliTaq Gold (Applied Biosystems, Foster City, CA). PCR fragments were excised and purified from the gel, cloned and amplified using pGEM-T easy vector system (Promega, Madison, WI) and electrocomp E. Coli cells (Invitrogen, Carlsbad, CA), followed by multiple miniprep preparations and purifications from each plate, and sequencing with ABI377. Second, RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) [12,13] was performed on four different human tissue libraries (testis, heart, islets, and NMB7 cells), using the FirstChoice RLM-RACE kit, according to the manufacturer's instructions (Ambion, Austin, TX). Since the 5' end of the transcript was GC rich, both regular (Advantage cDNA Polymerase Mix; Clontech Laboratories, Palo Alto, CA) and GC-rich sequence optimized (Advantage-GC cDNA Polymerase Mix; Clontech Laboratories) polymerase mixes were used during the procedure. Primary PCR reactions were performed using the genespecific primer (5' AAC TCG TTC CCC AAA ACA CC 3') and outer RNA adaptor primer, followed by the secondary PCR reactions of the diluted outer PCR products using the nested gene-specific primer (5' CAG GAG CAC GAC AAA CAC AG 3') and inner RNA adaptor primer. PCR conditions were: initial denaturation at 94 °C for 2 min, followed by 35 cycles of 30 s of denaturation at 94 °C, 20 s of annealing at 58 °C, and 1 min of extension at 68 °C, and a final extension at 68 °C for 5 min. The inner PCR products were purified and cloned using standard cloning techniques [14], followed by multiple miniprep preparations and purifications from each plate, and sequencing with ABI377.

Determination of genomic structure: Two different strategies were used to determine the genomic structure. First, the cDNA transcript was compared with our fragmented, high throughput genomic sequencing data from our contig to specify intron-exon boundaries in silico, using Mac Vector 6.5 (Oxford Molecular Ltd., Oxford, England), AssemblyLIGN (Oxford Molecular Ltd.) and Sequencher 3.1 software (Gene Codes Corporation, Ann Arbor, MI). Second, since there was insufficient available genomic sequence in our high throughput sequencing data and from the Human Genome Project for the additional 5' end sequences that we identified, a vector-bubble PCR method [15] was used to determine the exon-intron boundaries. PAC and BAC clones that contained the candidate gene from our contig, were prepared and digested with restriction enzymes. Resulting fragments were then ligated to a vectorette (bubble) adaptor. PCR was performed using specific cDNA primers (5' GGT GAC GCG CTC GGA CTC 3'; 5' AGC GCG TCA CCT CCT CAC 3') and the vectorette primer. The resulting PCR products were cloned and sequenced with ABI377, to determine the genomic sequence.

Mutation screening in COD1 families: PCR primers flanking the exons were designed and confirmed, in order to generate PCR fragments that include also the intron-exon junctions for being able to determine splice site mutations. The exons from COD1 affected males (two from each family) and two unaffected males were amplified from leucocyte genomic DNA and screened for mutations by direct PCR sequencing in both strands with ABI377.

PCR conditions for genomic DNA amplification were: initial denaturation at 95 °C for 5 min, followed by 35 cycles of 45 s of denaturation at 95 °C, 5 s of annealing at 56 °C, and 40-60 s (depending on the length of the PCR product) of extension at 72 °C, and a final extension at 72 °C for 10 min. PCR was done in a 50 µl reaction volume containing 1X PCR buffer II, 1.5 mM MgCl,, 200 µM each dATP, dCTP, dGTP, dTTP, 0.5 μ M each forward and reverse primer, and 0.04 U/ μ l AmpliTaq Gold (Applied Biosystems). After gel checking, PCR products were purified using QIAquick PCR purification kit (Qiagen, Valencia, CA) and used as template for sequencing reactions. For each sequencing reaction, template was combined with 3.2 pmol of primer and 4 μ l of ABI Prism dRhodamine terminator cycle sequencing ready reaction kit (Applied Biosystems) to reach a final volume of 12 µl. Cycling conditions were performed as specified by the manufacturer. The sequencing reactions were precipitated with 70% ethanol containing 0.5 mM MgCl₂, resuspended in 4 µl of ABI loading buffer and were electrophoresed for 7 h. The sequencing results were analyzed with ABI Prism Sequencing Analysis 3.3 (Applied Biosystems) and Sequencher 3.1 software (Gene Codes Corporation).

RESULTS

BLAST analysis using high throughput genomic sequencing fragments from the COD1 region, enabled us to initially iden-

tify 12 ESTs (having greater than 95% homologies with our genomic sequence and originating from different tissues including retina), corresponding to a membrane sector-associated protein of vacuolar proton-ATPase. This transcript was initially represented by two cDNA sequences in GenBank: HSM800272 (AL049929.1,1884 nt) and APT6M8-9 (ATPase, H+ transporting, lysosomal (vacuolar proton pump) membrane

10	20	30	40	50	60	70	80	90	100
TGGAGAAAGCGGC									
110	120	130	140	150	160	170	180	190	200
CCGTGTCCCGCCG	GCCCG1.1.CC	GIGICGCCCCC	3CAGTGCTGC	GGCCGCCGCG					
210	220	230	240	250	M A 260	V F V 270	V L L 280	A L V 290	A G V 300
IGGGGAACGAGTT	S I L				G N W				V A A
310	320	330 X S P	340	350	G N W 360	P I P 370	380	. PD 390	V A A 400
STCCATGGGCTTC: SMGF	S V K			L A V				V M V	M V K
410	420 K	430	440	450	460	470	480	490	м v к 500
GAGTGAACAAAC									
G V N K I		P P G S		Y P L E			L D S V		S I H
510	520	530	540	550	560	570	580	590	Б I П 600
CTTATTTTCTGA									
L F S E	E T P				R V Y				E D L
610	620	630	640	650	660	670	680	690	700
GTCACCTTGCGC									
		N R L I						N N E	V D L
710	720	730	740	750	760	770	780	790	800
TCTTTCTTTCTG			•						
		V L H D		L L S R					Y S L
810	820	830	840	850	860	870	880	890	900
GCTGGCAGGTTT									
	JUNIONNAI	IOOOAAOCOI.			ALICAGAGAI	OCIICIAAOF			
T. A G. T.	DET	GKR	YGE	DSEO	FRD	ASK	т. у г		OKE
E L A G L 910	D E I 920			D S E Q 950			I L V D 980		Q K F 1000
910	920	930	940	950	960	970	980	990	- 1000
910 AGATGACATGTACA	920 AGTCTTTAT	930 GGTGGGAATG	940 CAGTGGTAGA	950 GTTAGTCACT	960 GTCAAGTCAT	970 TTGACACCTC	980 CCCTCATTAGG	990 SAAGACAAG	1000 GACTATCCT
910 AGATGACATGTACA D D M Y	920 AGTCTTTAT SLY	930 GGTGGGAATGO G G N 2	940 CAGTGGTAGA A V V E	950 GTTAGTCACT L V T	960 GTCAAGTCAT V K S F	970 TTGACACCTC D T S	980 CCCTCATTAGG L I R	990 SAAGACAAG K T R	1000 GACTATCCT T I L
910 GATGACATGTACZ D D M Y 1010	920 AGTCTTTAT SLY 1020	930 GGTGGGAATGO G G N 2 1030	940 CAGTGGTAGA A V V E 1040	950 GTTAGTCACT L V T 1050	960 GTCAAGTCAT V K S F 1060	970 TTGACACCTC D T S 1070	980 CCCTCATTAGG L I R 1080	990 AAGACAAG K T R 1090	1000 GACTATCCT T I L 1100
910 AGATGACATGTACA D D M Y 1010 BAGGCAAAACAAG	920 AGTCTTTAT SLY 1020 CGAAGAACC	930 GGTGGGAATGO G G N 2 1030 CAGCAAGTCCO	940 CAGTGGTAGA A V V E 1040 CTATAACCTT	950 GTTAGTCACT L V T 1050 GCATATAAGT	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA	970 TTGACACCTC D T S 1070 ATATTCCGTC	980 CCCTCATTAGG L I R 1080 GTTTTCAACA	990 AAGACAAG K T R 1090 ATGGTACTT	GACTATCCT T I L 1100 TGGATAATG
910 AGATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q 2	920 AGTCTTTAT SLY 1020 CGAAGAACC AKN	930 GGTGGGAATGO G G N 2 1030 CAGCAAGTCCO P A S P	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M	990 GAAGACAAG K T R 1090 ATGGTACTT I V L	GACTATCCT T I L 1100 TGGATAATG W I M
910 AGATGACATGTACA D D M Y 1010 BAGGCAAAACAAGO E A K Q A 1110	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120	930 GGTGGGAATGO G G N 2 1030 CAGCAAGTCCO P A S P 1130	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180	990 BAAGACAAG K T R 1090 ATGGTACTT I V L 1190	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200
910 AGATGACATGTACA D D M Y 1010 BAGGCAAAACAAGO E A K Q A 1110 CCGCCTTGGCCTTG	920 AGTCTTTAT SLY 1020 CGAAGAACC AKN 1120 GGCTGTGAT	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT	990 AAGACAAG K T R 1090 TGGTACTT I V L 1190 TGACAAACC	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC
910 AGATGACATGTACZ D D M Y 1010 BAGGCAAAACAAGC E A K Q Z 1110 CCGCCTTGGCCTTC C A L A L	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I	980 CCCTCATTAGG L I R 1080 CGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M	990 BAAGACAAG K T R 1090 STGGTACTT I V L 1190 SGACAAACC I T N	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I
910 AGATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGC E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270	980 CCCTCATTAGG L I R 1080 CGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280	990 BAAGACAAG K T R 1090 NTGGTACTT I V L 1190 NGACAAACC I T N 1290	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300
910 AGATGACATGTACZ D D M Y 1010 SAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210 AATGGATTGAATG	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270	980 CCCTCATTAGG L I R 1080 CGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280	990 BAAGACAAG K T R 1090 NTGGTACTT I V L 1190 NGACAAACC I T N 1290	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300
910 AGATGACATGTACZ D D M Y 1010 CAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210 AATGGATTGAATG M D	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGGT	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT.	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG	990 GAAGACAAG K T R 1090 ATGGTACTT I V L 1190 CGACAAACC I T N 1290 GCTTTAAAG	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA
910 AGATGACATGTACZ D D M Y 1010 CAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210 AATGGATTGAATG M D 1310	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG2 1330	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 TACAATATTT Y N I 1240 AAAAGGGGGGT 1340	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380	990 GAAGACAAG K T R 1090 ATGGTACTT I V L 1190 CGACAAACC I T N 1290 GCTTTAAAG 1390	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400
910 AGATGACATGTACZ D D M Y 1010 CAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210 AATGGATTGAATG M D 1310 ACTTTACATTTACZ	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 AAAAAAAAA	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG2 1330 TCAAATTTTG	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGGT 1340 FTCTTTATTT	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGGTGTGTGCC	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTATA	990 GAAGACAAG K T R 1090 ATGGTACTT I V L 1190 CGACAAACC I T N 1290 GCTTTAAAG 1390 ATTGACGTG	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT
910 AGATGACATGTACZ D D M Y 1010 CAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210 AATGGATTGAATG M D 1310 ACTTTACATTTACZ	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 AAAAAAAAA 1420	930 GGTGGGAATGG G G N 10 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG2 1330 TCAAATTTTG 1430	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGGT 1340 FTCTTTATTT 1440	950 GTTAGTCACT L V T 1050 GCATATAAGT. A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGGTGTGTGCC 1450	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTA 1480	990 GAAGACAAG K T R 1090 ATGGTACTT I V L 1190 CGACAAACC I T N 1290 GCTTTAAAG 1390 ATTGACGTG 1490	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500
910 AGATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210 AATGGATTGAATG M D 1310 ACTTTACATTTACZ 1410 CGGTATAGATTCCZ	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC	930 GGTGGGAATGG G G N 10 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG2 1330 TCAAATTTG 1430 TTGAATATTA	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTTATTT 1440 FGATATAGCC	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCA	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470 TTCTGTTTAA	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTA 1480 ATGAATTTGGA	990 GAAGACAAG K T R 1090 TGGTACTT I V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 AATATGCA	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA
910 AGATGACATGTACZ D D M Y 1010 SAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG I A L A L 1210 AATGGATTGAATG M D 1310 ACTTTACATTTATZ 1410 CGGTATAGATTCCZ 1510	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 ITACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC 1520	930 GGTGGGAATGC G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG2 1330 TCAAATTTG 1430 TTGAATATTA 1530	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 TACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTTATTT 1440 FGATATAGCC 1540	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC 1550	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTCA 1560	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470 TTCTGTTTAA 1570	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTA 1480 ATGAATTTGGA 1580	990 GAAGACAAG K T R 1090 TTGGTACTT I V L 1190 CGACAAACC I T N 1290 CTTTAAAG 1390 TTGACGTG 1490 AATATGCA 1590	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600
910 GATGACATGTAC2 D D M Y 1010 GAGGCAAAACAAGG E A K Q 2 1110 CCGCCTTGGCCTTG C A L A L 1210 ATGGATTGAATG M D 1310 ACTTTACATTTAT2 1410 CGTAAAACATTTAG	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC 1520 GAATAGCTC	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG 1330 TCAAATTTG 1430 TTGAATATTA 1530 GTGTTATGGA	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTTATTT 1440 FGATATAGCC 1540 AAAAAGTGCA	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC 1550 CTGAATTTAT	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCA 1560 TAGACAAACT	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470 TTCTGTTTAA 1570 TACGAATGCT	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTA 1480 ATGAATTTGGA 1580 TTAACTTCTT	990 GAAGACAAG K T R 1090 TTGGTACTT I V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 ATTGACGTG 1490 AATATGCA 1590 CACACAGCA	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA
910 GATGACATGTACA D D M Y 1010 GAGGCAAAACAAGG E A K Q A 1110 CCGCCTTGGCCTTG CA L A L 1210 ATGGATTGAATG M D 1310 ATTTACATTTATA 1410 CGGTATAGATTCCA 1510 CGTAAAACATTAG	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC 1520 GAATAGCTC 1620	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG 1330 TCAAATTTG 1430 TTGAATATTA 1530 GTGTTATGGA 1630	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTTATTT 1440 FGATATAGCC 1540 AAAAAGTGCA 1640	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC 1550 CTGAATTTAT 1650	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCA 1560 TAGACAAACT 1660	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470 TTCTGTTTAA 1570 TACGAATGCT 1670	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTAGTA 1480 ATGAATTTGGA 1580 TTAACTTCTTT 1680	990 GAAGACAAG K T R 1090 TTGGTACTT I V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 AATATGCA 1590 GACAGAGA 1690	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700
910 GATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG CA L A L 1210 ATGGATTGAATG M D 1310 ATTTACATTTATZ 1410 CGTATAGATTCCZ 1510 CGTAAACATTTAC 1610	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC 1520 GAATAGCTC 1620 ATTGTATAC	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG 1330 TCAAATTTG 1430 TTGAATATTA 1530 GTGTTATGGA 1630 TATGAACAAT	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTTATTT 1440 FGATATAGCC 1540 AAAAGTGCA 1640 FTGTAAATGT	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC 1550 CTGAATTTAT 1650 CTTAATTTGA	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCA 1560 TAGACAAACT 1660 TGTAAATAAC	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470 TTCTGTTTAA 1570 TACGAATGCT 1670	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTAT 1480 ATGAATTTGGA 1580 TTAACTTCTTT 1680 AGAGAAAAGGT	990 GAAGACAAG K T R 1090 TTGGTACTT I V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 AATATGCA 1590 CACAGCAGA 1690 TTTTAACT	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700 TAGAGTAGC
910 GATGACATGTACA D D M Y 1010 GAGGCAAAACAAGG E A K Q A 1110 CCGCCTTGGCCTTG CA L A L 1210 CCGCCTTGGATTGAATG 1310 CTTTACATTTACA 1410 CGGTATAGATTCCA 1510 CGTAAACATTTAC 1610 CCATATTTGGGCTA 1710	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 ITACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC 1520 GAATAGCTC 1620 ATTGTATAC 1720	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG 1330 TCAAATTTG 1430 TTGAATATTAT 1530 GTGTTATGGA 1630 TATGAACAAT 1730	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTTATTT 1440 FGATATAGCC 1540 AAAAGTGCA 1640 FTGTAAATGT 1740	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGGGAAATTGG 1450 ATTTAATAAC 1550 CTGAATTTAT 1650 CTTAATTTGA 1750	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCAT 1560 TAGACAAACT 1660 TGTAAATAAC 1760	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470 TTCTGTTTAA 1570 TACGAATGCT 1670 TCTGAAACAA 1770	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTGG 1380 GAATTATAGTA 1480 AGAATATTGGA 1580 TTAACTTCTTT 1680 AGAGAAAAGGT 1780	990 GAAGACAAG K T R 1090 TGGTACTT I V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 AATATGCA 1590 CACAGCA 1690 TTTTAACT 1790	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700 TAGAGTAGC 1800
910 AGATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210 AATGGATTGAATG M D 1310 ACTTTACATTTATZ 1410 CGGTATAGATTCCZ 1510 CGTAAAACATTTAG 1610 CCATATTTGGGCTZ 1710 CTAAAATATGGAT	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC 1520 GAATAGCTC 1620 ATTGTATAC 1720 GTGCTTATA	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG 1330 TCAAATTTG 1430 TTGAATATTAT 1530 GTGTTATGGA1 1630 TATGAACAAT 1730 TAATCGCTTAG	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTTATTT 1440 FGATATAGCC 1540 AAAAGTGCA 1640 FTGTAAATGT 1740 GTTTTGGAAC	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC 1550 CTGAATTTAT 1650 CTTAATTTGA 1750 TGTATCTGAG	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCAT 1560 TAGACAAACT 1660 TGTAAATAAC 1760	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470 TTCTGTTTAA 1570 TACGAATGCT 1670 TCTGAAACAA 1770 CAGCTGTTTA	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTGG 1380 GAATTATAGTA 1480 ATGAATTTGGA 1580 TTAACTTCTTT 1680 AGAGAAAAGGT 1780 TTAACCCTCT	990 GAAGACAAG K T R 1090 TTGGTACTT I V L 1190 GGCAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 AATATGCA 1590 CACAGCA 1690 TTTTTAACT 1790 TCTGCAAG	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700 TAGAGTAGC 1800 TTTGTTGAC
910 AGATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG C A L A L 1210 AATGGATTGAATG 1310 ACTTTACATTTATZ 1410 CGGTATAGATTCCZ 1510 CGTAAAACATTAG 1610 CCATATTTGGGCTZ 1710 CTAAAATATGGATG 1810	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 ATAATATGC 1520 GAATAGCTC 1620 ATTGTATAC 1720 GTGCTTATA 1820	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG 1330 TCAAATTTG 1430 TTGAATATTAT 1530 GTGTTATGGAI 1630 TATGAACAAT 1730 TAATCGCTTAG	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTTATTT 1440 FTCTTATATTT 1440 FTCTTATATGC 1540 AAAAGTGCA 1640 FTGTAAATGT 1740 STTTTGGAAC 1840	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC. 1550 CTGAATTTAT 1650 CTTAATTTGA 1750 TGTATCTGAG 1850	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCA 1560 TAGACAAACT 1660 TGTAAATAAC 1760 TAACAGAGGA 1860	970 TTGACACCTC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATC 1370 TTCTAGAGTC 1470 TTCTGTTTAA 1570 TACGAATGCT 1670 TCTGAAACAA 1770 CAGCTGTTTI 1870	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTA 1480 ATGAATTTGGA 1580 TTAACTTCTTT 1680 AGAGAAAAGGT 1780 TTAACCCTCT 1880	990 GAAGACAAG K T R 1090 TTGGTACTT I V L 1190 GGCAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 AATATGCA 1590 CACACAGCA 1690 TTTTTAACT 1790 TCTGCAAG 1890	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700 TAGAGTAGC 1800 TTTGTTGAC
910 AGATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG CA L A L 1210 AATGGATTGAATG M D 1310 ACTTTACATTTATZ 1410 CGGTAAAACATTTAC 1510 CGTAAAACATTTAC 1610 CCATATTTGGGCTZ 1710 CTAAAATATGGATG 1810 CACATGGGCTAATZ	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 ITACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC 1520 GAATAGCTC 1620 ATTGTATAC 1720 GTGCTTATA 1820 ATGGATACT	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT I T S 1230 CCAGAATTAG 1330 TCAAATTTG 1430 TTGAATATTAG 1530 GTGTTATGGAI 1630 TATGAACAAT 1730 TAATCGCTTAG 1830 AAAAATACTAG	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTATTT 1440 FGATATAGCC 1540 AAAAGTGCA 1640 FTGTAAATGT 1740 STTTTGGAAC 1840 CATTGATCTA	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC 1550 CTGAATTTA 1650 CTTAATTTGA 1750 TGTATCTGAG 1850 AGAAGAAACT	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCA 1560 TAGACAAACT 1660 TGTAAATAAC 1760 TAACAGAGGA 1860 AGCCTTGTGG.	970 TTGACACCTCC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATCC 1370 TTCTGAGATGCT 1670 TCTGAAACAA 1770 CAGCTGTTTA 1870 AGTATATAGA	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTA 1480 ATGAATTTGGA 1580 TTAACTCTTT 1680 AGAGAAAAGGT 1780 CTTAACCCTCT 1880 ATGCTTTTCAT	990 GAAGACAAG K T R 1090 TGGTACTT V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 AATATGCA 1690 TTTTTAACT 1790 TCTCGCAAG 1890 TATACACA	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700 TAGAGTAGC 1800 TTTGTTGAC 1900 CAAAAATCC
910 AGATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q Z 1110 FCGCCTTGGCCTTG I A L A L 1210 AATGGATTGAATG M D 1310 ACTTTACATTACA 1510 FGTAAAACATTTAC 1510 FGTAAAACATTTAC 1610 FCATATTTGGGCTZ 1710 CTAAAATATGGATG 1810 FACATGGGCTAATZ 1910	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 FTACCTGTG 1320 AAAAAAAAA 1420 ATAATATGC 1520 GAATAGCTC 1620 ATTGTATAC 1720 GTGCTTATA 1820 ATGGATACT 1920	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT: I T S 1230 CCAGAATTAG2 1330 TCAAATTTG7 1430 TTGAATATTAG 1530 GTGTTATGGA1 1630 TATGAACAAT: 1730 TAATCGCTTAG 1830 AAAAATACTAG 1930	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTATTT 1440 FGATATAGCC 1540 AAAAGTGCA 1640 FTGTAAATGT 1740 STTTTGGAAC 1840 CATTGATCTA 1940	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 ATTTAATAAC 1550 CTGAATTTA 1650 CTTAATTTGA 1750 TGTATCTGAG 1850 AGAAGAAACT 1950	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCA 1560 TAGACAAACT 1660 TGTAAATAAC 1760 TAACAGAGGA 1860 AGCCTTGTGG. 1960	970 TTGACACCTCC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATCC 1370 TTCTGAGATGCT 1670 TCTGAAACAA 1770 CAGCTGTTTA 1870 AGTATATAGA 1970	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 GAATTATAGTA 1480 ATGAATTTGGA 1580 TTAACTTCTTT 1680 AGAGAAAAGGT 1780 TTAACCCTCT 1880 ATGCTTTTCAT 1980	990 GAAGACAAG K T R 1090 TTGGTACTT V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 TTGGCGTG 1490 CACACGCA 1690 TTTTTAACT 1790 TCTCGCAAG 1890 TATACACA 1990	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700 TAGAGTAGC 1800 TTTGTTGAC 1900 CAAAAATCC 2000
910 AGATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q I 1110 CCGCCTTGGCCTTG I A L A L 1210 AATGGATTGAATG M D 1310 ACTTACATTACATTACZ 1510 CGTAAAACATTAC 1610 CGTAAAACATTACG 1610 CCATATTGGGCTZ 1710 CTAAAATATGGATG 1810 CACATGGGCTAATZ 1910	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 ATAATATGC 1520 GAATAGCTC 1620 ATTGTATAC 1720 GTGCTTATA 1820 ATGGATACT 1920 GAGGCATGA	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT: I T S 1230 CCAGAATTAG 1330 TCAAATTTTG: 1430 TTGAATATTA: 1530 GTGTTATGGAI 1630 TATGAACAAT: 1730 TAATCGCTTAC 1830 AAAAATACTAC 1930 ATATAAAACA:	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTATTT 1440 GATATAGCC 1540 AAAAGTGCA 1640 FTGTAAATGT 1740 STTTTGGAAC 1840 CATTGATCTA 1940 FTTTTATTTC	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGGAGTGTGTCC 1450 CTGAATTTAA 1650 CTGAATTAA 1650 CTGAATTAA 1750 TGTATCTGAG 1850 AGAAGAAACT 1950	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460 TGTGATGTTTCA 1560 TAGACAAACT 1660 TGTAATAAC 1760 TAACAGAGGA 1860 AGCCTTGTGG. 1960 CCCCCTGTGT.	970 TTGACACCTCC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATCC 1370 TTCTAGAGTCC 1470 TTCTGATTAA 1570 TACGAATGCT 1670 TCTGAAACAA 1770 CAGCTGTTTTI 1870 AGTATATAGA 1970 AAGTTACTAT	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 CAATTAGTA 1480 ATGAATTTGGA 1580 TTAACTCTTT 1680 AGAGAAAGGT 1780 CTTAACCCTCT 1880 ATGCTTTCAT 1980 CGGTTTGTGGG	990 GAAGACAAG K T R 1090 TGGTACTT V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 CTTGACGTG 1490 CACAACAGCA 1690 TTTTAACT 1790 TCTGCAAG 1890 TATACACA 1990 CACAACTTC	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700 TAGAGTAGC 1800 TTTGTTGAC 1900 CAAAAATCC 2000
910 GATGACATGTACZ D D M Y 1010 GAGGCAAAACAAGG E A K Q Z 1110 CCGCCTTGGCCTTG CA L A L 1210 ATGGATTGAATGAT M D 1310 CCTTTACATTACA 1410 CGTAAAACATTAC 1510 CGTAAAACATTAC 1610 CCATATTTGGGCTZ 1710 TAAAATATGGATG 1810 CACATGGGCTAATZ 1910	920 AGTCTTTAT S L Y 1020 CGAAGAACC A K N 1120 GGCTGTGAT A V I 1220 TTACCTGTG 1320 ATAATATGC 1520 GAATAGCTC 1520 GAATAGCTC 1620 ATTGTATAC 1720 GTGCTTATA 1820 ATGGATACT 1920 GAGGCATGA 2020	930 GGTGGGAATGG G G N 1 1030 CAGCAAGTCCC P A S P 1130 TATCACCTCT: I T S 1230 CCAGAATTAG2 1330 TCAAATTTG? 1430 TTGAATATTA? 1530 GTGTTATGGA7 1630 TATGAACAAT? 1730 TATAACACAA? 1930 ATATAAACA? 2030	940 CAGTGGTAGA A V V E 1040 CTATAACCTT Y N L 1140 FACAATATTT Y N I 1240 AAAAGGGGGT 1340 FTCTTATTT 1440 FTGTAATGT 1740 FTTTTGGAAC 1840 CATTGATCTA 1940 FTTTTATTC 2040	950 GTTAGTCACT L V T 1050 GCATATAAGT A Y K Y 1150 GGAACATGGA W N M D 1250 TGGAAATTGG 1350 TGTGTGTGTGCC 1450 CTGAATTAATACC 1550 CTGAATTAT 1650 CTTAATTTGA 1750 TGTATCTGAG 1850 AGAAGAAACT 1950 AGTAACTTTT 2050	960 GTCAAGTCAT V K S F 1060 ATAATTTTGA N F E 1160 TCCTGGATAT P G Y 1260 CTGTTTTGTT. 1360 TGTGATGTTT 1460 ATTGATTTCA 1560 TAGACAAACT 1660 TGTAATAAC 1760 TAACAGAGGA 1860 AGCCTTGTGG. 1960 CCCCCTGTGT. 2060	970 TTGACACCTCC D T S 1070 ATATTCCGTC Y S V 1170 GATAGCATCA D S I 1270 AAAATATATCC 1370 TTCTAGAGTCC 1470 TTCTGGTTTAA 1570 TACGAATGCT 1670 TCTGAAACAA 1770 CAGCTGTTTTI 1870 AGTATATAGA 1970 AAGTTACTAT 2070	980 CCCTCATTAGG L I R 1080 GGTTTTCAACA V F N M 1180 ATTTATAGGAT I Y R M 1280 CTTTTAGTGTG 1380 CTTTTAGTGTG 1380 AGAAATTTGGA 1580 TTAACTCTTT 1680 AGAGAAAGGT 1780 CTTAACCCTCT 1880 ATGCTTTTCAT 1980 CGGTTTGTGGT 2080	990 GAAGACAAG K T R 1090 TGGTACTT V L 1190 GACAAACC I T N 1290 GCTTTAAAG 1390 TTGACGTG 1490 AATATGCA 1590 CACAACAGCA 1690 TTTTAACT 1790 TCTGCAAG 1890 TATACACA 1990 CACAACTTC 2090	1000 GACTATCCT T I L 1100 TGGATAATG W I M 1200 AGAAGATTC Q K I 1300 TAGATAGTA 1400 AATCCCACT 1500 CTGAAAGAA 1600 TAGGTGAAA 1700 TAGAGTAGC 1800 TTTGTTGAC 1900 CAAAAATCC 2000 ATTCTATAG 2100

Figure 1. APT6M8-9 cDNA sequence together with translation and exon-intron boundaries locations. The color scheme is as follows: black, HSM800272 partial cDNA sequence published in GenBank; blue, 5' end cDNA sequence identified by standard RACE; red, 5' end cDNA sequence identified by RLM-RACE; orange, nucleotides flanking an intron (exon-intron junction). The nucleotide at position 1012 was found to be an "A" in 8 people we have screened, the same as in the NM_005765 sequence from GenBank. However, the GenBank cDNA clones HSM800272 and AF248966 indicate a "G" at this location which encodes Arginine instead of Glutamine. Similarly, we found an "A" at position 1476 (3' UTR) which is indicated as a "G" in GenBank HSM800272 and AF248966 sequences.

sector-associated protein M8-9, NM_005765.1, 622 nt).

The expression of this gene was demonstrated in three independent retina cDNA libraries. The exact location of the gene was determined in our critical region using the genomic clones comprising our physical contig and was refined to be between DXS1368 and DXS993.

RACE experiments allowed us to identify an additional upstream 5' end sequence of 161 bp (Figure 1) including the presumptive start codon. Two ESTs were initially identified in GenBank (BE312617 and AA194554) that matched with this new sequence. Subsequently, several additional ESTs have been released and provide additional support for this new sequence. Additional upstream 5' end sequence (55 bp) was obtained (Figure 1) with RLM-RACE resulting in a composite mRNA transcript of 2100 bp total length, with the corresponding protein being 350 amino acids long. We observed different 5' end cDNA lengths in four different tissue libraries with the longest one (from testis) starting at -158 bp from the ATG translation initiation site (the A being nucleotide +1). However, the 5' end sequence preceding the presumptive start codon has a continuous open reading frame (ORF) that raises the possibility of another start codon that could be further upstream that would yield a single protein product. There are currently eight related mRNA sequences in GenBank (AL049929.1, Y17975.1, NM_005765.2, AF248966.1, XM_002904.2, XM_027535.2, BC010395.1, XM_027536.1) and the longest one is 2049 bp long (AF248966.1, tissue type: hypothalamus). An updated BLAST search in the human EST database of GenBank using the full-length cDNA sequence (2100 bp), revealed more than 400 EST hits from several different tissues, including eye (e.g., BF726753 from lens; W27971, AA053862, and H86728 from retina; and BG748332 from normal pigmented retinal epithelium). Some of the additional ESTs recently released in GenBank, also "partially" match with our additional 55 bp sequence obtained with RLM-RACE (e.g. BG529889 from testis).

Eight exons (with flanking intronic sequences) were identified using the published partial cDNA sequence and our high throughput genomic sequence data (Figure 1). These exons and intron-exon boundaries can also be located in the last three

EXON	BP	Forward primer	Reverse primer
1	195	TTCCCAGGTTACGTCCCTTC	AGGACCTCCCCAGGCACG
2	131	GCTAAGTCAGTGGTGAATGG	ACCTACGTTCGTTTGATGCT
3	132	TAGATGTTATTGGGGAGGTG	ACAGCTGACAAGGGAAAATG
4	96	CTTCCCACTTTGGTTCACATA	-
5	138	-	CAAGTAGTATAAGGAATGGGAGGC
6	54	GGCAAATAAAGATCTCTGGTG	CATGGGATCATAAATCTAGGG
7	150	TTAACTGGCTGTGTTTGACG	TTAGAGGAGCCCCAAAGAAG
8	120	GGACTTAAGCCATTCCACAA	TCATTCATGTCACCCTTAGGT
9	1077	CATCAGTGCAAGTGTCGTCT	GCCCAAATATGATTTTCACC
		TGACGTGAATCCCACTGTG	AGGAGGCAGCGAGAATAAAC

Figure 2. Primer pairs for the exons. Sizes of the exons (in basepairs) for APT6M8-9 gene and the forward and reverse primers (5'->3') generating PCR fragments including exons and flanking intron-exon junctions. Exons 4 and 5 were amplified together with incorporation of a small intron between the exon pairs. Exon 9 was amplified and sequenced using two primer pairs, producing two overlapping fragments.

fragments of the working draft genomic sequence AC026156, which was submitted to GenBank subsequent to our characterizations. An additional exon, which was not present in the published sequence, was identified in the new 5' end sequence, and the flanking intronic sequences were determined using our genomic clones and bubble adapter method. We submitted the genomic sequence containing this new exon and flanking intronic sequences to GenBank (AF354120) and this sequence partially fits one of the gaps within the working draft genomic sequence AC026156. The corresponding contig sequence in GenBank, was first presented under the accession number NT_022618 and was recently replaced by NT_028412.

Nine exons and flanking intronic sequences were amplified and screened for mutations using the primers listed in Figure 2; no causative mutations were found by direct PCR sequencing.

DISCUSSION

The combination of mapping data, physical contig, and genomic sequence data enabled us to efficiently identify and initiate screening of candidates within the COD1 critical region, including the vacuolar proton-ATPase membrane sector-associated protein M8-9 (APT6M8-9). We found no evidence that this gene is responsible for the X-linked cone-rod dystrophy found in our three families, based on our analyses of the coding regions and intron-exon junctions.

RLM-RACE was developed as an improvement to the classic RACE technique in order to achieve complete representation of the 5' end of RNA transcripts [12,13]. This method is designed to amplify cDNA only from full-length capped mRNA, thus avoiding amplification from partial or degraded RNA transcripts. In our study, RLM-RACE provided us with more information from cDNA libraries to complete the missing 5' end of our candidate gene. There remains the possibility of additional 5' sequence for this transcript because of the presence of a single-continuous ORF extending through the entire 5' end of the transcript. This gene may undergo alternative splicing and/or have multiple transcription initiation sites. Our approach of using different tissue libraries increased our chances of detecting the largest possible transcript but we must consider the possibility that even longer versions may exist in some tissues that we have not evaluated.

Proton-translocating adenosine triphosphatases have been classified into three main categories, called F, P, and V [10]. The vacuolar type (V-ATPases) are the most recently identified category of this group of proteins. V-ATPases are the major electrogenic pumps of vacuolar membranes, and are also important for energizing animal plasma membranes [10,16,17]. V-ATPases have a complex modular protein structure with multiple subunits that are divided into transmembrane proton-conducting and extramembrane catalytic sectors [18]. Tissue or developmentally specific subunit isoforms have been identified [18,19]. These subunits are believed to have some functions in regulating the localization and/or the activity of the enzyme. The catalytic sector subunits have been named as subunits A through F, and the membrane sector subunits have

been named using the letter M followed by a number corresponding to the apparent molecular weight based on gel mobility [18].

V-ATPases are believed to be functional and fundamental in almost every eukaryotic cell [16,17]. They contribute to a wide spectrum of cellular functions by energizing a wide variety of organelles and membranes [17]. It has been already shown that they play important roles in male fertility, driving bone resorption in osteoclasts, generating the driving force for the accumulation of neurotransmitters into the synaptic vesicles, and energizing transport systems in kidney cells [17]. V-ATPases also seem to play important roles in ocular tissues. Deguchi et al. [20] reported that V-ATPases are essential for the acidification of the lumen of phagolysosomes and the subsequent degradation of rod outer segments in rat RPE cells. Wax et al. [21] demonstrated the importance of plasma membrane V-ATPase as a driving force for aqueous humor formation in rabbit ocular ciliary epithelium, thus contributing to the mechanisms controlling the regulation of intraocular pressure.

Due to the wide spectrum and important functions of V-ATPases, and the expression of APT6M8-9 in multiple tissues, this gene may be a putative candidate for other systemic and/or ocular diseases that map to this region of the X chromosome. Mutations in other vacuolar H(+)-ATPase subunits have recently been identified as a cause of autosomal recessive osteopetrosis and a cause of recessive distal renal tubular acidosis in humans [22-25]. The expression of APT6M8-9 in brain and its potential importance in neurotransmitter uptake and storage, may be also relevant for some X-linked forms of mental retardation (XLMR). XLMR is likely to be very heterogeneous with multiple loci along the X chromosome; out of 130 XLMR syndromes identified so far, 80 loci have been mapped, but only 25 genes have been cloned [26]. Moreover, at least 10 additional nonsyndromal XLMR (MRX) genes remain to be discovered, in addition to the seven already cloned, and this number is expected to increase [26]. Given its potential role in rod outer segment degradation, this gene may also be a candidate for one or more of the pedigrees in which XLMR segregates together with RP [27], as well as for some of the X-linked forms of RP for which no mutation in RP2 or RP3 has been found.

ACKNOWLEDGEMENTS

We are grateful to the families who have participated in this study. We also thank Dr. R. Friday for helping us with our RLM-RACE experiments. This research was supported in part by the Eye and Ear Foundation of Pittsburgh, Pittsburgh, PA (MBG); by the NIH Core Grant for Vision Research EY08098; by Fight For Sight, Research Division of Prevent Blindness America (FYKD); and by Research to Prevent Blindness, NY, NY.

REFERENCES

- Pinckers A, Timmerman GJMEN. Sex-difference in progressive cone dystrophy. I. Ophthalmic Paediatr Genet 1981; 1:17-24.
- 2. Pinckers A, Deutman AF. X-linked cone dystrophy. An overlooked

diagnosis? Int Ophthalmol 1987; 10:241-3.

- Jacobson DM, Thompson HS, Bartley JA. X-linked progressive cone dystrophy. Clinical characteristics of affected males and female carriers. Ophthalmology 1989; 96:885-95.
- Hong HK, Ferrell RE, Gorin MB. Clinical diversity and chromosomal localization of X-linked cone dystrophy (COD1). Am J Hum Genet 1994; 55:1173-81.
- Bartley J, Gies C, Jacobson D. Cone dystrophy (X-linked) (COD1) maps between DXS7 (L1.28) and DXS206 (XJ1.1) and is linked to DXS84 (754). Cytogenet Cell Genet 1989; 51:959.
- Bergen AA, Meire F, ten Brink J, Schuurman EJ, van Ommen GJ, Delleman JW. Additional evidence for a gene locus for progressive cone dystrophy with late rod involvement in Xp21.1-p11.3. Genomics 1993; 18:463-4.
- Bergen AA, Meire F, Schuurman EJ, Delleman JW. DNA carrier detection in X-linked progressive cone dystrophy. Clin Genet 1994; 45:236-40.
- Meire FM, Bergen AA, De Rouck A, Leys M, Delleman JW. X linked progressive cone dystrophy. Localisation of the gene locus to Xp21-p11.1 by linkage analysis. Br J Ophthalmol 1994; 78:103-8.
- Seymour AB, Dash-Modi A, O'Connell JR, Shaffer-Gordon M, Mah TS, Stefko ST, Nagaraja R, Brown J, Kimura AE, Ferrell RE, Gorin MB. Linkage analysis of X-linked cone-rod dystrophy: localization to Xp11.4 and definition of a locus distinct from RP2 and RP3. Am J Hum Genet 1998; 62:122-9.
- Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, Schagger H. Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 1998; 273:10939-47.
- Brown J Jr, Kimura AE, Gorin MB. Clinical and electroretinographic findings of female carriers and affected males in a progressive X-linked cone-rod dystrophy (COD-1) pedigree. Ophthalmology 2000; 107:1104-10.
- Schaefer BC. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of fulllength cDNA ends. Anal Biochem 1995; 227:255-73.
- 13. Maruyama K, Sugano S. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 1994; 138:171-4.
- Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1989.
- Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S, Anand R, Smith JC, Markham AF. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res 1990; 18:2887-90.
- Finbow ME, Harrison MA. The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J 1997; 324:697-712.
- 17. Nelson N, Harvey WR. Vacuolar and plasma membrane protonadenosinetriphosphatases. Physiol Rev 1999; 79:361-85.
- Nelson N, Klionsky DJ. Vacuolar H(+)-ATPase: from mammals to yeast and back. Experientia 1996; 52:1101-10.
- Hemken P, Guo XL, Wang ZQ, Zhang K, Gluck S. Immunologic evidence that vacuolar H+ ATPases with heterogeneous forms of Mr = 31,000 subunit have different membrane distributions in mammalian kidney. J Biol Chem 1992; 267:9948-57.
- Deguchi J, Yamamoto A, Yoshimori T, Sugasawa K, Moriyama Y, Futai M, Suzuki T, Kato K, Uyama M, Tashiro Y. Acidification of phagosomes and degradation of rod outer segments in rat retinal pigment epithelium. Invest Ophthalmol Vis Sci 1994; 35:568-79.

- Wax MB, Saito I, Tenkova T, Krupin T, Becker B, Nelson N, Brown D, Gluck SL. Vacuolar H+-ATPase in ocular ciliary epithelium. Proc Natl Acad Sci U S A 1997; 94:6752-7.
- 22. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, Hasan C, Bode U, Jentsch TJ, Kubisch C. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 2000; 9:2059-63.
- 23. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 2000; 25:343-6.
- 24. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez-Soriano J, Santos F, Cremers CW, Di Pietro A,

Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 1999; 21:84-90.

- 25. Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Lifton RP, Scherer SW, Karet FE. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 2000; 26:71-5.
- 26. Stevenson RE. Splitting and lumping in the nosology of XLMR. Am J Med Genet 2000; 97:174-82.
- 27. Aldred MA, Dry KL, Knight-Jones EB, Hardwick LJ, Teague PW, Lester DH, Brown J, Spowart G, Carothers AD, Raeburn

The print version of this article was created on 5 October 2001. This reflects all typographical corrections and errata to the article through that date. Details of any changes may be found in the online version of the article.