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Abstract Among-individual variation in vital parameters
such as birth and death rates that is unrelated to age, stage,
sex, or environmental fluctuations is referred to as demo-
graphic heterogeneity. This kind of heterogeneity is preva-
lent in ecological populations, but is almost always left out
of models. Demographic heterogeneity has been shown to
affect demographic stochasticity in small populations and
to increase growth rates for density-independent popula-
tions. The latter is due to “cohort selection,” where the most
frail individuals die out first, lowering the cohort’s average
mortality as it ages. The importance of cohort selection to
population dynamics has only recently been recognized. We
use a continuous time model with density dependence, based
on the logistic equation, to study the effects of demographic
heterogeneity in mortality and reproduction. Reproductive
heterogeneity is introduced in three ways: parent fertility,
offspring viability, and parent-offspring correlation. We
find that both the low-density growth rate and the equilib-
rium population size increase as the magnitude of mortality
heterogeneity increases or as parent-offspring phenotypic
correlation increases. Population dynamics are affected by
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complex interactions among the different types of hetero-
geneity, and trade-off scenarios are examined which can
sometimes reverse the effect of increased heterogeneity. We
show that there are a number of different homogeneous ap-
proximations to heterogeneous models, but all fail to capture
important parts of the dynamics of the full model.
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Introduction

Demographic heterogeneity, among individual variation in
vital parameters such as survival and reproduction, is ubig-
uitous, resulting from fine-scale spatial habitat heterogene-
ity (e.g., Gates and Gysel 1978; Boulding and Van Alstyne
1993; Menge et al. 1994; Winter et al. 2000; Franklin et al.
2000; Manolis et al. 2002; Bollinger and Gavin 2004; Lan-
dis et al. 2005), unequal allocation of parental care (e.g.,
Manser and Avey 2000; Johnstone 2004), maternal family
effect (e.g., Fox et al. 2006), conditions during early devel-
opment, including birth order effects (e.g., Lindstrom 1999),
persistent social rank (e.g., von Holst et al. 2002), and genet-
ics (e.g., Yashin et al. 1999; Ducrocq et al. 2000; Gerdes et
al. 2000; Casellas et al. 2004; Isberg et al. 2006). Demo-
graphic heterogeneity is distinct from (but often confused
with) demographic stochasticity. Demographic heterogene-
ity refers to variation in the underlying vital parameters,
while demographic stochasticity refers to the variability in
the fates of individuals under specified values of vital pa-
rameters.

Demographic heterogeneity has only now begun to
receive considerable theoretical attention. Recent studies
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have shown that—under many but not all circumstances—
survival heterogeneity can have dramatic effects on the
population growth rate (Kendall et al. 2011), demographic
stochasticity (Fox and Kendall 2002; Kendall and Fox 2002,
2003; Vindenes et al. 2008), and extinction risk of both
density-independent populations (Conner and White 1999;
Fox 2005; Lloyd-Smith et al. 2005) and density-dependent
populations (Robert et al. 2003). Survival heterogeneity
has yet to be studied in a deterministic, continuous-time,
density-dependent model. There is, however, ample reason
to suspect that the effects of heterogeneity may be substan-
tial.

Heterogeneity in reproduction is far more poorly under-
stood than that in survival. In part, this is for a good rea-
son: survival heterogeneity leads to selection within cohorts
(Manton et al. 1981; Vaupel and Yashin 1983, 1985; Carey
etal. 1992; Vaupel and Carey 1993; Kendall et al. 2011), but
reproductive heterogeneity does not (Kendall et al. 2011).
However, reproductive heterogeneity may interact with sur-
vival heterogeneity and affect population dynamics in ways
not obvious from the action of either type of heterogeneity
acting alone. Additionally, individuals may vary in repro-
ductive output in several different ways—including their to-
tal fertility or its timing, quality of offspring, or their propen-
sity to pass along their traits to their offspring—and these
may also affect population dynamics in different ways. Mel-
bourne and Hastings (2008) showed that extinction risk was
increased in a stochastic Ricker model by the presence of de-
mographic heterogeneity. An early individual-based model
by Uchmarski (2000) found that individual weight variabil-
ity (which results in resource partitioning and reproductive
variability) led to slower extinctions (as long as the varia-
tion was not too large or too small). Imperfect heritability
of initial weights in the population resulted in longer persis-
tence times than that for a population with perfect heritabil-
ity, which in turn persisted longer than a population with
only a single weight class (Uchmariski 2000).

Here we study the effects of demographic heterogeneity
in survival, reproduction, or both, on explicitly density-
dependent populations. We develop models that incorporate
three types of reproductive heterogeneity: parent fertil-
ity, parent—offspring phenotypic correlation, and initial
offspring viability. A central question is how the different
types of heterogeneity interact with one another. One inter-
esting result is that if only one of these types of reproductive
heterogeneity is operating, it has no effect on deterministic
population dynamics unless survival is also heterogeneous.

Are there homogeneous models that capture the im-
portant dynamics of heterogeneous models, at least ap-
proximately? Such simplifications would clearly be useful.
To address this issue requires identifying the appropriate
definition of an “average individual.” Since survival het-
erogeneity can lead to changes over time in the distribution
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of phenotypes within a population (Vaupel and Yashin
1985; Kendall et al. 2011), the average individual within
the population at one time is not generally the same as the
average individual at another time. We show that appro-
priately parameterized homogeneous models can describe
the asymptotic dynamics (Kendall et al. 2011), but cannot
capture the transient behavior of the heterogeneous model.

The model

We start with a version of the single species logistic model
in which density dependence only affects reproduction:
%N = BN (1 — %) — 0N, where (3 is the low-density
birth rate,  is the death rate, and K is the maximum pos-
sible abundance. We rescale the population by K without
changing the notation to arrive at %N =BN(1-N)—6N.
The equilibrium density is

. 0
N 1 5 (1)
We introduce a heterogeneous version of this model by
including two phenotypes with different birth and death
rates. The differential equations 2a—b govern the dynamics

of the heterogeneous model.

d
Fri (B11n1 + B2in2)(1 —ny — ng) — d1my (2a)
d
i i (Bi2n1 + B22n2)(1 —nq — ng) — dang (2b)

Mortality is given by the death rates, §;, for i = 1,2.
Reproduction is determined by the birth rates, 3;;, which are
the rates at which phenotype ¢ parents reproduce phenotype
j offspring. We will refer to n; as phenotype 7’s density and
w; = nliim as its relative frequency.

The phase space of the heterogeneous model lies in
the triangular region 0 < n; + ne < 1 with n; > 0 for
i = 1,2. There are two fixed points of concern: extinc-
tion at (0,0) and equilibrium at (nj, n3). These two fixed
points are connected by an invariant manifold. In addition,
for many parameter values, a population with any initial
conditions rapidly converges to the manifold, so we discuss
the dynamics along this manifold in detail.

When the nonzero equilibrium exists, it is a stable node,
the population persists, and (0,0) is a saddle. Otherwise
(0,0) is a stable node and the population goes extinct.

If at least one phenotype is self-sustaining (3;; > &),
then the population persists. When neither phenotype is self-
sustaining, persistence occurs only if

B12821 > (P11 — 61)(Baz — d2). 3

If phenotype i is self-sustaining and dominates phenotype

J (%— > %), then phenotype j persists (nj > 0) only if
,Bij > 0.



We analyze this model in several steps. In the “Mortality
Heterogeneity” section we analyze the model for the case
where mortality alone is heterogeneous; in doing so we gen-
eralize results in Kendall et al. (2011). In the “Homogeneous
comparisons” section, we examine a number of the possi-
ble homogeneous analogs to the heterogeneous mortality
model, and ask how well they approximate the hetero-
geneous model. Finally, in the “Including heterogeneous
birth rates” section, we include reproductive heterogeneity
and examine the full dynamics of the model.

Mortality heterogeneity

We start by examining death rate heterogeneity with ho-
mogeneous birth rates: §8;; = g for each 7 and j. We set
the death rates to 61 = & + o, and §o = § — o4, where
0 < g5 < 1 (without loss of generality, phenotype one is as-
sumed to be on average shorter lived than phenotype two).
Time is rescaled so that, & = 1 (the life expectancy of an
individual with the mean death rate, §, defines the model
timescale).

It is useful to restate the model in terms of the total pop-
ulation abundance, n = nj; + ns, and the difference in the
abundances of the phenotypes, ¢ = ny — n;. Equations 2a
and 2b become

%n =pn(l —n) —n+osq (4a)
d

—q = — . 4
7Y q+osn (4b)

The difference in relative frequencies, u = wo—w; = %,
is herein referred to as the population structure. The relative
frequencies sum to one, thus knowing their difference allows
one to determine the complete structure of the population.
Using the single variable u to denote the structure of the pop-
ulation simplifies some formulae. The population size n and

the structure u together give a complete description of the

population: ny = n (1_“ 1+

5 ) and ny = n (?“) We use Egs.
2a-b to describe solutions in phase space and Eqgs. 4a-b to
describe the dynamics of the population size and structure.

Low-density dynamics

Without density dependence, the population increases un-
boundedly, approaching an asymptotic growth rate and a sta-
ble phenotype distribution. The asymptotic growth rate, r°,
is given by the dominant eigenvalue for (0, 0), and the sta-
ble phenotype distribution is u° = w§ — w{ where w° =
(w§,w3) is the normalized (to sum to one) eigenvector as-
sociated with 7°:

1 2
w=1 2 @) o2 )

2
r°:§—1+ (g) + 03 (6)

Increasing the death rate variance, crg, while holding the
birth rate constant increases the dominance of the longer-
lived phenotype within the growing population. Increasing
B while holding the death rate variance constant does the
opposite (Fig. 1a). The growth rate increases with a§ with
a negative second derivative, but is nearly linear when [ is
large (Fig. 1b). This formula is nearly identical to that found
by Kendall et al. (2011) where heterogeneity in survival was
introduced into a discrete-time density-independent model.

0.75 1

0 0.25

Fig. 1 aThe difference in relative frequencies on the eigenvector of the
zero equilibrium is shown as a function of the death rate variance for
B ranging from 0.5 (upper curve) to 3 (lower curve) in increments of
0.5. b The asymptotic growth rate for the density-independent model
is shown as a function of the death rate variance for § ranging from
0.5 (lower curve) to 3 (upper curve) in increments of 0.5. The point
02 = 0.5 is marked on the 3 = 0.5 curve in both panels since this
is the critical minimum variance in death rates needed for persistence
(the dashed portion of the line indicates a subcriticality or equivalently
negative growth rate).

If the heterogeneous population is initially close to zero
and (3 is small, then solution curves quickly approach this
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eigenvector and thus reach the stable structure and growth
rate. When the birth rates are large, convergence to the stable
structure is slow.

Dynamics near equilibrium

Returning to the density-dependent model, the equilibrium
difference in abundances is ¢* = osn*, where the equilib-
rium population size is

1-— 0§
B

The equilibrium population structure is thus uv* = Z—i = 05.
The equilibrium population size increases linearly in 02, and
comparing Eq. 7 to the equilibrium of the logistic model
(Eq. 1) suggests that 1 — ag plays the role of an “average
death rate” at equilibrium. This intuition is correct: it is the
weighted mean death rate of individuals at the equilibrium
distribution (wjd; + w3d2). This fact is used later to con-
struct a homogeneous model for comparison.

When £ is small and there is little heterogeneity, the
manifold is nearly linear, and the dynamics are similar to
that of a homogeneous population (Fig. 2a). As the level
of heterogeneity is increased, the manifold curves upward,
reflecting the bias towards the longer-lived phenotype at
equilibrium. When the population is initially small, trajec-
tories in phase space rapidly converge to the manifold for
most parameter values (Figs. 2a—c).

However, when the birth rate 3 is large, the population
grows to near equilibrium size rapidly, then growth slows
as the population structure slowly shifts towards domination
by the longer-lived phenotype (Fig 2d).

As the population grows along the manifold, abundance
grows sigmoidally (but not quite logistically) over time (Fig.
3a). The population structure does not start shifting until the
abundance is well above zero. The shift in structure pro-
duces a decrease in the mean population death rate, which
somewhat counteracts the density-dependent reduction in
the birth rate. When [ is large, the population grows to
near equilibrium size rapidly but reaches the equilibrium
structure much more slowly (Fig. 3b).

Density dependence increases the bias towards the
longer-lived phenotype (u* > w°). This is caused by the
reduction in population growth rate. A growing population
has a greater abundance of young individuals whereas older
individuals appear in greater numbers in an equilibrium
population, and older individuals are more likely to have
lower intrinsic mortality.

n"=1-

)

Cohort dynamics

One can gain insight on the effect of mortality heterogeneity
by examining cohort dynamics. With homogeneous repro-
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Fig. 2 The direction field in the (n1, n2) phase space is shown, for four
different parameter combinations. Arrows show local direction of mo-
tion; red curves show sample trajectories for various initial conditions.
The manifold connecting n = 0 to n* (marked with o) is shown as
a thicker black curve in each graph. When (8 and o are both small,
apf = 12,05 = 02and b 8 = 1.6,05 = 0.2, the manifold is
nearly straight. As heterogeneity is increased, ¢ 8 = 1.6,05 = 0.6,
the longer-lived phenotype increases its dominance in the population.
For large 8, d 8 = 8,05 = 0.6, the population grows rapidly to near
equilibrium size with little change in structure, but then growth slows
as the structure slowly shifts.



0.8f
06 [ e .
0.4
0.2 ! ---u(t), difference in relative frequencies |
---------- —n(t), heterogeneous population size
CO 2 4 6 8 10

t

Fig. 3 a The difference in relative frequencies of the two phenotypes,
total population density, and average death rate along the manifold are
shown over time for 8 = 1.8 and o5 = 0.4. b The population size and
the difference in relative frequencies of the two phenotypes along the
manifold over time is shown for 5 = 8 and o5 = 0.6. Phenotype 2
dominates always, but less so initially. The population grows rapidly
until just past ¢ = 2, but the phenotypic distribution changes little.
When the exponential growth phase has ended, the structure begins to
shift more gradually towards a greater dominance of the longer-lived
phenotype. See Fig. 2d for the phase portrait along the manifold.

duction, a cohort is initially split evenly between the phe-
notypes. The survival to age = within the cohort is given by

1
l(x) = 5(6*(1+05)w + ef(lfag)w)' )

Jensen’s inequality can be used to show that this is greater
than survivorship in a homogeneous population with death
rate one (e~ *). The discrepancy increases with both age and
the amount of heterogeneity:

2.2
I(z) ~e~® (1 + ”“"2"‘;) . ©9)

The Lotka-Euler equation gives the relationship between
the asymptotic exponential growth rate r, [(x), and the birth
rate b(z) at age x:

1= /00 e~ "(x)b(z)dx. (10)
0

We use this to examine two cases: exponential growth along
the manifold at low density; and population structure at the
equilibrium, when r = 0.

When the population is growing, it is evident from Eq.
10 that increasing [(z) for some = while holding b(z) con-
stant and not allowing {(z) to decrease for any other = must
lead to an increase in .

At equilibrium, since » = 0 and b(z) = b is age inde-
pendent, Eq. 10 reduces to

e b 1 1 b
lzb/ l(x)dz-( + >— 5-
0 2\1+4+o05 1—o05 1—o03

Since b depends on density (b(n) = 5(1 — n)), this sets the
density at which growth is zero: n* satisfies b(n*) = 1 —o?2.
Another way of understanding this is to recall that within a
stationary population, the crude mortality rate is the inverse
of the life expectancy (Cohen 1986). In the heterogeneous
model, since a newborn is equally likely to be either phe-
notype, the average life expectancy of a newborn within the
equilibrium population is

1 1 1 1 1
(5) 2(1+05+105) 1—o02 b

Therefore, the crude mortality rate within our equilibrium
population is

1
7:1—0'2, (12)
E(3) '

5:

This shows that the average death rate in the equilibrium
population is the harmonic mean of the death rates, given
the distribution of phenotypes at birth.

Homogeneous comparisons

There are several different ways one might calculate aver-
age demographic rates to construct a homogeneous model
to approximate the heterogeneous population. Accordingly,
we parameterize models using the phenotypic distribution at
birth, the distribution along the eigenvector near zero (w°),
and the distribution at equilibrium. Finally, we build a syn-
thetic model by approximating the per-capita growth rate
curve.

The phenotypic distribution at birth is uniform, giving
average death rate d = 1; we call this the arithmetic mean
model. In the equilibrium population, however, the average
death rate is 6 = 1 — o2 and is called the harmonic mean
model. At low density along the manifold, the average death
rate is §° = §; (1’2“0 )+ 85 (12“0 ), and we call this the u°-
mean model. These homogeneous approximations use the
same birth rate parameter /3, differing only by the death rate.
These three models are summarized in Table 1.

The arithmetic mean model underestimates the low-
density growth rate (7° = § — 1 < r°), and the harmonic
mean model overestimates it (7° = 8 — (1 — %) > r°);
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by design, the ©°-mean model matches it exactly. The arith-
metic and u°-mean models have smaller equilibrium popu-
lation sizes than the harmonic mean model, which (again,
by design) exactly matches the heterogeneous model (Fig.
4a).

a
0.7

---r K-model
0.6f|*-u°—mean
<-arith. mean
0.5f[¢-harm. mean
—het.

/:0.4-
N—
£ 0.3f
0.2
0.1
0 25 30
b
1.5 T T
© harm. mean
<~ arith. mean
— het.
u®—mean |
s -- het. convergence
--- rK-model
~
0.5

0 0.2 0.4 06 08 1
n

Fig. 4 a The population size over time and b the per-capita growth
rate as a function of population size are shown for the heterogeneous
model and all homogeneous comparisons considered for 5 = 1.6 and
os = 0.6.

Even along the manifold, heterogeneous mortality ren-
ders the population’s dynamics fundamentally different
from those of the logistic model. This is illustrated by the
nonlinear dependence of the per-capita growth rate on den-
sity (Fig. 4b).The fact that the average slope is shallower
than —f is a consequence of the shifting phenotypic struc-
ture as the population grows. For small heterogeneous pop-
ulations on the manifold, the per-capita growth rate curve is
tangent to that of the u°-mean model (with slope —f3), but
as the population approaches equilibrium, the asymptotic
slope is T% (denoted heterogeneous convergence in Fig.
4b). The eigenvalue A (Eq. 13) gives the rate (|A|) at which

Table 1 Homogeneous model parameters

Birth rate Death rate Model name

B 1 Arithmetic mean model
B 1-— crg Harmonic mean model
B 1—osu® u®-mean model

,’,O ,r()

— —(1—n*) r K model

n*
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solutions approach n* along the associated eigenvector.

B
)\:*570§+

2
%—(6—1)(1—0§)+0§. (13)
The heterogeneous population converges to equilibrium
more slowly than any of the homogeneous models when (3
is sufficiently large. When [ is small, the arithmetic mean
model converges to equilibrium slowest. When § < 1.5,
increasing heterogeneity increases |\|, otherwise increasing
heterogeneity decreases |\|.

A linear approximation to the per-capita growth rate
curve yields another homogeneous model, with parameters
B = = and 6" = 2 (1 — n*), and it is called the rK
model. The parameters of the 7 K model depend on the het-
erogeneity in a more complicated way, but can be rewritten
as frE =3 (ﬁr_og) and 07K = § (ﬂr_o&) Increasing o5 de-
creases both the birth and death rates, although it increases
their difference since 7% — §"K = r°. Note that the “birth”
and “death” rates in this synthetic model do not match the
actual demography for any n.

There is an alternative way to formulate the » K model
that better matches observable demography. Write %n =
Bn(1—n)—4d(n)n, where §(n) = 1 —osu(n) is the average
death rate in a population with phenotypic structure u(n);
the latter is the structure exhibited by a population growing
through size n along the manifold. A linear approximation
to u(n) yields

S(n)=1— o5 (“T:“n n u> : (14)

The resulting homogeneous logistic model has density
dependence in both birth and death rates, but it is identi-
cal to the 7K model. This formulation may be more eco-
logically intuitive, and it captures the fact that the average
death rate declines as the population grows (opposite to the
usual competitive effect of density on mortality). However,
when reproductive heterogeneity is introduced, this formu-
lation fails, because it introduces a third order term into the
differential equation, and is a worse approximation than that
for the r K’ model in Table 1.

Although these homogeneous models match different
aspects of the heterogeneous dynamics along the manifold
to varying degrees, all of them fail to capture dynamics
away from the manifold, which would be important in the
presence of environmental perturbations.

Including heterogeneous birth rates

We now relax the assumptions that the 3;; are all equal
(the total birth rate for phenotype i is denoted 5; = ;1 +
Bi2). At equilibrium, the probability that a birth results in an



offspring with life expectancy §; ! depends on the popula-
tion structure. The probability that the parent is phenotype
i is w; (the proportion of the equilibrium population that is
phenotype ¢). The expected birth rate of a randomly selected
parent from the equilibrium population is B=p wi+Baw3,
and the rate at which a randomly selected parent gives birth
to phenotype ¢ is &; = [i;w] + B2;w;. Thus, at equilib-
rium, the probability of being born as phenotype 7 is &; B -1
It still holds that the average death rate at equilibrium is the
harmonic mean of the death rates at birth:

. 1 1 & 1 G\ !
B (5 5 35 5> >

where E"(-) is the expectation with respect to the distri-
bution of phenotypes at birth within the equilibrium popula-
tion. An algebraic exercise verifies that § = &; w? +dowj. At
equilibrium, r = 0, thus the Lotka-Euler equation becomes:

1= /00 (d}e—(u”‘;)‘r + (S?e_(l_”é)m> B(l —n")dx,
0 B B

which can be rearranged to give
N 1
n 1 o (%) . (16)
Phenotypes can vary with respect to reproduction in
three distinct ways. First, individual parents can vary in their
fertility, which we parameterize as f;. Second, the resulting
offspring can vary in their initial viability (or survival to
adulthood). We parameterize offspring viability as v;;, al-
lowing the viability to depend on both parent phenotype
and offspring phenotype. An extensive literature examines
consequences of trade-offs between the number of offspring
(fertility) and their size (assumed to be closely related to
offspring viability) (e.g., Smith and Fretwell 1974; McGin-
ley et al. 1987; Venable 1992; Fox and Czesak 2000; Mar-
shall and Keough 2007; Brown and Shine 2009). Our ap-
proach allows for a trade-off between fertility and offspring
viability, but does not require it. It is certainly possible for
the two traits to be positively correlated—for example, if
variation in both traits is determined by site or territory
quality, one would expect parents with high fertility to pro-
duce offspring with high viability. Finally, parents may vary
in their propensities to have offspring of one type or an-
other. This may be caused by genetic heritability (Lynch
and Walsh 1998), or by parent—offspring correlation in en-
vironmental conditions. More specifically, let h;; be the
probability that an individual offspring (prior to viability
selection) from a parent of phenotype ¢ has phenotype j.
Letting b represent the mean fertility of the two pheno-
types, we define f; = b(1 — f) and fo = b(1 + f) with
—1 < f < 1. Thus phenotype one is assumed to have the
lower fertility when f is positive; when f is negative and

os > 0 there is a trade-off between fertility and mortality.
Assuming that the probability an offspring shares its par-
ent’s phenotype does not depend on the parent’s phenotype,
we set h;; = (1 — h) wheni # j, and hy; = (1 + h)
when ¢ = j for —1 < h < 1. The parameter h is related
to the level of phenotypic correlation between parent and
offspring. We consider here only the simplest case of het-
erogeneity in offspring viability: that viability depends only
on offspring phenotype rather than on parent phenotype as
well. Thus we let v;; = 2(1—v) and v;2 = 1 (1 + v) where
—1 < v < 1. We let b = 25 and arrive at the birth rate
parametrization shown in Table 2.

Plugging the parametrization from Table 2 into Eqgs.
2a-b and using the heterogeneous death rates as in the
“Mortality heterogeneity” section gives:

%n =5(1+ vhf)n(l —n)
+ Bwh+ flg(l —n) —n+osq

d
4 =B+ hf)n(1—n) (17b)

+Bf+h)g(l —n) —q+osn.

(17a)

An important feature of these equations is that v, h, and f
appear in all possible combinations. This means that they
can interact, so that particular combinations of these param-
eters may ‘override’ the effect one would expect from con-
sidering these parameters singly.

Our analysis proceeds as follows. First, we examine re-
productive heterogeneity when mortality is homogeneous,
and then we examine how mortality and reproductive het-
erogeneity interact with one another. Because these interac-
tions become quite complex, we primarily focus on the cases
where parent—offspring phenotypic correlation is zero.

Table 2 The birth rate parametrization is shown

Rate Parameter Formula

o Pa-pa+ma-ov)
iz 2= na-m+w)
o P+ na-m -
a2 P+ na+ma o)

The magnitude of heterogeneity in fertility is given by f, that in
offspring viability by v, and parent—offspring phenotypic correlation
is given by h. Each of the parameters v, h, and f are constrained to
the interval (—1, 1). Phenotype two has higher fertility when f > 0
and higher offspring viability when v > 0. Offspring are more likely
to be the same phenotype as their parent when h > 0.
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Reproductive heterogeneity only

If reproduction is the sole source of heterogeneity (o5 = 0),
the equilibrium population size is
1

W= ok ) T Boh T P (18)

The formula for the equilibrium structure ©* depends on the
sign of vh + f: when vh + f > 0:

(=R
2(vh+ f)

(1—h)(1 —vf))2
* \/< bt 1) )
in which case 31 < f(2; when vh + f < 0 (which gives

B1 > Bo):

o -m -
2(vh + f)

(19)
v+ hf

vh+ f

> (20)
_ J(A=mA=vh)N v+ hf
2(vh + f) vh + f’
andif vh + f = 0 (B, = Bo):
S o
T T Oy @D

The manifold connecting zero and n* is linear, so the pop-
ulation structure does not change along it: the average birth
and death rates are constant. An initially small popula-
tion (with arbitrary structure) reaches the stable structure
quickly, then grows logistically thereafter. The population
on the manifold is modeled exactly by the harmonic mean
model, u°-mean model, and r/K model; all of which are
identical when mortality is homogeneous.

If only a single form of birth rate heterogeneity is in-
cluded (that is if only one of v, h, or f is nonzero), then the
average birth rate parameter along the manifold is 8. Thus,
heterogeneity has no effect on deterministic population dy-
namics.

On the manifold, phenotype two dominates (u* > 0) if
v+ hf > 0. Defining a;; = (1, + [2; gives a quantification
for the appearance rate of phenotype ¢ (distinguished from
phenotype i’s reproductive rate, ;). When v + hf > 0,
ag > o means that a cohort (in the equilibrium population)
is initially dominated by longer-lived individuals. Because
there is no cohort selection, the initial cohort structure trans-
lates directly to the equilibrium phenotypic structure within
the population.

Setting h = 0 simplifies the model allowing us to ex-
amine the interactions between heterogeneity in fertility and
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viability:

d

i Bn(l—n)+ Bfe(l—n)—n (22a)

%q = Pug(l —n) —q. (22b)

The equilibrium population size is

n*=1- ¥, (23)
B+ fv)

and the asymptotic density-independent growth rate is
r’=B(1+ fv)— 1. (24)

The population structure along the manifold is u® =
u* = v (the manifold is linear since mortality is homo-
geneous). The equilibrium structure is determined by the
amount of viability heterogeneity. Viability is effectively a
juvenile survival. A cohort of newly recruited adults has
structure v, and absent mortality heterogeneity, this struc-
ture does not change as the cohort ages.

The equilibrium population size and low-density growth
rate both increase with increasing fv. When fv > 0, one
phenotype has both lower viability and lower fertility than
the other, and is thus weaker in all respects. If fv < 0,
then there is a trade-off (one phenotype has a higher fer-
tility while the other has higher viability). In this trade-off
situation, increasing the magnitude of either type of hetero-
geneity lowers n* and 7°.

The average density-independent birth rate along the
manifold (regardless of population size) is 3(1 + fv) since
the population structure is v. In fact, along the manifold the
population dynamics are logistic with effective birth rate
parameter 3 = B(1+ fu): %n = Bn(1 — n) —n.

Note that swapping the values of f and v has no effect on
n* or r°, but it alters the equilibrium population structure.

Heterogeneity in both mortality and reproduction

We now examine the full model with demographic hetero-
geneity in both mortality and reproduction. Using Egs. 17a—
b, the equilibrium population size is given by

. 1—osu*

"= BT k) 1 Bk £ N (@)

and the low-density growth rate is

r® =B +vhf)+ B(f +vh)u® — 14 gsu’. (26)

We can get analytical formulae for v* and u® (see
Appendix: Population Structure), but they are very large and
unwieldy; plugging them into the above equations provides
little insight. Numerical analysis reveals that the dependence
of v* and u° on each type of heterogeneity is complex, but



one clear pattern is that increasing h always increases n* and
r°, and that both are symmetric across the line f +v = 0
(symmetric with respect to swapping the values of 315 and
B21)-

The former effect seems intuitive, because it allows the
more successful phenotype to produce a greater number of
successful offspring. However, the relationship cannot be
easily seen analytically.

When there is no correlation between parent and offspring
phenotypes (h = 0) the analysis is tractable. Initially, we
also set v = 0 to examine how heterogeneity in fertility
and mortality interact to affect population dynamics. The
differential equations are now:

A~ Bl — )+ Bfq(l—n) — n+ osq

27
T (27a)
i = —q+osn (27b)
d tq =—q 5.
The equilibrium population size is
1— o2

nt=1-———20 (28)

B+ fos)

the equilibrium structure is u* = oy, and the low-density
growth rate is

o_ B B?
r 21+\/4+(ﬂf+05)05. (29)
Both n* and r° are increasing functions of f. Cohort dy-
namics, and the resulting population structure, depend on
the amount of mortality heterogeneity.

When mortality and fertility are positively correlated
(f > 0), increasing the magnitude of heterogeneity always
increases 7° and n*. However, when f < 0, the popu-
lation has a trade-off: the phenotype with higher fertility
has higher mortality. Increasing the magnitude of fertility
heterogeneity (making it more negative) decreases r° and
n*. If f = —oj, then the equilibrium population size is
n*=1-— % which is the same as that for a population with
the arithmetic mean demographic rates, but the dynamics
away from n* are different.

To understand how r° and n* change when heterogene-
ity in mortality is manipulated, we take derivatives:

A, 1 Bf+2%;
o5 20 /2 4 o5(5f + 03)

(30)

d ,  f(1+03) +20s
- B+ fo?)

Increasing mortality heterogeneity can decrease both n* and
r° but only if a sufficiently strong trade-off is present (f <

_ 205 o. _ 205 *
5 for r°; f < Tto? for n*).

T €1y

When viability is heterogeneous (v # 0), the equilib-
rium population size becomes

1-— o(;u*
nf=1-———— (32)
B+ fur)
where the equilibrium population structure is
«_ UV+tos (33)

= 1+ vos’

Viability heterogeneity acts on the equilibrium population
size by shifting the equilibrium population structure u*
away from oy; increasing viability heterogeneity v increases
uw*. Increasing v only decreases n* if f < —oy (because u*
is increased, and dg* n* < 0). This is the condition for
phenotype two to have a lower expected fitness, and in-
creasing v increases the rate at which phenotype two enters
the population effectively decreasing the mean fitness of the

population.

Discussion

This is one of the few published treatments of dynamics
of heterogeneous density-dependent populations and is the
first published study to isolate the effects of several types of
demographic heterogeneity (in the absence of stochasticity)
for a continuous-time density-dependent model. As a result,
both the model and its analysis lead to important insights
about the nature of demographic heterogeneity, the potential
importance of interactions between different components of
demographic heterogeneity, the effects of heterogeneity on
population dynamics, and the extent to which homogeneous
models are useful approximations.

Death rate heterogeneity increases the low-density growth
rate, a phenomenon that is caused by cohort selection (Vau-
pel and Yashin 1985) and has been observed in discrete-time
population models (Kendall et al. 2011). In addition, by
lowering the mean death rate in the equilibrium population,
cohort selection increases the equilibrium density. As the
population grows from low density to the equilibrium, the
average mortality rate declines; which is not strong enough
to create an Allee effect in the population, but does run
counter to the usual effect of density on mortality.

Two-sex models with demographic differences among
males and females (e.g., Caswell and Weeks 1986; Jenou-
vrier et al. 2010) provide an interesting contrast to our work.
Differential survival between the sexes—along with other
sources of demographic variation, such as differences in
maturation times for males and females—is recognized as
a primary driver of imbalances in the population sex ratio
(Girondot and Pieau 1993; Bessa-Gomes et al. 2004; Veran
and Beissinger 2009), through a process that is directly anal-
ogous to cohort selection. This shifts the average survival in
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the population (as in our model), but in the two-sex models
only female survival has a direct influence on the popu-
lation dynamics. Under most mating systems, however, a
strong sex ratio bias can reduce fertility (because of inabil-
ity to find mates), with the result that survival heterogeneity
among genders can reduce asymptotic population growth
rates (e.g., Jenouvrier et al. 2010), opposite to the effect we
show in our models.

A key feature of our approach is the inclusion of basic
reproductive heterogeneity in three different ways that are
not mutually exclusive: heterogeneity in parent fertility, in
offspring quality, and in parent—offspring correlation. Al-
though heterogeneity in parent—offspring correlation was
not treated explicitly in our analysis, numerical analysis
suggests that the distribution of offspring phenotypes varies
among the different parent types due to the interaction of
fertility, offspring quality, and parent—offspring correlation.
When only a single type of reproductive heterogeneity is
present and mortality is homogeneous, deterministic popu-
lation dynamics are unaffected; prior results indicating that
reproductive heterogeneity increases extinction risk (e.g.,
Robert et al. 2003; Melbourne and Hastings 2008) require
the presence of demographic stochasticity.

An important consequence of this model is that the three
types of reproductive heterogeneity occur in all possible
combinations in the dynamic equations 17a-b and in the
equilibrium expressions for the population size and low-
density growth rate (Eqs. 25-26). Previous treatments of
demographic heterogeneity have not addressed these inter-
actions.

Trade-offs can appear in several varieties between mor-
tality, fertility, and offspring quality. In many trade-off sce-
narios, increasing the magnitude of heterogeneity of either
source of variation decreases both the growth rate and the
equilibrium population size. However other cases exist—
such as a weak trade-off between mortality and fertility—
where incrementally increasing the magnitude of hetero-
geneity in either will increase the equilibrium population
size and growth rate.

In addition to changing the equilibrium population size,
stable phenotypic distribution, and growth rate, hetero-
geneity can have significant effects on both transient and
asymptotic dynamics. Although in many cases the popula-
tion appears to follow a sigmoidal curve, there are important
differences. Perhaps the most important of these is that the
shifting population structure results in a nonlinear per-capita
growth rate curve and shifting average demographic rates.

There are multiple ways to make homogeneous approx-
imations to the heterogeneous model. However, none of the
approaches we used here is a good approximation for all
settings. The distribution of phenotypic traits within a pop-
ulation can change as it grows, making a single homoge-
neous approximation necessarily inaccurate. For a density-
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dependent population with homogeneous reproduction and
heterogeneous mortality, merely taking the average death
rate leads to underestimates of the equilibrium population
size and low-density growth rate. Parameterizing a model
with the average life expectancy leads to an overestimate
of the low-density growth rate, but does capture the correct
equilibrium.

We assumed an underlying model that is asymptotically
stable—the continuous logistic model. It is an open question
how heterogeneity might affect the dynamics of models ca-
pable of more complex dynamics, such as those involving
lags in density dependence. Jones and Ellner (2007) studied
the effects of rapid evolution (resulting from genetic vari-
ability) on a predator—prey system and showed that the “cost
of a good defense” affects whether or not and what type of
cycles develop. Similarly, we might expect a more complex
set of behaviors in models with heterogeneity in response to
density.

Directly testing many of the predictions of our models
(such as the increase in equilibrium density caused by sur-
vival heterogeneity) in real populations would require com-
parisons between homogeneous and heterogeneous popula-
tions with exactly the same mean demography, an empiri-
cally infeasible task even in laboratory populations. How-
ever, it should be relatively straightforward to look for the
proximate mechanism that underlies the increased equilib-
rium, namely the steady decline in the average death rate as
the population increases towards equilibrium. Experimen-
tal populations could be constructed either from mixtures of
genotypes known to differ strongly in survival probabilities,
or (perhaps more simply) by artificially imposing hetero-
geneity, much as Dennis et al. (2001) artificially changed
birth and death rates. By imposing heterogeneity of varied
strength, one could directly test this prediction.
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Appendix: Population Structure
We solve n(t) = 0and Lq(t) = 0 for u = £ and arrive
at two quadratic equations, one for n(t) = n* and the other

for n(t) = 0. The equilibrium structure, u*, is the solution
to the equation au? + bu + ¢ = 0 whose coefficients are

a= (vh+f)+os(vf+h),

b= (1—h)((1—vf)+as(v—f)),

and

c=—((v+hf)+os(1+0hf)).



11

If a # 0, then the equation is quadratic, and there are two
candidate solutions. When f > —h 1”:;;% , u* is given by the
‘4’ root, and alternatively it is given by the ‘—’ root. When
a = 0 the equation is linear, and u* = —c/b.

hftos :
Ifv> -7 Tos then phenotype two domma}:ccs the
+os

equilibrium population (u* > 0), and if v < “1thfos
then phenotype one dominates the equilibrium population
(u* > 0).

The structure along the eigenvector out of the origin, u°,
is the solution to the equation au? + bu + ¢ = 0 whose
coefficients are

a = B(vh+ f)+os,

b=p1—-h)(1-vf),

and

c=—Bv+hf)—os.

Similar to the equilibrium structure, when the coefficient
a > 0, then we take the ‘+’ root, and when a < 0, then
we take the ‘—’ root.
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