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Abstract. We prove several new instances of the cyclic sieving phenomenon (CSP) on
Catalan objects of type A and type B. Moreover, we refine many of the known instances of
the CSP on Catalan objects. For example, we consider triangulations refined by the number
of “ears”, non-crossing matchings with a fixed number of short edges, and non-crossing
configurations with a fixed number of loops and edges.
Keywords. Dyck paths, cyclic sieving, Narayana numbers, major index, q-analog
Mathematics Subject Classifications. 05E18, 05A19, 05A30

1. Introduction

The original inspiration for this paper is a natural interpolation between type A and type B
Catalan numbers. For n > 0 consider the expression(

2n

n

)
−
(

2n

n− s− 1

)
. (1.1)

For s = 0, we recover the nth Catalan number and for s = 1, we recover the (n + 1)th Catalan
number. When s = n, we obtain the central binomial coefficient

(
2n
n

)
, which is known as the

nth type B Catalan number, see [Arm09]. There are several combinatorial families of objects
which are counted by the expression in (1.1), certain standard Young tableaux and lattice paths
to name a few. The expression in (1.1) has the q-analog given by the difference of q-binomials[

2n

n

]
q

− qs+1

[
2n

n− s− 1

]
q

. (1.2)
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For s ∈ {0, 1, n}, the polynomials in (1.2) appear in instances of the cyclic sieving phenomenon.
Furthermore, it follows from [APRU21, Theorem 46] that there exist group actions such that the
polynomials in (1.2) exhibit cyclic sieving for all s ∈ {0, 1, . . . , n}.
Definition 1.1 (Cyclic sieving, [RSW04]). Let X be a set and Cn be the cyclic group of order
n acting on X . Let f(q) ∈ N[q]. We say that the triple (X,Cn, f(q)) exhibits the cyclic sieving
phenomenon (CSP) if for all d ∈ Z,

|{x ∈ X : gd · x = x}| = f(ξd) (1.3)

where ξ is a primitive nth root of unity.
Note that it follows immediately from the definition that |X| = f(1). In the study of cyclic

sieving, it is mainly the case that the Cn-action and the polynomial f(q) are natural in some
sense. The group action could be some form of rotation or cyclic shift of the elements ofX . The
polynomial usually has a closed form and is also typically the generating polynomial for some
combinatorial statistic defined onX . See B. Sagan’s article [Sag11] for a survey of various types
of CSP instances.

Many known instances of the cyclic sieving phenomenon involve a setX whose size is a Cata-
lan number. Once such a CSP triple is obtained, one can ask if X can be partitioned X = tjXj

in such a way that the group action onX induces a group action onXj for all j, and, in that case,
also ask if there is a refinement of the CSP triple in question.
Definition 1.2 (Refinement of cyclic sieving). The family {(Xj, Cn, fj(q))}j of CSP triples is
said to refine the CSP triple (X,Cn, f(q)) if

•
⊔
Xj = X ,

•
∑

j fj(q) = f(q) and

• the Cn-action on Xj coincides with the Cn-action on X restricted to Xj , for all j.
Typically, the sets Xi are of the form Xj = {x ∈ X : st(x) = j} for some statistic

st : X → N that is preserved by the group action. Examples of such statistics are the num-
ber of cyclic descents of a word, the number of blocks of a partition, and the number of ears of a
triangulation of an n-gon—all with the group action being (clockwise) cyclic rotation. Through-
out the paper, we shall consistently use the order of the group (or group generator) as subscript.
For example, rotation by 2π/n is denoted rotn.

For s ∈ {0, n}, the q-analog in (1.2) admits a natural refinement, so that the type A and type
B q-Narayana polynomials are recovered. The q-Narayana polynomials can be used to refine the
aforementioned instances of the CSP. It is therefore natural to ask if there is a q-analog of (1.1)
for arbitrary s ∈ {0, 1, . . . , n} which also exhibits similar combinatorial properties as the type
A and type B q-Narayana polynomials. We discuss partial results and motivations behind this
problem in Section 3.

In the process of analyzing this intriguing question, we discovered several new instances of
the cyclic sieving phenomenon. Some concern new q-analogs of Catalan numbers, while others
refine known instances. In the tables in Section 2.5, we present a comprehensive (but most likely
incomplete) overview of the current state-of-the-art regarding the cyclic sieving phenomenon
involving Catalan and Narayana objects of type A and B.
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1.1. Overview of our results

We only highlight some of the results in our paper; in addition we also prove several other results
which fill gaps in the literature. In Section 4, the main result is the following theorem, which
is a new refined CSP instance on Catalan objects. It can be stated either in terms of promotion
(denoted ∂2n) on two-row standard Young tableaux with k cyclic descents, SYTcdes(n

2, k), or
non-crossing perfect matchings with k short edges, NCMsh(n, k).

Theorem 1.3 (Theorem 4.8). Let k, n > 2 be natural numbers and let

Syt(n, k; q) :=
qk(k−2)(1 + qn)

[n+ 1]q

[
n+ 1

k

]
q

[
n− 2

k − 2

]
q

.

Then ∑
k

Syt(n, k; q) = Cat(n; q),

and the triples
(SYTcdes(n

2, k), 〈∂2n〉,Syt(n, k; q))

and
(NCMsh(n, k), 〈rot2n〉,Syt(n, k; q))

exhibit the cyclic sieving phenomenon.

In Section 5, we study the set of so-called non-crossing (1,2)-configurations on n vertices,
which we denote by NCC(n+1). The cardinality of this set is the Catalan number Cat(n+ 1) =(
2n
n

)
−
(

2n
n−2

)
. We define a simple “rotate-and-flip” action on NCC(n + 1) which has order 2n

and is reminiscent of promotion.

Theorem 1.4 (Theorem 5.4). The triple(
NCC(n+ 1), 〈twist2n〉,

[
2n

n

]
q

− q2
[

2n

n− 2

]
q

)

exhibits the cyclic sieving phenomenon.

Note that we use a quite non-standard q-analog of the Catalan numbers here, which has
not appeared in the context of cyclic sieving before. Cyclic sieving on non-crossing (1,2)-
configurations was studied earlier by M. Thiel [Thi17], with rotation as the group action. In
Theorem 5.9 and Corollary 5.10, we refine Thiel’s result. In particular, we obtain a new CSP
instance involving the q-Narayana polynomial Nar(n+ 1, k; q).

In Section 6, we study various instances of cyclic sieving involving the typeB Catalan num-
bers,

(
2n
n

)
. Some results have more or less appeared in earlier works, but we make some of the

results more explicit. One novel result is a type B version of Theorem 1.4, where we consider
the twist action on type B non-crossing (1,2)-configurations. Briefly, such objects are obtained
from elements in NCC(n) by choosing to mark one edge.
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Theorem 1.5 (Theorem 6.6). The triple(
NCCB(n+ 1), 〈twist22n〉,

[
2n

n

]
q

)
exhibits the cyclic sieving phenomenon.

As in typeA, we also obtain a refined cyclic sieving result in Theorem 6.10 where we consider
rotation instead.

In Section 7, we briefly consider two-column semistandard Young tableaux, and note in
Theorem 7.3 that (SSYT(2k, n), 〈∂̂n〉,Nar(n+ 1, k + 1; q)) is a CSP triple, where ∂̂n denotes
the so-called k-promotion and SSYT(2k, n) is the set of semistandard Young tableaux of the
rectangular shape 2k whose maximal entry is at most n.

In Section 8, we refine the classical CSP triple on triangulations of an n-gon by taking ears
into consideration. An ear in a triangulation is a triangle formed by three cyclically consecutive
vertices. We let TRIear(n, k) denote the set of triangulations of an n-gon with k ears.

Theorem 1.6 (Theorem 8.1 and Theorem 8.2). Let 2 6 k 6 n
2

and let

Tri(n, k; q) := qk(k−2)
[n]q
[k]q

[
n− 4

2k − 4

]
q

Cat(k − 2; q)

(
n−2k∑
j=0

qj(n−2)
[
n− 2k

j

]
q

)
.

Then ∑
k

Tri(n, k; q) = Cat(n− 2; q),

and
(TRIear(n, k), 〈rotn〉,Tri(n, k; q))

exhibits the cyclic sieving phenomenon.

In the last section, we consider another natural interpolation between type A and type B
Catalan objects and prove a cyclic sieving result using standard methods.

Finally, a word about the proofs in this paper. There are traditionally two different approaches
to proving instances of the cyclic sieving phenomenon—combinatorial1 or representation-theo-
retical (using vector spaces and diagonalization). In this paper we exclusively use the combi-
natorial approach, meaning that we need to explicitly evaluate the CSP polynomials at roots of
unity and also count the number fixed points of the sets under the group actions. It may also
involve the use of equivariant bijections to derive new CSP triples from the previously known
ones.

2. Preliminaries

We shall use standard notation in the area of combinatorics, see the common references [Sta01,
Mac95]. In particular, [n] := {1, 2, . . . , n} and it should not be confused with the q-analog [n]q
defined further down.

1Or “brute-force”.
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2.1. Words and paths

Given a word w = w1 · · ·wn ∈ [k]n, a descent is an index i ∈ [n− 1] such that wi > wi+1. We
let the major index, denoted maj(w), be the sum of the descents of w. An inversion in w is a
pair of indices i, j ∈ [n] such that i < j andwi > wj . We let inv(w) be the number of inversions
of w. Let BW(n, k) denote the set of binary words of length n with exactly k ones.

Let PATH(n) be the set of paths from (0, 0) to (n, n) using north, (1, 0), and east, (0, 1),
steps. A peak is a north step followed by an east step, and a valley is an east step followed by
a north step. We have an obvious bijection PATH(n) ↔ BW(2n, n) where we identify north
steps with zeros. Given P ∈ PATH(n), we let maj(P ) be defined as the sum of the positions of
the valleys of the path P . Observe that this coincides with the major index of the corresponding
binary word, as valleys correspond to descents. We shall also let pmaj(P ) denote the sum of the
positions of the peaks. For a path P ∈ PATH(n), we let the depth, depth(P ) be the largest value
of r > 0 such that the path touches the line y = x− r. Let us define PATHs(n) ⊆ PATH(n) as
the set of paths with depth(P ) 6 s. We set DYCK(n) := PATH0(n).

2.2. q-analogs

Roughly, a q-analog of a certain expression is a rational function in the variable q from which
we can obtain the original expression in the limit q → 1.

Definition 2.1. Let n ∈ N. Define the q-analog of n as [n]q := 1 + q+ · · ·+ qn−1. Furthermore,
define the q-factorial of n as [n]q! := [n]q[n − 1]q · · · [1]q. Lastly, the q-binomial coefficient is
defined as [

n

k

]
q

:=
[n]q!

[n− k]q![k]q!

if n > k > 0, and
[
n
k

]
q

:= 0 otherwise. The q-multinomial coefficients are defined in a similar
manner. Note that the q-binomial coefficients are polynomials in the variable q, see [Sta11] for
more background. Moreover, they satisfy the following.

Theorem 2.2 (See e.g. [Sta11, Prop. 1.7.1]). For n, k ∈ Z,[
n

k

]
q

=
∑

b∈BW(n,k)

qinv(b) =
∑

b∈BW(n,k)

qmaj(b).

Theorem 2.3 (q-Vandermonde identity). The q-Vandermonde identity states for non-negative
integers a, b, c, that [

a+ b

c

]
q

=
∑
j

qj(a−c+j)
[

a

c− j

]
q

[
b

j

]
q

. (2.1)

Theorem 2.4 (q-Lucas theorem, see e.g. [Sag92]). Let n, k ∈ N. Let n1, n0, k1, k0 be the unique
natural numbers satisfying 0 6 n0, k0 6 d− 1 and n = n1d+ n0, k = k1d+ k0. Then[

n

k

]
q

≡
(
n1

k1

)[
n0

k0

]
q

(mod Φd(q))
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where Φd(q) is the dth cyclotomic polynomial. In particular, we have[
n

k

]
ξ

=

(
n1

k1

)[
n0

k0

]
ξ

(2.2)

if ξ is a primitive dth root of unity.

When ξ is a root of unity, let o(ξ) denote the smallest positive integer with the property that
ξo(ξ) = 1. The following is a standard lemma that should not need a proof.

Lemma 2.5. Let n, k, d ∈ N and let ξ be a primitive nth root of unity. Then

lim
q→ξd

[n]q
[k]q

=

n/k if o(ξd) | k,

0 otherwise.

We will use Theorem 2.4 and Lemma 2.5 in later sections.

Lemma 2.6. Let ξ be a primitive nth root of unity, and suppose that f ∈ N[q] is such that
f(ξj) ∈ Z for all j ∈ Z. Then for all j ∈ Z, f(ξj) = f(ξgcd(j,n)).

Proof. In [AA19, Lem. 2.2], it is proved that f (up to mod qn − 1) is a linear combination of

hd(q) :=

n/d−1∑
i=0

qdi =
[n]q
[d]q

where d | n.

It then suffices to verify that

hd(ξ
j) = hd(ξ

gcd(j,n)) =

{
n
d

if n
gcd(j,n)

| d,
0 otherwise

for all d | n, j ∈ Z, which is straightforward by using Lemma 2.5.

Hence, if we know that f(ξd) ∈ Z for all d ∈ Z, it suffices to verify (1.3) for all d | n. There
is a related result about computing the number of fixed points.

Lemma 2.7. Suppose that Cn = 〈g〉 acts on the set X . If d ∈ Z, then

|{x ∈ X : gd · x = x}| = |{x ∈ X : ggcd(n,d) · x = x}|

Proof. Note that all elements of Cn with order o generate the same subgroup S ⊆ Cn. If h, h′
are both of order o, then 〈h〉 = 〈h′〉 = S, and h ·x = x implies that h′ ·x = he ·x = x, for some
e ∈ Z.

Lemma 2.6 and Lemma 2.7 are useful facts and are used implicitly in many papers. We shall
use them without further mention throughout the paper.
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2.3. Catalan and Narayana numbers

The Catalan numbers Cat(n) := 1
n+1

(
2n
n

)
are indexed by natural numbers. These numbers

occur frequently in combinatorics, see A000108 in the OEIS, and give the cardinalities of many
families of combinatorial objects. For the purpose of this paper, we note that the following sets
all have cardinality Cat(n).

• DYCK(n): the set of Dyck paths of size n, that is, the subset of paths in PATH(n) which
never touch the line y = x− 1,

• SYT(n2): the set of standard Young tableaux with two rows of length n,

• NCP(n): the set of non-crossing partitions on n vertices,

• NCM(n): the set of non-crossing matchings on 2n vertices,

• TRI(n): the set of triangulations of an (n+ 2)-gon,

• NCC(n): the set of non-crossing (1, 2)-configurations on n− 1 vertices.

• SSYT(2∗, n − 1): the set of two-column semistandard Young tableaux whose maximal
entry is at most n− 1.

Examples of such objects are listed in Appendix A.
Throughout this paper, we use MacMahon’s q-analog of the Catalan numbers. For any nat-

ural number n, the nth q-Catalan number is defined by

Cat(n; q) :=
1

[n+ 1]q

[
2n

n

]
q

=

[
2n

n

]
q

− q
[

2n

n− 1

]
q

(2.3)

=
∑

P∈DYCK(n)

qmaj(P ) =
∑

T∈SYT(n2)

qmaj(T )−n. (2.4)

A definition of maj on standard Young tableaux can be found in the next section. The Narayana
numbers Nar(n, k) := 1

n

(
n
k

)(
n
k−1

)
, indexed by two natural numbers n and k such that 1 6 k 6 n,

are also well-known and have many applications, see the OEIS entry A001263. The Narayana
numbers refine the Catalan numbers in the sense that

∑
k Nar(n, k) = Cat(n). For our purposes,

it suffices to know that the following sets all have cardinality Nar(n, k).

• DYCK(n, k): the set of paths in DYCK(n) with exactly k peaks,

• SYT(n2, k): the set of tableaux in SYT(n2) with exactly k descents,

• NCP(n, k): the set of partitions in NCP(n) with exactly k blocks,

• NCC(n, k): the set of non-crossing (1, 2)-configurations in NCC(n) such that the num-
bers of proper edges plus the number of loops is equal to k − 1,

• NCM(n, k − 1): the set of non-crossing matchings in NCM(n) with k − 1 even edges.

http://oeis.org/A000108
http://oeis.org/A001263
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• SSYT(2k−1, n− 1): the set of two-column tableaux in SSYT(2∗, n−1) with exactly k−1
rows.

The q-Narayana numbers are defined as the q-analog

Nar(n, k; q) :=
qk(k−1)

[n]q

[
n

k

]
q

[
n

k − 1

]
q

=
∑

P∈DYCK(n,k)

qmaj(P )

=
∑

T∈SYT(n2,k)

qmaj(T )−n.

The q-Narayana numbers refine the q-Catalan numbers, that is,
∑

kNar(n, k; q) is equal to
Cat(n; q). We also mention that there is a bijection NCPtoDYCK from NCP(n, k) to DYCK(n, k)
described in Bijection 8. Thus,

Nar(n, k; q) =
∑

π∈NCP(n,k)

qmaj(NCPtoDYCK(π)). (2.5)

For more background, see [Sim94] and [ZZ11].

2.4. TypeB Catalan numbers

We shall now describe the type B analogs of the combinatorial objects we saw in the previous
section. The type B Catalan numbers CatB(n) are defined as

CatB(n) :=

(
2n

n

)
=

n∑
k=0

(
n

k

)(
n

k

)
. (2.6)

The type B Narayana numbers NarB(n, k) are defined as

NarB(n, k) :=

(
n

k

)2

. (2.7)

The type B Narayana numbers clearly refine the B Catalan numbers, as can be seen from (2.6).
Among other things, they count the number of elements in PATH(n) with k valleys. For a
more comprehensive list, see A008459 in the OEIS, and also the reference [Arm09] for more
background. The q-analogs of the typeB Catalan numbers and the typeB q-Narayana numbers
are defined as

CatB(n; q) :=

[
2n

n

]
q

, NarB(n, k; q) := qk
2

[
n

k

]
q

[
n

k

]
q

. (2.8)

It is straightforward to verify that CatB(n; q) =
∑n

k=0 NarB(n, k; q). Moreover, one can show
that

n∑
k=0

tkNarB(n, k; q) =
∑

T∈SYT((2n,n)/(n))

t|Des(T )|qmaj(T ) (2.9)

=
∑

P∈PATH(n)

tvalleys(P )qmaj(P ), (2.10)

http://oeis.org/A008459
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see [Sul98, Sul02].
The following combinatorial interpretation of the type B q-Narayana numbers is mentioned

in I. Macdonald’s book [Mac95, p. 400]. Let V be a 2n-dimensional vector space over Fq, and
let U be an n-dimensional subspace of V . Then NarB(n, k; q) is the number of n-dimensional
subspaces U ′ of V such that dim(U ∩ U ′) = n− k.

2.5. Overview of the CSP on Catalan and Narayana objects

Table 2.1 and Table 2.2 list the state-of-the-art of the CSP on Catalan-type objects of typeA and
B respectively, including the results proven in the present paper. Examples of such objects can
be found in Appendix A. We use several bijections (described in Appendix B) between Catalan
and Narayana objects, see Figure 2.1.

SYT(n2, k) NCM(n, k − 1) DYCK(n, k)

NCP(n, k)

NCC(n, k)

SSYT(2k−1, n− 1)

Bijection 7
Bijection 8

Bijection 2

Bijection 3

Bijection 4 ◦ Bijection 6

Figure 2.1: Schematic overview of the Narayana zoo. Note that we have bijections from
SYT(n2) → NCM(n) (Bijection 6) and NCM(n) → DYCK(n) (Bijection 4), but they do
not respect the particular Narayana refinements.

The bijections in Figure 2.1 respect a Narayana refinement and so, for example, SYT(n2, k),
NCM(n, k − 1) and NCP(n, k) are all equinumerous. Furthermore, composing the natural
bijections Bijection 6 and the inverse of Bijection 7, we get that promotion on SYT corresponds
to rotation on non-crossing matchings.

However, promotion on standard Young tableaux does not preserve the number of descents,
but rotation preserves the number of even edges of matchings. It follows that the cyclic siev-
ing phenomenon on non-crossing matchings with a specified number of even edges does not
correspond to one on SYT(n2) with a fixed number of descents with promotion as the action.
In general, a specific Narayana refinement might be incompatible with a cyclic group action.
By Bijection 6, here the compatible statistic one should use for SYT(n2) is the number of even
entries in the first row.

A note on the general philosophy of the paper. Having many different sets of objects and well-
behaved bijections between these sets turns out to be a very fruitful approach to proving instances
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TypeA set & reference Group & polynomial

Triangulations of an n-gon Rotation rotn
[RSW04, Thm. 7.1] Cat(n− 2; q)
Triangulations of an n-gon with k ears Rotation rotn
Theorem 8.2 Complicated

Two-row standard Young tableaux Promotion ∂2n
[Rho10, Thm. 1.3] Cat(n; q)
Non-crossing matchings Rotation rot2n
See [Hei07, Thm. 5] and [Rho10, Thm. 8.3]. Cat(n; q)
Non-crossing partitions Kreweras compl., krew2n

[Hei07, Thm. 1] Cat(n; q)

Non-crossing matchings with k short edges Rotation rot2n

Theorem 4.8 qk(k−2)(1+qn)
[n+1]q

[
n+1
k

]
q

[
n−2
k−2

]
q

Two-row SYT with k cyclic descents Promotion ∂2n
Theorem 4.8 qk(k−2)(1+qn)

[n+1]q

[
n+1
k

]
q

[
n−2
k−2

]
q

Non-crossing partitions with k parts Rotation rotn
[RSW04, Thm. 7.2] Nar(n, k; q)
Non-crossing matchings with k even edges Rotation rotn
Proposition 4.1 Nar(n, k; q)

Non-cross. (1,2)-config. Rotation rotn
[Thi17] Cat(n+ 1; q)
Non-cross. (1,2)-config. with l loops and e edges Rotation rotn

Theorem 5.9 qe(e+1)+(n+1)l

[e+1]q

[
n

e,e,l,n−2e−l

]
q

Non-cross. (1,2)-config. with k edges or loops Rotation rotn
Corollary 5.10 Nar(n+ 1, k; q)

Two-column SSYT, SSYT(2k, n) k-promotion ∂̂n
Theorem 7.3 Nar(n+ 1, k + 1; q).

Non-cross. (1,2)-config. Twisted rotation twist2n
Theorem 5.4

[
2n
n

]
q
− q2

[
2n
n−2

]
q

Table 2.1: The current state-of-the-art regarding cyclic sieving on type A Catalan objects,
including the new results presented in this article. The four major blocks concern a group action
of size n or 2n, and q-analogs of Cat(n− 2), Cat(n), Cat(n+ 1) and Cat(n), respectively. The
expression

[
2n
n

]
q
− q2

[
2n
n−2

]
q

is a new q-analog of Catalan numbers in the context of the CSP. The
additional partitioning within blocks represents a more subjective logical grouping.
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TypeB set & reference Group & polynomial

Binary words BW(2n, n) Cyclic shift shift2n
[RSW04, Prop. 4.4] CatB(n; q)
Skew two-row SYT, SYT((2n, n)/(n)) Promotion ∂2n
[SW12, Section 3.1] CatB(n; q)
Type B root poset order ideals OIB(n) Rowmotion, ρ2n
[AST13, Thm. 1.5] and [SW12] CatB(n; q)

Binary words BW(2n, n) with k cyclic descents Cyclic shift shift2n
Proposition 6.4, [AS18, Thm. 1.5] qk(k−1)(1 + qn)

[
n
k

]
q

[
n−1
k−1

]
q

Type B non-crossing partitions NCPB(n) Rotation rotBn

[BR11, Thm. 1.1], see also Proposition 6.1 CatB(n; q)
Marked (1, 2)-configs. Twisted rotation twist22n
Theorem 6.6 CatB(n; q)

NCPB(n) with 2k or 2k + 1 blocks Rotation rotBn

(6.2) in Proposition 6.2 NarB(n, k; q)

Skew two-column SSYT, SSYT(2k1k/1k, n) k-promotion ∂̂n
Theorem 7.5 qk(k+1)

[
n
k

]
q

2

Marked (1, 2)-configs. with e edges and l loops Rotation rotn
Theorem 6.10 Complicated

Marked (1, 2)-configs. with k edges and loops Rotation rotn
Corollary 6.11 Complicated

Type B triangulations on 2n+ 2 vertices Rotation rotn+1

Proposition 8.5 CatB(n; q)

Table 2.2: The current state-of-the-art regarding cyclic sieving on type B Catalan objects,
including the new results presented in this article. The three major groupings concern group
actions of order 2n, n and n + 1, respectively. The additional partitioning within blocks is to
distinguish different refinements and q-analogues.
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of the CSP. In this context, well-behaved often times means that the bijection is equivariant. If a
group action looks complicated on a certain set, it can perhaps be made easier if one first applies
an equivariant bijection and then studies the image. For example, promotion on SYT(n2) is
complicated while rotation on NCM(n) is easier. There is a type of converse of the above. If
one has two different CSP triples with identical CSP polynomials and whose cyclic groups have
the same order, then there exists an equivariant bijection between these two sets (by sending
orbits to orbits of the same size).
Remark 2.8. Note that there is a natural s-interpolation also between type A and type B Fuß–
Catalan numbers. Recall that the type A and B Fuß–Catalan numbers are

1

kn+ 1

(
kn+ 1

n

)
and

(
kn

n

)
,

respectively, where we recover the classical Catalan numbers when k = 2. P. Drube [Dru18]
proves that the type A Fuß–Catalan numbers are realized as the number of set-valued standard
Young tableaux of shape (n, n) where the boxes in the top row are occupied by singleton sets of
numbers, while each box in the bottom row is filled with a set of size k−1. Although Drube does
not consider skew shapes in his article, it is easy to see that the number of ways to fill the skew
shape (2n, n)/(n) with the same constraints is exactly

(
kn
n

)
. Hence, by considering set-valued

SYTs of shape (n+s, n)/(s), with the above constraints on the number of elements in each box,
we get a natural s-interpolation between Fuß–Catalan numbers of type A (s = 0) and type B
(s = n). This is an interesting generalisation that we do not investigate in this paper. Note that
there exist CSP also for Fuß-Catalan numbers, see [KM13].

3. TypeA/B-Narayana numbers and a quest for a q-analog

We shall now discuss a natural interpolation between type A and type B Catalan numbers. The
following observation illustrates this interpolation. For any s > 0, the sets below are equinu-
merous:

1. the set of skew standard Young tableaux SYT((n+ s, n)/(s)),

2. the set of lattice paths, PATHs(n),

3. the set of order ideals in the typeB root poset with at most s elements on the top diagonal.

Note that for s = 0, we recover sets of cardinality Cat(n), and for s = n, we recover sets of
cardinality CatB(n). Bijective arguments are given below in Proposition 3.1 and Proposition 3.4.

Let T ∈ SYT(λ/µ) where the diagram of λ/µ has n boxes. A descent of T is an integer
j ∈ {1, . . . , n− 1} such that j+ 1 appears in a row below j. The major index of T is the sum of
the descents. The major-index generating function for skew standard Young tableaux is defined
as

fλ/µ(q) :=
∑

T∈SYT(λ/µ)

qmaj(T ) (3.1)
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when λ/µ is a skew shape. Our motivation for studying this polynomial is [APRU21, Thm. 46]
which states that for any skew shape λ/µ where each row contains a multiple of m boxes, there
must exist some cyclic group action Cm of order m such that(

SYT(λ/µ), Cm, f
λ/µ(q)

)
(3.2)

is a CSP triple. We do not know how such a group action looks like except in the case m = 2.
In that case one can use evacuation, defined by Schützenberger [Sch63].

3.1. Skew standard Young tableaux with two rows

We now describe a bijection between skew SYT with two rows and certain lattice paths.

Proposition 3.1. Given s ∈ {0, . . . , n}, there is a bijection

SYT((n+ s, n)/(s)) −→ PATHs(n)

which sends descents in the tableau to peaks in the path.

Proof. A natural generalization of the standard bijection works: an i in the upper or lower row
corresponds to the ith step in the path being north or east, respectively. Evidently, a descent in
the tableau is sent to a peak in the path.

Recall that for a SYT T the statistic maj(T ) is the sum of the position of the descents, which
is then sent to pmaj(P ) which is the sum of the positions of the peaks in the corresponding path
P . Let

Xn,s(q) :=
∑

P∈PATHs(n)

qpmaj(P ) and Yn,s(q) :=
∑

P∈PATHs(n)

qmaj(P ).

By Proposition 3.1 we also have Xn,s(q) = f (n+s,n)/(s)(q).

Proposition 3.2 ([Kra89, Thm. 7]). For n > 1 and n > s > 0,

Xn,s(q) =

[
2n

n

]
q

−
[

2n

n− s− 1

]
q

and Yn,s(q) =

[
2n

n

]
q

− qs+1

[
2n

n− s− 1

]
q

. (3.3)

In particular,

q−nXn,0(q) = Yn,0(q) = Cat(n; q) and Xn,n(q) = Yn,n(q) = CatB(n; q).

In light of (3.2), it would be of great interest to explicitly describe a group action Cn so that
Xn,s(q) or Yn,s(q) is the corresponding polynomial in a CSP triple. We know that such an action
exists, as mentioned earlier in (3.2). In Section 5 we give an explicit action in the case s = 1,
which gives a new CSP triple involving the Catalan numbers. The values of Yn,s(q) at roots of
unity are given in the next lemma.
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Lemma 3.3. Let ξ be a primitive (2n)th root of unity. For all integers n > s > 0 and d | 2n, we
have

Yn,s
(
ξd
)

= χ(d, 2)

(
d
d
2

)
− (−1)dχ(n− s− 1, 2n/d)

(
d

d(n−s−1)
2n

)
.

where χ(a, b) is equal to 1 if b divides a and 0 otherwise.

Proof. The evaluation follows from the q-Lucas theorem, Theorem 2.4.

It follows from Lemma 3.3 that the values of Cat(n; q) when evaluated at a (2n)th root of
unity are non-negative integers, and thus also for nth roots of unity. Similarly, one can say use
the q-Lucas theorem to prove the same thing for an (n − 1)th and an (n + 2)th root of unity.
In Table 2.1, we see that there are CSPs for these four orders, with the q-Catalan numbers as
the corresponding CSP polynomials. In contrast, it can be shown that Nar(n, k; q) evaluates to
non-negative integer values at (n − 1)th and nth roots of unity but not at (n + 2)th nor at (2n)th

roots of unity. As an explicit counter-example, consider Nar(2, 2; q) = q2.

3.2. Root lattices in typeA/B

The following illustrate the root ideals of Bn where n = 3. There are in total
(
2·3
3

)
= 20 such

ideals. A root ideal is simply a lower set in the root poset—marked as shaded boxes in the
diagrams below. Root ideals are also called non-nesting partitions of type W , where W is the
Weyl group of some root system.

The top diagonal in such a diagram is the set of boxes that neither have a box to the right
nor above them. An explicit bijection from the set of skew standard Young tableaux SYT((n+
s, n)/(s)) to the root ideals ofBn with at most s elements on the top diagonal is described below.
First, let OI(n, s) be the set of root ideals with at most s elements on the top diagonal.
Bijection 1. Let a1, a2, . . . , an be on the top row of the skew tableau. We identify this top row
using the bijection in Proposition 3.1 with a path α ∈ PATHs(n) and get that depth(α) =
maxi{ai−2i+1}. Let j be the smallest value for which the maximum is obtained, so depth(α) =
aj−2j+1. We then define the map φ by changing the step aj−1, just before reaching maximal
depth for the first time from an east step to a north step. That is, φ(α) = a1, . . . , aj−1, aj −
1, aj, . . . , an. This new path ends at (n − 1, n + 1) and has depth one less than α. We repeat
depth(α) times and get φdepth(α)(α) which ends in (n−depth(α), n+depth(α)) and has depth
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zero. This path always starts with a north step, and the boxes below will make up a root ideal o
in Bn with depth(α) elements in the top diagonal. Since depth(α) 6 s this gives o ∈ OI(n, s)
and the desired map. See Figure 3.1 for an example. The inverse φ−1 is easily obtained by given
a root ideal o, letting β(o) be the north-east path along its boundary, starting with an extra north
step. Now, we change the north step of β(o) after the last time the path has reached maximum
depth to an east step. The map φ has been used many times before, see e.g. [FH85, ALP19].
The inverse of the bijection is obtained by iterating φ−1 until the path ends in (n, n).

2 5 7 8 10
1 3 4 6 9

−→

α
φ(α)

φ2(α) −→

Figure 3.1: An example with: φ2(2, 5, 7, 8, 10) = φ(2, 4, 5, 7, 8, 10) = 1, 2, 4, 5, 7, 8, 10.

We naturally define maj(o) := maj(β(o)) and pmaj(o) := pmaj(β(o)) for o ∈ OI(n, s).

Proposition 3.4. The map in Bijection 1 is a bijection so

|OI(n, s)| =
(

2n

n

)
−
(

2n

n− 1− s

)
.

Furthermore, we get the following q-polynomials∑
o∈OI(n,s)

qpmaj(o) =

[
2n

n

]
q

−
[

2n

n− s− 1

]
q

,

∑
o∈OI(n,s)

qmaj(o) =

[
2n

n

]
q

− q
[

2n

n− s− 1

]
q

+
s∑

d=1

(1− q)
[

2n

n− d

]
q

.

Proof. The map is clearly a bijection and the first formula follows. For the second statement
note that the map φ does not change the peaks and thus not pmaj, but it changes the position
of one valley and decreases maj by 1. Thus the q-polynomial for pmaj is identical to Xn,s(q)
in Proposition 3.2. For maj we know from Proposition 3.2 that paths with depth at most s are
recorded by Yn,s(q). Thus the paths having depth exactly d is qd

[
2n
n−d

]
q
− qd+1

[
2n

n−d−1

]
q
. A path

with depth d is mapped by φd to a root ideal with exactly d elements in the top diagonal. This
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gives the sum ∑
o∈OI(n,s)

qmaj(o) =
s∑

d=0

(
qd
[

2n

n− d

]
q

− qd+1

[
2n

n− d− 1

]
q

)
q−d,

which simplifies to the formula given.

Remark 3.5. There is a notion of rowmotion as an action on order ideals. Unfortunately, this
action does not have the order we are looking for when restricted to OI(n, s), see [SW12]. For
example, for n = 3 and s = 1 we have the following orbit of length 4, implying that the action
does not have the order we would like (which is n = 3).

−→ −→ −→ −→

3.3. Narayana connection

We discuss an open problem regarding the interpolation between typeA and typeB q-Narayana
numbers. This problem is part of a broader set of questions regarding the interplay of cyclic
sieving and characters in the symmetric group, see [APRU21]. We argue that the small special
case discussed below is interesting in its own right.

Recall that ∑
D∈DYCK(n)

qmaj(D)tpeaks(D) =
n∑
k=1

tkNar(n, k; q),

where the sum ranges over Dyck paths of size n. Hence,
∑n

k=1 Nar(n, k; q) = Yn,0(q). Note
that the set of Dyck paths with k peaks is in bijection with the set of non-crossing set partitions
of [n] with k blocks.

Problem 3.6 (Main Narayana problem). Refine the expression

Yn,s(q) =

[
2n

n

]
q

− qs+1

[
2n

n− s− 1

]
q

for all s > 0 in the same way as the q-Narayana numbers Nar(n, k; q) refine the case s = 0.

This problem is not really interesting unless we impose some additional requirements. In
Problem 3.6, we are hoping to find a family of polynomials, N(s, n, k; q) ∈ N[q] with some of
the following properties:

Specializes to Nar(n, k; q): For s = 0, we have

N(0, n, k; q) = Nar(n, k; q).

Refines the Yn,s(q) in (3.3): We want that for all s > 0, we have the identity
n∑
k=1

N(s, n, k; q) =

[
2n

n

]
q

− qs+1

[
2n

n− 1− s

]
q

.
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Is given by some generalization of the the peak statistic: We hope for some statistic
peakss(P ) such that peaks0(P ) is the usual number of peaks of a Dyck path and∑

P∈PATHs(n)

qmaj(P )tpeakss(P ) =
n∑
k=1

tkN(s, n, k; q). (3.4)

We can alternatively consider some other family of combinatorial objects mentioned in (3), such
as type B root ideals with at most s elements on the top diagonal, or standard Young tableaux
in SYT((n+ s, n)/(s)) with some type of generalized descents.

Refines CatB(n) at s = n: For s = n, we have a natural candidate

N(n, n, k; q) = qk(k−1)
[
n− 1

k − 1

]
q

[
n+ 1

k

]
q

= [n+ 1]qNar(n, k; q). (3.5)

Note that N(n, n, k; q) is not equal to NarB(n, k; q) that appear in Section 2.4. The combina-
torial interpretation in this case is as follows:∑

P∈PATH(n)

qmaj(P )tmodpeaks(P ) =
n∑
k=1

tkqk(k−1)
[
n− 1

k − 1

]
q

[
n+ 1

k

]
q

where a modified peak is any occurrence of 01 (north-east) in the path, plus 1 if the path ends
with a north step.

Palindromicity: The Narayana numbers have quite nice properties. First of all,
n∑
k=1

tkNar(n, k)

is a palindromic polynomial (in t). For example, for n = 5, this sum is t+10t2+20t3+10t4+t5.
One would therefore hope that for fixed s the sum

∑n
k=1 t

kN(s, n, k; q) is palindromic. The
s = n candidate given by [n+ 1]qNar(n, k; q) is also palindromic.

Palindromicity II: Each N(s, n, k; q) is a palindromic polynomial (in q). This is true for
Nar(n, k; q) and the expression in (3.5).

Gamma-positivity: The sum
∑n

k=1 t
kN(s, n, k; 0) is γ(t)-positive (see the survey [Ath18]

for the definition). The corresponding statement seems to hold for the expression in (3.5). One
might hope that the general expression

∑n
k=1 t

kN(s, n, k; 0) also has γ(t)-positivity.

Values at roots of unity and cyclic sieving: We require that N(s, n, k; ξ) is a non-negative
integer whenever ξ is an nth (or better, (2n)th) root of unity. This resonates well with the palin-
dromicity properties, and cyclic sieving for (3.2). Taking (3.4) into account, we would like that
for every k > 0,

({P ∈ PATHs(n) : peakss(P ) = k}, 〈βn〉, N(s, n, k; q))

is a CSP triple for some action βn of order n. Note that such a refinement is known in the case
s = 0, as shown in the table below.
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Set Group action q-statistic peak-statistic

Dyck paths — maj peaks
Non-crossing partitions† Rotation maj blocks

SYT(n2) ∂22n maj —
Non-crossing matchings† Rotation maj —

Table 3.1: We only have the full Narayana refinement picture for the non-crossing partition
family. That is, there is a “peak”-statistic and a group action of order n preserving the peak-
statistic. Note that promotion on Dyck paths does not preserve the number of peaks. †For these
sets maj is computed via a bijection to paths.

Example 3.7. For n = 2, s = 1, we have that Y2,1(q) = q4 + q3 + q2 + q + 1. We want to
refine this into two polynomials corresponding to k = 1, 2. The criteria to have non-negative
evaluations at roots at unity, here −1, tells us that q3 and q must be together with at least one
other term each. By palindromicity II there are five possibilities forN(1, 2, 2; q): q4+q3+q+1,
q4 + q3 + q2 + q, q4 + q3 + q2, q4 + q3 and q4.

4. Case s = 0 and non-crossing matchings

The goal of this section is to prove two Narayana-refinements of cyclic sieving on non-crossing
perfect matchings by considering the number of even edges and short edges. The second result
corresponds to a refinement of the CSP on SYT(n2) under promotion, where we refine the set
by the number of cyclic descents.

4.1. Even edge refinement

Given a non-crossing perfect matching, let even(M) denote the number of edges {i, j} where
i < j and i is even. We refer to them as even edges, and all non-even edges are called odd. Let
NCM(n, k) be the set of M ∈ NCM(n) such that even(M) = k.

Note that for parity reasons an edge {i, j}must have i+ j odd. Thus the set of non-crossing
perfect matchings on 2n vertices with k even edges is invariant under rotation by rotn since

• any odd edge (i, 2n) is mapped to the even edge (2, i+ 2);

• any even edge (j, 2n− 1) is mapped to the odd edge (1, j + 2).
The first result is essentially just a restatement of [RSW04, Thm. 7.2].

Proposition 4.1. For 0 6 k 6 n, the triple

(NCM(n, k), rotn,Nar(n, k + 1; q)) (4.1)

exhibits the cyclic sieving phenomenon.
Proof. Mapping non-crossing matchings to non-crossing partitions via the inverse of NCPtoNCM
takes matchings with k even edges to partitions with k + 1 blocks, see Bijection 7. This CSP
result was noted already in [RSW04, Thm. 7.2].
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4.2. Short edge refinement

Definition 4.2. We define promotion ∂2n : SYT(n2)→ SYT(n2) as the following composition
of bijections:

∂2n := SYTtoNCM−1 ◦ rot2n ◦ SYTtoNCM,
where SYTtoNCM is the standard Bijection 6 in Appendix B.1. If T ∈ SYT(n2), we use the
shorthand ∂2nT to mean ∂2n(T ).

Promotion is originally defined for Young tableaux of all shapes using the so-called jeu-
de-taquin, see Appendix C. The notion has been generalized to arbitrary posets by R. Stan-
ley, see [Sta09].

Definition 4.3. Let T ∈ SYT(n2). Define the cyclic descent set cDes(T ) as follows. We have
Des(T ) = cDes(T ) ∩ [1, 2n− 1] and let 2n ∈ cDes(T ) if and only if 1 ∈ cDes(∂2nT ). Denote
the number of cyclic descents of T by cdes(T ) := |cDes(T )| and denote SYTcdes(n

2, k) the set
of T ∈ SYT(n2) such that cdes(T ) = k.

The above definition of cyclic descent set can be generalized in a straightforward manner to
all rectangular standard Young tableaux—that is, tableaux of shape λ = (ab). In [Hua20], an
explicit construction is given, where it is shown that all shapes which are not connected ribbons
admit a type of cyclic descent statistic. It follows that one can define the set SYTcdes(λ, k) for
all such shapes λ as well.

The set SYTcdes(n
2, k) is in bijection with a certain subset of DYCK(n) which we shall now

describe. We first recall the standard bijection SYTtoDYCK between SYT(n2) and DYCK(n):
given a T ∈ SYT(n2), let SYTtoDYCK(T ) = w1w2 · · ·w2n be the Dyck path where wi = 0 if i is
in the top row and wi = 1 otherwise.

Call a Dyck path w1w2w3 · · ·w2n elevated if w2w3 · · ·w2n−1 is also a Dyck path. A Dyck
path which is not elevated is called non-elevated. Elevated Dyck paths of size n are in natural
bijection with Dyck paths of size n− 1. The next lemma now easily follows: the “if” direction
from the fact that vertex 1 in SYTtoNCM(T ) cannot then be matched to any other vertex than
2n, and the “only if” direction since vertex 2 must be a start vertex and 2n− 1 an end vertex if
{1, 2n} is an edge.

Lemma 4.4. Let T ∈ SYTcdes(n
2, k). Then 2n ∈ cDes(T ) if and only if SYTtoDYCK(T ) is

elevated.

It follows from Lemma 4.4 that the restriction of SYTtoDYCK to SYTcdes(n
2, k) is a bijection

to the set of D ∈ DYCK(n) such that D either is non-elevated and has k peaks or is elevated
and has k − 1 peaks. Hence, we get (using an argument by T. Došlić [Doš10, Prop. 2.1]),

|SYTcdes(n
2, k)| = Nar(n, k)− Nar(n− 1, k) + Nar(n− 1, k − 1)

=
2

n+ 1

(
n+ 1

k

)(
n− 2

k − 2

)
. (4.2)
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These numbers are a shifted variant of the OEIS entry A108838. Define the following q-analog
of these numbers. For any two natural numbers n and k, let

Syt(n, k; q) :=
∑

T∈SYTcdes(n2,k)

qmaj(T )−n =
∑
D

qmaj(D) (4.3)

where the second sum is taken over allD ∈ DYCK(n) that are either non-elevated with k peaks
or elevated with k − 1 peaks. For integers k, n > 1 we claim that

Syt(n, k; q) = Nar(n, k; q)− qk−1Nar(n− 1, k; q) + qk−2Nar(n− 1, k − 1; q). (4.4)

To see this, consider the restriction of SYTtoDYCK to SYTcdes(n
2, k). If D is an elevated Dyck

path of size n with k peaks andD′ is the corresponding Dyck path of size n−1, then maj(D)−
maj(D′) = k − 1, as each of the k − 1 valleys contribute one less to the major index in D′
compared to in D.

The polynomials Syt(n, k; q) refine the q-Catalan numbers, which is easily seen by compar-
ing their definition with (2.3).

Proposition 4.5. For all integers n,∑
k

Syt(n, k; q) = Cat(n; q).

It is easy to see that Syt(0, 0; q) = Syt(1, 1; q) = 1 and Syt(n, k; q) = 0 for all other
pairs of natural numbers n, k such that either n 6 1 or k 6 1. For larger n and k, we have the
following closed form for Syt(n, k; q).

Lemma 4.6. For all integers k, n > 2,

Syt(n, k; q) =
qk(k−2)(1 + qn)

[n+ 1]q

[
n+ 1

k

]
q

[
n− 2

k − 2

]
q

. (4.5)

Proof. We may restrict ourselves to the case when n > k as both sides of (4.5) are identically
zero otherwise. We write Syt(n, k; q) using the expression in (4.4) and expand the q-Narayana
numbers to obtain

qk(k−1)

[n]q

[
n

k

]
q

[
n

k − 1

]
q

− qk−1 q
k(k−1)

[n− 1]q

[
n− 1

k

]
q

[
n− 1

k − 1

]
q

+ qk−2
q(k−1)(k−2)

[n− 1]q

[
n− 1

k − 1

]
q

[
n− 1

k − 2

]
q

=
qk(k−2)

[n+ 1]q

[
n+ 1

k

]
q

[
n− 2

k − 2

]
q

(
qk

[n− 1]q
[k − 1]q

− q2k−1 [n− k + 1]q[n− k]q
[n]q[k − 1]q

+
[k]q
[n]q

)
.

The expression in the parentheses is then rewritten as

qk[n]q[n− 1]q − q2k−1[n− k + 1]q[n− k]q + [k]q[k − 1]q
[n]q[k − 1]q

.

http://oeis.org/A108838
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We must now show that this is equal to 1 + qn or, equivalently, that the following identity holds.

qk[n]q[n− 1]q − q2k−1[n− k + 1]q[n− k]q + [k]q[k − 1]q = (1 + qn)[n]q[k − 1]q (4.6)

This can be proved by elementary algebra.

The edge xy in a non-crossing perfect matching is said to be short if either x = i and
y = i + 1 for some i or if x = 1 and y = 2n. If M ∈ NCM(n), then we denote short(M) its
number of short edges and NCMsh(n, k) the set ofM ∈ NCM(n) such that short(M) = k. The
set SYTcdes(n

2, k) is in a natural bijection with NCMsh(n, k). To see this, we use the standard
bijection SYTtoNCM between SYT(n2) and NCM(n) (see Bijection 6 in Appendix B.1).

1 2 5 6 8
3 4 7 9 10

SYTtoNCM−−−−−−−−→

1
2

3

4

5
6

7

8

9

10

It follows from our definition of promotion that SYTtoNCM is an equivariant bijection in the
sense that

SYTtoNCM(∂2nT ) = rot2n(SYTtoNCM(T )). (4.7)

From the definition of SYTtoNCM and (4.7), one can prove the following lemma.

Lemma 4.7. Let T ∈ SYT(n2). Then x ∈ cDes(T ) if and only if xy, where x < y, is a short
edge in SYTtoNCM(T ).

Proof. If xy is short in SYTtoNCM(T ) and y 6= 2n, x must be on row 1 and y = x + 1 on
row 2 in T , so x ∈ Des(T ) and hence x ∈ cDes(T ). If y = 2n, then {1, 2} is an edge in
rot2n(SYTtoNCM(T )) = SYTtoNCM(∂2nT ), so 1 is a descent in ∂2nT . Thus x ∈ cDes(T ).

If x ∈ cDes(T ), either x ∈ Des(T ) or x = 2n. In the former case, x is on row 1 and x+1 on
row 2 in T . Hence x is a start vertex and x+1 an end vertex in SYTtoNCM(T ), and the matching is
forced to have the short edge {x, x+ 1}. In the latter, 1 ∈ Des(∂2nT ) so {1, 2} is a short edge in
SYTtoNCM(∂2nT ) = rot2n(SYTtoNCM(T )). Hence {1, 2n} is a short edge in SYTtoNCM(T ).

Theorem 4.8. Let n, k be natural numbers. The triple

(NCMsh(n, k), 〈rot2n〉,Syt(n, k; q))

exhibits the cyclic sieving phenomenon.

Proof. Let ξ be a primitive (2n)th root of unity. Write k = k1 o(ξd) + k0 for the unique natural
numbers k1 and k0 such that 0 6 k0 < o(ξd). Note that o(ξd) = 2n/ gcd(2n, d). Then, by
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dividing into cases and applying the q-Lucas theorem (Theorem 2.4) twice, we get

Syt(n, k; ξd) =



2
n+1

(
n+1
k

)(
n−2
k−2

)
if d = 2n

2
(
n/ o(ξd)
k1

)(
n/ o(ξd)−1
k1−1

)
if d 6= 2n, o(ξd) | n and k0 = 0

2n
n+1

(
(n+1)/2

k1

)(
(n−3)/2
k1−1

)
if o(ξd) = 2, n odd and 2 | k

0 otherwise.

We prove that these evaluations agree with the number of fixed points in NCMsh(n, k) under
rotdn on a case-by-case basis.

Case d = 2n : Trivial.

Case d 6= 2n, o(ξd) | n and k0 = 0 : By using Bijection 5, we see that such rotationally
symmetric perfect matchings are in bijection with the set BWk1(2n/ o(ξd)), where k1 denotes
the number of cyclic descents. To see that this set has the desired cardinality, we equate the two
expressions in (6.4) and (6.5) and then take q = 1.

Case o(ξd) = 2, n odd and 2 | k : It is easy to check that the assertion holds in the case
n = 3 and k = 2. It thus remains to show the assertion for n > 3. Such a non-crossing perfect
matching must have a diagonal (an edge that connects two vertices i and i + n (mod 2n)) that
divides the matching into two halves. The diagonal can be chosen in n ways. The matching
is now determined uniquely by one of its two halves. In one half, we choose a non-crossing
matching on (n− 1) vertices with k/2 short edges. Such a matching is either (i) an element of
NCMsh((n − 1)/2, k/2) which does not have an edge between the two vertices that lie closest
to the diagonal or (ii) an element of NCMsh((n− 1)/2, k/2 + 1) which does have a short edge
between the two vertices that lie closest to the diagonal.

Let us note that, in general, the fraction of elements in NCMsh(n, k) that have a short edge
adjacent to a given side is equal to k/2n. This is easily seen by considering rotations of such a
non-crossing perfect matching. So in our case the number of matchings fixed by rotd2n is equal to

n

(
n− 1− k/2

n− 1
|NCMsh

(
n− 1

2
,
k

2

)
|+ k/2 + 1

n− 1
|NCMsh

(
n− 1

2
,
k

2
+ 1

)
|
)
.

Substituting r = k/2,m = (n− 1)/2 and using the values from (4.2) (recall |NCMsh (a, b) | =
|SYTcdes (a2, b) |), this is easily shown to equal 2(2m+1)

2m+2

(
m+1
r

)(
m−1
r−1

)
as is given bySyt(n, k;−1).

The remaining cases : We need to show that, in all the remaining cases, there are no rotation-
ally symmetric non-crossing perfect matchings. Suppose first that o(ξd) = 2, n is odd and 2 - k.
It is clear that such a non-crossing perfect matching must have a diagonal dividing the matching
into two halves. The two halves are identical up to a rotation of π radians and so, in particular,
they must have the same number of short edges. In other words, the number of short edges must
be even, contradicting 2 - k. Suppose next that o(ξd) | n and k0 6= 0. Such a matching is
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completely determined by how vertices 1, 2, . . . , d are paired up. It follows that the number of
short edges must be a multiple of d, contradicting k0 6= 0.

Suppose lastly that o(ξd) - n. Since o(ξd) = 2n/ gcd(2n, d), o(ξd) gcd(2n, d) = 2n and
2 cannot divide gcd(2n, d). Hence d is odd. Using this, we see that there cannot be any non-
crossing perfect matchings that are fixed under rotation of an odd number of steps, except in the
case when o(ξd) = 2 and n is odd, i.e. when the matching has a diagonal. This exhausts all
possibilities and thus the proof is done.

Theorem 4.8 can be stated in an alternative way as follows. Since SYTtoNCM maps cyclic
descents to short edges, we see that SYTcdes(λ, k) is closed under promotion for all rectangular
λ. Recall that (SYT(λ), 〈∂〉,Cat(n; q)) exhibits the cyclic sieving phenomenon, for rectangular
λ. In the case when λ = (n, n), we have the following refinement with regards to the number of
cyclic descents.

Corollary 4.9. Let n, k be natural numbers. The triple

(SYTcdes(n
2, k), 〈∂2n〉,Syt(n, k; q))

exhibits the cyclic sieving phenomenon.

In parallel to us, C. Ahlbach, B. Rhoades and J. Swanson [ARS20] have written an unpub-
lished manuscript in which they prove Theorem 4.8, Corollary 4.9 and state Conjecture 4.10 in
a similar way to what we do here.

It follows from [Rho10, Lemma 3.3] that the number of cyclic descents remains fixed un-
der promotion of rectangular standard Young tableaux. Experiments suggests that Corollary 4.9
generalizes to all rectangular standard Young tableaux. This would be a refinement of the fa-
mous CSP result on rectangular tableaux, see [Rho10, Theorem 1.3]. More precisely, we denote
fλk (q) :=

∑
T q

maj(T ) where the sum is taken over all standard Young tableaux of shape λ with
exactly k cyclic descents.

Conjecture 4.10. Let n,m, k be natural numbers and put λ = (nm). The triple(
SYTcdes(λ, k), 〈∂nm〉, q−κ(λ)fλk (q)

)
exhibits the cyclic sieving phenomenon. Here, κ(λ) :=

∑
i(i− 1)λi.

5. Case s = 1 and non-crossing (1,2)-configurations

For s = 1, there is a nice Catalan family, given by non-crossing (1, 2)-configurations described
in [Sta15, Family 60]. In the first subsection, we introduce a twisted rotation action on such
configurations, and prove a new instance of Catalan CSP. In the second subsection, we refine a
CSP result of Thiel, where the group action is given by rotation.
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5.1. A new Catalan CSP under twisted rotation

A non-crossing (1, 2)-configuration of size n is constructed by placing vertices 1, . . . , n − 1
around a circle, and then drawing some non-intersecting edges between the vertices. Here, we
allow vertices to have a loop, which is counted as an edge. There are Cat(n) elements in this
family. Let NCC(n) be the set of such objects of size n, and let NCC(n, k) be the subset of
those with k − 1 edges, loops included. See Appendix A for a figure when n = 3.
Bijection 2 (Laser construction). See Figure 5.1 for an example. Let P ∈ DP(n). Define
the non-crossing (1, 2)-configuration DYCKtoNCC(P ) as follows. First, number the east-steps
with 1, 2, . . . , n − 1. Secondly, if there is a valley at (i, j), draw a line (a laser) from (i, j) to
(i + ∆, j + ∆), where ∆ is the smallest positive integer such that (i + ∆, j + ∆) lies on P .
Now, consider an east-step ending in (i1, j1) on P . If there is a laser drawn from (i1, j1), then let
(i2, j2) be the vertex of P where this laser ends. Then there is an edge between j1 and j2 − 1 in
DYCKtoNCC(P ) (this can be a loop). The remaining vertices in DYCKtoNCC(P ) will be unmarked,
that is, unpaired and without a loop.

Proposition 5.1. The map DYCKtoNCC is a bijection DP(n)→ NCC(n).

A proof of Proposition 5.1 can essentially be found in [Bod19, Prop. 6.5]. M. Bodnar studies
so called n+ 1, n-Dyck paths and shows that these are in bijection with NCC(n). It is not hard,
however, to see that the set of n + 1, n-Dyck paths is in bijection with DYCK(n) by removing
the first north-step.

Note that there is a natural correspondence between Dyck paths of size n and paths of size
n− 1 that stay weakly above the diagonal y = x− 1. If P = w1w2 · · ·w2n−1w2n is a Dyck path
of size n, then let P ′ = w2 · · ·w2n−1 ∈ PATH1(n − 1). Furthermore, P and P ′ have the same
number of valleys.

1
2 3

4
5

←→

1

2

34

5

Figure 5.1: An example of the bijection DYCKtoNCC in Bijection 2.

Lemma 5.2. We have that |NCC(n, k)| = Nar(n, k), the Narayana numbers.

Proof. The bijection DYCKtoNCC maps Dyck paths with k − 1 valleys to non-crossing (1, 2)-
configurations with k − 1 edges. It remains to note that a Dyck path with k − 1 valleys has k
peaks.
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Remark 5.3. Recall that Motzkin numbersMi count the number of ways to draw non-intersecting
chords on i vertices arranged around a circle, see A001006 in the OEIS. The set

{C ∈ NCC(n+ 1) : loops(C) = l}

has cardinality
(
n
l

)
Mn−l sice we can first choose the l vertices which have loops, and then proceed

by choosing one of theMn−l possible arrangements of non-intersecting chords on the remaining
n− l vertices.

Let rotn denote rotation by one step, acting on NCC(n + 1). Furthermore, let γ denote the
the action of removing the mark on vertex 1 if it is marked, and marking it if it is unmarked. It
does not do anything if 1 is connected to an edge. We refer to this as a flip.

Let the twist action be defined as twist2n := rotn ◦ γ. It is straightforward to see that
twist2n generates a cyclic group of order 2n acting on NCC(n + 1). Alternatively, we can
act by (rotn ◦ γ)n−1, which closely resembles promotion. Recall that promotion on SYT may be
defined as a sequence of swaps, for i = 1, 2, . . . , n − 1, where swap i interchanges the labels i
and i+ 1 if possible.

1 2
3

4

5
678

9

10

11
12

rotn ◦ γ−→

1 2
3

4

5
678

9

10

11
12

Figure 5.2: The result of rotn ◦ γ on an element in NCC(13).

Theorem 5.4 (A new cyclic sieving on Catalan objects). The triple(
NCC(n+ 1), 〈twist2n〉,

[
2n

n

]
q

− q2
[

2n

n− 2

]
q

)

exhibits the cyclic sieving phenomenon. Note that[
2n

n

]
q

− q2
[

2n

n− 2

]
q

=
[2]q

[n+ 2]q

[
2n+ 1

n

]
q

.

Proof. We compute the number of fixed points under twistm2n, where we may without loss of
generality assume m | 2n. There are two cases to consider, m odd and m even. In the first, we
must, according to Lemma 3.3, show that the number of fixed points under twistm2n is{(

m
(m−1)/2

)
if m = n/2 is odd,

0 otherwise.

http://oeis.org/A001006
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For the first expression we reason as follows. Since m is odd, any fixed point for such m must
consist of a diagonal (an edge from i to i + m) and two rotationally symmetrical halves, both
consisting of m − 1 vertices. In such a non-crossing configuration, no vertex can be isolated.
To see this, note that if vertex j is isolated, then so is j + m (mod n). But it is clear that j
and j +m (mod n) cannot both be marked or unmarked. Thus, all vertices in the non-crossing
configuration are incident to an edge i.e. it is really a non-crossing matching. The diagonal can
be chosen in m ways and a non-crossing matching on one of the two halves can be chosen in
Cat((m− 1)/2) ways, so there are mCat((m− 1)/2) =

(
m

(m−1)/2

)
fixed points.

In the second case above, if n = m then at least one vertex has to be isolated sincem is odd,
which implies there can be no fixed points. For n/m > 2, we use a “parity” argument. Since
any isolated vertices among S = {n −m + 2, n −m + 3, . . . , n, 1} change from unmarked to
marked and vice versa under twistm2n, the number of isolated vertices has to be even. Since m
is odd, this implies there must be an odd number of edges from S to [n] \ S in a fixed point.
However, note that S and the edges out of S completely determine the configuration. Hence the
edges must have their other endpoints in the two neighboring intervals of length m. But this
violates being rotationally symmetric under rotations of m steps since the number of edges is
odd.

In the case 2 | m, according to Lemma 3.3 we must show that the number of fixed points
under twistm2n is equal to 

(
2n
n

)
−
(

2n
n+2

)
if m = 2n,

Cat(n/2) if m = n is even,(
m
m/2

)
if 2 | m.

Counting fixpoints for the first case is trivial. For the second expression, note that twistn2n is
simply the action of flipping the markings on all vertices. A fixed point can therefore not have
any isolated vertices. What remains are non-crossing matchings, which there are Cat(n/2) many
of.

It remains to prove the third expression. Let m = 2d.
Case n and n/d is even. In this case, the only possible invariant configurations are non-

crossing matchings that are rotationally symmetrical, when rotating 2d steps. Recall from Bi-
jection 5 that such matchings are in bijection with BW(2d, d) and this set clearly has cardinal-
ity
(
2d
d

)
.

Case n/d is odd. Here we can have fixed points under twistm2n with unpaired vertices, for
examples see Figure 5.3. Here the orbit of a vertex j under the operation twistm2n is {j + dk
(mod n)}k∈Z and if 1 6 i 6 d is a unpaired, unmarked (that is without loop) vertex the vertices
{j+ 2dk (mod n)}06k<n/2d must be unmarked whereas {j+ 2dk (mod n)}n/2d<k<n/d will be
marked. Note that in the latter case j+2dk (mod n) ≡ j+d+2dr for r = k−(n/d+1)/2. Thus
it suffices to understand the vertices from 1 to d. We now claim that for every 0 6 i 6 bd/2c
we get a valid fixed point by choosing i left vertices and i right vertices and match them in a
non-crossing manner as in the previous case. Then we can choose to put a loop at any subset of
the remaining d − 2i unpaired vertices. Every fixed point will appear exactly once from each
such choice. This gives a total of

∑bd/2c
i=0

(
d
i

)(
d−i
i

)
2d−2i fixed points. Finally we need to prove

that this sum is equal to
(
2d
d

)
. We will use a bijection to all possible subsets A of size d from two
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rows with numbers 1 to d, the numbers in the top row being blue and the bottom row red. For a
given i we choose i numbers and let both the red and the blue belong to A and then i numbers
such that neither blue nor red belong to A. Finally the term 2d−2i corresponds to choosing any
subset of the remaining d−2i numbers such that the red numbers in that subset belong to A and
the blue in the complement should be in A.

1 2
3

4

5
678

9

10

11
12

1
2

3

4

56

7

8

9
1

2

3

4

56

7

8

9
1

2

3

4

56

7

8

9

Figure 5.3: A fixed point under twistm2n, n = 12, m = 8 and 2n/m = 3 and below an orbit
under twist22n of size 3.

Problem 5.5. It would be nice to refine the CSP triple in Theorem 5.4 to the hypothetical
Narayana case discussed in Section 3. That is, we want the following equality to hold:[

2n

n

]
q

− q2
[

2n

n− 2

]
q

=
n∑
k=1

N(1, n, k; q)

where N(1, n, k; 1) is the number of NCC on n vertices with (k − 1) edges. This is a natural
consideration, as indicated by Lemma 5.2.

5.2. A refinement of Thiel’s result

Recall that rotn acts on non-crossing (1, 2)-configurations of size (n + 1) via a 2π/n-rotation.
M. Thiel proved the following.

Proposition 5.6 (See [Thi17].). Let n ∈ N. The triple

(NCC(n+ 1), 〈rotn〉,Cat(n+ 1; q))

exhibits the cyclic sieving phenomenon.

Denote NCC(n+ 1, e, l) the number of non-crossing (1, 2)-configurations with n vertices,
e proper edges and l loops. We determine an element in NCC(n + 1, e, l) by first choosing the
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2e vertices that are incident to some proper edge in
(
n
2e

)
ways, then choosing a non-crossing

matching among these 2e vertices in Cat(e) ways and finally choosing l of the remaining n−2e
vertices to be loops. Hence,

|NCC(n+ 1, e, l)| =
(
n

2e

)
Cat(e)

(
n− 2e

l

)
. (5.1)

For any e, l ∈ N, define the following q-analog of the above the expression:

Ncc(n, e, l; q) := qe(e+1)+(n+1)l

[
n

2e

]
q

Cat(e; q)

[
n− 2e

l

]
q

(5.2)

= qe(e+1)+(n+1)l 1

[e+ 1]q

[
n

e, e, l, n− 2e− l

]
q

. (5.3)

Example 5.7. Consider the case with n = 4 and k = 2 proper edges and loops. We have

Ncc(4, 2, 0; q) = q6(1 + q2)

Ncc(4, 1, 1; q) = q7(1 + 2q + 3q2 + 3q3 + 2q4 + q5)

Ncc(4, 0, 2; q) = q10(1 + q + 2q2 + q3 + q4)

It is easily verified that these polynomials refine Nar(5, 3; q). That is,

Nar(5, 3; q) = q6(1 + q + 3q2 + 3q3 + 4q4 + 3q5 + 3q6 + q7 + q8)

= Ncc(4, 2, 0; q) + Ncc(4, 1, 1; q) + Ncc(4, 0, 2; q).

Lemma 5.8. For every k > 0 we have the identity

Nar(n+ 1, k + 1; q) =
∑
e+l=k

Ncc(n, e, l; q).

Proof. Unraveling the definitions, it suffices to show that

qk(k+1)

[n+ 1]q

[
n+ 1

k + 1

]
q

[
n+ 1

k

]
q

=
∑
e+l=k

qe(e+1)+(n+1)l

[
n

2e

]
q

[
n− 2e

l

]
q

1

[e+ 1]q

[
2e

e

]
q

.

Expanding the q-binomials gives

qk(k+1)

[n+ 1]

[n+ 1]!

[k + 1]![n− k]!

[n+ 1]!

[k]![n− k + 1]!

=
∑
06e6k

qe(e+1)+(n+1)(k−e)[n]!

[2e]![n− 2e]!

[n− 2e]!

[k − e]![n− k − e]!
[2e]!

[e+ 1]![e]!
,

where we have omitted the q-subscripts for brevity. We start doing cancellations,

qk(k+1) [n]!

[k + 1]![n− k]!

[n+ 1]!

[k]![n− k + 1]!
= [n]!

∑
06e6k

1

[e+ 1]

qe(e+1)+(n+1)(k−e)

[k − e]![n− k − e]![e]![e]! ,
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and additional cancellations and some rewriting gives

qk(k+1) [n+ 1]!

[k]![k + 1]![n− k]![n− k + 1]!
=
∑
06e6k

qe(e+1)+(n+1)(k−e)

[k − e]![n− k − e]![e]![e+ 1]!
.

Further rewriting now gives

qk(k+1) [n+ 1]!

[n− k]![k + 1]!
=
∑
06e6k

qe(e+1)+(n+1)(k−e) [k]!

[k − e]![e]!
[n− k + 1]!

[n− k − e]![e+ 1]!
.

Thus, the identity we wish to prove is equivalent to showing that[
n+ 1

k + 1

]
q

=
∑
06e6k

q(k−e)(n−e−k)
[

k

k − e

]
q

[
n− k + 1

e+ 1

]
q

.

However, this follows from the q-Vandermonde identity (Theorem 2.3) by substituting a = n+
1− k, b = k, c = k + 1 and j = k − e.

It is clear that one can restrict the action of rotn to NCC(n+ 1, e, l). The following result is
a refinement of Proposition 5.6.

Theorem 5.9. Let n, e, l ∈ N. The triple

(NCC(n+ 1, e, l), 〈rotn〉,Ncc(n, e, l; q))

exhibits the cyclic sieving phenomenon.

Proof. Let ξ be a primitive nth root of unity and let d | n. Write e = e1(n/d) + e0 and l =
l1(n/d) + l0 for the unique natural numbers e1, e0, l1, l0 such that 0 6 e0 < n/d and 0 6 l0 <
n/d. Using the q-Lucas theorem (Theorem 2.4) repeatedly, we get

Ncc(n, e, l; ξd) =



(
n
2e

)
Cat(e)

(
n−2e
l

)
if d = n(

d
2e1

)(
2e1
e1

)(
d−2e1
l1

)
if d 6= n, e0 = 0 and l0 = 0(

d
e

)(
e
e1

)(
d−e
l1

)
if d = n/2, e0 = 1 and l0 = 0

0 otherwise.

We prove that these evaluations agree with the number of fixed points in NCC(n+ 1, e, l) under
rotdn on a case-by-case basis.

Case d = n : Trivial.
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Case d 6= n, e0 = 0 and l0 = 0 : A (2, 1)-configuration that is fixed by rotdn is completely
determined by its first d vertices. Among these d vertices, there must be 2e(n/d) = 2e1 vertices
that are incident to an edge and l(n/d) = l1 loops. Choose 2e1 from the first d vertices in

(
d
2e1

)
ways. The number of ways to arrange these edges in an admissible way is equal to the number
of perfect matchings that are invariant when rotating 2e1 steps. By Bijection 5, we know that
there are

(
2e1
e1

)
such matchings. Lastly, choose l1 loops among the remaining d− 2e1 vertices in(

d−2e1
l1

)
ways. These choices are all independent and the desired result follows.

Case d = n/2, e0 = 1 and l0 = 0 : Such a (2, 1)-configuration must have a diagonal (an
edge from i to i + d) that splits the (2, 1)-configuration into two halves. The diagonal can be
chosen in dways. The (2, 1)-configuration is now determined uniquely by one of its halves. Such
a half must have d− 1 vertices with (e− 1)/2 = e1 edges and l1 loops. Choose the 2e1 vertices
that are incident to an edge from the d− 1 vertices in

(
d−1
2e1

)
. The number of the ways to arrange

these edges in an admissible way is equal to the number of non-crossing perfect matchings on
2e1 vertices, namely Cat(e1). Finally, choose l1 loops from the remaining d−e vertices in

(
d−e
l1

)
ways. Since these choices are independent, the number of fixed points is given by

d

(
d− 1

2e1

)
Cat(e1)

(
d− e
l1

)
=

(
d

e

)(
e

e1

)(
d− e
l1

)
where the equality follows from some simple manipulations of binomial coefficients.

The remaining cases : Suppose that P ∈ NCC(n + 1, e, l) is invariant under rotdn, where
d 6= n. If l0 6= 0, then there would be l/(n/d) loops among the first d vertices but n/l is not an
integer, so there cannot be such a P . So assume that l0 = 0. If d 6= n/2 and e0 6= 0, then for each
edge ij in P , there must be edges (i+ d)(j+ d), (i+ 2d)(j+ 2d), . . . , (i+n− d)(j+n− d) in
P (where addition is taken modulo n). So the number of edges must be a multiple of n/d which
cannot be the case if e0 6= 0.

This exhausts all possibilities and thus the proof is done.

Recall that NCC(n + 1, k) is the set of non-crossing (1, 2)-configurations P on n vertices
such that the number of loops plus proper edges of P is equal to k − 1. In other words,

NCC(n+ 1, k) =
k−1⋃
i=0

NCC(n+ 1, i, k − 1− i).

By applying Lemma 5.8, we obtain the following result.

Corollary 5.10. For every n, k ∈ N such that 0 6 k 6 n+ 1,

(NCC(n+ 1, k), 〈rotn〉,Nar(n+ 1, k; q))

exhibits the cyclic sieving phenomenon.

There is already a known instance of the cyclic sieving phenomenon with the q-Narayana
numbers as the polynomial, namely that of non-crossing partitions with a fixed number of blocks
and where the group action is rotation [RSW04, Thm 7.2]. Note, however, that in Corollary 5.10
the cyclic group has a different order than the one with non-crossing partitions.
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Remark 5.11. We cannot hope to find a Kreweras-like refinement of the above CSP result as in
[RS18]. For example, consider n = 4 and k = 2. There are two partitions of n into k parts,
namely (3, 1) and (2, 2). There are 4 non-crossing partitions with parts given by (3, 1) and 2
non-crossing partitions with parts given by (2, 2). But NCC(4, 2) has two orbits under rotation,
both of size 3.

6. Case s = n and typeB Catalan numbers

In this section, we prove several instances of the CSP, related to type B Catalan numbers. We
first consider a q-Narayana refinement on non-crossing matchings. In the subsequent subsection,
we consider a cyclic descent refinement on binary words. Finally, in the last subsection we prove
a type B analog of Theorem 5.9.

6.1. TypeB Narayana CSP

A typeB non-crossing partition of size n is a non-crossing partition of {1, . . . , n, n+1, . . . , 2n}
which is preserved under a half-turn rotation. These were first defined by V. Reiner in [Rei97].
We let this set be denoted NCPB(n) and let rotBn denote the action on NCPB(n) by rotation
of π/n. Note that we only need to make a half-turn before arriving at the initial position and we
prefer to write rotBn instead of rot2n to emphasize that the order of the action is n.

The earliest reference we can find for the following proposition is the paper by D. Bessis and
V. Reiner [BR11, Thm. 1.1]. They prove a much more general theorem about complex reflection
groups. We include a short proof as an introduction to the cyclic sieving phenomenon on type
B objects.

Proposition 6.1. The triple (
NCPB(n), 〈rotBn〉,CatB(n; q)

)
is a CSP triple.

Proof. There are many ways to prove this. For example, NCPB(n) can first be put in bijection
with type B non-crossing matchings, which are non-crossing matchings on 4n vertices that are
symmetric under a half-turn, by using Bijection 7.

We then consider the first 2n new vertices, and for each vertex u, we record a 1 if the edge
u→ v is oriented clockwise, and 0 otherwise. This is a binary word of length 2n, with n ones.
Furthermore, rotBn of the non-crossing partition corresponds to shift22n on the binary word.
Shifting by one step together with the maj-polynomial

[
2n
n

]
q

is a well-known CSP instance (see
[RSW04, Prop. 4.4]), and then it is direct from the definition of cyclic sieving that shifting two
steps on a word of even length also gives cyclic sieving.

We shall now consider Narayana refinements of type B non-crossing partitions and non-
crossing matchings. First, we introduce the following polynomial:

Πn(q; t) :=
n∑
j=0

qj
2

[
n

j

]
q

(
t2jqn−j

[
n− 1

j − 1

]
q

+ t2j+1

[
n− 1

j

]
q

)
. (6.1)
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Note that by using the q-Pascal identity, Πn(q; 1) =
∑

j q
j2
[
n
j

]2
q

=
[
2n
n

]
q
, so the sum of the

polynomials
[t0]Πn(q; t), [t1]Πn(q; t), . . . , [t2n]Πn(q; t)

refines the type B q-Catalan numbers. With the polynomial formulated, cyclic sieving is easy
to prove by following the proof of [RSW04, Thm 7.2]. As a side note, the coefficients of the
polynomial at q = 1 are given by the OEIS entry A088855.

Proposition 6.2. Let n, k > 0 be integers. Then(
{P ∈ NCPB(n) : blocks(P ) = k}, 〈rotBn〉, [tk]Πn(q; t)

)
,

and (
{P ∈ NCPB(n) : 2k 6 blocks(P ) 6 2k + 1}, 〈rotBn〉, qk

2

[
n

k

]2
q

)
(6.2)

exhibit the cyclic sieving phenomenon.
Moreover, for every n > 1 and k, 0 6 k 6 n,(

{M ∈ NCMB(n) : even(M) = k − 1}, 〈rotBn〉, [tk]Πn(q; t)
)

and (
{M ∈ NCMB(n) : 2k − 1 6 even(M) 6 2k}, 〈rotBn〉, qk

2

[
n

k

]2
q

)
(6.3)

exhibit the cyclic sieving phenomenon.

Proof. Everything is trivial unless 1 6 k 6 n, so we assume this holds. Using Bijection 7
the first two statements are equivalent to the last two, so we only need to prove the former. The
number of half-turn symmetric non-crossing partitions with 2k or 2k + 1 blocks is

(
n
k

)2. This
can be proven in different ways, but it suffices to refer to the proof of [RSW04, Thm 7.2].

Divide the numbers into 2d intervals tn
d

+ 1, . . . , (t+ 1)n
d
, t ∈ {0, . . . , 2d−1}. If a partition

P satisfies rotBn/d
n (P ) = P , a block only contains numbers from two adjacent intervals or it is

a central block with numbers from every interval. Let r be the number of blocks that contain
numbers from only interval t = 0 and blocks of numbers from both that and the next interval
(t = 1), but no other. Then the total number of blocks is 2dr or 2dr+ 1, the latter if there is also
a central block. In the aforementioned proof, they use a result from [AR04] to also prove that
the number of partitions P ∈ NCPB(n) invariant under rotBn/d

n with 2dr and 2dr+ 1 blocks is

dr

n

(
n/d

r

)2

and
n− dr
n

(
n/d

r

)2

, respectively.

We now evaluate [tk]Πn(q; t) at a primitive dth root of unity. If k 6= 0, 1 (mod d), d > 2 then it
is clearly zero. For k = 2dr, we get

[t2dr]Πn(q; t) = q(dr)
2+n−dr

[
n

dr

]
q

[
n− 1

dr − 1

]
q

http://oeis.org/A088855
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which by Theorem 2.4 (the q-Lucas theorem) becomes
(
n/d
r

)(
n/d−1
r−1

)
=
(
n/d
r

)2 r
n/d

, which is what
we want. A similar calculation gives the case for k = 2dr + 1. The expression qk2

[
n
k

]2
q

in (6.2)
is just the sum of the two cases. The evaluation for d = 1 is also straightforward.

A cyclic sieving result involving typeB Kreweras numbers and thus typeB Catalan numbers
was proven in [RS18, Thm. 1.7]. The downside is that the Kreweras-numbers in type B are not
indexed by usual partitions, but partitions of 2n+ 1, where each even part has even multiplicity.

6.2. A second refinement of the typeB Catalan numbers

Recall BW(2n, n) is the set of binary words of length 2n with exactly n ones. Define a cyclic
descent of a binary word b = b1b2 · · · b2n as an index i such that bi > bi+1, where the indices
are taken modulo 2n. The number of cyclic descents of b is denoted cdes(b). As an example,
if b = 0110010111, then cdes(b) = 3. For any two natural numbers n and k, let BWk(n) ⊂
BW(2n, n) consist of all b ∈ BW(2n, n) such that cdes(b) = k. Define

Bw(n, k; q) :=
∑

b∈BWk(n)

qmaj(b), (6.4)

where we use the ordinary major index maj on words as described in Section 2.1. At q = 1,
Bw(n, k; q) is A335340 in the OEIS and two times A103371. Note that we haveBw(0, 0; q) = 1
and Bw(n, k; q) = 0 if k > n.

Lemma 6.3. For all integers 1 6 k 6 n,

Bw(n, k; q) = qk(k−1)(1 + qn)

[
n

k

]
q

[
n− 1

k − 1

]
q

. (6.5)

Proof. The set BWk(n) is in bijection with a certain subset of PATH(n) which we shall now
describe. Call binary words of the form b = 0b2b3 · · · b2n−11 elevated and call binary words that
are not elevated non-elevated (so a binary word is elevated if cdes(b) = des(b) + 1). Elevated
binary words in PATH(n) are in natural bijection with paths in PATH(n − 1) by letting the
elevated binary word 0b2b3 · · · b2n−11 correspond to the binary word b2b3 · · · b2n−1.

It follows that a word in BWk(n) corresponds either to a non-elevated path in PATH(n)
with k valleys or to an elevated path in PATH(n) with k− 1 valleys. Using this correspondence
and (2.9), one gets that

Bw(n, k; q) = qk
2

[
n

k

]2
q

− qk · qk2
[
n− 1

k

]2
q

+ qk−1 · q(k−1)2
[
n− 1

k − 1

]2
q

. (6.6)

Here, the factors qk and qk−1 appear since by translating a binary word c ∈ BW(2(n− 1), n− 1)
with k descents into its corresponding elevated binary word c′ in BW(2n, n), we have maj(P ′)−
maj(P ) = k as each descent of c′ contributes one more to maj than in c.

http://oeis.org/A335340
http://oeis.org/A103371
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It remains to show that the expression in (6.6) coincides with the one in (6.5). To do this, we
rewrite

qk
2

[
n

k

]2
q

− qk · qk2
[
n− 1

k

]2
q

+ qk−1 · q(k−1)2
[
n− 1

k − 1

]2
q

= qk(k−1)
[
n

k

]
q

[
n− 1

k − 1

]
q

(
qk[n]2q − q2k[n− k]2q + [k]2q

[n]q[k]q

)
.

It is therefore sufficient to show that the following equality holds:

qk[n]2q − q2k[n− k]2q + [k]2q = (1 + qn)[n]q[k]q.

This equality can be derived from (4.6) by adding qk+n−1[n]q − q2k−1[n − k]q + qk−1[k]q =
qk−1(1 + qn)[n]q to each side of the equation. This concludes the proof.

The number of cyclic descents of a binary word is clearly invariant under cyclic shifts of the
word so one has a group action of rot2n on BWk(n). The following proposition follows from
[AS18, Cor. 1.6], although they do not compute the closed-form expression of Equation (6.4).

Proposition 6.4. For all n, k ∈ N such that 1 6 k 6 n, the triple(
BWk(n), shift2n,Bw(n, k; q)

)
exhibits the cyclic sieving phenomenon.

6.3. TypeB non-crossing configurations with a twist

Recall that NCC(n+ 1) denotes the set of non-crossing (1, 2)-configurations on n vertices. We
shall now modify this family slightly.

Definition 6.5. Let NCCB(n) be the set of non-crossing (1, 2)-configurations on n−1 vertices,
with the extra option that one of the proper edges may be marked. We let NCCB(n, e, l) ⊂
NCCB(n) be the subset with exactly e proper edges, and l loops. Finally, let NCCB(n, k) be the
subset of NCCB(n) with k edges and loops, i.e.

NCCB(n, k) :=
⋃
e+l=k

NCCB(n, e, l).

It follows directly from the definition that |NCCB(n, e, l)| = (e+ 1)|NCC(n, e, l)| and it is
not difficult to sum over all possible e, l to prove that |NCCB(n+ 1, k)| = NarB(n, k) =

(
n
k

)2.
Theorem 6.6. We let twist2n act on NCCB(n+ 1) as before (the marked edge is also rotated),
which gives an action of order 2n. Then(

NCCB(n+ 1), 〈twist22n〉,CatB(n; q)
)

(6.7)

is a CSP triple.
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Proof. We compute the number of fixed points under (twist22n)d where we can without loss of
generality assume d | n. Write n = md. By Theorem 2.4,[

2n

n

]
q

=

(
2d

d

)
at a primitive mth root of unity. The claim follows from Theorem 5.4 except in the cases where
a marked edge can appear in a fixed point. Note that in the case 4 | n and 2d = n/2 or 3n/2 a
marked edge would have to split the configuration into two non-crossing matchings on an odd
number of vertices. Hence there cannot be a marked edge in a fixed point in this case.

The only case left is n | 2d. First, 2d = 2n is trivial. Second, if 2d = n, no fixed
point can have marked vertices, as is noted in the proof of Theorem 5.4. Hence we only have
non-crossing matchings on 2d vertices with one edge possibly marked, the number of which is
(d+ 1)Cat(d) =

(
2d
d

)
.

It should be possible to prove Theorem 6.6 bijectively.

Problem 6.7. Find an equivariant bijection between NCCB(n + 1) and BW(2n, n) sending
twist22n to shift22n.

Note that the triple in Theorem 6.6 exhibits the so-called Lyndon-like cyclic sieving [ALP19],
which is not intuitively clear (as it is for BW(2n, n)).
Remark 6.8. Theorem 6.6 does not hold when only considering twist2n. For n = 2,

[
2n
n

]
q

evaluated at a primitive 4th root of unity gives 0. However, there are 6 elements in NCCB(3),
two of which are fixed under twist4; consider an edge between vertices 1 and 2, which may or
may not be unmarked. Since there are no loops or isolated vertices, these two elements are fixed.
Can one modify the q-analog of

(
2n
n

)
so that it is compatible with twist2n?

Problem 6.9. Is it possible to define a refinement P (n, e, l; q) of
[
2n
n

]
q

so that(
n⋃
l=0

NCCB(n+ 1, e, l), 〈twist22n〉,
∑
l>0

P (n, e, l; q)

)

is a CSP triple?

Unfortunately the polynomials

NccB(n, e, l; q) := qe
2+nl[e+ 1]q

[
n

2e

]
q

Cat(e; q)

[
n− 2e

l

]
q

do not serve this purpose even though they do satisfy the identities (proof omitted)

NccB(n, e, l; 1) = |NCCB(n+ 1, e, l)|,
NarB(n, k; q) =

∑
e+l=k

NccB(n, e, l; q).
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6.4. Thiel’s CSP for typeB

Theorem 6.10. We let rotation rotn act on NCCB(n+ 1, e, l), and let

Ncc(n, e, l; q) := qe(e+1)+(n+1)l

[
n

2e

]
q

Cat(e; q)

[
n− 2e

l

]
q

.

Then (
NCCB(n+ 1, e, l), 〈rotn〉, (1 + [e]q)Ncc(n, e, l; q)

)
(6.8)

is a CSP triple.

Proof. We can split NCCB(n + 1, e, l) into two sets, the first set A being the case without a
marked edge, and the second set B the case with a marked edge. Then it suffices to prove that

(A, 〈rotn〉,Ncc(n, e, l; q)) and (B, 〈rotn〉, [e]qNcc(n, e, l; q))

are CSP triples. The first one is already proved in Theorem 5.9.
For the second, consider rotdn, and without loss of generality write n = kd. A single marked

edge can only appear in a fixed point if d = n or d = n/2. The former is trivial. Now, rewrite
the polynomial as

qe(e+1)+(n+1)l

[
n

2e

]
q

[
2e

e− 1

]
q

[
n− 2e

l

]
q

,

and apply Theorem 2.4. At a primitive kth root of unity, this evaluates to 0 unless k | 2e, k | e−1
and k | l. The second implies gcd(k, e) = 1, so by the first k | 2. If k = 2, that is d = n/2, we
get that the number of fixed points should be(

n
2

e

)(
e
e−1
2

)(n
2
− e
l
2

)
.

This is indeed the case. The marked edge has to split the configuration into two symmetric parts,
and connects i to i+ n/2 for some 1 6 i 6 n/2. The symmetric configurations are on n/2− 1
vertices, and have (e− 1)/2 edges and l/2 marked vertices each. The number of fixed points is
hence

n

2

(
n
2
− 1

e− 1

)
Cat((e− 1)/2)

(n
2
− 1− (e− 1)

l
2

)
=

(
n
2

e

)(
e
e−1
2

)(n
2
− e
l
2

)
.

By summing over the cases when e+ l = k, we get the following corollary:

Corollary 6.11. We have a q-analog of the type B Narayana numbers, which admits the CSP
triple (

NCCB(n+ 1, k), 〈rotn〉, Un,k(q)
)
,

where Un,k(q) =
∑k

e=0 q
e(e+1)+(n+1)(k−e)(1 + [e]q)

[
n
2e

]
q
Cat(e; q)

[
n−2e
k−e

]
q
.

Proof. As in the discussion before Theorem 6.6 it is not difficult to prove that when q = 1, we
do indeed obtain

(
n
k

)2, so this is a q-Narayana refinement.

Now, summing over all k gives cyclic sieving on NCCB(n + 1) under rotation. We leave it
as an open problem to find a nice expression for

∑
k Un,k(q).
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7. Two-column semistandard Young tableaux

The Schur polynomial sλ(x1, . . . , xn) is defined as the sum

sλ(x1, . . . , xn) :=
∑

T∈SSYT(λ,n)

∏
j∈λ

xT (j)

where SSYT(λ, n) is the set of semi-standard Young tableaux of shape λ with maximal entry at
most n. The product is taken over all labels in T .

P. Brändén gave the following interpretation of q-Narayana numbers.

Theorem 7.1 (See [Brä04, Thm. 6].). For 0 6 k 6 n− 1,

Nar(n, k + 1; q) = s2k(q, q2, . . . , qn−1). (7.1)

There is a type B analog of Theorem 7.1.

Theorem 7.2. For 0 6 k 6 n,

qk(k+1)

[
n

k

]
q

[
n

k

]
q

= s2k1k/1k(q, q2, . . . , qn). (7.2)

Proof. We first note that s2k1k/1k = (s1k)2. To compute s1k , we simply sum over all k-subsets of
[n]. This gives immediately that

s1k(q, q2, . . . , qn) = qk(k+1)/2

[
n

k

]
q

,

and the theorem above follows.

It is then reasonable to interpret

s2k1s/1s(q, q
2, . . . , qn) (7.3)

for 0 6 s 6 k as an interpolation between type A (s = 0) and type B (s = k) q-Narayana
polynomials. Note that this approach is different from what is sought after in Section 3. The
expression in (7.3) can easily be computed by the dual Jacobi–Trudi identity, see [Mac95]. We
find that (7.3) is equal to

qk(k+1)

([
n

k

]2
q

− q(s+1)2
[

n

k − s− 1

]
q

[
n

k + s+ 1

]
q

)
.

The first part of the theorem below follows from combining [Rho10, Thm. 1.4] and Theo-
rem 7.1. For a definition of k-promotion, see Appendix C.
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Theorem 7.3. Assume 1 6 k < n and let ∂̂n−1 act on SSYT(2k, n − 1) via so-called k-
promotion, so that ∂̂n−1 has order n− 1. Then(

SSYT(2k, n− 1), 〈∂̂n−1〉,Nar(n, k + 1; q)
)

is a CSP triple. Moreover, there is a cyclic group 〈ϕ〉 of order n acting on SSYT(2k, n−1) such
that (

SSYT(2k, n− 1), 〈ϕ〉,Nar(n, k + 1; q)
)

is a CSP triple.

Proof. We can define the action ϕ as follows. Given T ∈ SSYT(2k, n− 1), define

Q = {j : 1 6 j 6 n− 1, |{i : Ti,1 > j}|=|{i : Ti,2 > j}|}

and let P be the subset of Q containing numbers not occurring as entries in T . Further, define
` = maxP and b = maxQ. If P = ∅, let ` = 0. Now ϕ(T ) is defined as follows. If ` = n− 1,
then we just add one to every entry in T and are done. If ` 6= n − 1, then we add one to every
entry in T and

• in the first column: remove b+ 1, add 1 in increasing order;

• in the second column: remove n, add `+ 1 in increasing order.

This can be seen to be an action with the desired properties by referring to Bijection 3 from
SSYT(2k, n − 1) to NCP(n, k + 1). Then rotation one step of the latter set corresponds to ϕ
where P are the other elements in the same block as n, b is the smallest element in the block of
n − 1 (if n − 1 /∈ P ), and ` is the largest element in the block of n other than n itself. Clearly,
b + 1 must be removed from the first column since it will be the smallest element in the block
of n in ϕ(T ), and ` + 1 must be added to the second since it will be the largest element in the
block containing 1 in ϕ(T ).

Bijection 3. Let T ∈ SSYT(2k, n− 1). Starting from i = 1, consider xi = Ti,2. Find the largest
y ∈ T∗,1, y 6 xi, which is not in

Pi−1 :=
⋃

j∈[i−1]

pj,

and set yi = y. Let pi = {z ∈ N : yi 6 z 6 xi, z 6∈ Pi−1}. Repeat for i < k + 1. Finally, let
pk+1 = [n]\Pk. Then the blocks p1, . . . , pk+1 form a non-crossing partition in NCP(n, k+1) by
construction. Note that exactly one element from each of T∗,1 and T∗,2 is contained in pi. Note
also that this is in fact the unique non-crossing partition in NCP(n, k + 1) having parts whose
smallest and largest elements are yi and xi respectively.

The inverse of Bijection 3 can be described as follows. Let p1|p2| · · · |pk+1 ∈ NCP(n, k+ 1)
and assume n ∈ pk+1. Let the first column of T consist of the smallest elements from pi,
1 6 i 6 k, in increasing order from top to bottom, and the second column of T of the largest
elements from the same blocks, also in increasing order. To see why T ∈ SSYT(2k, n − 1), it
suffices to suppose that we on some row i have Ti,1 > Ti,2, so the smallest element in the block
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containing Ti,2 must be Tj,1 for some j < i. Then the smallest element in the block containing
Tj,2 has to be Tk,1 for some j < k < i, the smallest element in the block containing Tj+1,2 some
Tk′,1 for j < k′ < i, and so on. We match all elements Tj,2, . . . , Ti−1,2 to elements in the first
column between Tj,1 and Ti,1, but this yields a contradiction. Note that T is the unique element
of SSYT(2k, n−1) whose first column consists of the smallest elements of p1, . . . , pk and whose
second column consists of the largest elements of these parts. Hence it is clear that this indeed
is the inverse.

Below is an example of Bijection 3 and ϕ, when n = 8, k = 4.

T =

1 2
2 3
3 4
7 7

←→ {{1, 4}, {2}, {3}, {7}, {5, 6, 8}}, ϕ(T ) =

1 3
2 4
3 5
4 7

Remark 7.4. The bijection in the proof of [Brä04, Thm. 5] together with Bijection 8 provides a
different bijection between SSYT(2k, n−1) and NCP(n, k+1) where, if T ∈ SSYT(2k, n−1),
then T1,1, T2,1−T1,1, . . . , Tk,1−Tk−1,1, n−Tk,1 are the sizes of the blocks with T1,2, T2,2, . . . , Tk,2
as the largest elements.

There is a type B version of Theorem 7.3.
Theorem 7.5. Let ∂̂n act on SSYT(2k1k/1k, n) via k-promotion, then(

SSYT(2k1k/1k, n), 〈∂̂n〉, qk(k+1)

[
n

k

]
q

2
)

is a CSP triple.

Proof. We describe a bijection from SSYT(2k1k/1k, n) to BW(n, k) × BW(n, k). Let T ∈
SSYT(2k1k/1k, n). The corresponding pair of binary words (b1, b2) is constructed as follows.
Write b1 = b11 . . . b1n and let b1i = 1 if T has an i in the left column, and otherwise, let b1i = 0.
In an analogous way, let b2 be determined by the entries in the right column of T . It is easy
to see that this bijection is invariant, if the corresponding group action is rotn on the pair of
binary words. Here, rotn acts by cyclically shifting both of the words one step. It follows from
[RSW04, Thm. 1.1] that (

BW(n, k)× BW(n, k), rotn,

[
n

k

]
q

2
)

exhibits the cyclic sieving phenomenon. Since the two different CSP polynomials agree at nth

roots of unity, this completes the proof.

It is natural to ask if the first part of Theorem 7.3 and Theorem 7.5 generalize to skew shapes.
We would then hope that k-promotion acting on SSYT(2k1s/1s, n), for 1 < s < k−1, has order
n. However, this is not the case, as for n = 4, k = 2, s = 1, the tableaux

3
1 4
2

,
1

2 4
3

,
2

1 3
4
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form an orbit under k-promotion, but we want a group action of order 4.
Perhaps some other group action gives a CSP triple with (7.3) as the CSP polynomial. In

a recent preprint, Y.-T. Oh and E. Park [OP21] the authors show some closely related results,
regarding cyclic sieving on SSYT.

8. Triangulations of n-gons with k-ears

We shall now consider type A and type B triangulations of an n-gon. The main result in this
section is a refinement of the CSP instance on triangulations of n-gons which are counted by
Cat(n− 2), see [RSW04, Thm. 7.1].

8.1. Refined CSP on triangulations by considering ears

Let TRI(n) denote the set of triangulations of a regular n-gon. If the vertices i, i + 1, i + 2
(mod n) are pairwise adjacent for T ∈ TRI(n), we say they form an ear of T . Let TRIear(n, k)
denote the set of triangulations of a regular n-gon with exactly k ears, and let Tri(n, k) be the
cardinality of this set. Note that in particular, Tri(3, 3) = 1. For all other pairs of n, k such that
0 6 n/2 < k, Tri(n, k) = 0 and for all n > 3, Tri(n, 0) = Tri(n, 1) = 0. It was shown by
F. Hurtado and M. Noy [HN96, Thm. 1] that

Tri(n, k) =
n

k

(
n− 4

2k − 4

)
Cat(k − 2) · 2n−2k whenever 2 6 k 6

n

2
. (8.1)

We now introduce the following q-analog of the expression in (8.1). For integers n and k satis-
fying 2 6 k 6 n

2
, let

Tri(n, k; q) := qk(k−2)
[n]q
[k]q

[
n− 4

2k − 4

]
q

Cat(k − 2; q)

(
n−2k∑
j=0

qj(n−2)
[
n− 2k

j

]
q

)
.

At a first glance, one might hope that there is an easier expression for Tri(n, k; q). However,
note that Tri(n, k; q) is not palindromic in general. As an example, consider Tri(6, 2; q) =
1 + q4 + q5 + q8. This means that one cannot hope to find a formula for Tri(n, k; q) which only
involves products of palindromic polynomials. In particular, it cannot be a product of q-binomial
coefficients.

The choice of Tri(n, k; q) is motivated by the following theorem.

Theorem 8.1. For all integers n > 4, we have that∑
k

Tri(n, k; q) = Cat(n− 2; q). (8.2)

In other words, the polynomials Tri(n, k; q) refine the q-Catalan numbers.
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Proof. We first recall some notation from q-hypergeometric series, where we use [GR04, Ap-
pendix I-II] as the main reference. We set (a; q)n := (1− a)(1− aq) · · · (1− aqn−1) so that[

m

r

]
q

=
(q; q)m

(q; q)r(q; q)m−r
and [m]q =

(q; q)m
(1− q)(q; q)m−1

.

We have, [GR04, I.7–I.26], that for all a,

(a; q)n+k = (a; q)k(aq
k; q)n,

(a; q)n−k =
(a; q)n

(q1−n/a; q)k

(
−q
a

)k
q(

k
2)−nk,

(aq−n; q)n = q−(n
2)
(
−a
q

)n
(q/a; q)n,

(aq−n; q)k = q−(n
2)
(
−a
q

)n
(q/a; q)n(a; q)k

(q1−k/a; q)n
,

(q−n; q)k = (−1)kq(
k
2)−nk (q; q)n

(q; q)n−k
,

(aqn; q)n =
(a; q)2n
(a; q)n

.

Moreover, we let

2φ1

[
a b

c
; q; z

]
:=
∑
n>0

(a; q)n(b; q)n
(c; q)n(q; q)n

zn.

The q-Chu–Vandermonde identity [GR04, II.6, II.7], can be stated in the following two ways:

2φ1

[
a q−n

c
; q; q

]
=

(c/a; q)n
(c; q)n

an and 2φ1

[
a q−n

c
; q; cqn/a

]
=

(c/a; q)n
(c; q)n

. (8.3)

We are now ready to prove Theorem 8.1, which is equivalent to proving that for all n > 4,∑
k>2

qk(k−2)
[n][n− 1]

[k][k − 1]

[
n− 4

2k − 4

]
q

[
2k − 4

k − 2

]
q

n−2k∑
j=0

qj(n−2)
[
n− 2k

j

]
q

=

[
2n− 4

n− 2

]
q

. (8.4)

After shifting the k-indices by 2, and the n-indices by 4, and multiplying both sides with (1+q),
we must show that ∑

k,j

R(k, j) =
(1 + q)

[
2n+4
n+2

]
q

[n+ 3][n+ 4]
, (8.5)

where

R(k, j) =
(1 + q)qk(k+2)+j(n+2)

[k + 1][k + 2]

[
n

2k

]
q

[
2k

k

]
q

[
n− 2k

j

]
q

=
qk(k+2)

(q; q)k(q3; q)k

qj(n+2)(q; q)n
(q; q)n−2k−j(q; q)j

= (−1)j
qn(2k+j)−(2k+j

2 )qk(k+2)

(q; q)k(q3; q)k

qj(n+2)(q−n; q)2k+j
(q; q)j

.
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The right hand side of (8.5) simplifies to (q5;q)2n
(q5;q)n(q3;q)n

. There is no issue with extending the
summation index in (8.5) so that k, j ranges over all integers since R(k, j) vanishes unless
0 6 j 6 n− 2k. By shifting the indexing, so that r := k, s := k + j, it suffices to prove that∑

r,s

S(r, s) =
(q5; q)2n

(q5; q)n(q3; q)n
(8.6)

where

S(r, s) := R(r, s− r) = (−1)s+r
q2ns+2s−(s+r

2 )qr
2

(q; q)r(q3; q)r

(q−n; q)s+r
(q; q)s−r

.

By using the identities

(q−n; q)s+r = (qs−n; q)r(q
−n; q)s and (q; q)s−r =

(q; q)s
(q−s; q)r

(−1)rq(
r
2)−rs,

we have

S(r, s) = (−1)s+r
q2ns+2s−(s+r

2 )qr
2

(q; q)r(q3; q)r
(qs−n; q)r(q

−n; q)s
(q−s; q)r(−1)rq−(r

2)+rs

(q; q)s

=
(−q2n+2)sq−(s

2)(q−n; q)s(q
s−n; q)r(q

−s; q)r
(q; q)r(q3; q)r(q; q)s

· qr.

Thus, (8.4) is equivalent to

∑
r,s

(−q2n+2)sq−(s
2)(q−n; q)s(q

s−n; q)r(q
−s; q)r

(q; q)r(q3; q)r(q; q)s
· qr =

(q5; q)2n
(q5; q)n(q3; q)n

.

But this follows from substituting a = q2qn and c = q3 in the following claim and then expanding
the q-hypergeometric series, together with using the fact that (q5; q)2n = (q5; q)n(qnq5; q)n.

Claim: For non-negative integers n, we have the identity

∑
k>0

(−aqn)kq−(k
2)(q−n; q)k

(q; q)k
2φ1

[
cqk

aq
q−k

c
; q; q

]
=

(ac; q)n
(c; q)n

. (8.7)

To prove the claim start by applying the first q-Chu–Vandermonde identity. The left-hand side
becomes ∑

k>0

(−aqn)kq−(k
2)(q−n; q)k

(q; q)k

(aq/qk; q)k
(c; q)k

(
cqk

aq

)k
.

Now, using the identity (aq/qk; q)k = q−(k
2)(−a)k(1/a; q)k we see that the left-hand side of

(8.7) is equal to

∑
k>0

(−aqn)kq−(k
2)(q−n; q)k

(q; q)k

q−(k
2)(−a)k(1/a; q)k

(c; q)k

(
cqk

aq

)k
.
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Simplification gives∑
k>0

(acqn)k
(q−n; q)k(1/a; q)k

(c; q)k(q; q)k
= 2φ1

[
1/a q−n

c
; q; acqn

]
.

This is now a special case of the second q-Chu–Vandermonde identity and we are done.

A curious observation is that Theorem 8.1 refines the q-Catalan numbers in the same spirit
as the following q-analog of Touchard’s identity [And10, Thm. 1], which states that

Cat(n+ 1; q) =
∑
r>0

q2r
2+2r

[
n

2r

]
q

Cat(r; q)
(−qr+2; q)n−r

(−q; q)r
.

We let rotn act on TRI(n) by rotating a triangulation one step clockwise. As rotn also
preserves the set TRIear(n, k), we have a group action of 〈rotn〉 on TRIear(n, k).

Theorem 8.2. For all integers 2 6 k 6 n
2
, the triple

(TRIear(n, k), 〈rotn〉,Tri(n, k; q))

exhibits the cyclic sieving phenomenon.

Proof. Let ξ be a primitiventh root of unity and let d be an integer. Repeatedly using Theorem 2.4
and Lemma 2.5 yields

Tri(n, k; ξd) =



n
k
2n−2k

(
n−4
2k−4

)
Cat(k − 2) if d = n

n
k
2n/2−k

(
n/2−2
k−2

)(
k−2
k/2−1

)
if o(ξd) = 2 and 2 | k

n
k
2n/3−2k/3

(
n/3−2
2k/3−2

)(
2k/3−2
k/3−1

)
if o(ξd) = 3 and 3 | k

0 otherwise.

We prove that these evaluations agree with the number of fixed points in TRIear(n, k) under rotdn
on a case-by-case basis.

Case d = n : Trivial.

Case o(ξd) = 2 and 2 | k : Such a triangulation must have a diagonal (an edge from some
i to i + d) that divides the triangulation into two halves. The diagonal can be chosen in n/2
ways. The triangulation is now determined uniquely by one of its halves. To choose one half, we
choose a triangulation of an (n/2 + 1)-gon with k/2 ears whose sides do not coincide with the
diagonal. Such a triangulation is either (i) an element of TRIear(n/2 + 1, k/2) which does not
have an ear with an edge coinciding with the diagonal, (ii) an element of TRIear(n/2+1, k/2+1)
which has an ear coinciding with the diagonal, or (iii) the unique element in TRIear(3, 3) (and
this only happens when n = 4). Based on the rotational symmetry, we note that 2k/n of the
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elements in TRIear(n, k) have an ear that has an edge adjacent to a given side. Thus, the number
of triangulations fixed by rot

n/2
n is equal to

n

2

(
n/2 + 1− k
n/2 + 1

Tri(n/2 + 1, k/2) +
2(k/2 + 1)

n/2 + 1
Tri(n/2 + 1, k/2 + 1)

)
,

if n > 6, or 2 if n = 4. The case n = 4 is easy to check, and after the substitutionm := n/2+1,
r := k/2 + 1, it is straightforward to verify that the expression above is equal to Tri(n, k; ξd).

Case o(ξd) = 3 and 3 | k : Similar to the above case. Such a triangulation must have
a central triangle (a triangle with vertices i, i + n/3 and i + 2n/3 (mod n)) that divides the
triangulation into three parts. The central triangle can be chosen in n/3 ways. The triangulation
is now determined uniquely by one of its three parts. Choosing one part is done with a similar
argument as above, so the number of triangulations fixed by rot

n/3
n is equal to

n

3

(
n/3 + 1− 2k/3

n/3 + 1
Tri(n/3 + 1, k/3) +

2(k/3 + 1)

n/3 + 1
Tri(n/3 + 1, k/3 + 1)

)
,

if n > 9, and 2 if n = 6. By checking the case n = 6 separately, and then using the substitution
m := n/3 + 1, r := k/3 + 1, it is straightforward to show that this expression matches the one
for Tri(n, k; ξd).

The remaining cases : If o(ξd) = 2 (or 3), it is clear that any triangulation fixed by rotdn must
have a diagonal (or, respectively, a central triangle). Thus each of the two halves (or, respectively,
three parts) must have the same number of ears and hence 2 | k (or 3 | k). If o(ξd) > 3, then it is
clear that there are no fixed triangulations under the action of rotdn. This exhausts all possibilities
and thus the proof is done.

Problem 8.3. One might ask if there are further refinements. One attempt that fails is that
n
k

(
n−2k
j

)(
n−4
2k−4

)
Cat(k − 2), 0 6 j 6 n − 2k, do not refine n

k
2n−2k

(
n−4
2k−4

)
Cat(k − 2) since the

former is not always an integer, for example, at n = 5, k = 2, j = 1.

Remark 8.4. Unfortunately, there is no Narayana refinement of rotation acting on triangulations.
To see this, observe thatNar(2, 2; q) = q2 but at a 4th root of unity ξ, we haveNar(2, 2; ξ) = −1.

8.2. Triangulations of typeB

Let us define type B triangulations TRIB(n), as the set of elements in TRI(2n) which are
invariant under rotation by a half-turn. In such a triangulation, there is always an edge through
the center. There are n choices of such an edge, and then we need to choose a triangulation on
one half of the 2n-gon. This gives n · 1

n

(
2(n−1)
n−1

)
=
(
2(n−1)
n−1

)
such type B triangulations. The

following result is straightforward to prove but also follows from [EF08, Thm. 4.1].

Proposition 8.5 (See [EF08, Thm. 4.1].). The triple(
TRIB(n), 〈rotn〉,CatB(n− 1; q)

)
exhibits the cyclic sieving phenomenon.

The polynomial [n]qTri(n+ 1, k; q) does not seem to give a refinement of Proposition 8.5.
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9. Marked non-crossing matchings

A marked non-crossing matching is a non-crossing matching where some of the regions have
been marked. Let NCM(r)(n) denote the set of marked non-crossing matchings with exactly r
marked regions. Since every non-crossing matching in NCM(n) has n + 1 regions, it follows
that |NCM(r)(n)| =

(
n+1
r

)
|NCM(n)|.

In particular, for r = 1 we can think of our objects as non-crossing matchings of vertices on
the outer boundary of an annulus rather than on a disk.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

This model is reminiscent of the non-crossing permutations considered in [Kim13], where points
on the boundary of an annulus are matched in a non-crossing fashion, but with some other
technicalities imposed.

The following generalizes Proposition 4.1.

Theorem 9.1. Let 1 6 k 6 n and 0 6 r 6 n+ 1. Then(
{M ∈ NCM(r)(n) : even(M) = k}, 〈rotn〉,Nar(n, k + 1; q)

[
n+ 1

r

]
q

)
is a CSP triple.

Proof. Consider elements of NCM(n) with k even edges, fixed by rotdn, where we may without
loss of generality assume d | n. As noted in Section 4.1, even(M) is invariant under rotn. Write
n = md. By the q-Lucas theorem (Theorem 2.4),

[
n+ 1

r

]
q

=


(

d
r/m

)
if m | r,(

d
(r−1)/m

)
if m | r − 1,

0 otherwise

at a primitive mth root of unity.
Divide the 2n vertices of a non-crossing matching with n/d-fold rotational symmetry (re-

member that rotn rotates the vertices two steps) intom segments of length 2d, say [2d], [4d]\[2d],
and so on. The d edges going from [2d] to higher vertices (in [4d] including [2d]) each have a
unique region to their left. This means that the number of marked regions r must be jm, or
jm + 1 if there is a central region which is marked, see Figure 9.1. We can thus get a fixed
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1 2
3

4

5

6

7

8
91011

12

18

Figure 9.1: Partitioning a non-crossing perfect matching of size 2n = 18 withn/d-fold rotational
symmetry, d = 3, into segments of length 2d. Each of the three edges from [2d] to vertices with
bigger labels has a unique region to its left.

point of rotdn by choosing to mark j = r/m (or, in the latter case, (r − 1)/m) of the d regions
associated to the edges from [2d] to vertices with larger labels, which gives

(
d

r/m

)
and

(
d

(r−1)/m

)
respectively. Now, we combine this with Proposition 4.1 and the theorem follows.

A. Catalan objects

A.1. Type A objects

Below is an overview of the Catalan objects we consider for n = 3. Recall that Cat(3) = 5. The
orders of the first six sets of objects follow the bijections given in Figure 2.1.

SYT(n2) 1 2 3
4 5 6

1 2 4
3 5 6

1 2 5
3 4 6

1 3 4
2 5 6

1 3 5
2 4 6

DYCK(n)

NCM(n)

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

NCC(n)

1

2

1

2

1

2

1

2

1

2

NCP(n)

1

23

1

23

1

23

1

23

1

23

SSYT(2∗, n− 1) ∅ 2 2 1 2 1 1 1 1
2 2

TRI(n)

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5
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A.2. Type B objects

Below is an overview of the considered type B Catalan objects for n = 2. Recall that
CatB(2) = 6.

SYT(2n/n) 1 2
3 4

1 3
2 4

1 4
2 3

2 3
1 4

2 4
1 3

3 4
1 2

PATH(n)

NCMB(n)

1
2

3

4
5

6

7

8
1

2

3

4
5

6

7

8
1

2

3

4
5

6

7

8
1

2

3

4
5

6

7

8
1

2

3

4
5

6

7

8
1

2

3

4
5

6

7

8

NCCB(n)

1

2

1

2

1

2

1

2

1

2

1

2

NCPB(n)

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

TRIB(n)

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

SSYT(2k1k/1k, n) ∅ 1
1

1
2

2
1

2
2

1
2

1
2

B. Bijections

Here we recall several bijections on Catalan objects which have appeared earlier in the literature.
We have tried to find the earliest reference for each. The order of the objects in Appendix A serves
as examples of Bijections 5, 7 and 8.

B.1. NCM and binary words

Suppose xy is an edge in a non-crossing perfect matching, with x < y. We say that x is the start-
ing vertex and y is the end vertex. Further, denote NCMsh(n, k) the subset of all N ∈ NCM(n)
such that short(N) = k.

We now describe a well-known bijection NCMtoDYCK from NCM(n) to DYCK(n).
Bijection 4. Take M ∈ NCM(n) and construct the Dyck path NCMtoDYCK(M) = b1b2 · · · b2n
as follows. For vertices i = 1, 2, . . . , 2n in M , let bi = 0 if i is a starting vertex and let bi = 1 if
i is an end vertex. It is not hard to see that this procedure ensures that the resulting binary word
is a Dyck path.

Let d be a natural number such that d | n. If a matching M ∈ NCM(n) has 2n/d-fold
rotational symmetry, it is sufficient to understand how the vertices 1, 2, . . . , d are matched up.
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Here, we restrict ourselves to the case when M does not have a diagonal—for the case when M
has a diagonal, see the third case in the proof of Theorem 4.8. In this case, there is a bijection
BWtoNCM between BW(d, d/2) and rotationally symmetric non-crossing perfect matchings.
Bijection 5. Let c = c1c2 · · · cd ∈ BW(d, d/2). We show how to construct the corresponding
BWtoNCM(c) ∈ NCM(n). Think of the vertices 1, 2, . . . , d being arranged on a line. For all
vertices i = 1, 2, . . . d, we let vertex i be a “left” vertex if ci = 0 and a “right” vertex if ci = 1.
Then we pair up every left vertex with a right vertex directly to its right if such a vertex exist.
Otherwise we recursively pair it with the closest available right vertex to its right without creating
a crossing of edges. It is well-known there is a unique way of doing this. There might be some left
vertices which are not paired up because there are not enough right vertices to their right. There
must also be equally many unpaired right vertices because there are not enough left vertices to
their left. Since this will be the same in every interval of vertices [dk + 1, d(k + 1)] there is a
unique way to pair the remaining left vertices with the remaining right vertices of the interval to
the right and vice versa. This also shows that d must be even.

We can prove a stronger statement about rotationally symmetric NCMs. We study BWtoNCM

restricted to NCMsh(n, k). Once again, such a matching is completely determined by how ver-
tices 1, 2, . . . , d are paired up. Among these d vertices, there are two possible cases to consider.

Case 1: Exactly dk/(2n) short edges where either vertex 1 is a left vertex or vertex 2d is a
right vertex.

Case 2: Exactly dk/(2n)− 1 short edges where vertex 1 is a right vertex and vertex 2d is a
left vertex.

If one applies BWtoNCM−1 (that is, left vertex corresponds to 0 and right vertex corresponds to
1) to the non-crossing perfect matchings in the two above cases, one gets the image BWdk/(2n)(d).

B.2. NCM and SYT

We recall the definition of this bijection.
Bijection 6. Let T ∈ SYT(n2) and construct SYTtoNCM(T ) as follows. For i ∈ {1, 2, . . . , 2n},
let vertex i be a starting vertex if i is in the first row and an end vertex otherwise. It is not hard
to show that determining the starting and ending vertices uniquely determines a non-crossing
matching.

B.3. NCP and NCM

There is a bijection between non-crossing partitions and non-crossing matchings, NCPtoNCM :
NCP(n) → NCM(n), that directly restricts to a bijection between NCPB and NCMB. This
bijection has another nice property; it is equivariant with regards to the Kreweras complement on
the non-crossing perfect matchings and rotation on the non-crossing perfect matchings [Hei07,
Thm. 1].
Bijection 7. Consider π ∈ NCP(n), and for every vertex j ∈ {1, . . . , n}, insert a new vertex
(2j − 1)′ immediately after j, and (2j − 2)′ immediately before j, where we insert (2n)′ imme-
diately before 1. There we match (2j)′ to the closest point (2k − 1)′, j < k, such that the edge
between those vertices does not cross any of the blocks in π. If no such k exists, we match to
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Figure B.1: A non-crossing partition given by the dashed edges and the corresponding non-
crossing matching given by the solid edges.

the smallest number k, 0 < k 6 j. Since j = k is always possible the map is well-defined. This
gives a perfect matching σ on 1′, 2′, . . . , (2n)′ which is non-crossing, and in addition, does not
cross any of the blocks of π. We can get the inverse of the map NCPtoNCM by putting back the
vertices 1, 2, . . . , n and letting all vertices that can have an edge between them without crossing
any edge of the perfect matching σ belong to the same block.

The following is an example of this bijection.

NCPtoNCM :

1

2

3

4

5

6

→

1 2
3

4

5
678

9

10

11
12

(B.1)

One can also illustrate the bijection as follows. For each singleton block, add an edge between
two copies of the vertex. For each block of size two, split the edge into two non-crossing edges
and hence each vertex into two copies. Finally, for each block with m > 3 elements, push apart
the edges at the vertices so that we have m non-crossing edges on 2m vertices. See Figure B.1.

Note that, by definition, every block except the one whose minimum element is 1 corresponds
to an even edge under the bijection. If j > 1 is the smallest element of a block and k is the
largest, then (2j − 2)′ is matched to (2k − 1)′. The remaining even vertices are matched to
smaller odd vertices. Hence Bijection 7 in fact gives a bijection between the sets NCP(n, `)
and NCM(n, `− 1).

B.4. NCP and Dyck paths

We briefly describe a bijection between non-crossing partitions and Dyck paths, NCPtoDYCK,
with the property that the number of parts is sent to the number of peaks. This bijection is often
attributed to P. Biane [Bia97].
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Bijection 8. Let π = B1|B2| · · · |Bk be a non-crossing partition of size n, where the blocks are
ordered increasingly according to maximal member. By convention, we let B0 be a block of
size 0, where the maximal member is also 0. We construct a Dyck path D ∈ DYCK(n) from π
as follows. For each j = 1, . . . , k, we have a sequence of max(Bj) − max(Bj−1) north steps,
immediately followed by |Bj| east steps.

C. Jeu-de-taquin and k-promotion

Here we recall the definition of jeu-de-taquin and how one defines promotion and k-promotion
in terms of it.

Jeu-de-taquin was introduced by M. P. Schützenberger [Sch72] and transforms a skew semi-
standard Young tableau into a non-skew one. There are two types of operations called slides.
We assume a < b 6 c and a 6 b < c, respectively. The boxes containing b and c may or may
not be present.

• a
b c

−→ a •
b c

• b
a c

−→ a b
• c

A • represents an empty box. The sliding procedure applied to a skew tableau T stops when a
non-skew shape has been reached. It turns out that the result is independent of the order of the
slides.

The operation k-promotion is a generalization of promotion to semistandard Young tableaux
with entries at most k, see [Ful97]. The k-promotion operator, ∂̂k, may be defined via jeu-
de-taquin as follows. Given T ∈ SSYT(λ, k), replace all entries equal to k by •’s. Perform
inverse jeu-de-taquin slides on the resulting tableau, always moving the leftmost • not in the
north-west corner. Add 1 to all entries in the tableau and finally replace the •’s by 1s. The result
is a semistandard tableau of shape λ. k-promotion works similarly for skew tableaux (but note
that there are several north-west corners). Promotion can be seen as k-promotion restricted to
standard Young tableaux.
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[Brä04] Petter Brändén. q-Narayana numbers and the flag h-vector of j(2×n). Discrete
Mathematics, 281(1-3):67–81, 2004. doi:10.1016/j.disc.2003.07.006.
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