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1210 W. Dayton St., Madison, WI 53706

{ganesh,uhr}@cs.wisc.edu

Abstract

Intelligent agents interacting with their environments
combine information from several sense modalities and
indulge in tasks that have components of perception, rea-
soning, learning and planning. Traditional Al systems
focus on a single component. This paper highlights the
importance of the integrated perceive-reason-act-learn
loop, and describes a system designed to capture this
loop. As a first step, it learns about simple objects, their
qualities, and the words that name and describe them.
The visual-linguistic associations formed serve as a bias
in acquiring further knowledge about actions, which in
turn aids the system in satisfying its internal needs (e.g.,
liunger, thirst, sleep, curiosity). Learning mechanisms
that extract, aggregate, generate, de-generate and gen-
eralize build a hierarchical network (that serves as inter-
nal models of the environment) with which the system
perceives and reasons.

Introduction

Intelligent agents (embedded in an environment) rou-
tinely sense information through one or more sensory
channels, engage in various kinds of perceptual reasoning
in the process of recognizing a stimulus or a pattern of
stimuli, and respond, acting appropriately. Agents also
exhibit the capability to learn from repeated interactions
with external stimuli. This continuing perceive-reason-
act-learn-perceive-... loop is almost certainly central to
intelligence, as evidenced by the behavior of animals, in-
cluding humans. Systems that fully capture this loop will
exhibit the essence of mundane everyday reasoning.

The acquisition of knowledge about the environment
starting with visual-linguistic learning has begun to gain
attention among researchers (e.g., see Nenov & Dyer,
1988; Weber & Stolcke, 1990). Feldman et al. (1990)
have dubbed this a touchstone task for cognitive science.

This paper discusses a system that we have designed
and are implementing for capturing the perceive-reason-
act-learn loop. First, the system learns to recognize and
name simple objects, and their parts and qualities. It can
then learn, from strings of these perceptually grounded
words, about classes, relations, and actions.

Section 2 describes the system’s architecture and goals
(also see Mani & Uhr, 1991). Section 3 examines the
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learning mechanisms employed and Section 4 gives de-
tails of the acquisition of internal models of the environ-
ment.

The Architecture of CHILDLIKE

The CHILDLIKE! system 1is a computational
information-processing model (implemented in Common
Lisp) designed to learn about objects, their qualities, and
the words that name and describe them; and, further,
to use this knowledge to satisfy its internal needs (e.g.,
hunger, thirst, sleep, curiosity).

The system is input sequences of simple “experiences”
from which it attempts to learn. An experience contains
several different components— for example, a visual pic-
torial scene, a short language utterance, an abstracted
action.

The visual input is a snapshot at a single moment of
time. It consists of a 4-by-4 or 8-by-8 image — typically
one that a low- or intermediate-level computer vision sys-
tem might output — that encodes information such as
edges, or colors and textures, or simple shapes. These are
pre-processed as needed, using a network of convolution-
like mask-matching-plus-thresholding operations, to ob-
tain primitive features such as long vertical or horizontal
lines, the texture in a large segment of the image, or the
color of these significant regions.

The language input consists of short (typically 2-5
words in the current implementation) English language
strings (although any language could be used without
changing any aspect of the system). An example se-
quence of inputs to the system is shown in Figure 1.

Visual Input: Language Input:

a) [Picture of an apple]
b) [Picture of a banana]
c) [Picture of an apple and
a banana side by side]
d) [Picture of a table]
e) [Picture of an apple
on a table]

red apple
banana

apple and banana
brown table

apple on table

Figure 1: A simple input sequence

'which stands for Conceptual Hierarchies In Language De-
velopment and Learning In a Kiddie Environment.
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Each visual input to the system is a snapshot of the en-
vironment in time. Using such simple ordered sequences
of inputs, the system is taught how to associate names
of objects with their shape, size and other features, and
further to associate relational words with visual features
that imply them. Once the system is able to ground lan-
guage symbols in terms of information perceived through
the visual channel, it can be further trained by verbal in-
put alone. Thus the system bootstraps itself, by first
grounding words in perceptual information, to the point
where it can learn from these grounded words only.

CHILDLIKE's parallel-hierarchical structure was cho-
sen because it is general, successive compounding can
produce any possible set of functions, starting from a uni-
versal set of primitives. It also has the potential of great
speed and efficiency. And it is a widely used structure
fo: perceptual recognition of objects in 2-dimensional im-
ages (Hanson & Riseman, 1978; Li & Uhr, 1987; Tan-
imoto & Klinger, 1980; Uhr, 1987), parsing trees for
1-dimensional language strings (Chomsky, 1986; Osher-
son & Lasnik, 1990), and the hierarchical building up
of logical functions that accept the combinations of 0-
dimensional terms handled by concept formation and
similarity-based learning systems (Hunt, 1962; Michal-
ski, 1983; Mitchell, 1982; Quinlan, 1986). It appears that
the multilayer, converging “recognition cone” structure
of micro-modular processes being developed for percep-
tual recognition tasks (Uhr, 1978; 1987) can also be used
for building linguistic structures and visual-linguistic as-
sociations. Building on these visual-linguistic associa-
tions, the system can further acquire memory structures
that encode the effects of actions and reason about need-
fulfillment.

Learning Mechanisms in CHILDLIKE

CHILDLIKE'’s learning mechanisms extract and incor-
prrate information learned via interactions with the en-
vironment. These learning mechanisms can be grouped
it to the following major types: eztraction, aggregation,
generalion, de-generation and generalization. Extraction
is involved with the process of carving out potentially
useful pieces of information from the visual and verbal
input fields. Aggregation puts together pieces. Gener-
ation creates new links that encode, contain, and apply
this new information.

Extraction takes place by imposing windows on the
input array(s) containing perceptual information. This
embodies a local-receptive field heuristic that favors ex-
tracting connected, compact features from which nodes
that detect these features are generated. Evidence that
brains’ neurons predominantly interact with near neigh-
bors, and empirical evidence that such local receptive
fields are superior to random receptive fields for visual
tasks in the recognition cone framework (Honavar and
Uhr, 1989) support the choice of this heuristic. This lo-
cality heuristic is used to aggregate compound features
at subsequent levels also.

The network of nodes created as a result of extraction,
a-y regation and generation serves as an internal repre-
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sentation of the environment. Each node encodes some
feature or microfeature (e.g., one leg of a chair, the word
“leg”), or some compound feature or class (e.g., four legs,
the phrase “four-legged chair,” furniture).

De-generation and generalization mechanisms simplify
and speed up processing, and combat potential combina-
torial explosions.

De-generation involves the discarding of nodes and
links that appear to encode useless or wrong informa-
tion. The value of a link is assessed (e.g., by its associ-
ated weight, or processes that estimate how useful it has
been), and the network pruned accordingly.

Generalization may involve removing certain links
(this corresponds to the dropping condition rule of
Michalski, 1983, in symbolic similarity-based learning),
replacing links to a number of nodes representing explicit
entities with a link to a single node which may stand
for any of these entities (furning constants into variables
rule), replacing links to nodes nj at level i with a link
to a node n at level i + 1 such that a majority of ny are
linked to node n (climbing generalization tree rule), or
replacing a sub-network with a node that stands for the
sub-network (constructive generalization rule).

The order of the training sequences also plays a sig-
nificant role in knowledge acquisition. At each step,
experiences are judiciously chosen to slowly build on
prior learning. For example, training sequences aimed
at teaching relations such as “on,” “above” and “and”
should contain visual information portraying these re-
lations between already-learned objects, along with the
associated language string. An example of such graded
training can be found in Figure 1. It should be noted
that a number of training sequences of the sort shown
in Figure 1 may be required before the relations are ef-
fectively learned. Training sequences may also force the
learner to focus on a particular aspect of the input by
varying all other aspects of the input (see below).

Acquiring Internal Models of the
Environment

Reasoning about the world is greatly facilitated by hav-
ing an internal model of that world. The CHILDLIKE
system’s internal model consists of subnetworks encoding
associations among visual features, words, actions, needs
and compound features derived from them.

Learning Words About Objects

CHILDLIKE learns about simple objects by “seeing”
them through the visual channel and simultaneously
“hearing” a linguistic description of the object through
the language channel. Often, the object is not named in
isolation but is named along with words describing other
properties (e.g.,“green apple”) of the object or the scene.
Through repeated extractions from the sensory channels
and generation of associations, CHILDLIKE learns the
word that corresponds to a particular object in the visual
field. It conjectures that other words (which do not ap-
pear to correspond to whole objects) may refer to parts



BEHAVING PHASE :
1. Input one of the arrays (visual or linguistic).

2, Extract primitive features, aggregate them into compound features, find the best-match for the entities in this

channel and find corresponding entities in the other channel

{More formally, the extractions and aggregations can be expressed as

(P stands for a primitive feature and C for a compound feature):
Level 0 C; = A;(P,S)
Level 1 : Cy = Ax(Ci, S) and so on for subsequent levels.

Here, i ranges over a local, connected window, S is an associated strength or weight vector (which gets modified based on errors

made), and A;, Ay, etc., are aggregation functions. Matching is performed by aggregating evidence hierarchically and

collecting entities implied at each level.}

LEARNING PHASE:
1. Input visual and linguistic arrays (V and L respectively).

2a.Extract primitive features and aggregate them into compound features hierarchically.

b.Match known entities across the visual and linguistic channels (call the matched parts v and I respectively).

c.Generate all possible links, subject to a resource constraint, between novel features (corresponding to (V' — v) and (L — [)) across the

visual and linguistic channels, plus ¢ (a changeable parameter) links involving already known entities (corresponding to v and I).

3. If normal-training
Change link weights using a Hebbian-like learning mechanism.

{More precisely, the learning mechanism can be expressed as Wnow(N1, N2) = Woq + nf(N1, N2)

where N1 is a (primitive or compound) visual feature and N2 is a linguistic feature. f(N1, N2) is non-zero only if the

features N1 and N2 are both present in the current input instance; currently a normalized frequency count is used.}

else (attention-focusing training)
Modify weights explicitly using a high learning rate.

4. Adjust link weights, delete nodes and links, and form compact structures or subnets using de-generation and generalization.

{De-generation heuristics and generalization mechanisms are described in the text.}

Figure 2: The algorithm for learning about objects, object qualities and words that refer to them

ot objects, their qualities, or even relationships among
objects.

Learning Words About Parts and Qualities
of Objects

An explicit feature in the visual field may correspond
to certain qualities of the object (such as color or tex-
ture) or may constitute a sub-part of the object. Words
about these features often occur in the language field of
the input. Associations between words and their corre-
sponding features are generated by the initial experience,
and their weights strengthened (or weakened) by subse-
quent ones. Qualities and parts of objects will often also
tend to be highly correlated with (hence will be linked
to) the names of the object; for example, the color “yel-
low” from the visual field — in addition to being linked
tc the word “yellow” with a strong weight — may also be
linked to the word “banana” and to the words for other
ycllow objects with moderate weights. But to the extent
tiat the system is input experiences where an object’s
name is always present, and the names of qualities and
parts are present for other objects as well, it will learn
the information needed to assign names correctly.

The association between something like the color “yel-
low” and the word “yellow” can be further strengthened
by a process called attention-focusing training. This in-
volves making the system concentrate on a particular
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sub-concept via a training sequence or set of examples
that focuses on the particular sub-concept. For example,
to force the learner to form a reliable association between
the color “yellow” and the word “yellow,” one of the fol-
lowing strategies can be used: A) a yellow object is input
through the visual channel and explicit feedback (which
is specially marked, or input through a specific explicit-
feedback channel) refers to the word “yellow” on the lan-
guage channel. Such specially marked training instances
are processed in a special way, resulting in the required
link’s weight being strengthened rapidly (using a higher
learning rate). Note that although ad hoc, this is simply
a fast alternative to repeating a large number of training
examples such as those described next. B) a number of
yellow objects, with other attributes (such as shape and
texture) entirely unrelated to those of the objects experi-
enced so far, are input through the visual channel along
with the word “yellow” on the language channel. This
helps in strengthening the required association without
adversely affecting other useful, previously learned asso-
ciations. Any new associations that are formed (embed-
ding the irrelevant features) get de-generated eventually
because they are not reinforced, and hence fall below a
dynamically-adjusted threshold.?

2Threshold adjustments are done when it is evident that

the system has made an error (e.g., the visual node for a ba-



Learning Spatial Relations

Relations among object parts or between objects are
much harder to learn if the notion of a relation (and
its arity) is not built into the system. In CHILDLIKE
(which is designed to learn as much as possible, rather
than use built-in knowledge), priority is given to asso-
clating words from the language channel with explicit
features or objects in the visual channel. Where a word
and a sub-object have already been learned and linked
together, they are considered to be accounted for. Each
of the additional words is tentatively linked to each of
the additional sub-objects. The arity of the relation is
tentatively assumed to be the number of structures in the
visual image already linked to words that are present.
When an example such as

Visual input:

Picture of yellow banana and brown table, with the center of the
banana having a y-coordinate 2 units (a unit is a certain number
of rows depending on the resolution of the input image) higher
than that of the table (the x-coordinates of the 2 objects are the
same or differ by less than 0.1 unit, a parameter which could be
a function of things such as object-size).

Language input:

banana on table

is presented for learning the relation “on,” the system
finds the best match (the highest level structure implied
across the visual and language input) for each compo-
nent, and hypothesizes “on” to be the quality of one ob-
ject and also to be a relation between the two constituent
structures in the visual image that had matching words.
Subsequent training using examples such as

Visual input:

Picture of red apple and white table, with the center of the apple
having a y-coordinate 1 unit higher than that of the table (same
x-coordinates).

Language input:
apple on table

reinforces the latter hypothesis.

Finally, rules like the following one are acquired as a
result of the training regime explained above (the rule
is a hierarchical subnetwork within the system; we have
re-expressed the rule here in a more symbolic format for
clarity).

on(L,M) «~——
L(y-pos = Y + (0..2), x-pos = X =% delta, color = %)
M(y-pos = Y, x-pos = X, color = *)

When necessary, spatial relations are also taught the
system Iin a more explicit way, using the attention-
focusing training mechanism described above. Several
experiences are input that contain the same objects, but

nana being active along with the node for the word “apple”).
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Figure 3: An overview of the memory structures
acquired by CHILDLIKE

at different locations. Since other properties (such as
color and texture) do not change when an object moves,
the system learns to associate the (relative) positional
information with relational words.

This will handle scenes whose descriptions are, for ex-
ample, “glass on three-legged stool,” as well as scenes in-
volving non-spatial relations, for example ones described
by “apple and yellow banana.”

Learning About Actions and
Need-fulfillment

Reasoning about actions and their effects is an important
aspect of intelligent behavior. In CHILDLIKE, sequences
of visual frames are used to learn about the effect of ac-
tions. From two visual frames, and an intervening action,
the system learns to associate an action (say Al) with
the description of the two frames (based on a temporal
prozimity heuristic). Needs are sensed internally (in the
same way that visual and linguistic features are sensed
externally) and action sequences that change need levels
favorably (indicative of need-fulfillment) are learned and
stored for future use.

Discussion and Conclusions

We have successfully experimented with the current ver-
sion of CHILDLIKE using 5-10 object classes (such as
fruit, food and furniture) with 5-10 distinct objects in
each class (a large number of instances of each object are
possible since objects can vary in position and also in
their features and feature values). We are in the process
of testing the learning abilities of the system on larger
sets of objects. Our preliminary explorations appear to
indicate that the underlying approach is sound; the sys-
tem should not exhibit brittleness as the number of ob-
jects and their properties grows.

A snapshot of the memories acquired by CHILDLIKE



1s shown in Figure 3. Distinct memories are used to
encode the actions-related rules and their components;
these are linked to memories containing encodings of re-
lated visual structures and words. Thus a pre-condition
like “on(pitcher,table)” can occur in the action memories
as part of a rule, and is connected to the correspond-
ing visual structures and through them to words. (Only
the highly weighted linkages are shown in Figure 3; links
with small weights exist, for example, between the vi-
sual structure for “pitcher” and the word “table” since
they co-occur in the same training instance. Links whose
w-ights fall below a dynamically adjustable threshold are
periodically removed from the memory structures.) The
dotted line in Figure 3 represents an example of the kind
of links that would be formed after words about actions
are also learned.

An important feature of the system is its ability to
learn and reason using language input alone (such as
“apple is fruit,” “banana is fruit,” and “fruit is sweet”).
Once a few words and what they refer to have been
learned, new concepts can be learned using these words
alone. This is salient in human learning, and can greatly
speed up learning.

It should be noted that the performance of the sys-
tem is not tied to specific object classes, specific words
about them, or specific needs. The same program can be
used with different objects, object-classes, needs, or/and
words from a different language.

In CHILDLIKE, the effects of actions are learned from
experience. The representation in CHILDLIKE's action
1. 2mories is akin to that used by planning systems (start-
irg with STRIPS, Fikes & Nilsson, 1971). This acquired
kirrowledge, which is already in a convenient represen-
tation, can be used by a powerful planning module to
enhance CHILDLIKE’s reasoning capabilities.

We have described a system that attempts to capture
the perceive-reason-act-learn loop which is central to in-
telligence, as evidenced by animal and human behavior.
A perception—mediated approach enables efficient acqui-
sition of concepts that are descriptive as opposed to those
that simply classify and discriminate. The multi-level
description of objects, including parts and qualities and
words about them, facilitates different kinds of reason-
ing. Words and small sentences about the visual scene
are grounded in terms of visual entities, and vice versa.
The system can also learn to reason about simple action
sequences that can potentially satisfy needs. All of this
learning and reasoning is performed using micro-modular
structures and general-purpose mechanisms such as ex-
traction, aggregation, generation, de-generation and gen-
¢ alization.

We are extending CHILDLIKE in several ways. These
include using a more sophisticated inheritance paradigm,
refining the way actions are handled, and the inclusion
of a deliberation module to arrive at approximate plans
for fulfilling needs. Lastly, we note that the current func-
tionality of the system is very good considering how lit-
tle information is built in to the system a priori; all the
rules employed in recognizing objects and their parts, in

grounding words in objects and relations, and in reason-
ing are learned from experiences, starting with the most
simple ones.
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