Title
Expanding Precompetitive Multisector Collaborations to Advance Drug Development and Pharmacogenomics.

Permalink
https://escholarship.org/uc/item/20f899hh

Journal
Clinical pharmacology and therapeutics, 107(1)

ISSN
0009-9236

Authors
Yee, Sook Wah
Do, Thao P
Huang, Shiew-Mei
et al.

Publication Date
2019-11-27

DOI
10.1002/cpt.1691

Peer reviewed
Expanding Precompetitive Multisector Collaborations to Advance Drug Development and Pharmacogenomics

Sook Wah Yee1, Thao P. Do2, Shiew-Mei Huang3, Ronald M. Krauss4, Hiroyuki Kusuhara5, Yuichi Sugiyama6, Jashvant D. Unadkat7 and Kathleen M. Giacomini1, *

Drug development requires a myriad of preclinical and clinical studies to understand the pharmacokinetics, efficacy, and toxicity of new drugs in patients. To inform these studies, a common base of knowledge is required. In this commentary, we provide an overview of several multidisciplinary consortia that support precompetitive drug development and pharmacogenomics research. The goal of this commentary is to stimulate awareness of consortia that advance knowledge in clinical pharmacology.

This commentary provides many examples of consortia from multiple sectors that work together to conduct research in drug development and pharmacogenomics. Examples are selected to demonstrate differences in funding mechanisms, membership, and collaborative goals and needs. Many consortia are funded by research grants from the government (e.g., the National Institute of Health (NIH)), public–private partnerships (e.g., the European Innovative Medicines Initiative (IMI) (https://www.imi.europa.eu/), Horizon 2020 (https://ec.europa.eu/programmes/horizon2020/en)), or commercial entities, (e.g., pharmaceutical and biotechnology industry). However, there are examples of consortia, which are formed voluntarily by scientists from multiple sectors, that have no source of funding. Table 1 and the associated Supplementary Information provide an extensive list of consortia in drug development and pharmacogenomics. For each consortium, the membership, funding source, and link to the relevant website are provided.

CONSORTIA FOCUSING ON DRUG DEVELOPMENT
Table 1 and the associated Supplementary Information provide a list of active consortia focused on drug development, including drug discovery. Four consortia focused on scientific issues that are relevant to drug development, and in particular, drug–drug interactions are described in more detail below.

The International Transporter Consortium (ITC) was founded without financial support in 2007 by key scientists with expertise in drug metabolism, transport, and pharmacokinetics from multiple sectors (academia, industry, and the US Food and Drug Administration (FDA)). ITC investigators from the United States, Europe, and Asia are interested in the role of drug transporters in drug safety and efficacy (https://www.itc-transporter.org/). The first workshop held in 2008 was a collaborative effort with the FDA that resulted in a white paper on membrane transporters in drug development1 that exemplified the aims of the FDA’s Critical Path Initiative (https://www.fda.gov/science-research/science-and-research-special-topics/critical-path-initiative). Since 2008, a total of three workshops and two joint workshops on drug transporters in absorption, distribution, metabolism, and elimination have provided critical updates and recommendations that were incorporated into several white papers, each addressing important areas in drug development, including drug–drug interactions (DDIs), transporter polymorphisms, emerging transporters of clinical importance, in vitro methods for transporter evaluation, recommendations related to clinical study design, and potential clinical probes and endogenous biomarkers, among others.2,3 Although great advances have been made in our understanding of factors affecting transporter function and clinical relevance, challenges remain, and the knowledge gaps must continue to be addressed via collaborative efforts, such as the ITC. The

1Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, California, USA; 2Animated Cell, Allen Institute for Cell Science, Seattle, Washington, USA; 3Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, Maryland, USA; 4Children’s Hospital Oakland Research Institute, Oakland, California, USA; 5Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; 6Sugiyama Laboratory, RIKEN Baton Zone Program, Cluster for Science, RIKEN, Yokohama, Japan; 7Department of Pharmaceutics, University of Washington, Seattle, Washington, USA. *Correspondence: Kathleen M. Giacomini (kathy.giacomini@ucsf.edu)

Received July 22, 2019; accepted October 16, 2019. doi:10.1002/cpt.1691
Table 1 A list of consortia or networks consisting of members from academia, industry, and government working together to meet goals related to drug discovery and development or pharmacogenomics

<table>
<thead>
<tr>
<th>Consortium name (acronym)</th>
<th>Goal</th>
<th>Members</th>
<th>Financial support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug discovery and development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Drug Discovery Consortium (AD2C)</td>
<td>To build a collaborative network among the growing number of university-led drug discovery centers and programs.</td>
<td>Academia, Industry</td>
<td>Industry</td>
</tr>
<tr>
<td>Accelerating Therapeutics for Opportunities in Medicine (ATOM)</td>
<td>The mission is to transform drug discovery by accelerating methods and tools used in drug discovery and development.</td>
<td>Academia, Industry</td>
<td>Public–private partnership</td>
</tr>
<tr>
<td>Biomarker Consortium</td>
<td>To discover and validate endogenous substrates for transporters involved in drug absorption and elimination.</td>
<td>Academia, Industry</td>
<td>Industry</td>
</tr>
<tr>
<td>Drug-Induced Liver Injury Network (DILIN)</td>
<td>To collect and analyze cases of severe liver injury caused by prescription drugs, over-the-counter drugs, and alternative medicines, such as herbal products and supplements.</td>
<td>Academia</td>
<td>NIH</td>
</tr>
<tr>
<td>Kinetics for Drug Discovery (K4DD) Consortium</td>
<td>To enable the adoption of drug-target binding kinetics analysis in the drug discovery decision-making process, and thereby contribute to the development of a new generation of improved medicinal products.</td>
<td>Academia, Industry</td>
<td>Industry-driven public-private partnership</td>
</tr>
<tr>
<td>Illuminating the Druggable Genome (IDG)</td>
<td>IDG Consortium is a US4 program funded by the NIH Common Fund with the goal of shedding light on understudied targets.</td>
<td>Academia</td>
<td>NIH</td>
</tr>
<tr>
<td>Innovation and Quality (IQ) International Consortium</td>
<td>Organization of pharmaceutical and biotechnology companies with the mission of advancing science and technology to augment the capability of member companies to develop transformational solutions that benefit patients, regulators, and the broader R&D community.</td>
<td>Industry</td>
<td>Industry</td>
</tr>
<tr>
<td>International Transporter Consortium (ITC)</td>
<td>To advance our understanding of transporter biology in drug development with the goal of improving human health.</td>
<td>Academia, Industry, Government</td>
<td>None</td>
</tr>
<tr>
<td>PET-IVIVE Consortium (2015-2019)</td>
<td>Predicting the role of hepatic transporters in pharmacokinetic (PK) and tissue concentrations via in vitro assays and drug PK and tissue concentrations in humans quantified by Positron Emission Tomography (PET).</td>
<td>Academia, Industry</td>
<td>Industry</td>
</tr>
<tr>
<td>Structural Genomics Consortium (SGC)</td>
<td>The SGC catalyses research in new areas of human biology and drug discovery by focusing explicitly on less well-studied areas of the human genome.</td>
<td>Academia, Industry</td>
<td>Public–private partnership</td>
</tr>
<tr>
<td>University of Washington Research Affiliate Program on Transporters (UWRAPT)</td>
<td>Quantifying absolute expression of transporters and enzyme in various tissues and cells to predict interindividual variability in drug clearance and tissue concentrations.</td>
<td>Academia, Industry</td>
<td>Industry</td>
</tr>
<tr>
<td>Pharmacogenomics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Pharmacogenetics Implementation Consortium (CPIC)</td>
<td>Facilitating the use of pharmacogenetic tests for patient care.</td>
<td>Academia, Industry</td>
<td>NIH</td>
</tr>
<tr>
<td>French National Network of Pharmacogenetics (RNPGx)</td>
<td>Issue recommendations based on level of evidence whether pharmacogenetic tests are needed for patient care.</td>
<td>Academia, Hospital, Private laboratory</td>
<td>None</td>
</tr>
<tr>
<td>Industry Pharmacogenomics Working Group (I-PWG)</td>
<td>To improve patient care through integration of pharmacogenomics in drug development.</td>
<td>Industry</td>
<td>Industry</td>
</tr>
<tr>
<td>Pharmacogenetics and Pharmacogenomics Research (A network in The European Federation For Pharmaceutical Sciences, EUFEPS)</td>
<td>The Network provides a platform for experts for gathering and disseminating knowledge, determining PGx strategies; for collaboration between academic institutions and industry; for mechanisms of setup and exchange of databases; and for gathering and promotion of knowledge about pharmacogenetics and genomics in Europe.</td>
<td>Academic, Industry</td>
<td>Academic, Industry</td>
</tr>
<tr>
<td>Pharmacogene Variation Consortium (PharmVar)</td>
<td>A central repository for pharmacogene variation that focuses on haplotype structure and allelic variation.</td>
<td>Academia, Industry</td>
<td>NIH</td>
</tr>
<tr>
<td>Pharmacogenomics Knowledgebase Resource (PharmGKB)</td>
<td>Collects, curates, and disseminates knowledge about the impact of human genetic variation on drug responses through the various activities.</td>
<td>No membership</td>
<td>NIH</td>
</tr>
<tr>
<td>Pharmacogenomics Research Network (PGRN)</td>
<td>To catalyze and lead research in precision medicine for the discovery and translation of genomic variation influencing therapeutic and adverse drug effects.</td>
<td>Academia, Industry, Government</td>
<td>NIH</td>
</tr>
</tbody>
</table>

(Continued)
fourth workshop will occur on March 8–9, 2021, with input from ITC members. University of Washington Research Affiliate Program on Transporters (UWRAPT) was established by Dr. Jashvant Unadkat at the University of Washington in 2012 through support from pharmaceutical companies (https://sop.washington.edu/uwraft/). The goal of UWRAPT is to better understand and predict interindividual variability in pharmacokinetics and pharmacodynamics of drugs. Specifically, UWRAPT aims to predict transport-mediated drug disposition including tissue drug concentrations using the relative expression factor (REF), which relies on quantification of transporter proteins in various human/animal tissues and cells using quantitative targeted proteomics (liquid chromatography–tandem mass spectrometry). Key findings of UWRAPT research fall into two main categories: (i) quantification of transporters and enzymes in various human and animal tissues, including those obtained from diseased (e.g., cirrhosis) and pediatric populations, and (ii) the use of these data for in vitro to in vivo extrapolation of drug disposition (including tissue...
concentrations) mediated by transporters to predict drug disposition and tissue concentrations, verified through imaging modalities. See Supplementary Information for a list of publications from UWRAPT.

The Biomarker Consortium was founded recently in Japan by Drs Hiroyuki Kusuhara and Yuichi Sugiyama through support from industry. Many challenges remain in the prediction of transporter-mediated DDIs. These include induction and inhibition of transporters, as well as the effects of genetic polymorphisms in modulating DDIs. The goals of this consortium are to advance the characterization of endogenous substrates to provide compelling evidence that endogenous compounds are surrogate probes to quantitatively predict transporter-mediated DDIs and to establish physiologically-based pharmacokinetic models for predicting the effects of investigational compounds on endogenous compounds. To achieve these goals, this project will provide evidence at three levels: (i) in vitro data, (ii) animal data, and (iii) clinical data to increase the robustness of the physiologically-based pharmacokinetic models. Finally, the project will disclose the data to support the rationale for use of the endogenous probes in a publicly accessible database and in published manuscripts. Our most recent finding using coproporphyrin I as an endogenous biomarker will serve as a model for this consortium (Figure S1).

The Innovation & Quality (IQ) Consortium is a dynamic and technically focused organization that impacts many areas of pharmaceutical development and regulation. Membership is only opened to pharmaceutical industry. IQ supports many leadership groups and working groups focusing on issues in pharmaceutical science including the Translational and ADME Sciences Leadership Group, which focuses on studies related to drug absorption, distribution, metabolism, and elimination, the Clinical Pharmacology Leadership Group, and others (https://iqconsortium.org/about/).

Other consortia and networks relevant to drug discovery and development that are funded by NIH or public–private fundings include the Accelerating Therapeutics for Opportunities in Medicine (ATOM) consortium, Drug-Induced Liver Injury Network (DILIN), Kinetics for Drug Discovery (K4DD) consortium, Illuminating the Druggable Genome (IDG), and Structural Genomics Consortium (SGC) (see Table 1, Supplementary Information).

CONSORTIA FOCUSING ON PHARMACOGENOMICS

Pharmacogenomics research is focused on understanding how an individual’s genes affect his or her response to medicines. Many of the networks or consortia that...
focus on pharmacogenomics research are founded in the United States or Europe but include researchers around the world (Table 1, Figure 1, and Supplementary Information). Furthermore, many pharmacogenomics consortia study multiple ethnic groups and disease-related populations. Below, we describe the Pharmacogenomics Research Network (PGRN) as an example of a broad-based pharmacogenomics research consortium, followed by a brief description of disease-specific or drug-specific pharmacogenomics research consortia.

The PGRN is an NIH-funded program whose mission is to catalyze and lead research in precision medicine for the discovery and translation of genomic variation influencing therapeutic and adverse drug effects. From 2000 to 2015, a total of 16 pharmacogenomics research groups, 7 network resources, and a Pharmacogenomics Knowledge Base have been supported by various NIH Institutes, led by the National Institute of General Medical Sciences. Since 2015, the PGRN has included three specialized centers (P50 grants) and six resources (R24 grants) (https://www.pgrn.org/research-pages.html). In 2015, the PGRN membership structure was opened, and there are currently over 600 members globally who are active in pharmacogenomics research, teaching, and clinical work. Members avail themselves of activities and resources coordinated by the PGRN Hub, including annual scientific meetings, a website rich in pharmacogenomics research tools and news (www.pgrn.org), social media posts, monthly Research in Progress Seminars, and quarterly member-wide calls. The major scientific accomplishments of PGRN-funded researchers include discovery of genetic polymorphisms in genes that are critical for disposition of and response to many drugs, including those used to treat cancer and cardiovascular, respiratory, neuropsychiatric, and rheumatologic diseases. Additional accomplishments include application of genome-wide association methods to pharmacogenomics (https://www.pgrn.org/riken-publications.html), functional genomics studies of common and rare variants, development and utilization of induced pluripotent stem cells, and clinical implementation and standardization of pharmacogenomics testing (see Data S1, reading lists to learn more about PGRN).

Future directions
Financial support from NIH for the PGRN will end on June 30, 2020. PGRN is actively exploring various partnerships and mechanisms within the United States and globally to foster its continued leadership role in pharmacogenomics research.

In addition to the PGRN, there are at least 20 pharmacogenomics consortia where researchers from around the world share data and knowledge to answer questions in pharmacogenomics. These consortia may focus on particular drug classes, diseases, or adverse drug events (Table 1, Supplementary Information). Drug-specific pharmacogenomics consortia are formed (see https://www.pgrn.org) to pool and expand samples for increased power in pharmacogenomics research and to bring scientists and clinicians together to participate in study design, sample collection, and data analysis and interpretation. An example of a drug-specific consortium is MetGen Plus (formerly MetGen, see https://www.pgrn.org/metgen.html). This consortium originally began with a focus on identifying pharmacogenomic factors that associate with response to metformin, which is first-line therapy for type 2 diabetes. Motivated by common interest, the original goal of the consortium was to replicate phenotypic and genetic findings relating to metformin response through collaboration. This goal expanded to include other antidiabetic drugs. Examples of disease-focused and adverse drug reaction-focused pharmacogenomics research consortia are the American Cardiovascular Pharmacogenomics Consortium (ACCOUNT), Genetics of Osteosarcoma (GO-Consortium), The Inter-national Serious Adverse Events Consortium (ISAEC), and the Prediction ADR Consortium (Prediction-ADR). In addition, there are many other consortia, which were established previously, but have sunsetted due to completion of the project or lack of funding (e.g., see https://www.pgrn.org/riken-projects.html).

CONCLUSIONS
Diverse consortia exemplified in this perspective have greatly enhanced precompetitive research in drug development sciences and pharmacogenomics. Disease-specific scientific consortia have facilitated and empowered large genome-wide association studies of human disease. Increasingly, drug-specific pharmacogenomics consortia are enabling genomewide studies of pharmacogenomics phenotypes (Table 1). It is envisioned that such consortia will increase in number as only a fraction of approved drugs have been studied using genomewide approaches. Similarly, multisector consortia such as the ITC, the Biomarker Consortium, and UWRAPT have enabled precompetitive research by providing much-needed expertise and knowledge that informs drug development. Though some consortia end naturally when their purpose is fulfilled, sustaining consortia is frequently challenging, often because of funding issues. Most consortia are formed by motivated scientists, often from academia, with industry partners. A by-product of many of these consortia is that they support global collaborations and scientific exchange in drug development and pharmacogenomics. In the future, consortia focused on pharmacogenomics, biomarkers, special populations, and modeling and simulation of new drugs and therapies, as well as many older drugs, will be formed to advance precision medicine. Clinical pharmacologists should continue to support these scientific consortia through membership, funding, and active participation.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical Pharmacology & Therapeutics website (www.cptjournal.com).

Figure S1. The newly established biomarker consortium to discovery and validate endogenous substrates for transporters involved in drug absorption and elimination. Three main approaches are illustrated in this figure.

Supplementary Reading List

ACKNOWLEDGMENTS
We are grateful to Woon Lee and Takashi Yoshikado for providing the flowchart in Figure S1.

FUNDING
We would like to acknowledge support from GM115370 (K.M.G., S.W.Y., T.P.D.), GM115318 (R.M.K.), and UWRAPT (J.D.U.) funded by various pharmaceutical companies.

CONFLICT OF INTEREST
The authors declared no competing interests for this work. As an Associate Editor for Clinical Pharmacology & Therapeutics, Kathleen M. Giacomini was not involved in the review or decision process for this paper.
DISCLAIMER
The contents of this article reflect the views of the authors and should not be construed to represent the US Food and Drug Administration’s views or policies. No official support or endorsement by the FDA is intended or should be inferred. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the FDA.

© 2019 The Authors Clinical Pharmacology & Therapeutics © 2019 American Society for Clinical Pharmacology and Therapeutics

5. Wang, L. et al. Transporter expression in liver tissue from subjects with alcoholic or hepatitis C cirrhosis quantified by targeted quantitative proteomics. Drug Metab. Dispos. 44, 1752–1758 (2016).