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Abstract

Although different interaction modalities have been proposed in the field of human-computer 

interface (HCI), only a few of these techniques could reach the end users because of scalability 

and usability issues. Given the popularity and the growing number of IoT devices, selecting one 

out of many devices becomes a hurdle in a typical smarthome environment. Therefore, an easy-to-

learn, scalable, and non-intrusive interaction modality has to be explored. In this paper, we 

propose a pointing approach to interact with devices, as pointing is arguably a natural way for 

device selection. We introduce SeleCon for device selection and control which uses an ultra-

wideband (UWB) equipped smartwatch. To interact with a device in our system, people can point 

to the device to select it then draw a hand gesture in the air to specify a control action. To this end, 

SeleCon employs inertial sensors for pointing gesture detection and a UWB transceiver for 

identifying the selected device from ranging measurements. Furthermore, SeleCon supports an 

alphabet of gestures that can be used for controlling the selected devices. We performed our 

experiment in a 9m-by-10m lab space with eight deployed devices. The results demonstrate that 

SeleCon can achieve 84.5% accuracy for device selection and 97% accuracy for hand gesture 

recognition. We also show that SeleCon is power efficient to sustain daily use by turning off the 

UWB transceiver, when a user’s wrist is stationary.

Keywords

Pointing; IoT; hand gestures

1 INTRODUCTION

There has been a proliferation of smart devices in the last decade. These devices penetrate 

every aspect in our daily lives in many forms including mobile phones, smartwatches, 
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thermostats, and door locks. In addition, smart home controllers, e.g. Amazon Echo [1] and 

Google Home [2], represent another recent wave of smart devices that are catching a lot of 

attention and gaining remarkable popularity. The development of smart devices has been 

fueled by research progress in several directions, such as improved network connectivity, 

reliability, and availability. The advancement in machine learning and data analysis also 

allow us to make semantics inferences from the sensory data streamed from these devices. 

However, making an easy and natural control interface for many surrounding devices at 

home remained unsolved problem. It is desirable that human interaction with machines in 

daily use should be intuitive and simple. Thus, much effort has been invested in Human-

Computer Interface (HCI) domain to enable more natural forms of interactions between 

humans and devices.

Different forms of interaction have been proposed, such as speech recognition [10], face 

recognition [29], gaze/eye tracking [31], and hand gesture tracking [15]. However, despite 

this tremendous effort, we are still far from having a natural way to control and interact with 

devices. Vision-based methods (e.g., [34]) present a serious invasion of the user’s privacy 

and they work only when sufficient lighting is provided in the room assuming all objects are 

in the view without obstruction. Similarly, approaches based on speech recognition [1, 2] 

also invade privacy because they contentiously record audio and release it to remote cloud 

servers to interpret users’ commands.

Hand gesture is a natural and effective communication method. Hand gesture recognition 

has received much attention especially in the HCI domain. Different sensing modalities have 

been proposed to recognize hand gestures, including cameras [34], depth sensors [3], Wi-Fi 

signals [6, 39], and body-worn inertial sensors [16, 25, 46]. The last approach, in particular, 

fits well into the smart home scenario because of the wide adoption of smartwatches and 

other wearable devices that are equipped with inertial sensors. However, only few existing 

gesture-based control systems have reached end users because no scalable and practical 

solutions that fit into everyday life, yet. For example, a typical smart home may have tens of 

devices connected to each other, including lights, thermostats, locks, and other appliances. 

Current smart devices typically require every single family member to install applications 

for controlling these devices. It might additionally burden the users to assign semantic labels 

for each device such as “living room light 2” or “northeast door.” With the increasing 

number of devices in users’ surroundings, this process becomes cumbersome.

Existing hand gesture recognition methods do not well address the device selection problem. 

Although a body of literature has proposed different gesture recognition solutions [7–9, 12–

16, 19, 25, 26, 33, 39], none of these techniques can select a device and control it without 

increasing the appliance installation overhead. For example, if a user wants to turn on the 

light in the living room, how does a smart home system know which device is intended? In 

fact, without augmenting the previous gesture recognition techniques with a position 

estimation technique coupled with predetermined locations of all smart devices, none of the 

existing techniques can be used to directly control a specific device based on human gestures 

unless a special gesture is assigned to each individual device. This motivates us to develop a 

new technology to enable accurate and scalable IoT device selection and control.
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Towards achieving a scalable and practical architecture for selecting and giving commands 

to smart home devices, we design SeleCon, a gesture-based system that aims to provide a 

natural device selection and control method for users to interact with smart IoT devices. A 

user can simply point his arm towards the target device to select it, as shown in Figure 1. 

SeleCon is able to identify which IoT device is selected by monitoring the direction of the 

wrist movement. The user then draw a gesture in the air to give a command to the selected 

device.

As smart devices can be placed in arbitrary locations and users can move over time, inertial 

sensors alone are not sufficient to identify the intended target. Therefore, we designed and 

implemented a smartwatch prototype equipped with an ultra-wideband (UWB) transceiver, 

and we use pair-wise ranging measurements between the smartwatch and the IoT devices to 

identify the target. The intuition behind our device selection process is that when a user 

points towards a given device, the smartwatch attached to the user’s wrist will get closer to 

the chosen device after the transition of the pointing event. We use different machine 

learning algorithms to verify our hypothesis. We also develop machine learning models for 

recognizing hand gestures for giving commands to target devices. One major challenge is 

that UWB is known to be power hungry compared to inertial sensors. To address this 

problem, we use the low power inertial sensors to implement a motion-based triggering 

module so that UWB ranging is turned on only after potential pointing actions are detected. 

Therefore, SeleCon can effectively reduce the operating time of the UWB transceiver to save 

energy.

We summarize our four main contributions:

• We introduce SeleCon which provides a practical and scalable method of IoT 

device selection and control using pointing and hand gestures.

• We designed and implemented a hardware prototype of smartwatch equipped 

with a UWB radio and inertial sensors. This prototype is used to evaluate the 

performance of SeleCon.

• We develop machine-learning models for device selection and hand gesture 

recognition from UWB ranging and inertial sensors data.

• We develop a module for pointing event detection that relies only on inertial 

sensors. As a consequence, the UWB transceiver on the smartwatch can be 

turned off 92% of the time for energy saving without affecting the system 

accuracy.

SeleCon achieves 84.5% accuracy in detecting the target device, and 97% in recognizing the 

hand gesture commands. The rest of the paper is organized as follows: Section 2 provides an 

overview of SeleCon system architecture. We then go through SeleCon module by module. 

Pointing event detector is illustrated in Section 3. Section 4 introduces a simplified 

formulation for pointing gesture recognition problem, highlights the challenges in pointing 

gesture recognition, and introduces device selection algorithm using pattern matching. The 

language of gestures is introduced in Section 5. Section 6 evaluates SeleCon. Section 7 
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summarizes the related work. Current limitations and future work are shown in Section 8. 

Finally, Section 9 concludes this paper.

2 SYSTEM OVERVIEW

Figure 2 illustrates the different stages in the SeleCon processing pipeline. Broadly 

speaking, our system can be divided into three different stages in the following 

chronological order: the listening stage, the pointing stage, and the command stage. In 

listening stage, SeleCon detects all potential wrist motion events using the low-power 

inertial sensors. After a hand motion event is detected, SeleCon moves into the pointing 
stage. Our system uses the inertial sensor to verify whether the user has started pointing to a 

target device. Concurrently, SeleCon turns on the UWB transceiver to perform distance 

ranging between the smartwatch and the surrounding smart devices for a predefined time 

window. If the pointing action is verified by our system, SeleCon performs machine learning 

algorithms over UWB time series to determine which device is selected. The last step is the 

command stage. SeleCon again leverages the inertial sensors, exploits machine learning 

algorithms to classify the hand gestures. Figure 8 shows the gestures supported in our 

system.

Figure 3 shows an example of inertial sensor data over a valid device interaction session. A 

session includes two parts, a pointing event followed by a gesture to give the command to a 

device. Note that the entire process is done within 2 seconds.

3 POINTING EVENT DETECTION

A major reason that we serve the pointing gesture as the preamble of one device interaction 

session is to save energy. Since UWBis 10x more power consuming than inertial sensors, it 

is infeasible to turn on the UWB for device selection for a long time. To cope with this issue, 

we use wrist motion as a trigger and enables the UWB only when a user tries to select a 

device. The movement trigger module in the listening stage aims at using low power inertial 

sensors to detect local wrist movements. As demonstrated in Figure 3, the motion of 

pointing is fast and the duration is no longer than 0.5 seconds. Thus, as long as a user starts 
moving her wrist, SeleCon enters the pointing stage and turns on the UWB transceiver. All 

the wrist movements are then passed to the pointing verification module, which checks 

whether the motion is a pointing gesture based on the inertial time series data. Below we 

provide the details of the movement trigger module and pointing verification module.

Movement Trigger Module

The movement trigger module aims to identify all the possible pointing events based on 

inertial sensors. However, if we make the module over sensitive, the UWB transceiver will 

wake up more frequently, causing the energy concern. In our design, we make the movement 
trigger module responsive enough so that even slow pointing gestures can be captured. 

Whenever a possible pointing event is captured, the movement trigger mobile turns on the 

UWB transceiver, records both inertial data and UWB ranging data for a couple seconds, 

and then passes the collected data to the pointing verification module which verifies whether 

the detected motion is a pointing gesture.
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Pointing Verification Module

Since the movement trigger module is set to capture small wrist movements, many false 

events are likely to be included. The goal of the pointing verification module is to keep those 

events that are intended to point to objects. The pointing verification module combines a 

number of heuristics to verify the pointing gestures from inertial measurements. Figure 3 

shows both accelerometer and gyroscope data collected within a valid pointing event. Note 

that the gravity has been removed from the accelerometer data, processed in the hardware 

level. Since pointing gesture is an fast action, it will cause high acceleration showing as a 

spike in accelerometer data (e.g., at t = 0.5). On the other hand, though people have different 

habits to point towards objects, people naturally rotate their elbow joints and fully stretch 

their arms, making the smartwatch mounted on the wirst facing a different orientation. The 

orientation difference is reflected on gyroscope data which measures the angular velocity, 

demonstrated in Figure 3. We pick an acceleration and an angular velocity magnitude 

threshold such that true pointing events can be distinguished from incorrect ones.

Though the magnitude of inertial data is a good indicator of pointing gestures, it is still not 

robust enough to remove all the false events. We have the following observation. Users 

usually holds their arms for a short period (i.e., a couple hundred milliseconds) after 

pointing to an object. Therefore, if inertial sensors are stable for a predefined length, we 

consider this as a pointing event.

4 IOT DEVICE SELECTION

After detecting a pointing event, the system determines which device is selected by 

processing the UWB ranging measurements in the device selection module. Assume that we 

have a network of N IoT devices and a single user in a room. We denote the position of each 

device ni for i ∈ 1, …, N by pi ∈ ℝ3. Similarly, the position of the smartwatch nu (i.e., user’s 

wrist) is denoted by pu(t) at time t. SeleCon gets the ranging measurements between the 

smartwatch nu and any smart device ni from the UWB transceiver, and we denote the 

measurement by ri(t) at time t.

Consider the user is pointing to a target IoT device whose index is denoted by i*. Since 

pointing is a process to move the wrist closer to the target device, mathematically speaking, 

the distance between ni* and nu should decrease the most comparing with any other ni where 

i ≠ i*. By collecting the pairwise ranging measurements between the smartwatch and every 

smart device, we can find out i* by solving the following equation:

i∗ = argmin
i

(‖pi − pu(t f )‖ − ‖pi − pu(ts)‖) = argmin
i

(ri(t f ) − ri(ts)) (1)

where ts and tf are the start and finish time of the pointing gesture, respectively. In order to 

measure the distance between the user and any IoT device, we considered both single-sided 
and double-sided two-way ranging techniques, which are described in [23]. In the single-
sided two-way ranging, two devices i and j take turns to send message to the other. The 

distance is derived by the round trip time of the message transfer. Double-sided two-way 
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ranging can be seen as an extension of the single-sided technique, and the differenct is that 

the first device i sends the third message to j so that the round trip time can be also acquired 

from the second device. This approach usually gets a better ranging accuracy because the 

third message compensates for the clock drift.

However, both aforementioned ranging techniques have a range estimation error of around 

10cm to 30cm, which can impact the device selection accuracy. The possible reasons of the 

large ranging errors are the range noise, the pointing length, and the spatial diversity. In the 

following subsections, we will present what are the challenges to distinguish the target 

device from the incorrect ones, and then provide the features that have potential to identify 

the correct device.

4.1 Spatial Resolution and Gesture Length

When a user points to an IoT device, the length of that gesture inherently defines a signal-to-

noise ratio (SNR). We denote this length ℓ, and we assume that the range error follows a non-

zero mean Gaussian distribution e N(μr, σr
2). This error is not necessarily be i.i.d, but for the 

sake of simplicity, we assume that the range error is independent across time. Ideally, the 

start wrist position pu(ts), the end wrist position pu(tf), and the selected device pi* should fall 

on a straight line. However, when a user points to a device, the eyes, the wrist, and the 

device are not co-linear, causing the pointing angular error θ̃. Additionally, if there is a 

device close to the true device, our system may be mistaken and select the wrong one.

We define the angle formed by the true device ni*, the user nu, and the cloest device nj in 

terms of angle as θmin, illustrated in Figure 4. In the case of high spatial diversity, i.e. when 

θmin is quite large and when ℓ is large with respect to σr
2, it is relatively easy to distinguish 

the correct device ni* that a user is pointing to from any other devices nj for j ≠ i*. Figure 5 

shows the ranging difference measured from both target device ni* and other devices nj over 

time in a high spatial diversity area. The range difference at kth sample is defined as the delta 

of current range value and the start range value, or ΔRi(t) = ri(t) − ri(ts). Each trace in Figure 

5 represents a pointing gesure measured by a device. The true traces which are plotted in 

blue correspond to the distance estimates between the user and ni*, and the false traces 

plotted in red are those corresponding to any other device. As we can see in the figure, the 

true traces show the range differences are negative, as the user moves her wrist closer to the 

target device. In contrast, most red traces measured from other devices are positive. These 

two kinds of traces can be easily separated.

In the case of low spatial diversity, the simple metric ΔR no longer suffices as a reliable 

metric for discerning the desired IoT device from other IoT devices. For instance, Figure 6 

shows estimated range differences for a low spatial diversity environment, which we 

deployed the IoT devices as illustrated in Figure 10. The result shows that true range 

measurement traces have similar pattern in high spatial diversity case (i.e., blue traces in 

Figure 5), but the false traces from some other devices overlap with the true traces. Figure 7 

plots the distribution of ranging differences ΔR. As we can see, there is an overlap between 

true and false range differences within −0.5m to −0.8m. Thus, in order to provide high 

device selection accuracy, we need to explore other metrics. In the following subsection, we 
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will explore a more principled approach to the device selection problem, keeping device 

power and computational overheads in mind.

4.2 Device Selection by Pattern Matching

We have demonstrated that the estimated distance change, ΔR, is insufficient to reliably 

identify the target device to which the user is pointing. Additional features have to be 

explored to find correct devices. We first present features considered in our system, and 

explain how we determine the selected devices by the classification algorithm.

4.2.1 Relevant Ranging Features—SeleCon considers the following features:

Linear Fit: Although the wrist path of a point gesture is curved as illustrated in Figure 

4, in reality the path is close to a straight line. Any divergence from this fit could 

indicate that the range estimated trace could belong to an undesired device. More 

specifically, if we estimate a linear fit r̂i(k) = ri(k) + υk describing the range estimate 

between nu and ni for a given device i and noise υ at sample index k, we describe the 

fitting error as the mean squared residual MSR = 1
K ∑k υk

2, where K is the number of 

ranging samples when pointing. Intuitively, a low MSR indicates a good linear fit and 

consequently more likely being the true trace. We use this feature to enhance the 

pointing recognition process.

First Path Loss: Path loss is defined as power density reduction from a transmitter to a 

receiver. The accurate timing provided by UWB radios is enabled by measuring the 

energy in the radios accumulator corresponding to the communication along the first 

path. One consequence of this accurate timing is that the same energy can be used to 

estimate the power of the communication along the first path of communication 

typically the line-of-sight path. Since people rarely point to an object which is out of 

their sight, the chosen device is likely to report low first path loss, denoted by f ploss. 

A general path loss formula is shown in equation 2.

PL(d) = PL0 + 10 × ɣ × log(d /d0) + S (2)

PL0 is the path loss at the point that is located at the reference distance d0. ɣ is the 

slope of the average increase in path loss with dB distance. S is the variation which is 

zero-mean Gaussian random variable [18].

Range Data: If there are two devices which align on the direction that a user points 

towards, naturally we consider that the user is interacting with the closer one. Thus, 

the distance between a device and a user also plays an important role. To estimate this 

distance, we use the raw range result as a feature.

Angular Divergence: As a user points from pu(ts) to pu(tf), she is attempting to point 

as closely towards a device as possible. In an ideal case, the line between start and 

finish is perfectly co-linear with the coordinates of the IoT device itself. In practice, 

however, there is some angular divergence θ̃ as shown in Figure 4. In order to 

calculate this angle, we must know the device position pi as well as the start and stop 
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position of the user’s hand. This requires a collaborative position estimate among 

multiple IoT devices, which assumes a certain device density and additionally 

consumes more power due to added communication costs. When possible, however, θ̃ 

can be used to increase the accuracy of gesture-based IoT device selection.

We combine the previous features into an aggregate feature vector, defined as

f = [ΔR, MSR, f  ploss, r (ts), θ
∼]T

(3)

For each pointing event, there is N different data points corresponding to the feature vectors 

computed from the ranging measurements between the user’s smartwatch and each of the N 
surrounding devices. Only one among these data points corresponds to the true target device 

(ni*) while the remaining N − 1 are not selected. Thus, we label a feature fi as 1 for the true 

device (ni*) and 0 otherwise. Although we have included the expensive feature θ̃ in our 

feature vector f definition, we report the system accuracy based on different experiments that 

uses a feature vector with and without this feature being included. We believe that these 

experiments mimic diverse settings and provide more realistic results for sparse deployments 

and restricted energy reserves.

4.2.2 Classification Methods—From each feature vector we can estimate whether a 

particular IoT device is selected or not, but this approach ignores any potential 

communication or collaboration between connected IoT devices. Another option in the 

classical classification methodology that a single centralized server classifies based on the 

feature vectors from IoT devices. However, this collaborative classification is not scalable 

and have a high communication cost. On the other hand, in non-collaborative classification, 

each IoT device operates independently, attempting to classify itself as selected or 

unselected. Other than the communication with nu required for range estimates, no 

additional communication is performed. This saves power, but it comes at the cost of very 

high selection errors. We do not want multiple devices to be selected at the same time. 

Therefore, we choose to do collaborative classification; devices are allowed to communicate. 

Rather than sending entire feature vectors, however, each device will send only a summary 

of their classification results and indicate the certainty with which the classification was 

made. This allows the network to arrive at a consensus of maximum certainty of which 

device was selected, enabling collaboration without prohibitively high communication 

overheads.

5 HAND GESTURE RECOGNITION

The second half of a pointing session is a hand gesture to control the target device. 

Individual devices can be configured to execute different actions in response to the different 

gestures. Hand gesture is arguably one of the intuitive ways for describing actions and does 

not require moving closer to the target device. Currently, SeleCon supports 11 different 

gestures which can be assigned to up to 11 different operations for each individual device. 

Our system can be easily extended to support additional gestures, but we believe this number 
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is satisfactory for the needs of most devices. The list of supported gestures is shown in 

Figure 8.

Our gesture recognition module relies on the measurements from the inertial sensors in our 

smartwatch. Namely, we use three axes of both accelerometer and gyroscope measurements. 

According to our language definition, a user should point to the device first then draw a 

gesture command in the air. Therefore, after the end of the pointing action, we collect 3 

seconds of inertial measurements. From these samples, we compute a feature vector 

consisting of the following features along every axis of both accelerometer and gyroscope:

• The three quartiles (25%, 50%, 75%).

• Standard deviation σ

• Skewness:

skewness = E X − μ
σ

3

• Kurtosis:

Kurtosis = E[(X − μ)4]

E[(X − μ)2])2

As a result, in total we have 36 features. We use these features to train a machine learning 

classifier to recognize different gestures.

6 EVALUATION

We deployed a custom ultra-wideband RF testbed based on the DecaWave DW1000 IR-

UWB radio [23] for evaluation of SeleCon. The whole experimental setup overview is 

shown in Figure 10. Our testbed consists of three main components:

Smart devices anchor nodes: Fixed anchor nodes powered by an ARM Cortex M4 

processor with Power over Ethernet (PoE) and an expansion slot for a custom 

daughter board containing the DW1000, as shown in Figure 11. We deployed 8 UWB 

anchor nodes in various positions in a 10m-by-9m laboratory. Six nodes were 

mounted on the ceiling (2.5m high) and two were placed on 1-meter high shelves. 

The heights of nodes are different to simulate IoT devices deployed in real homes. 

All the anchor nodes are connected to an Ethernet backbone both for power and for 

communication to the central server, and is fully controllable over TCP/IP from the 

central server.

UWB-equipped smartwatch: Figure 9 shows our prototype which is a UWB-equipped 

smartwatch powered by a cell button battery. The smartwatch sends the ranging 

communication messages via Bluetooth low energy (BLE) to a smartphone as a relay, 

which sends the data back to the central server over TCP/IP.
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Motion Capture System: In order to accurately capture the path of pointing gestures, 

we use the OptiTrack motion capture system [5] to measure the smartwatch position 

over time. Our motion capture system consists of 8 cameras placed along the 

perimeter of the experimental area. We attach the IR reflectors on the smartwatch so 

that the OptiTrack system can track the object. The IR reflectors have to be captured 

by at least 4 cameras to determine the location. The localization error of OptiTrack 

system is within ±0.5mm, which is sufficiently accurate as the ground truth.

6.1 Pointing Event Detection

To evaluate the accuracy of pointing event detection, we conduct the following two 

experiments. The first experiment evaluates how well our system can capture pointing 

events. We ask three participants to wear our smartwatch and perform at least 50 pointing 

events. The participants are instructed to use their natural way to point to any device (e.g., an 

anchor node) without restrictions. During the data collection sessions, participants could 

move freely within the testbed area. We used the OptiTrack motion capture system [5] to 

collect smartwatch location traces and post-processed the pointing events. The detection rate 

is 91.9%.

With such a promising detection rate, one might naturally ask the false alarm rate. This has 

to be broken down to two further questions: (1) How frequent the UWB radio has to be 

active? (2) What is the false alarm rate of our system reports pointing events? To answer 

these questions, we conduct a second experiment to collect non-pointing inertial data from 

five students. Participants are allowed to do any acticity they want as long as no pointing 

gestures are involved. We collect 11.6 hours of data in total. Our results show that SeleCon 

only has to enable the UWB ranging for only 8.0% of the time. SeleCon reports 73 false 

events in total, with an average of 6.29 false events per hour.

To further reduce the false event rate, SeleCon considers the result from the gesture 

recognition module. Since a valid command should include a gesture, if the gesture 

recognition module returns none of these 11 predefined gestures, we discard the pointing 

event. This further step decreases the false alarm rate to 2.5 false events per hour.

6.2 Device Selection

In order to evaluate the pointing-based IoT selection system, we perform a series of pointing 

events using our prototype of the UWB-enabled smartwatch. For groundtruth collection of 

the users’ wrist motion, we attach a set of infrared reflectors to the smartwatch prototype. 

We use the OptiTrack [5] motion capture system to track the realtime positions. We 

collected totally 200 pointing events to various devices performed by various users. We 

evaluated the accuracy of different classification techniques for device selection. The results 

of collaborative classification schemes using support vector machine (SVM) and random 

forest (RF) are shown in Table 1 where the angle θ̃ is not part of the feature vector. Table 2 

shows the result of different classification schemes under collaborative schemes in which the 

angle θ̃ is part of the feature vector. The used angular divergence in pointing has the shown 

probability density function in Figure 12. The ground truth angular divergence is calculated 

by processing the motion capture logs while pointing.
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Collaborative classification achieves a good accuracy. This is due to the voting scheme 

among all the N IoT devices, which follows non-collaborative classification. We now 

communicate classification certainties between all devices, arriving at a maximally certain 

positive label. In particular, in the case of SVM we communicate the margin between a 

datapoint and its n-dimensional polytope. In the case of RF, we communicate the numerical 

average of the ensemble prediction. We report the results with and without the expensive 

feature θ̃ in order to provide more realistic results for sparse deployments and restricted 

energy reserves. We will show also the results for both single-sided and double-sided 

ranging.

In doing so, we achieve for single-sided ranging without the feature θ̃ an accuracy of 50.6% 

for collaborative RBF SVM, and 78.04% for collaborative RF. Collaborative linear and 

quadratic SVM show 41.46% and 48.78%, respectively. On the other hand, using double-

sided ranging messages achieves 80.48 for collaborative RF. Other classifiers results are 

shown in Table 1. Introducing the feature θ̃ enhanced the accuracy. Collaborative RF 

achieves the best accuracy of 84.14% and 81.09% for double-sided ranging and single-sided 

ranging, respectively. Collaborative RBF stands in rank two position with accuracy 64.63% 

and 66.46% for single-sided ranging and double-sided ranging, respectively. We report only 

accuracy, because at any given pointing event we know that only a single IoT device out of 

N possible is selected. The accuracy is the percentage of times we choose the correct device. 

Recall that our testbed size is 9m-by-10m, which on average every deployed device is 3.5m 
apart. We should mention that the reported accuracy is the average accuracy when standing 

in different positions in the room. This accuracy depends on the co-linearity between the 

devices with respect to the user’s position. We will analyze the effect of co-linearity between 

devices and the distance between the them on the accuracy at the next subsections.

6.2.1 Distance Between two Devices Analysis—We study the effect of the distance 

between two devices on the accuracy of selecting one of them. We conducted an experiment 

where the user points to one of two devices. We change the distance between the two 

devices from 30cm to 2m and compute the accuracy of device selection at each distance. 

Figure 13 shows how the selection accuracy changes with the change of the distance 

between devices. We should emphasis that the reported accuracy in Tables 1 and 2 is the 

average accuracy across different positions. On the other hand, the reported accuracy in 

Figure 13 is the result of standing in one position in the middle of the testing environment. 

Therefore, the reported accuracy in Figure 13 is better than the previous results.

6.2.2 Co-linearity Analysis—We also study the effect of co-linearity between different 

devices and the user’s position on the reported accuracy. The co-linearity is defined in terms 

of the angle α in the x-z plane as shown in Figure 14. Two devices are co-linear if α = 180. 

In order to analyze the co-linearity effect on the reported accuracy, we conducted two sets of 

experiments. Two devices are places at height of 75cm, i.e, their position is 75cm in the y 

direction. In the first set of experiment a user is asked to keep pointing to the two devices 

while standing, i.e, from height 140cm in the y direction. On the other hand, the second set 

of experiments is conducted while sitting, i.e, from height 75cm in the y direction. Figure 15 

shows the co-linearity effect while pointing from height 75cm and 140cm on devices at 
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75cm in the y direction. Again, we should emphasis that the conducted experiments were 

done while standing roughly in the middle of the 9 * 10m2 room. Therefore, the reported 

accuracy is much higher than the average accuracy in Tables 1 and 2.

6.2.3 Power Analysis—This device selection technique targets IoT devices that are 

potentially battery powered. Because of this, care has to be taken to ensure that power 

consumption is minimized. Here we briefly analyze power consumption for just the mobile 

(e.g. smartwatch) device that the user wears. Note that in practice, some of the stationary 

(anchor) IoT devices may be battery powered as well, and in these cases a low power 

sniffing strategy should be employed for listening to messages from the mobile device. For 

the mobile case, we will ignore the energy cost of computation for classification, as this is 

dwarfed by the energy required to transmit and receive using the DW1000 UWB 

transceivers.

In the idle case (when the smart watch is not ranging and is idle, listening for a pointing 

gesture), 6µW of power are consumed. When transmitting or receiving UWB frames, there 

is a 5ms wakeup period during which 3mW of power are consumed, followed by a 260mW 
for 200µs for TX and 370mW for RX. We will ignore the sleep power consumption (6 µW) 

for now, as it will be shadowed by the processing consumption and analog conversions for 

gesture detection on the smart watch. These power numbers are derived from [23]. For N 
IoT devices, energy consumption during each “pointing” session is calculated as follows:

E = K · N∗(Ewake + 2 · (ETX + TRXPRX)) = K · N∗(15μJ + 2 · (52μJ + 370μJ)) (4)

with a listen period of TRX = 1ms following each transmit (and expected response). Here N* 

represents all nodes within communication range, rather than the full number of networked 

devices, and K is the number of range measurements calculated per node—roughly 20, in 

the above experiments. For N = 8, as is the case in the results shown here, we have E = 

137.4mJ per point. For today’s smart wearables, a battery with between 750 and 1400 mWh 

is common—this gives between 2.7kJ and 5kJ in each battery, meaning that if, for example, 

100 pointing gestures are made each day, there is a 0.27% to 0.5% overhead in battery life. 

This is a very reasonable price to pay for the added convenience of high fidelity gesture-

based IoT device selection. With improvements in commodity UWB hardware, however, it 

is likely that this overhead will decrease further.

6.3 Gesture Recognition

To evaluate our hand gesture recognition module, we collected 1290 gestures samples from 

volunteers who were given the freedom to wear the watch on their left hand or right hand. 

On average, we collected 117 samples for each gesture from the supported gestures shown in 

Table 8. We used the collected measurements to evaluate the performance of different 

classification algorithms at the gesture recognition module. Table 3 shows the accuracy of 

the Gesture Recognizer module. Linear SVM achieves about 97%. Quadratic SVM achieves 

an accuracy of 96.5%. Then, Random Forest comes the third with 95.48% accuracy. Finally, 

SVM with RBF kernel achieves 93.12%. Figure 16 shows the confusion matrix of the 
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gesture recognition. In summary, SeleCon has a robust gesture recognizer module with 11 

gestures which should be sufficient to control any IoT device.

7 RELATED WORK

To examine various interaction modalities that are used to communicate with IoT devices, 

including device selection and device control, we broadly partition prior work into three 

groups and compare the most related work in Table 4:

i. Wireless-based interaction. Prior work attempts to use RFID [12, 14] and audio 

[19] for gesture recognition. However, they are not feasible because an RFID 

reader typically has a coverage limit of 10m2. Also, ambient sound may add 

noises and decrease the accuracy. Perhaps WiFi is a better medium to “observe” 

interactions between humans and devices as several works have demonstrated 

WiFi can mimic human sensations as in WiSee [39], WiHear [44], and WiFinger 

[30]. One popular technique is leveraging the Doppler effect to detect moving 

objects [7] which allows the system to “see through the wall” [6]; Kim et al. also 

exploit this phenomenon to monitor human activities [27]. Extracting 

information Channel State Information (CSI) from the Network Interface Card 

(NIC) is another technique to sense the environment, such as occupancy 

detection [47], typing [9], falling detection [20], and activities involving body 

displacements in general [35, 45]. Though gesture recognition via WiFi has been 

proved possible, none of this previous work is capable of identifying which 

device is pointed at by a user. This is because WiFi cannot give good range 

resolution. In contrast, UWB can provide high resolution of ranging 

measurement, which makes it a promising technology for indoor localization 

[17]. In SeleCon, we choose UWB for device selection because pointing is 

instant and the distance between wrist start and stop positions is short.

ii. Inertial-based interaction. Inertial sensors are good at capturing local 

movements. Previous research has demonstrated using inertial sensors for full 

body posture [16]. As wristbands become more and more popular, a body of 

literature explores the sensing boundary in this form factor. Xu et al. [48] point 

out that it is possible to track arm-level [25], hand-level [15, 26], and finger-level 

gestures [41, 46]. Shen et al. also show that since wrist position is determined by 

both the shoulder and the elbow motions [42], the full arm posture can be sensed 

even by a wristband. Based on this work, several interesting sensing applications 

such as driving [13, 37], whiteboard writing [11], gaming control [4, 49], and 

writing or drawing in the air [8, 38, 48] have been developed. Researchers found 

inertial sensors are capable of capturing subtle hand movements, and sensitive 

information can be leaked when a user types [21, 32, 36]. Interestingly, WristQue 

[33] combines environmental and inertial sensing with precise indoor 

localization, using UWB for pointing and gestures recognition. However, 

WristQue needs magnetic field pre-calibration and full localization information, 

which are critical limitations in that work. SeleCon aligns with all these works 
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and employs inertial sensors for two use cases: Accurate pointing action 

detection to save energy and hand gesture recognition for controlling devices.

iii. Vision-based interaction. Commercial products such as Microsoft Kinect [3] 

employ both an RGB and a depth camera to track the human skeleton. Sharing 

the same idea, Digiteyes [40] reports 27 degrees of freedom (DOF) hand model 

at a speed of 10 Hz. This technique has also been applied on detecting human 

gestures [34] and sign language [43]. HeatWave [28] and HeatProbe [22] use 

thermal cameras to detect and track how users interact with appliances. Jing et al. 

[24] recognize pointing events using Kinect. Perhaps intuitive to humans, vision-

based approaches, however, suffer from requiring a line of sight and good 

lighting conditions, and also impose severe privacy invasion.

8 LIMITATIONS AND FUTURE WORK

While we are very positive about SeleCon current capabilities, we admit the following 

limitations in our architecture:

• SeleCon requires the user to wear a custom smartwatch equipped with both an 

inertial measurement unit (IMU) and an ultra-wideband (UWB) radio.

• Currently, SeleCon cannot be used by more than one user simultaneously.

• We assume that smart devices around the user are also equipped with UWB 

radio. Although one might argue that these assumptions are too strict, we 

anticipate that UWB radios will permeate the IoT scene in the next few years, 

given their success and growing adoption rate.

We believe that the next step is to add SeleCon in the real-life deployment of many smart 

homes, collect users reviews and enhance the system architecture. Also, enhancing the 

pointing recognition accuracy by considering more features is another feasible future work. 

Supporting multiple users at the same time is a key challenge in current SeleCon 

implementation.

9 CONCLUSION

In this paper, we have described and evaluated SeleCon which is a novel system for IoT 

device selection and control. SeleCon provides a simple and intuitive interface to interact 

with a myriad of smart devices through pointing actions and hand gestures. All smart 

devices have to be UWB enabled, and users only need to wear a custom smartwatch 

equipped with inertial sensors and UWB transceiver. We have designed and implemented 

hardware prototypes of both the custom smartwatch and the smart devices anchor nodes. 

SeleCon employs different machine learning classifiers to accurately identify the selected 

target device from the UWB ranging measurements. In addition, SeleCon supports a 

language of 11 different gestures to provide control of the selected device. We also presented 

an energy saving approach which uses the low-power inertial sensors to trigger UWB such 

that UWB can be in sleep mode in 92% of the time. Our experimental results demonstrate 

that SeleCon achieves 84% accuracy for device selection even with a high device 

deployment density, and our system achieves 97% accuracy for hand gestures recognition.
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Figure 1. 
Gesture based IoT device selection using wearable devices.

Alanwar et al. Page 18

IoTDI 2017 (2017). Author manuscript; available in PMC 2018 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
SeleCon system overview.
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Figure 3. 
An example of inertial data: A user points to a device (TV) and conduct a moving up gesture 

(raise volume.)
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Figure 4. 
Ranging errors and angular (spatial) resolution in gesture-based IoT device selection.
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Figure 5. 
Example ranging traces during pointing. These examples are in an environment with high 

spatial diversity where ΔR is sufficient to identify the selected device
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Figure 6. 
Example ranging traces during pointing. These examples are in an environment with low 

spatial diversity where ΔR is not sufficient to identify the selected device
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Figure 7. 
Range difference, ΔR, for true and false (ni* and ni≠i*) as a probability density function.
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Figure 8. 
List gestures supported by SeleCon.
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Figure 9. 
Hardware prototype of UWB-equipped smartwatch
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Figure 10. 
Experimental setup overview, including, UWB Anchor nodes, motion capture cameras, and 

a user wearing UWB-equipped smartwatch
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Figure 11. 
(a) Custom ranging anchor circuit board, and (b) ceiling mounted anchor node
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Figure 12. 
Probability density function of the angular divergence of the pointing events.
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Figure 13. 
The effect of distance between two devices on SeleCon accuracy
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Figure 14. 
Co-linearity effect.
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Figure 15. 
Co-linearity effect while pointing from height 75 cm and 140 cm at devices at 75cm in the y 

direction.
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Figure 16. 
Confusion Matrix of the Gesture Recognition Classifier
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Table 1

Classification results for gesture-based IoT device selection, using collaborative technique. Angle is not part of 

the feature vector.

Collaborative Classifier
Single-sided ranging

Accuracy (%)
Double-sided ranging

Accuracy(%)

Voting on SVM (linear) 41.46 43.29

Voting on SVM (quadratic) 48.78 50.00

Voting on SVM (rbf) 50.60 55.48

Voting on RF 78.04 80.48
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Table 2

Classification results for gesture-based IoT device selection, using collaborative techniques. Angle is part of 

the feature vector.

Collaborative Classifier
Single-sided ranging

Accuracy (%)
Double-sided ranging

Accuracy (%)

Voting on SVM (linear) 45.12 46.34

Voting on SVM (quadratic) 50.00 56.70

Voting on SVM (rbf) 64.63 66.46

Voting on RF 81.09 84.14
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Table 3

The Accuracy of Different Classifier for Gesture Recognition

Classifier Accuracy

SVM (Linear) 97.03%

SVM (quadratic) 96.50%

SVM (RBF) 93.12%

RF 95.48%
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Table 4

Summary of related work.

Research Pointing Detection Gesture recognition Requirements

SeleCon ✓ ✓ Smart watch.

WristQue [33] ✓ ✓ Pre-calibration of magnetic fields, full localization using UWB.

WiTrack [6] ✓ ✗ Does not require the user to carry any device.

Inertial Gestures [38] ✗ ✓ Smart watch.

Kinect Pointing [24] ✓ ✗ Kinect within 3.5m.
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