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Abstract

Recent genome analysis of human prostate cancers demonstrated that both AR gene amplification 

and TP53 mutation are among the most frequently observed alterations in advanced prostate 

cancer. However, the biological role of these dual genetic alterations in prostate tumorigenesis is 

largely unknown. In addition, there are no biologically relevant models that can be used to assess 

the molecular mechanisms for these genetic abnormalities. Here, we report a novel mouse model, 

in which elevated transgenic AR expression and Trp53 deletion occur simultaneously in mouse 

prostatic epithelium to mimic human prostate cancer cells. These compound mice developed an 

earlier onset of high-grade prostatic intraepithelial neoplasia and accelerated prostate tumors in 

comparison to mice harboring only the AR transgene. Histological analysis showed prostatic 

sarcomatoid and basaloid carcinomas with massive squamous differentiation in the above 

compound mice. RNA-sequencing analyses identified a robust enrichment of the signature genes 

for human prostatic basal cell carcinomas in the above prostate tumors. Master Regulator Analysis 
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revealed SOX2 as a transcriptional regulator in prostatic basal cell tumors. Elevated expression of 

SOX2 and its downstream target genes were detected in prostatic tumors of the compound mice. 

Chromatin immunoprecipitation analyses implicate a co-regulatory role of AR and SOX2 in the 

expression of prostatic basal cell signature genes. Our data demonstrate a critical role of SOX2 in 

prostate tumorigenesis and provide mechanistic insight into prostate tumor aggressiveness and 

progression mediated by aberrant AR and p53 signaling pathways.
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INTRODUCTION

Emerging evidence has shown an essential role of androgen signaling in prostate 

tumorigenesis 1. Thus, androgen deprivation therapy (ADT) inhibiting androgen signaling-

mediated cell growth and survival has been widely used to treat prostate cancer 2. 

Conditional expression of the AR transgene in the mouse prostate induces both prostatic 

intraepithelial neoplasia (PIN) and prostatic carcinoma development in aged mice 3, which 

provides direct evidence for the oncogenic role of the AR in prostate tumorigenesis. The AR 

is consistently expressed in a majority of prostate cancer samples before and after the 

therapy 4–6. In fact, AR gene amplification appears in one-third of prostate cancer samples 

even after androgen deprivation therapy 7, 8. Recent integrative cancer genomic analyses 

have further demonstrated that the alteration of androgen signaling is a key cellular event 

during prostate cancer initiation, progression, and metastasis 9, 10.

The tumor suppressor p53 is a sequence-specific DNA-binding transcription factor that 

regulates the cell cycle checkpoint pathway in response to DNA damage 11. Although the 

TP53 gene is the most frequent target for genetic alterations in cancer 6, 12, its role in 

prostate tumorigenesis remains unclear. Li-Fraumeni patients carrying germline TP53 
mutations have a low incidence of prostate cancer in comparison to other human 

malignancies 13. Either heterozygous or homozygous deletion of Trp53 in mouse prostatic 

epithelium fails to induce oncogenic transformation 14, 15. Genetic alteration of the TP53 
appears less in early invasive carcinoma than in advanced, recurrent, and metastatic prostate 

cancer 16. Specifically, it has become the second most common alteration in castration 

resistant prostate cancer, CRPC 6, 17.

Recent genomic studies have shown that the co-occurrence of AR gene amplification and 

TP53 deletion is one of the most frequent abnormal alterations in CRPC 6, 8. To explore the 

collaborative role of dysregulation of both AR and p53 in prostate tumorigenesis, we 

generated a mouse model in which elevated transgenic AR expression and Trp53 deletion 

occur simultaneously in mouse prostatic epithelium to mimic what happens in human 

prostate cancer cells. The compound mice developed an earlier onset of high-grade PIN and 

an accelerated prostate tumor lesions in comparison with the AR transgenic mice 3. 

Intriguingly, pathological changes resembling prostatic sarcomatoid and basaloid 

carcinomas with massive squamous differentiation were revealed in the compound mice. 
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RNA-sequencing analyses showed a robust enrichment of the signature genes for human 

prostatic basal cell carcinomas in prostate tumor samples from the compound mice 18. 

Master Regulator Analysis (MRA) identified SOX2, SUZ12, and MTF2 as top candidates 

for master transcriptional regulators in the above prostatic tumor samples. Elevated 

expression of SOX2 and its downstream target genes were detected in the prostatic tumor 

samples of the compound mice. Chromatin immunoprecipitation analyses (ChIP) revealed 

an increase in recruitment of SOX2 and AR on the regulatory loci of their target genes in the 

compound mouse tumor tissues. In addition, increased co-occupancies of AR and SOX2 on 

the regulatory loci of their target genes were also revealed in the above tumor cells. These 

results demonstrate a regulatory role of SOX2 in prostate tumorigenesis and elucidate a 

novel mechanism underlying elevated AR expression and Trp53 deletion-induced prostate 

cancer progression, aggressiveness, and trans-differentiation.

RESULTS

Generating the conditional AR transgenic and Trp53 deletion mice

Genetic analyses of prostate cancer clinical cohorts showed a significant co-occurrence of 

alterations of the AR and TP53 genes (Log odds ratio=1.257, p-value<0.001) 19. AR 
amplification was detected in 459 prostate cancer samples, among which 44% of the 

samples also are altered for the TP53 gene (Fig. 1A). The majority of patients (87%) bearing 

both amplified AR and TP53 alteration were diagnosed with metastatic CRPC (Fig. 1B), 

providing a direct association between these dual genetic alterations and the pathogenesis of 

advanced prostate cancer. Given the significance and prevalence of the AR and p53 

abnormalities in human prostate cancers, we generated p53L/+/R26hAR/+:Osr1-Cre and 

p53L/L/R26hAR/+:Osr1-Cre compound mice to directly assess the biological role of AR and 

Trp53 aberrations in prostate tumorigenesis (Fig. 1C). In these compound mice, loss of or 

reduced Trp53 expression and elevated AR expression simultaneously occur in prostatic 

epithelium through Osr-1 promoter-driven Cre expression 3, 20. The activity of Osr1-Cre was 

assessed for the AR transgene and Trp53 floxed alleles in different mouse tissues using 

genomic PCR approaches. A 300 bp (blue empty arrow) or 500 bp (red empty arrow) PCR 

fragment, corresponding to the deletion of either the LSL cassette on the AR transgene 

alleles or exon 2–10 of Trp53 deleted alleles, respectively, were observed in mouse prostate, 

bladder, and lung tissues (Fig. 1D). IHC analyses further confirmed the loss of p53 with or 

without expression of transgenic AR protein in prostate tissues of p53L/L:Osr1-Cre, 

R26hAR/+:Osr1-Cre, and p53L/L/R26hAR/+:Osr1-Cre mice, respectively (Fig. 1E–J). These 

above results demonstrate the expression of the AR transgene and deletion of Trp53 in the 

prostate of the compound mice.

Conditional deletion of Trp53 in the mouse prostate enhances transgenic AR mediated 
oncogenic transformation

All mice, including p53L/L:Osr1-Cre, p53L+/:Osr1-Cre, R26hAR/+:Osr1-Cre, p53L/+/
R26hAR/+:Osr1-Cre, and p53L/L/R26hAR/+:Osr1-Cre mice, were born at the expected 

Mendelian ratios and appeared normal with no obvious differences from their wild-type 

littermates at birth. Prostate tissues were isolated from the above male mice at 2, 3, 4, 6, 9, 

12, and 18 months of age and analyzed adhering to recommendations of the Mouse Models 
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of Human Cancers Consortium Prostate Pathology Committee 21. Examination of prostate 

tissues from 2–18 month old p53L/L:Osr1-Cre and p53L/+:Osr1-Cre mice showed normal 

glands in all prostate lobes, including the anterior (AP), dorsal (DP), lateral (LP), and ventral 

(VP) lobes (Fig. 2A–B‘, and 2I, and Supplemental Fig. 1A and 1B). Our observations were 

consistent with previous studies 14, 22 and suggest that the deletion of Trp53 in the mouse 

prostate was insufficient to initiate oncogenic transformation. The AR transgenic mice, 

R26hAR/+:Osr1-Cre, developed low-grade prostatic intraepithelial neoplasia (LGPIN) at the 

age of three months (Fig 2C–C‘, and supplemental Fig. 1C1–1C1‘). Strikingly, the 

compound mice bearing both Trp53 deletion and transgenic AR expression showed more 

aggressive PIN lesions at age of three months (Fig. 2D–E‘, 2I, and Supplemental Fig. 1D1–

E3). These results demonstrate that Trp53 deletion synergistically enhances AR-mediated 

oncogenic transformation in the mouse prostate.

IHC analyses were carried out to assess the cellular properties of PIN lesions using a series 

of adjacent tissue sections isolated from three-month-old mice of different genotypes. 

Uniform nuclear staining with the human AR antibody was observed in most atypical 

prostatic cells within PIN lesions in R26hAR/+:Osr1-Cre mice, p53L/+/R26hAR/+:Osr1-Cre 
and p53L/L/ R26hAR/+:Osr1-Cre compound mice, providing a direct link between transgenic 

AR expression and PIN formation (Fig. 2F1, 2G1, and 2H1). The robust staining of both E-

cadherin (Fig. 2F2) and CK8 (Fig. 2F3) secretory and luminal epithelial cell markers, was 

revealed in the atypical cells in the PIN lesions of R26hAR/+:Osr1-Cre mice. In contrast, only 

reduced staining of E-cadherin and CK8 appeared in the PIN lesions of p53L/+/
R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre compound mice (Fig. 2G2–3 and 2H2–

3). Interestingly, the staining of CK5, a basal epithelial cell marker, was exclusively within 

the basal compartment of PIN lesions of R26hAR/+:Osr1-Cre mice (Fig. 2F4), while 

extensive staining was throughout the PIN regions of the compound mice (Fig. 2G4 and 

2H4). Expression of p63 was revealed within the periphery of the basal layer (Fig. 2F5, 2G5, 

and 2H5) and no staining for synaptophysin (Fig. 2F6, 2G6, and 2H6) was observed in PIN 

lesions of AR transgenic or compound mice. The above data demonstrate the basal cell 

properties of the PIN lesions in both p53L/+/R26hAR/+:Osr1-Cre and p53L/L/
R26hAR/+:Osr1-Cre compound mice, suggesting a regulatory role of Trp53 deletion in 

inducing atypical cell trans-differentiation.

Conditional expression of the AR transgene and deletion of Trp53 accelerate tumor 
formation in the mouse prostate

Following the consensus that high-grade mPIN lesions can progress to prostate 

adenocarcinomas, we continued examining different genotypes of mice for extended periods 

of time. Strikingly, both p53L/+/R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre 
compound mice developed visible prostatic tumors starting at 6-months of age, which is 

earlier than R26hAR/+:Osr1-Cre mice (Fig. 2I). Typical prostatic adenocarcinoma lesions 

were observed in R26hAR/+:Osr1-Cre mice as reported previously 3 (Supplemental Fig. 2A–

A2 and B–B2). However, prostate tumor tissues from the compound mice revealed 

pathological lesions reflecting a diversity of aggressive tumor phenotypes (Fig. 3A–C). 

These included adenosquamous carcinoma comprised of glandular structures and 

keratinizing cells with intercellular bridges (Fig. 3A1–1‘), basaloid carcinoma comprised of 
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relatively small cells with scant cytoplasm and a high nuclear/cytoplasmic ratio (Fig. 3A2–

2‘), and sarcomatoid areas comprised of markedly atypical spindle cells in p53L/+/
R26hAR/+:Osr1-Cre tumor tissues (Fig. 3A3–3‘). Similar pathological features were also 

revealed in prostatic tumors of p53L/L/R26hAR/+:Osr1-Cre mice (Fig. 3B), including invasive 

tumors with squamous (Fig. 3B1–1‘), basaloid (Fig. 3B2–2‘) and sarcomatoid (Fig. 3B3–3‘) 

trans-differentiation. The squamous areas were remarkable for prominent extracellular 

keratin with formation of numerous “pearls”, but glandular structures were not apparent. To 

assess the cellular properties of the prostatic tumor lesions above, we performed IHC 

analyses and confirmed the luminal cell properties of prostatic tumors in R26hAR/+:Osr1-Cre 
mice (Supplemental Fig. 3A1–G1), which was consistent with previous reports 3. The 

majority of tumor cells in prostate tissues of p53L/+/R26hAR/+:Osr1-Cre and p53L/L/
R26hAR/+:Osr1-Cre compound mice showed positive staining for AR and E-cadherin 

(Supplemental Fig. 3B2–3 and 3C2–3). However, these cells also revealed weak staining for 

CK8 but strong staining for CK5 and p63 (Supplemental Fig. 3), suggesting their basal cell 

properties. Using a series of adjacent sections of the compound mouse tumor tissues, we 

further demonstrated the basal cell property of tumor cells in the above lesions, featuring 

positive staining for CK5, E-cadherin, and human AR but negative for CK8 (Fig. 4A–E). In 

addition, squamous tumor lesions were also identified in the tumor tissues. As shown in Fig, 

4F–J, tumor cells showed positive staining to CK5, 6, and 10 23, but very few cells were 

positive for CK8. Positive staining for transgenic human AR appeared in both basaloid and 

squamous tumor cells (Fig. 4K), implying their origins from the transgenic AR-expressing 

cells. The above results demonstrate that loss of p53 synergistically enhances AR-mediated 

prostate tumor formation and induces tumor cell trans-differentiation to promote aggressive 

tumor phenotypes.

Enrichment of cell signaling pathways related to aggressive tumor phenotypes and 
disease progression in prostate tumors of AR transgenic and Trp53 deletion compound 
mice

In search of the molecular basis for the collaborative role of transgenic AR expression and 

Trp53 deletion in prostate tumorigenesis, we performed RNA-sequencing (RNA-seq) to 

examine the global transcriptome profiles in the tumor tissue of different genotype mice. We 

microscopically confirmed that the tumor tissues used to prepare RNA samples were 

composed of more than 80% tumor cells. Using a median fold difference test followed by 

FDR correction (see details in Methods), we identified 2152, 2685, and 2683 differentially 

expressed genes (DEGs) with FDR < 0.05 and fold change ≥2 by comparing RNAseq 

samples between R26hAR/+:Osr1-Cre or p53L/L/R26hAR/+:Osr1-Cre versus wildtype, and 

p53L/L/R26hAR/+:Osr1-Cre versus R26hAR/+:Osr1-Cre mice, respectively (Fig. 5A and 

Supplemental Table 4). To assess transgenic AR-mediated transcription, we compared gene 

sets of R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre versus wild type mice and 

identified a group of overlapping DEGs (n=920) between these two groups. We also 

identified 1,329 DEGs related to Trp53 deletion in comparing the gene sets of p53L/L/
R26hAR/+:Osr1-Cre versus R26hAR/+:Osr1-Cre mice. GSEA analyses with hallmark gene 

sets revealed eight signaling pathways based on significant enrichment in DEGs of 

R26hAR/+:Osr1-Cre or p53L/L/R26hAR/+:Osr1-Cre versus wild type mice (Fig. 5B and 

Supplemental Fig 4). While E2F mediated signaling and G2/M checkpoint gene sets were 
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enriched in both the DEGs of R26hAR/+:Osr1-Cre or p53L/L/R26hAR/+:Osr1-Cre versus wild 

type mice, cell signaling pathways related to tumor progression, including angiogenesis, 

epithelial mesenchymal transition (EMT), hypoxia, and IL6-JAK-STAT3, were only 

enriched in DEGs of the compound mice versus wild type mice. There was a large group of 

overlapping DEGs between samples of p53L/L/R26hAR/+:Osr1-Cre versus wild type or 

R26hAR/+:Osr1-Cre mice (Fig. 5C and Supplemental Table 4). GSEA analyses of these 

DEGs showed a similar enrichment of cell signaling pathways related to tumor progression 

as shown above (Fig. 5D). These data indicate a role for p53 deletion in promoting prostatic 

tumor progression and aggressiveness.

Loss of p53 combined with transgenic AR expression induces prostatic basaloid cell 
tumor development

Analyses of human prostate cancer samples have shown unique molecular signatures in 

different types of tumor cells 24, 25. Prostate Cancer Subtype (PCS) and PAM50 intrinsic 

subtyping methods have categorized human prostate cancer as luminal or basal cell tumors 
24, 25. Given the unique basaloid and squamous cell property of prostate tumors that were 

observed in p53L/L/R26hAR/+:Osr1-Cre and p53L/+/R26hAR/+:Osr1-Cre compound mice, we 

assessed if the upregulated genes in p53L/L/R26hAR/+:Osr1-Cre versus R26hAR/+:Osr1-Cre 
are enriched in one of the above human PCS or PAM50 subtype tumors. Strikingly, a 

significant enrichment of the upregulated genes was observed in signature genes of PCS3 

and Basal subtype tumors while only native enrichment showed with other subtype tumors 

(Fig. 6A and Supplemental Fig 5). Both of the above subtypes were characterized as human 

prostatic basal cell carcinomas 24, 25. An upregulation of basal cell signature genes, 

including Acta2, Gstp1, Krt5, and Trp63 was revealed within the DEGs of p53L/L/
R26hAR/+:Osr1-Cre compound mice versus R26hAR/+:Osr1-Cre mice (Fig. 6B). Increased 

expression of prostatic basal epithelial cell markers, Trp63, Krt5, and Krt14, was also shown 

in tumor tissues of p53L/L/R26hAR/+:Osr1-Cre using qPCR (Fig. 6C and Supplemental table 

3). IHC analyses further demonstrated elevated expression of both p63 and CK5 in prostatic 

tumor lesions of the compound mice (Fig 6E–E“ and 6D–D“ and supplemental table 2). 

These results are consistent with our previous observation (Fig. 4), and demonstrate that loss 

of p53 and elevated AR expression promotes prostatic basal cell tumor development.

Elevated SOX2 expression and activation in prostate tumors of AR transgenic and Trp53 
deletion compound mice

To assess the molecular mechanism for prostatic basal cell tumor development, we 

performed master regulator analysis to identify the potential regulators in p53L/L/
R26hAR/+:Osr1-Cre compound mouse tumors. We identified eight transcription factors that 

are directly related to Trp53 deletion based on DEGs of p53L/L/R26hAR/+:Osr1-Cre versus 

R26hAR/+:Osr1-Cre mice (p < 0.01) (Fig. 7A and Supplemental Table 5). Interestingly, more 

than 20 genes identified in the PCS3 subtype 24 are also the downstream targets of three 

transcription regulators, including SOX2, SUZ12, and MTF2 (Fig. 7A), suggesting a critical 

role of these master regulators in basal cell tumor development. Moreover, many 

downstream targets of these three transcriptional factors overlap with the DEGs of 

p53L/L/R26hAR/+:Osr1-Cre versus R26hAR/+:Osr1-Cre mouse samples, resulting in 

generating six signaling pathways in GSEA analyses (Fig. 7B and Supplemental Table 6). 
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Using the PCTA database, we assessed the correlation of transcription factor expression 

levels and the disease stages. Two tailed one-way ANOVA test revealed that the top 3 TFs’ 

expression levels are significantly varied from benign to metastatic castration-resistant 

prostate cancer, mCRPC (Fig. 7C). Of note, a subset of human mCRPC shows very high 

expression of these TFs in comparison with primary tumors. To determine the potential roles 

of these TFs in the prostate tumors of p53L/L/R26hAR/+:Osr1-Cre mice, we assessed their 

expression using qPCR approaches. An increase in the gene expression of the top 3 TFs, 

including Sox2, Suz12 and Mtf2, was observed in tumor samples of p53L/L/R26hAR/+:Osr1-
Cre compound mice in comparison with R26hAR/+:Osr1-Cre only mice (Fig. 7D). Given the 

recent studies that showed SOX2 plays a role in driving lineage plasticity of luminal cells to 

differentiate into a basal and squamous cell phenotype 8, 26, we further investigated whether 

SOX2 functions as a transcriptional regulator in the tumor cells of the above mice. IHC 

analyses showed significantly elevated expression of SOX2 in tumor cells of p53L/L/
R26hAR/+:Osr1-Cre compound mice but not in tumor cells of R26hAR/+:Osr1-Cre mice (Fig. 

7F–F‘ versus 7E–E‘). We then assessed the activity of SOX2 by examining the expression of 

the SOX2 downstream target genes. A significant increase of Cav1, Datc3, Cxcl12, Mesi2, 

Efemp1, and Gas1 expression was revealed in tumor samples of p53L/L/R26hAR/+:Osr1-Cre 
mice in comparison with those of R26hAR/+:Osr1-Cre mice (Fig. 7G). Interestingly, these 

downstream targets have also been identified within the PCS3 subtype of human prostate 

cancer 24 (Supplemental Table 7). Using chromatin immunoprecipitaion (ChIP) analyses, we 

examined the occupancy of SOX2 on their target genes. We observed significant recruitment 

of SOX2 within the promoter regions of both Efemp1 and Gas1 in tumor samples of 

p53L/L/R26hAR/+:Osr1-Cre compound mice in comparison with those from R26hAR/+:Osr1-
Cre only mice (Fig. 7H). Interestingly, the recruitment of SOX2 was also revealed within the 

enhancer regions of Trmpss2 and Nkx3.1 27, the AR target genes but not the locus of Untr4 
used as a negative control 28. To examine the potential interaction between SOX2 and AR 

mediated regulation, we examined the recruitment of AR in the above regulator loci. While a 

specific recruitment of AR was revealed in both the Trmpss2 and Nkx3.1 loci in tumor 

tissues of R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre mice, the occupancy of AR 

was also observed in the regulatory regions of Efemp1 and Gas1 in the tumor tissues of 

p53L/L/R26hAR/+:Osr1-Cre mice. Taken together, the above data demonstrate the critical role 

of SOX2 in regulating prostatic basal cell tumor initiation, aggressiveness, and progression 

in AR transgenic and Trp53 deletion compound mice.

DISCUSSION

The human prostate cancer genomic analyses showed that the aberrant alteration of AR and 

TP53 are prevalent in advanced prostate cancers 5, 6 (Supplemental Fig. 6). Specifically, 

genetic alterations of TP53 and amplification of AR are frequently observed in castration 

resistant prostate cancer CRPC 6, 17. Clinical observations that genetic alterations of TP53 
occurs more frequently in advanced, recurrent, and metastatic prostate cancers further 

suggest the critical role of p53 in promoting prostate cancer progression 6. However, the 

biological effect of AR amplification and p53 loss in prostate tumorigenesis is largely 

unknown. In addition, there is limited knowledge regarding the molecular mechanism 

underlying these dual genetic modifications in prostate tumorigenesis. In this study, we 
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generated p53L/+/R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre compound mice, in 

which induced AR transgene and reduced or loss of Trp53 expression simultaneously occur 

within the mouse prostate epithelium. These mouse models mimic what happens in human 

prostate cancer cells and allow us to directly assess the collaborative role of AR and p53 

abnormalities in prostate tumorigenesis. We observed an earlier onset of oncogenic 

transformation, an accelerated tumor development, and aggressive tumor phenotypes in the 

prostate of the compound mice in comparison with AR transgenic only mice 3. Of note, the 

prostatic tumors in both AR transgenic and compound mice were regressed after castration, 

indicating that they are androgen responsive. Interestingly, either heterozygous or 

homozygous deletion of Trp53 in mouse prostatic epithelium did not result in any visible 

pathological changes in this study. The aggressive tumor phenotypes of p53L/+/
R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre compound mice are consistent with 

previous clinical observations and recapitulate the biological consequence of aberrant AR 

and p53 deletion in tumor development and progression.

Histological analyses showed typical pathological changes resembling basaloid carcinomas 

with massive squamous differentiation in prostate tumors of all of the p53L/+/
R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre compound mice. These diverse and 

aggressive malignant characteristics reflect the heterogenic nature of those prostate tumors. 

In addition, the development of aggressive tumor phenotypes in the compound mice 

demonstrates the promotional role of the dual genetic alteration in AR and p53 pathways in 

prostatic tumor development and progression. The divergence of the different tumor types in 

the compound mice suggests that oncogenic transformation may have initiated from 

different cells of origin. Both prostatic luminal and basal epithelial cells have been shown to 

possess the ability to initiate oncogenic transformation and can function as tumor initiating 

cells 29. IHC analyses showed predominant atypical cells with CK5 and transgenic AR 

positive staining within PIN lesions of the compound mice. Strong staining of transgenic 

AR, loss of staining for luminal cell marker CK8, and increased staining of basal cell 

markers p63, CK5, were further revealed in most prostatic tumor cells in the compound 

mice. These results suggest those atypical cells possessing basal cell properties could further 

progress and develop more aggressive tumor types in the compound mice bearing transgenic 

AR expression with either homozygous or heterozygous Trp53 deletion. Interestingly, the 

deletion of p53 has been shown to induce the lineage plasticity of prostate cancer from a 

luminal-like carcinoma to basal-like carcinoma 30. In addition, genetic induction of 

tumorigenesis originated from basal cells can also develop squamous cell carcinoma 31. 

Since only prostatic adenocarcinomas were developed in AR transgenic mice 3, these lines 

of evidence suggest an important role of p53 in maintaining cell differentiation and lineages, 

and thus reduction and loss of p53 will promote tumor cell trans-differentiation and induce 

disease progression.

To delineate the molecular basis underlying elevated AR expression and p53 loss in prostate 

tumorigenesis, we performed RNA-sequencing using tumor samples isolated from different 

genotypes of mice. Strikingly, RNA-seq transcriptome profiling analysis showed a 

significant enrichment of prostate basal cell subtypes (PAM50) and PCS3 (PCS) in the 

prostatic tissues isolated from p53L/+/R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre 
compound mice 24, 25. GSEA analyses showed significant enrichment in angiogenesis, EMT, 
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hypoxia, and IL6-JAK-STAT3 mediated signaling pathways in tumor cells of the compound 

mice. These data provide the molecular basis for p53 loss-induced prostatic basal cell 

carcinoma formation and disease progression. Using Master Regulator Analysis analytic 

tools, we further identified the potential master regulators that may directly contribute to the 

aggressive tumor phenotypes as observed in the compound mice. SRY (sex determining 

region Y)-box2 gene (SOX2) appeared as the top candidate on the list (Fig.6A). SOX2 is a 

transcription factor and a member of the SOX family 32. It is essential for maintaining the 

status of undifferentiated embryonic stem cells. The focal expression of SOX2 appeared 

within the basal cell layer of the prostate glands 33. Interestingly, increased SOX2 expression 

has also been observed in enzalutamide-resistant prostate cancer cells bearing both TP53 and 

RB1 loss 30. These data suggest an important role of SOX2 in prostate cancer progression.

Given the clinical relevance of SOX2 in advanced prostate cancer, we assessed the 

expression and activity of SOX2 in prostatic tumor cells in the AR transgenic and p53 

deletion mice. Elevated expression of SOX2 was revealed specifically in tumor cells of the 

compound mice. Increased expression of SOX2 downstream target genes was also observed 

in tumor tissues isolated from the compound mice in comparison to samples from AR 

transgenic mice. Interestingly, it was also shown an overlap between the target genes of 

SOX2 and the signature genes from PCS3 subtype 24. Using ChIP assays, we directly 

examined the regulatory role of SOX2 in prostatic basal tumor development. An extensive 

recruitment of SOX2 was detected in the regulatory loci of the both Efemp and Gas1 genes 

in tumor samples isolated from the compound mice in comparison with AR transgenic mice. 

Interestingly, in the above ChIP assays, we also observed the recruitment of SOX2 on the 

regulatory loci of the AR target genes, Trmpss2 and Nkx3.1. To determine a potential 

interaction between the AR and SOX2, we examined the role of AR in regulating those 

SOX2 target genes. Intriguingly, an extensive occupancy of AR was detected on the 

regulator loci of the both AR downstream targets, Trmpss2 and Nkx3.1, as well as SOX2 

target genes, Efemp and Gas1, in the tumor samples of the compound mice. These results 

implicate a co-occupancy of AR and SOX2 on the regulatory regions of their target genes, 

and elucidate a novel molecular mechanism by which AR and SOX2 collaboratively regulate 

prostate cancer cell trans-differentiation and disease progression in tumor tissues of the 

compound mice bearing upregulated AR expression and loss of or reduced p53 expression.

MATERIALS AND METHODS

Mouse mating and genotyping

All mice used in this study were from a C57BL/6 background. The Trp53 floxed mice, 

p53LoxP/LoxP mice, also named p53L/L, were obtained from Jackson Laboratory (stock:

008462). The AR transgenic mouse, R26hARLoxP/wt, also named R26hAR/+, was generated 

as described previously 3. Osr1-Cre mice were kindly provided by Dr. Gail Martin 20. Either 

p53L/+:R26hAR/+ or p53L/+:Osr1-Cre mice were first generated and then used to produce 

p53L/L:Osr1-Cre, p53L/+:Osr1-Cre, R26hAR/+:Osr1-Cre, p53L/+/R26hAR/+:Osr1-Cre and 

p53L/L/R26hAR/+:Osr1-Cre mice. Mice were genotyped by PCR using specific primers for 

detecting either AR or trp53 targeted or deleted alleles (Supplemental table 1) 3, 34, 35. All 

animal experiments performed in this study were approved by the ethics committee of the 
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Administrative Panel on Institutional Animal Care and Use Committee at Stanford 

University and Beckman Research Institute/City of Hope.

Pathological analyses

In this study, the guidelines recommended by The Mouse Models of Human Cancers 

Consortium Prostate Pathology Committee in 2013 were used for the pathological analyses 
21. Mouse tissues were processed and Hematoxylin-eosin staining (H&E) was performed as 

described previously 3.

Immunohistochemistry (IHC)

IHC was performed as previously described 3. Tissue sections were treated by boiling in 

0.01 M Citrate buffer (pH 6.0) for antigen retrieval, blocked in 5% normal goat serum, and 

incubated with primary antibodies diluted in 1% normal goat serum at 4°C overnight 

(Supplemental Table 2 for the antibody information). Slides were incubated with 

biotinylated secondary antibodies for 1 hour then with horseradish peroxidase streptavidin 

(SA-5004, Vector Laboratories, Burlingame, CA, USA) for 30 min, visualized by DAB kit 

(SK-4100, Vector Laboratories), then counterstained with 5% (w/v) Harris Hematoxylin, and 

subsequently mounted with Permount Mounting Medium (SP15–500, Thermo Fisher 

Scientific, Waltham, MA, USA).

Microscope image acquisition

Images of H&E and immunohistochemistry were acquired on an Axio Lab. A1 microscope 

using 10x and 40x Zeiss A-Plan objectives with a Canon EOS 1000D camera and using 

Axiovision software (Carl Zeiss, Oberkochen, Germany).

RNA isolation, reverse transcription (RT)-Quantitative PCR (RT-qPCR), and RNA 
sequencing

RNA samples were isolated from fresh mouse tissues using RNA-Bee (TEL-TEST, Inc., 

Friendswood, TX, USA) or from formalin-fixed Paraffin Embedded (FFPE) slides using the 

Pinpoint Side RNA isolation Kit (Zymo Research, Cat R1007). RNA sequencing libraries 

were prepared with Kapa RNA HyperPrep Kit with RiboErase (Kapa Biosystems, Cat 

KR1351). Sequencing runs were performed on Illumina Hiseq 2500 in the single read mode 

of 51 cycles of read 1 and 7 cycles of index with V4 Kits. Real-time analysis (RTA) 2.2.38 

software was used to process the image analysis and base calling. Reverse transcription was 

performed as described previously 36, and RT-qPCR assays were carried out using SYBR 

GreenER qPCR Super Mix Universal (11762, Invitrogen) with specific primers 

(Supplemental Table 3) on the 7500 Real-Time PCR system (Thermo Fisher Scientific).

Chromatin immunoprecipitation (ChIP) Assays

ChIP assays were performed as described previously 37. Briefly, mouse tissues were minced 

and incubated with 1% formaldehyde for 15 min and quenched with 0.150 M glycine for 10 

min. Samples were washed sequentially with cold PBS, and resuspended in cell lysis buffer 

(50 mM Tris-HCl (pH 8.0), 140 mM NaCl, 1 mM EDTA, 10% Glycerol, 0.5% NP-40, and 

0.25% Triton X-100), and then homogenized. The chromatin was sheared in nuclear lysis 
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buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM EGTA, and 0.2% SDS) to an 

average size of 200–500 bp by sonication, and then diluted 3-fold in ChIP dilution buffer 

(0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.1, and 167 mM 

NaCl), and was subjected to immunoprecipitation by magnetic protein G beads (Invitrogen) 

conjugated with AR (ab74272, abcam) or SOX2 antibody (39843, Active Motif). Cross-links 

were reversed and chromatin DNA fragments were analyzed by real-time qPCR with 

specific primers (Supplemental Table 3).

Data preprocessing, normalization, and analyses

Quality of sequencing data was verified using MultiQC software 38. Sequence alignment and 

quantification were performed using the STAR-RSEM pipeline 39. Reads overlapping exons 

in the annotation of Genome Reference Consortium Mouse Build 38 (GRCm38) were 

identified, and would be excluded from further downstream analysis if they failed to achieve 

raw read counts of at least 2 across all the libraries. The trimmed mean of M-values 

normalization method (TMM) 40 (version 1.6.1) was used for calculating normalized count 

data. Three comparisons were performed between prostate tissues of different genotype mice 

using median difference test in this study 41. For each gene, a P-value was computed by 

performing a two-tailed median difference test using the empirical distributions that were 

estimated by random permutations of the samples. Multiple testing correction was done by 

using Storey’s correction method 42. The differentially expressed genes (DEGs) were 

selected as those having false discovery rate (FDR) < 0.05 and fold-change > 2. The 

enriched gene sets represented by DEGs were identified as the hallmark gene sets 43 having 

nominal P < 0.05 from gene set enrichment analysis (GSEA) 44. GSEA was performed using 

the Prostate Cancer Transcriptome Atlas (PCTA: www.thepcta.org), which contains 1,321 

human prostate cancer transcriptome profiles categorized based on Prostate Cancer Subtype 

(PCS) 24 and the PAM50 scheme 25. DEGs from mouse tumor samples were ranked by fold 

change between groups and compared to the PCTA prostate cancer subtypes. To identify the 

potential master transcriptional regulators, we made a compendium of transcription factors 

(TF) based on their target genes that were collected from different genome-wide ChIP 

databases, including ChIPBase 45, Amadeus 46, hmChIP 47, ChEA 48, CellNet 49, and 

MSigDB 50. The target genes for TF were identified from the DEGs, which were then 

randomly sampled from the whole genome. The above measurement was repeated 100,000 

times to generate an empirical null hypothesis. The significance level (P-value) of the TF-

target relationships in the DEGs was computed using a one-tailed test with the empirical null 

hypothesis. The similar analysis was performed for all TFs, and significant TFs were 

selected with P-value < 0.01.

Statistical Analysis

Principal component analysis (PCA) was used for visualization and to assess sample 

distribution by gene expression profile, and the MATLAB (v.9.0; Mathworks, Natick, MA, 

USA), the R (v.3.5) and Python (v.3.7) were used for bioinformatics analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generation of mouse models to mimic the co-occurrence of AR amplification and loss of 
TP53 expression in human prostate cancer.
A. Oncoprint generated from human prostate cancer samples showing significant co-

occurrence of AR alteration and aberration of p53 (see https://www.cbioportal.org). B. 

Percentages of advanced prostate cancer samples in the patient cohort showing alterations of 

both AR and TP53. C. Schematic of the floxed AR transgene and the Trp53 deletion target 

constructs, as well as the corresponding recombined alleles. D. Representative genomic PCR 

results confirming the AR or Trp53 targeting alleles (black solid arrows) and AR 
recombined (blue empty arrow) or Trp53 deleted (red empty arrow) alleles from indicated 

mouse tissues. E-J. Representative immunohistochemistry (IHC) staining of prostate tissue 

sections from mice of the indicated genotypes. IHC staining were performed with the 

indicated antibodies: h-AR (E-G) and p53 (H-J) antibodies. Scale bar: 25 μm.
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Figure 2. Loss of Trp53 enhances AR-mediated oncogenic transformation in the murine prostate.
A-E. Representative H&E stains of prostatic tissues isolated from mice of the indicated 

genotypes mice at three months of age. Scale bar: 50 μm (A-E); or 25 μm (A’-E’). F-H. 

Representative IHC stains of prostate tissue sections from 3 month-old mice of the indicated 

genotypes with antibodies as indicated above. I. Summary of pathological abnormalities in 

the prostates of Trp53 deletion and AR transgenic mice.
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Figure 3. Conditional expression of AR and deletion of Trp53 in the mouse prostate accelerates 
prostatic tumor formation.
A. Representative H&E staining of prostatic tumor lesions from p53L/+/R26hAR/+:Osr1-Cre 
mice. Scale bar: 0.5mm, or 50 μm or 10 μm in magnified views. B. Representative H&E 

staining of prostatic tumor lesions from p53L/L/R26hAR/+:Osr1-Cre mice. Scale bar: 0.5mm, 

or 50 μm or 10 μm in magnified views. C. Classification of prostatic tumors in mice of the 

indicated genotypes.
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Figure 4. Basaloid and squamous prostate tumors are developed in the AR transgenic and 
compound mice.
A. Representative H&E staining of basaloid tumor in prostate tissues isolated from 

p53L/L/R26hAR/+:Osr1-Cre mice. Scale bar: 100 μm, or 20 um in magnified view. B-E. 

Representative IHC stains of prostatic basaloid tumor lesions with indicated antibodies. 

Scale bar: 100 μm, or 20 μm in magnified views. F. Representative H&E staining of 

adenosquamous tumor in prostate tissues from p53L/L/R26hAR/+:Osr1-Cre mice. Scale bar: 

100 μm, or 20 um in magnified view. G-K. Similar IHC analysis as in sections B-E, with the 

antibodies as indicated above. Scale bar: 50 μm, or 20 μm in magnified views.
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Figure 5. Enhancement of pathways associated with aggressive tumor phenotype and disease 
progression in prostate tumors with AR transgene expression and deletion of Trp53
A. Venn diagram of differentially expressed genes between different genotype mice as 

labeled above. B. Radar chart displays differential enrichment of R26hAR/+:Osr1-Cre mice 

and p53L/L/R26hAR/+:Osr1-Cre mice in comparison with controls. Red and blue lines 

indicate enriched hallmark gene sets in R26hAR/+:Osr1-Cre and p53L/L/R26hAR/+:Osr1-Cre 
mice, respectively. C. Heat map of differentially expressed genes (DEGs) from the indicated 

comparisons. D. GSEA results of hallmark gene sets significantly enriched in p53L/L/
R26hAR/+:Osr1-Cre versus R26hAR/+:Osr1-Cre mice.
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Figure 6. Transgenic AR expression combined with Trp53 loss induces prostatic basaloid cell 
tumor development.
A. GSEA plots display significant enrichment in PCS3 and Basal subtypes of the DEGs 

from p53L/L/R26hAR/+:Osr1-Cre versus R26hAR/+:Osr1-Cre mice. Genes were ranked with 

fold changes by comparing between PCS subtypes or between PAM50 subtypes to compute 

GSEA results using the Prostate Cancer Transcriptome Atlas (PCTA). B. Bar plot of prostate 

basal marker gene expression from mice of the indicated genotypes. C. qRT-PCR analysis of 

basal cell markers from mice of the indicated genotypes. Significance determined by 

Students’ T test and data were represented as + SD (n=3 replicated per data point); ** 

p<0.01, ***p<0.001. D-E. Representative H&E or IHC of prostatic tumor lesions from 

R26hAR/+:Osr1-Cre or p53L/L/R26hAR/+:Osr1-Cre mice using the indicated antibodies. Scale 

bar: 25 μm.
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Figure 7. SOX2 expression is increased in basal cell tumors with transgenic AR expression and 
loss of P53.
A. Bar plot of up-regulated genes in p53L/L/R26hAR/+:Osr1-Cre compared to 

R26hAR/+:Osr1-Cre, that are involved in the genes having significantly high expression in 

PCS3 subtype, for each master TF candidates. B. Heat map of up-regulated target genes for 

each master TF candidate in p53L/L/R26hAR/+:Osr1-Cre compared to R26hAR/+:Osr1-Cre 
involved in the indicated hallmark gene sets. EMT: epithelial to mesenchymal transition. C. 

Lollipop plots showing expression of top 3 master TFs in the Prostate Cancer Transcriptome 
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Atlas (PCTA). One-way ANOVA with two-tailed test across 6 different disease statuses and 

two-tailed Rank-Sum test for primary versus metastatic tumor samples were performed. D. 

RT-qPCR analysis of the master regulator candidates in tumor samples from the indicated 

mice. Significance determined by Students’ T test and data were represented as + SD (n=3 

replicated per data point); ** p<0.01 E-F. Representative IHC stains with SOX antibody in 

prostatic tumor samples of genotype as indicated above. Scale bar: 50 μm or 12.5 μm. G. 

qRT-PCR analysis of SOX2-regulated genes highly expressed in the PCS3 subtype in 

p53L/L/R26hAR/+:Osr1-Cre versus R26hAR/+:Osr1-Cre mice. Significance determined by 

Students’ T test and data were represented as ± SD (n=3 replicated per data point); ** 

p<0.01. H. SOX2 ChIP-qPCR (left panel) and AR ChIP-qPCR (right panel) of SOX2 target 

genes (Efemp & Gas1) as well as AR target genes (Tmprss2 & Nkx3.1), and negative 

control (Untr4) shown as percent input. Significance determined by Students’ T test and data 

were represented as ± SD (n=3 replicated per data point); * p<0.05, ** p<0.01.
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