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Abstract

Cloud Formation and Circulation in Planetary Tropospheres from Remote-Sensing Data

by

Edward Mischel Molter

Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Imke de Pater, Co-chair

Professor William Drew Collins, Co-chair

The technology used to observe solar system planets continues to advance, increasing the
spatial resolution, time cadence, and spectral coverage of observations and permitting the
discovery of new phenomena in the atmospheres of worlds near and far. Comparative plan-
etology is a powerful framework to help characterize and explain these newly-discovered
phenomena: the similarities and differences between the composition, structure, and dy-
namics of planetary atmospheres test the robustness of the theories we use to understand
and predict the weather and climate of atmospheres. This dissertation uses a comparative
planetology framework to understand the physical processes underlying new observations of
the atmospheres of Uranus and Neptune and new statistical analyses of observed storms on
Earth. Although qualitatively dissimilar, the atmospheres of Uranus, Neptune, and Earth lie
in a similar fluid-dynamical regime in many respects, allowing much of our physical intuition
to translate across those three atmospheres. In particular, this dissertation focuses on using
remote-sensing data to probe processes relevant to cloud formation and precipitation.

Higher bulk densities and strong enrichment in carbon and oxygen distinguish Uranus and
Neptune from the gas giants Jupiter and Saturn, placing them into their own category,
the ice giants. Exoplanet statistics reinforce this distinction: a gap in the size distribution
of known exoplanets has been observed between the Jupiter-sized and Neptune-sized exo-
planets. Uranus and Neptune are therefore of primary importance for understanding the
different types of worlds that fill our galaxy; however, their distance from Earth also makes
them very challenging to study in detail. The first three chapters of this dissertation tackle
that observational challenge. Using near-infrared data from Keck Observatory and optical
data from the Hubble Space Telescope (HST), I characterize a newly-observed storm at the
equator of Neptune, including derivations of drift rates from cloud tracking and cloud-top
pressures from radiative transfer modeling. I then apply the physics of deep convection
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and planetary waves to infer the drivers of the storm. Making use of millimeter-wavelength
observations from the Atacama Large (sub)-Millimeter Array (ALMA) and mid-infrared ob-
servations from the Very Large Telescope (VLT), I observe the thermal component of the
Uranian ring system for the first time. I apply the radiative transfer equation to the ring par-
ticles to derive their surface temperature and show that they rotate slowly compared to their
radiative cooling time. I use the same dataset in conjunction with centimeter-wavelength
Very Large Array (VLA) data to study the deep troposphere of Uranus from 1-50 bar. Ap-
plying intuition based on Earth’s Hadley-Walker circulation, I link the observed enrichment
and depletion of volatile species in Uranus’s deep troposphere to Uranus’s planetary-scale
circulation.

Although the instrumentation and radiative transfer models are similar between observations
of Earth and the ice giants, the technical challenges that arise in observing these bodies are
somewhat opposite. Earth observations exemplify a data-rich regime in which millions of
new data points are recorded every hour at spatial resolutions of order 1 kilometer, whereas
ice giant studies are comparatively data-starved: ∼10 images at 100-kilometer resolution
may constitute a full dataset. The second half of this dissertation tackles the data-rich ob-
servational challenge, concerning itself with the observed statistics of extratropical extreme
storms on Earth from remote-sensing data. Using Doppler radar data, I show that the return
values of extreme precipitation are strongly autocorrelated over the Eastern and Midwestern
United States up to scales of ≳100 kilometers, and that rain gauges can accurately estimate
extreme precipitation only if interpolated with a particular eye toward capturing extremes.
I then compile a suite of hourly data at 8-km resolution over the Eastern and Midwestern
United States that simultaneously probes the synoptic-scale dynamical context of storms,
the structure of clouds within storms, and the precipitation produced by storms. I demon-
strate the utility of this unique data combination by examining the precipitation efficiency of
storms, showing that precipitation efficiency increases with equivalent potential temperature
over the contiguous United States (CONUS) in both the warm and cool seasons.

Taken as a whole, this dissertation showcases the ways in which recent advances in remote
sensing technology and computational power can be applied to study atmospheres across
the solar system, with a particular focus on cloud and precipitation processes. The types of
questions that can be answered in the data-rich regime underscore the massive potential for
advances in our understanding of the Solar System planets (and exoplanets) as data from
new observatories and missions arrive in the next decades.
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Chapter 1

Background: Physics of Planetary
Tropospheres

In the five main chapters of this thesis, I discuss three different planets (Earth, Uranus,
and Neptune) and a planetary ring system, each observed with different instruments and
to answer different specific science questions. Taking this information at face value, this
document epitomizes the so-called staple thesis: it is much more easily read as a collection
of scientific short stories than as a novel, and each of the five chapters introduces itself
separately. Basic physics, though, cannot be avoided no matter which planet you are on, and
despite these seemingly scattered topics, this thesis can also fairly be said to focus primarily
on understanding cloud and precipitation processes at various spatial and temporal scales
using remote-sensing data. In this introductory chapter, I remind the reader of the basic
physics universal to all planets with atmospheres and to all remote-sensing observations. This
chapter concerns primarily radiative transfer and atmospheric circulation, which, fittingly,
parrots the two required courses for all astronomy graduate students at Berkeley: radiative
processes and fluid dynamics.

The first section of this background chapter (Section 1.1) focuses on the global circula-
tion patterns that lead to instabilities and the generation of storm systems. I discuss the
similarities and differences in the fluid-dynamical regimes present on the three planets of
interest, and their consequences for the observed global circulation patterns. These concepts
are critical both to understanding precipitation on Earth from a statistical point of view (as
is done in Chapters 5 and 6), and to interpret observations of Uranus and Neptune when
the resolution element of the telescope is insensitive to scales smaller than a few hundred
kilometers (as is the case in the other three chapters). In the second section (Section 1.2),
I focus on the slightly smaller spatial scales of convective cells themselves, discussing moist
convection and how deep convective storms behave energetically. These concepts are ex-
panded upon in the Discussion section of Chapter 2 in particular, as that chapter tries to
understand the origin of a large and unusual equatorial storm on Neptune. In Section 1.3, I
focus on how clouds and precipitation form at microphysical scales, which is particularly rel-
evant to the cloud models I apply to Uranus’s atmosphere in Chapter 4 and to the combined
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precipitation and cloud data presented in Chapter 6. Finally, Section 1.4 presents the basics
of radiative transfer modeling required to observe and interpret all of these phenomena from
remote-sensing data. This section also ties in Chapter 3, seemingly the odd duck, which
presents radiative transfer calculations applied to a swarm of small airless bodies in space
(i.e., a planetary ring).

This background chapter presents many well-accepted ideas in the field of atmospheric
science that can be found in almost any atmospheric science textbook or lecture notes.
These safely fall under the purview of “common knowledge” in the field and are not cited
individually. I referenced the following textbooks while writing this chapter: Bohren et al.
(2006), Holton (1973), Marshall et al. (1989), Rybicki et al. (1991), Thomas et al. (2002),
Vallis (2019), and Wallace and Hobbs (2006). The interested reader is referred to those
sources for more detailed derivations and discussion.

1.1 Large-Scale Atmospheric Circulation

The motion of a planetary atmosphere is governed by the fluid equations for a rotating thin
shell. These equations, their special cases, and their implications for the atmospheric sys-
tem are entire sub-fields on their own, and the reader is referred to any atmospheric science
textbook for more details; a few good ones are listed above. Instead of repeating derivations
here, I make a few comments on the similarities and differences between Earth, Uranus, and
Neptune from a fluid dynamical standpoint, with an eye toward the inception of precipita-
tion events. Some first-order comparisons between these three planets are given in Table
1.1, and they show that all three planets are in a similar dynamical regime in many ways,
being relatively fast rotators with similar gravitational accelerations and atmospheric strat-
ifications. On the other hand, Earth’s atmosphere is warmer, denser, and has lower typical
wind speeds than either Uranus or Neptune; the implications of some of these differences are
discussed below.

Earth’s atmospheric circulation is forced by the uneven solar heating of the planet. Near
the poles, more energy is emitted than absorbed, whereas near the equator, more energy
is absorbed than emitted. Therefore, energy must be transported meridionally to main-
tain radiative balance, and the atmospheric circulation carries out that transport. The
heat and moisture transport from the tropics to the extratropics takes place primarily in
longitude-resolved eddies (Barry et al. 2002); the coherent high-moisture filamentary struc-
tures carrying out over 90% of Earth’s meridional vapor transport are known as atmospheric
rivers (Ralph et al. 2004; Zhu et al. 1998). These eddies arise from baroclinic instability, and
their characteristic size is given by the Rossby deformation radius:

LRo =
NH

f
(1.1)

where N is the Brunt-Väisälä frequency (N2 = (g/θ)(dθ/dz) for potential temperature θ),
H = RTg−1 is the scale height, and f = 2Ω sinϕ is the Coriolis parameter at planetary
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rotation rate Ω and latitude ϕ (g denotes the gravitational acceleration, R denotes the
gas constant, and T denotes temperature). In weather forecasting, these eddies are called
“high-pressure” and “low-pressure” systems and govern local weather. At an extratropical
latitude of, say, 45◦ on Earth, the Rossby deformation radius comes out to roughly 1000
km, which agrees with the characteristic size of pressure systems on weather charts. In the
low-pressure systems (i.e., negative near-surface pressure anomalies), net convergence drives
upwelling and therefore condensation and precipitation. Because the combination of data
products we present in Chapter 6 includes information about the large-scale flow, i.e., the
behavior of the eddies, it will allow a more detailed exploration of the type and behavior
of precipitation events that arise under different synoptic-scale conditions. The utility in
making this link between local-scale extreme storms and their large-scale dynamical context
for climate change prediction is discussed further in the Discussion section of Chapter 6.

In models of rapidly-rotating thin atmospheres (Rossby number ≪ 1) like the Earth or
the giant planets, planetary jets arise spontaneously due to the inhomogeneous mixing of
potential vorticity (PV), which leads to the sharpening of PV gradients (for a review, see
Dritschel et al. 2008). The so-called “PV staircase” that arises consists of zonal bands of
similar potential vorticity values separated meridionally by narrow regions with very sharp
gradients in PV. The sharp PV gradients are coincident with narrow jets in the cyclonic
(typically, eastward) direction and the uniform-PV regions are associated with broader an-
ticyclonic (westward) winds. The wind profiles from these models share strong qualitative
similarities to Jupiter’s observed zonal wind profile (Kaspi et al. 2020). The spacing between
jets can be estimated theoretically using the shallow-water fluid equations and making the
β-plane approximation, which says that the Coriolis parameter varies linearly with latitude.
Mathematically, the β plane is constructed via a first-order Taylor approximation of the
Coriolis parameter about a given latitude ϕ0: f = f0 + βy, where β = 2Ω cosϕ0/a for a
planet of rotation rate Ω and radius a. Making this assumption, the jet spacing should be

LRh =
(U
β

)1/2

(1.2)

where U is a characteristic wind speed associated with the turbulence; the quantity LRh

is known as the Rhines length (Rhines 1975). The Rhines lengths for our three planets
of interest are given in Table 1.1. In Chapter 4, we observe alternating bright and dark
bands both between 25◦N and 25◦S as well as in the north polar spot of Uranus. The
spacing of the near-equator bands is roughly 25◦, which translates to ∼10000 km, and at
25◦N or S the Rhines length is roughly 4000 km. So the Rhines length is a factor of two
too small, but nevertheless yields an acceptable order-of-magnitude estimate. This factor-
of-two difference likely arises from uncertainty in the eddy wind speeds, which are hard to
determine accurately. It is thus reasonable to assume that the alternating bands we observe
are indeed a manifestation of a Jupiter-like PV staircase, at least at some pressure level
in the atmosphere. Alternating prograde and retrograde winds have not been observed on
Uranus (see, e.g., Sromovsky, de Pater, et al. 2015), but cloud tracking observations are
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difficult given Uranus’s thick haze, and most of the clouds that have been tracked to date
are upper-tropospheric and stratospheric methane clouds.

The alternating prograde and retrograde jets set up by the PV staircase are associated
with alternating regions of net upwelling and subsidence. On Earth, the intertropical con-
vergence zone (ITCZ) at the equator is associated with retrograde (westward) winds and
upwelling of moist air, which leads to an abundance of deep convective storms that supply
precipitation to the tropical rainforests. By contrast, the subtropics, which are bounded on
the poleward side by the eastward (westerly) subtropical jet streams, are associated with
dry, subsiding air and overlie the Earth’s deserts. Similarly, the extratropics are wetter than
the polar regions. As the above suggests, the ITCZ and extratropics have a higher col-
umn humidity on average than do the subtropics and poles. Reversing this statement, the
presence or absence of vapor at a given latitude can be used as a tracer for the global circu-
lation cells on other planets: dry air suggests subsidence, while moist air suggests upwelling.
We interpret the aforementioned alternating bright and dark bands on Uranus as arising
from a similar alternating excess and paucity of condensing species, further corroborating a
Hadley-Walker-like circulation on that planet. These ideas are discussed more in Chapter 4.

1.2 Moist Convection

Several chapters of this thesis focus on extreme weather triggered by deep convection. The
summertime extreme precipitation over the Continental United States that is a central focus
of both Chapter 5 and Chapter 6 is associated with extratropical thunderstorms, and the
best explanation for the infrared-bright equatorial cloud system observed on Neptune in
Chapter 2 is a tropical convective complex. To understand how these extreme events are
produced, one must understand the conditions in an atmospheric column before, during, and
after it becomes convectively unstable, and those are laid out here.

In the absence of diabatic heating and cooling, i.e., for an atmosphere in hydrostatic
equilibrium, the vertical temperature profile of an atmosphere follows an adiabatic lapse
rate, denoted Γ. An adiabatic lapse rate is the natural configuration of an atmosphere in
radiative-convective equilibrium, if it is assumed that any radiative heating and cooling is
very rapidly counterbalanced by convection. The assumption of an adiabatic lapse rate is
used in Chapters 2 and 4, and tested to some extent in the Appendix to Chapter 4. However,
in the tropospheres of both Earth and the giant planets, the deeper layers of the troposphere
tend to warm up in relation to the higher layers due to either the presence of an absorbing
surface (such as the ocean and land surface on Earth), more efficient absorption of sunlight
by gases in the deeper layers, or a deep interior heated by the friction of differentiation,
isotopic decay, and residual heat from the initial accretion process1. These diabatic heating
processes force the atmospheric temperature away from an adiabatic profile, making dT/dz

1The internal heat of Uranus has been measured to be much smaller than in Neptune or the other
giant planets, and is actually consistent with zero based on available measurements; nevertheless, the deeper
atmosphere warms by absorbing sunlight more efficiently than the upper atmosphere
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more negative. This configuration can become unstable and convection may occur. In the
absence of moisture, the condition for dry convective instability can be written

−dT

dz
= Γd >

g

cP
(1.3)

where g is the gravitational acceleration and cP is the specific heat capacity. However,
atmospheres contain trace species that undergo phase transitions and alter the temperature
structure of the atmosphere via latent heat of condensation and evaporation. The condition
for moist convective instability can be derived by assuming conservation of moist static
energy during moist adiabatic motion. The result is:

−dT

dz
= Γs > Γd −

1 + Lcq
RT

1 + ϵL2
cq

cPRT 2

(1.4)

where Lc is the latent heat of condensation, R is the ideal gas constant, q is the specific
humidity, and ϵ is the mass ratio between a molecule of the condensing species (e.g. H2O
for Earth) and the average mass of the ambient air.

To understand the energy balance of an atmospheric column before and after Equation
1.4 is satisfied, it is convenient to define the virtual temperature,

TV = T
1 + η

1 + ϵη
(1.5)

where η is the mole mixing ratio of the condensable species (e.g., water) and ϵ is the mass
ratio of the condensable species to the dry air. TV is the temperature at which dry air
would have the same temperature as moist air at a given pressure, thus the difference in
TV between a parcel and its environment can be used as a proxy for buoyancy. When the
condition for instability is not satisfied, convection is inhibited. The extra energy needed to
lift that parcel to a level at which it would convect freely (i.e., the Level of Free Convection
or LFC) is given by the convective inhibition (CIN):

CIN =

∫ LFC

0

g
(TV,parcel − TV,env

TV,env

)
dz (1.6)

where g is the gravitational acceleration. Equation 1.6 is basically the integrated negative
buoyancy. In the part of an atmospheric column where the parcel would satisfy Equation
1.4, i.e. above the LFC, the integrated positive buoyancy or Convective Available Potential
Energy (CAPE) can instead be defined:

CAPE =

∫ LNB

LFC

g
(TV,parcel − TV,env

TV,env

)
dz (1.7)

where LNB refers to the level of neutral buoyancy, the height at which a rising parcel attains
the same density as its environment.
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As stated before, the upper troposphere radiates to space more efficiently than it warms
up via shortwave absorption in both the terrestrial and gas giant atmospheres. As this
heating at the bottom and cooling at the top of an atmospheric column proceeds, Γ increases,
CIN decreases, and CAPE increases. Once Equation 1.4 is satisfied for an air parcel, it
becomes energetically favorable for it to rise. If CIN is small and CAPE is positive, it
does so. As a moist parcel rises, it cools and its vapor condenses, releasing latent heat
that serves to further increase the parcel’s buoyancy relative to its surroundings. A very
simple estimation of the conversion of potential energy due to buoyancy (PE = g∆z∆T/T )
into kinetic energy (KE = w2/2) yields fairly realistic estimates for the maximum vertical
velocity w = 2

√
PE ≈ 25 m s−1 for a deep convective plume of height ∆z = 10 km on Earth.

The same back-of-the-envelope estimate is revisited for methane convection on Neptune in
Chapter 2. However, it should be stated that this oft-used estimation of vertical velocity has
been shown to be an overestimate by an order of magnitude in theoretical calculations and
simulations of deep convection on Earth. Calculations of the entropy budget show that the
conversion of potential energy to mechanical work is highly inefficient; most of the potential
energy goes to diffusion of water vapor, irreversible phase changes, and frictional dissipation
(Pauluis et al. 2002).

The physics of moist convection has been developed and tested extensively with Earth’s
atmosphere in mind. The way that moist convection proceeds on the giant planets, of course,
remains subject to all the same physics, but the dramatically different compositions and tem-
peratures of these atmospheres as compared with Earth leads to many qualitative differences,
too. As pointed out by, e.g., Li and Ingersoll (2015) and Sánchez-Lavega, Pérez-Hoyos, et al.
(2004), one important difference is that a moist parcel of air in giant planet atmospheres is
much heavier than a dry parcel: dry air is composed primarily of hydrogen and helium, with
an average molar mass of µ ≈ 2, and the condensable species are methane (µ=16), hydrogen
sulfide (µ=34), ammonia (µ=17), and water (µ=18) depending on the pressure of interest.
For example, at the water cloud layer on Saturn, the virtual temperature decreases with
increasing temperature for water mixing ratios ≳0.01 since ϵ ≈ 8. Equation 1.5 then has two
solutions: that is, two parcels at the same temperature but different water mixing ratios can
have the same virtual temperature.2 Li and Ingersoll (2015) consider a situation in Saturn’s
atmosphere in which the atmosphere is cooling from the warmer moist adiabat to the cooler
moist adiabat with the same TV at the water cloud base and a vapor mixing ratio of more
than 1%. During this cooling, paradoxically, the virtual temperature would actually increase
at first, and a less dense layer of air would sit atop the denser, deep atmosphere for fairly long
timescales, inhibiting convection and allowing CAPE to build up. That layer cools until the
convective inhibition vanishes and the warm moist air beneath ascends, accelerated by latent
heat release, in a massive convective upwelling event that overshoots into the stratosphere.
The upwelling air and subsequent geostrophic adjustment also advect ammonia upward to
its condensation temperature, triggering additional condensation, precipitation, and latent
heat release. This mechanism may explain the periodic giant storms on Saturn like the

2This is possible because η depends on ϵ
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planet-encircling Great Northern Storm on Saturn in 2010 (see, e.g., Fletcher, Hesman, et
al. 2011), although this mechanism has not been studied in a three-dimensional circulation
model.

It is reasonable to suggest that this mechanism may have also triggered the nearly planet-
encircling storm on Neptune we analyze in Chapter 2, and certainly qualitative similarities
between that storm and Saturn’s great storms are abundant. However, episodic convection
has not yet been studied in ice giant atmospheres, and many differences between Neptune
and Saturn may alter or inhibit this mechanism; more work is needed to apply the model
of Li and Ingersoll (2015) to the ice giants. For example, Neptune is expected to be 5-10
times more abundant in water than Saturn, and the water cloud layer is expected to sit
much deeper in the atmosphere (>100 bar pressures), where even the ideal gas law starts
to be substantially violated. If such a convective upwelling event did erupt in the water
cloud, it remains unclear how high into the atmosphere the convective plumes would extend:
would they be stopped at another stable layer, e.g. the NH4SH layer, or break through
and even push parcels of NH3- and H2S-moist air to their levels of free convection? Could
a water-cloud convective tower substantially alter the weather even at the methane layer?
One might also consider applying the same mechanism to other cloud layers in Neptune,
such as the H2S cloud layer or the NH4SH layer, but the mixing ratios of ≲0.1% we derive
for these species in Chapter 4 on Uranus and those derived by Tollefson, de Pater, et al.
(2021) on Neptune appear to be too low to set up this double moist adiabat behavior. Some
of the difficulties in accurately modeling convective activity in the deeper layers of Neptune
are presented in the Discussion section of Chapter 2.

1.3 Microphysics of Cloud and Precipitation

Formation

I discussed how the large-scale flow can induce the conditions for cloud and precipitation
formation in Section 1.1, and I introduced moist convection as one important mechanism
that lifts parcels of moist air above their saturation pressure. However, the observations in
Chapters 2, 5, and 6 are sensitive to cloud and precipitation particles, and so the formation
of these (initially) micron-scale particles within a convective cell must also be discussed.

Formation and Growth of Droplets

The Gibbs energies of vapor (Gv) and droplets (Gd) are related according to the ratio of
the vapor pressure e to the saturation vapor pressure es at temperature T (R is the gas
constant):

Gv −Gd = RT ln
e

es
(1.8)

Equation 1.8 says that if the vapor pressure is greater than the saturation pressure, then it
is energetically favorable for water to exist in liquid phase instead of gas phase. However,
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energy is required to give the droplet surface tension (denoted σ), and it can be shown that
the total energy change to form a droplet of radius R from vapor is given by

∆E = 4πR2σ − 4

3
πR3nkT ln

e

es
(1.9)

such that the critical radius above which a droplet would form and grow spontaneously is

Rcrit =
2σ

nkT ln e
es

(1.10)

where k is Boltzmann’s constant. For water at typical conditions in Earth’s atmosphere,
Rcrit comes out to ∼50 nm for supersaturations of a few percent. Thus, to form a droplet
from pure vapor would require a spontaneous collision between roughly 10 million particles
of H2O vapor, which would of course never happen. This (hypothetical, in this case) process
is known as homogeneous nucleation.

Given the limitations of homogeneous nucleation, droplets must form by adsorption onto
cloud condensation nuclei (CCNs), such as dust, large organic molecules, black carbon, or
sea salt. Typically, large and water-soluble nuclei are the most efficient CCNs because
they are more easily wetted, meaning that lower supersaturations are required. On Earth,
different sources of CCN might dominate in different regions and seasons. No matter the
particular CCN, clouds and precipitation do form in large quantities on Earth, and their
study at macroscopic scales is the subject of Chapters 5 and 6. Condensation nuclei are
also required to form methane clouds in the ice giants, for the same reasons as outlined
above. However, it has been suggested that in the extremely cold temperatures of the
ice giants’ upper troposphere and stratosphere, condensation nuclei are scarce (Moses et
al. 1992). Heterogeneous nucleation would have to proceed directly from the ice phase
and, contrary to the case for typical Earth clouds, good CCNs would be insoluble particles
with specific energetically-favorable crystal structures. Furthermore, none of the dominant
CCNs on Earth are relevant for a planet with no surface or oceans, and while meteoritic
dust and photochemically-produced hazes from the upper stratosphere likely play a role, it
remains unclear how to produce a significant amount of CCN in the stratosphere. Large
supersaturations may therefore be required before cloud formation occurs, especially at the
low stratospheric volume mixing ratio of ∼2×10−4 for methane. Lower in the troposphere of
Uranus and Neptune between ∼1 and ∼50 bar pressures, the situation is even less clear, as
Moses et al. (1992) focused primarily on hydrocarbon nucleation at pressures <100 mbar. As
discussed in Chapter 4 of this thesis, a tropospheric CH4 cloud layer, an H2S layer, and an
NH4SH precipitate layer are all expected to form in this pressure range. Large cloud particles
lofted from deeper layers may serve as CCNs for higher clouds in this region (Moses et al.
1992); however, recent observational data suggests that large supersaturations of gas-phase
H2S may nevertheless be present above the H2S cloud layer in Neptune (Tollefson, de Pater,
et al. 2021). A detailed analysis of cloud formation processes in the troposphere of the ice
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giants has not (to my knowledge) been carried out, and would be of particular interest in
advance of an upcoming ice giant mission.3

Once droplets are formed at ∼1µm scales on condensation nuclei, subsequent growth
into hydrometeors proceeds in two stages: first via diffusion (up to a few tens of µm) and
then via collisions between droplets. These two growth stages are interesting topics of study
in their own right, but a detailed discussion strays from the core topics of this thesis; the
reader is referred to Wallace and Hobbs (2006) for a more in-depth look at these processes.
In the next section, I will consider the resulting cloud particles and droplets as scatterers of
electromagnetic radiation and discuss how they can be observed using remote sensing.

1.4 Radiative transfer in planetary tropospheres

The interpretation of nearly every piece of observational data in this thesis requires un-
derstanding the physics of light passing through a medium, a branch of physics known as
radiative transfer. In Chapters 2 and 4, we use radiative transfer modeling directly and ex-
plicitly to derive properties about the composition and vertical structure of the atmospheres
of Uranus and Neptune. The specifics of radiative transfer calculations are for the most part
not discussed in detail in Chapters 5 and 6. However, the derivation of precipitation amount
from radar data requires understanding the interaction between radar waves and falling water
droplets within Earth’s troposphere, and the cloud products based on data from the GOES
satellite presented in Chapter 6 are derived from a complex radiative transfer model of clouds
in Earth’s atmosphere. Those cloud products are presented in more detail in Section 6.2 of
that chapter. The radiative transfer equation can also be applied to many physical contexts
other than planetary atmospheres, and in Chapter 3 we use the principles laid out in this
section to derive a simple analytical model for the radiative transfer through a swarm of
small airless bodies, i.e., the Uranian ring system.

The radiative transfer equation

The radiative transfer equation reads

dIν
ds⃗

= Jν − ανIν (1.11)

where Iν is the specific intensity of radiation, Jν is the emission, and αν is the coefficient
of extinction, all at frequency ν. s⃗ is the path through the atmosphere. The equation
states simply that radiation passing through a medium changes spectral intensity via either
absorption by the medium (ανIν) or emission from the medium (Jν). Dividing this equation

3The Planetary Science and Astrobiology Decadal Survey 2023-2032 (National Academies of Sciences et
al. 2022) identified a Uranus orbiter and entry probe as the highest-priority flagship mission for the National
Aeronautics and Space Administration (NASA) in the next decade.
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by αν gives us the familiar
dIν
dτν

= Sν − Iν (1.12)

where τν is the optical depth and Sν is the source function. For a medium in local thermo-
dynamic equilibrium at temperature T , Sν is given by the Planck function Bν(T ).

To be relevant for planetary atmospheres, this equation must be generalized to include
scattering, so we must separate the extinction coefficient αν into scattering and absorption
components. We can parameterize this separation using the single-scattering albedo ϖ,
defined as the ratio of the scattering efficiency to the total extinction efficiency, such that
if ϖ = 0 then all extinction is due to absorption and if ϖ = 1 then all extinction is due
to scattering. Scattering may deflect light from any angle Ω′ into the direction of interest
Ω, or similarly may deflect light from the direction of interest Ω into any arbitrary angle
Ω′. Mathematically, we express the direction of scattering using the phase function p(Ω′,Ω),
which is normalized such that

1

4π

∫
4π

p(Ω,Ω′)dΩ′ = 1 (1.13)

We can think of p(Ω,Ω′) as a probability: given that a photon arrives from direction Ω′ and
is scattered, what is the probability that it scatters into direction Ω?

Putting these ideas all together into the radiative transfer equation, we get

dIν(Ω)

dτ
= (1−ϖ)Bν(T ) +

ϖ

4π

∫
4π

Iν(Ω
′)p(Ω,Ω′)dω′ − Iν(Ω) (1.14)

In practice in planetary atmospheres, Equation 1.14 quickly becomes complicated to solve:
absorbers, emitters, and scatterers vary along the path in complicated ways. Subject to
one or more scattering events, a photon may also take a countless number of different paths
through the atmosphere, all of which much be accounted for. Thankfully, there are several
simplifications that can be made to solve this equation numerically in an atmospheric model,
some of which are discussed in the next subsections.

The Asymmetry Parameter

For real particles, the phase function p(Ω,Ω′) is often very complicated to express mathe-
matically. Finding an expression for the phase function requires solving the full Maxwell
equations as a particle of a given shape interacts with electromagnetic radiation, and analyt-
ical solutions can be written down only for the simplest cases. For a spherical particle, these
solutions are called Mie scattering, and even in this idealized case, p(Ω,Ω′) has many peaks
at different angles caused by resonances between the particle radius and the wavelength of
radiation. Luckily, for macroscopic radiative transfer calculations in atmospheres, we are
often not interested in the behavior of individual scattering events. We can instead average
over a large number of scattered photons, and simply ask how many photons are scattered
in the forward direction versus the backward direction.
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Assuming that particles in the atmosphere have no preferred orientation relative to the
planet,4 we can express the angle between incidence and scattering Θ such that cosΘ = Ω·Ω′.
We then define the asymmetry parameter g as the average value of Θ over a large number
of scattering events:

g =
1

4π

∫
4π

p(cosΘ) cosΘdω (1.15)

Thus if all photons are scattered in the forward (backward) direction, then g = 1 (−1),
whereas if the scattering direction is random then g = 0.

Sometimes we would like a better approximation to p(cos θ) than simply “mostly forward”
or “mostly backward” scattering, but still without a full description of Mie theory. In this
case, g is commonly used as an input parameter to a function called the Henyey-Greenstein
phase function, which takes the form

pHG(cosΘ) =
1− g2

(1 + g2 − 2g cosΘ)3/2
(1.16)

This function has the advantages that it is non-negative for all values of Θ and at least
somewhat resembles real phase functions. However, it is single-peaked; that is, if g > 0 it
scatters the most in the forward direction and the least in the backward direction. For most
real phase functions, there should be an additional peak in scattering angle in the backward
direction. If this is important for one’s application, the double Henyey-Greenstein function
may be more applicable:

pHG2(cosΘ) = bpHG(cosΘ, g1) + (1− b)pHG(cosΘ, g2) (1.17)

where b is the relative strength of the forward and backward peaks parameterized by g1 and
g2, respectively.

The Two-Stream Approximation

In many situations relevant to atmospheric science, such as in a thick cloud or in a cloud-
free atmosphere, the variation of light intensity I with angle Ω is quite small. In this case,
we can make a dramatic simplification to Equation 1.14 by considering only the upward
and downward directions instead of all possible values of Ω. This is called the two-stream
approximation. Mathematically, we state that

FU =

∫ −1

0

Iν(Θ)µdµ (1.18)

and

FD =

∫ 1

0

Iν(Θ)µdµ (1.19)

4this is sometimes violated, e.g., in the case of rainfall
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for the upward and downward directions, respectively, where µ is the cosine of the scattering
angle. The radiative transfer equation is then expressed as a system of two equations:

dFD

dt
=

ϖf

µ0

FD +
ϖ(1− f)

µ0

FU − FD

µ0

(1.20)

dFU

dt
=

ϖf

−µ0

FU +
ϖ(1− f)

−µ0

FD − FU

−µ0

(1.21)

where f = (1 + g)/2 is the fraction of scattering that goes forward and µ0 is the average
incidence angle cosine (taken to be 1/2 for isotropic scattering).

Equations 1.20 and 1.21 are clearly more tractable than Equation 1.14, because only
two angles are considered instead of infinitely many angles. In fact, these two equations
can be solved analytically in many cases. The relatively low computational expense of the
two-stream approximation makes it a good choice when radiative transfer calculations must
be carried out many thousands of times, such as within a climate model; indeed, the ERA5
atmospheric reanalysis discussed in Chapter 6 makes use of the two-stream approximation for
many aspects of its radiative transfer scheme (Morcrette et al. 2008). When higher accuracy
is needed, one approach is simply to discretize Equation 1.14 into angle ranges like the two-
stream approximation, but use more than two ranges. It is easy to imagine formulating a
four-stream or eight-stream approximation instead, and this is indeed what is done in the
disort radiative transfer solver underlying the SUNBEAR (Spectra from Ultraviolet to Near-
infrared with the BErkeley Atmospheric Retrieval) code used in Chapter 2 (Ádámkovics
et al. 2016).

Rovibrational Spectra and the Correlated-K Method

In the tropospheres of the solar system planets, which span pressures from roughly ∼0.1 to
∼100 bars,5 the assumption of local thermodynamic equilibrium is an excellent one, with
collisions between molecules occurring frequently enough to maintain equality between the
excitation temperature, kinetic temperature, and radiative temperature of the gas. Temper-
atures are also cool enough that atoms tend to be neutral (as opposed to ionized), tend to
remain mostly in their base electronic states, and tend to form molecules. Cold temperatures
present a challenge for remote-sensing observations of atmospheres because major elemental
constituents (e.g. nitrogen, oxygen, hydrogen) are locked into very weakly-emitting nonpo-
lar diatomic molecules (e.g. H2, N2, O2). We thus often rely on ro-vibrational molecular
transitions in trace species (e.g. CO, H2S, NH3) at infrared and radio wavelengths to study
these atmospheres.

Recall that molecular energy states are quantized, just like energy orbitals in individual
atoms. Considering here a diatomic molecule for simplicity, one must take into account
rotational and vibrational energy. The molecule may rotate about an axis perpendicular to

5It is difficult to define the bottom of the troposphere on the gas giant planets, so I choose 100 bars here
as this is about as deep as we can observe with the methods considered in this thesis.
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the bond axis with angular momentum N , and its electrons have intrinsic angular momentum
L, giving rise to a (conserved) total angular momentum quantum number J with energy
levels Erot = ℏ2J(J + 1)/2I, where I = µL2 is the moment of inertia of the molecule.
The molecule may also vibrate as a simple harmonic oscillator, with energy levels Evib =
(ν+1/2)ℏω, where ω is the vibration frequency, ℏ is Planck’s constant, and ν is the vibrational
quantum number. The vibrational energy is much larger than the rotational energy, by
a factor of roughly the square root of the nucleus-to-electron ratio, which comes out to
Evib ∼ 30Erot. Because of this, pure rotational spectra (ν = 0) are found at millimeter and
centimeter wavelengths and dominate spectra at the ALMA and VLA wavelengths discussed
in Chapter 4. Ro-vibrational spectra take on complicated band structures in the infrared; a
given vibrational transition (e.g. ν = 2 → 1) will be observed at many different (but still
discretized) wavelengths because the rotational energy level will change at the same time.
For example, (ν = 2, J = 3) → (ν = 1, J = 3) and (ν = 2, J = 3) → (ν = 1, J = 2) and
(ν = 2, J = 3) → (ν = 1, J = 5) will all be observed at slightly different wavelengths despite
transitioning between the same vibrational quantum numbers.

The above behavior makes modeling of infrared spectra difficult. The absorption k at
a given wavenumber ν takes the form k(ν, P, T ) =

∑
i

Si(T )fi(ν, P, T ), where Si is the line

intensity for the ith absorption line with normalized line shape fi at a given temperature T
and pressure P . It quickly becomes computationally expensive to account for every single one
of the i ro-vibrational transitions and their line shapes in every molecule, and this complexity
is exponential as larger molecules are considered. Fortunately, if one is only interested in a
fairly wide frequency range ∆ν, then a transformation may be made from frequency space
into absorption coefficient space that dramatically speeds up computations; this method is
called the “correlated-k” method and is described here.

The average brightness Ī in a given atmospheric layer and spectral interval ∆ν looks like

Ī =

∫ 1

0

I(k(ν))d(ν/∆ν) (1.22)

The absorption coefficients within the spectral interval can be represented by the probability
distribution function f(k), in which case Equation 1.22 can be written

Ī =

∫ ∞

0

f(k)I(k)d(k) (1.23)

The cumulative distribution is

g(k) =

∫ k

0

f(k′)dk′ (1.24)

which is by definition a monotonic function of k, so we can write

Ī =

∫ 1

0

I(k(g))dg (1.25)
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Equations 1.22-1.25 have made a transformation between the frequency ν and the cumu-
lative probability of absorptivity g as the independent variable in computing the average
intensity. This transformation is powerful because I(ν) has a different shape over every in-
terval ∆ν and is difficult to approximate with simple functions, whereas I(k(g)) (or nearly
any other radiation parameter of interest) is a smooth function of g. This fact speeds up
the computation of the integral dramatically, often making accounting for absorption from
tens of thousands of spectral lines as computationally intensive as computing a single line
profile in a line-by-line code (Goody et al. 1989). The correlated-k method is used exten-
sively for the radiative transfer computations within General Circulation Models (GCMs),
including the ERA5 reanalysis dataset we present in Chapter 6. The SUNBEAR radiative
transfer code we use in Chapter 2 also uses correlated-k to account for the many thousands
of weak ro-vibrational lines of methane and other trace species in Neptune’s infrared atmo-
sphere (Ádámkovics et al. 2016). By contrast, the RadioBEAR (Radio-BErkeley Atmospheric
Radiative-transfer) software implemented in Chapter 4 uses primarily line-by-line methods
(de Pater, Fletcher, et al. 2014; de Pater, Sault, Wong, et al. 2019), since the separation
between spectral lines tends to be much larger in the millimeter and radio portion of the
spectrum than in the infrared.

Spectroscopy at High Pressures: Collision-Induced Absorption
and Pressure Broadening

The pressures considered in this thesis range from roughly 0.1 to 100 bars. At these pressures,
one must account for the effects of interactions between molecules on electromagnetic spec-
tra. The two most important effects are called collisional broadening and collision-induced
absorption. The principal difference between them is that the first arises from elastic colli-
sions and the second arises from inelastic collisions. Both processes are explained in detail
below.

Collisional broadening describes the effect of elastic collisions on quantum transitions.
In short, a collision between an emitting molecule and another molecule in the gas shortens
the timescale for the emission to occur, leading to greater uncertainty in the energy of the
transition according to the Heisenberg uncertainty principle. An alternative but equally
valid way of thinking about this is that the collision lends energy to (or removes energy
from) the transition. The resulting spectral lines follow a Lorentzian (Cauchy) line profile.
At very high gas densities, the presence of nearby molecules may also alter the quantum
energy states of a given molecule quasi-statically, i.e., on timescales much longer than that
of the emission process, affecting the line shape and sometimes the central wavelength of the
spectral line; this is called quasistatic pressure broadening. The combination of these two
effects is known collectively as pressure broadening, but at the pressures considered in this
thesis, collisional broadening is most important.

Collision-induced absorption (CIA) arises when two atoms or molecules get near enough
each other to interact weakly via the Van der Waals force. This interaction induces a
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small dipole moment between the two atoms or molecules. Several mechanisms exist for
inducing dipoles during these interactions, especially for multi-atom molecules, but let us
state for now simply that a small dipole is induced. When this occurs, the two molecules
may be treated as a “supramolecular system:” they behave in much the same way as a single
Van der Waals molecule, and can transition between quantum energy states. Because these
molecular flyby collisions occur on extremely short timescales of roughly ∼10−4 nanoseconds,
the uncertainty principle dictates that the spectral lines produced by these transitions are
orders of magnitude broader than typical ro-vibrational spectral lines. (Compare this to the
typical timescale of ∼1 nanosecond for an electronic transition). Although the line strengths
are typically weak for CIA interactions, they are crucially important to correctly modeling
planetary atmospheres, especially those of the gas giants because they induce transitions in
very abundant but otherwise inert species like H2, He, and CH4; this is discussed further in
Chapter 4.
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Chapter 2

Analysis of Neptune’s 2017 Bright
Equatorial Storm

The published version of this chapter was coauthored by the following individuals, and is included in this

thesis with their express permission: Imke de Pater, Statia Luszcz-Cook, Ricardo Hueso, Joshua Tollefson,

Carlos Alvarez, Agust́ın Sánchez-Lavega, Michael H. Wong, Andrew I. Hsu, Lawrence A. Sromovsky, Patrick

M. Fry, Marc Delcroix, Randy Campbell, Katherine de Kleer, Elinor Gates, Paul David Lynam, S. Mark

Ammons, Brandon Park Coy, Gaspard Duchene, Erica J. Gonzales, Lea Hirsch, Eugene A. Magnier, Sam

Ragland, R. Michael Rich, Feige Wang.

We report the discovery of a large (∼8500 km diameter) infrared-bright storm at Nep-
tune’s equator in June 2017. We tracked the storm over a period of 7 months with high-
cadence infrared snapshot imaging, carried out on 14 nights at the 10 meter Keck II telescope
and 17 nights at the Shane 120 inch reflector at Lick Observatory. The cloud feature was
larger and more persistent than any equatorial clouds seen before on Neptune, remaining
intermittently active from at least 10 June to 31 December 2017. Our Keck and Lick obser-
vations were augmented by very high-cadence images from the amateur community, which
permitted the determination of accurate drift rates for the cloud feature. Its zonal drift speed
was variable from 10 June to at least 25 July, but remained a constant 237.4±0.2 m s−1 from
30 September until at least 15 November. The pressure of the cloud top was determined
from radiative transfer calculations to be 0.3-0.6 bar; this value remained constant over the
course of the observations. Multiple cloud break-up events, in which a bright cloud band
wrapped around Neptune’s equator, were observed over the course of our observations. No
“dark spot” vortices were seen near the equator in HST imaging on 6 and 7 October. The
size and pressure of the storm are consistent with moist convection or a planetary-scale wave
as the energy source of convective upwelling, but more modeling is required to determine the
driver of this equatorial disturbance as well as the triggers for and dynamics of the observed
cloud break-up events.
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2.1 Introduction

The Voyager 2 spacecraft flyby of Neptune in 1989 revealed an extremely dynamic, tur-
bulent atmosphere (Smith, Soderblom, Banfield, et al. 1989; Tyler, Sweetnam, Anderson,
Borutzki, et al. 1989). Since then, advances in Earth-based observing, including 10m-class
optical/infrared telescopes with adaptive optics systems, the Hubble Space Telescope (HST),
the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Atacama
Large (sub-)Millimeter Array (ALMA), and the recently-upgraded Very Large Array (VLA),
have permitted multi-wavelength global monitoring of the planet’s clouds and deep atmo-
sphere. At infrared wavelengths, Neptune shows a striking pattern of bright midlatitude
features against a dark background (e.g. Max et al. 2003; Roe et al. 2001; Sromovsky, Fry,
Baines, and Dowling 2001). In contrast to images at visible wavelengths, in which Rayleigh
scattering produces a relatively uniformly-illuminated planet disk, methane absorption and
collision-induced absorption (CIA) by H2 in cloud-free regions makes Neptune’s disk dark.
In the Kp band (2.2 µm), the contrast in reflectivity between reflective methane clouds and
columns free of discrete upper tropospheric clouds reaches up to two orders of magnitude
(e.g., de Pater, Fletcher, et al. 2014; Max et al. 2003). Infrared observations are useful to
probe the conditions under which clouds and storm systems form, the structure and compo-
sition of these storms, and their evolution over time. Sromovsky, Fry, Dowling, et al. (2001b)
and Sromovsky, Limaye, et al. (1995) and more recently Tollefson, Pater, et al. (2018) (along
with many other authors) performed optical and infrared cloud tracking to determine Nep-
tune’s zonal wind profile. Many authors published infrared spectroscopic data with Gemini
(Irwin, Fletcher, Tice, et al. 2016; Irwin, Lellouch, et al. 2014; Irwin, Teanby, et al. 2011)
and Keck (de Pater, Fletcher, et al. 2014; Luszcz-Cook, de Kleer, et al. 2016; Max et al.
2003); these studies included latitudinal mapping of Neptune’s methane, characterization of
the stratospheric haze layer, and the observation of cloud layers both below and above the
tropopause at pressures of 0.3-2 bar and 20-80 mbar, respectively.

An effort to model the circulation on Neptune paralleled these observational studies.
Clouds form when humid (rich in condensible species) upwelling air reaches a low enough
temperature that condensation occurs, meaning that convective upwelling results in localized
cloud systems and downwelling regions tend to remain relatively cloud-free. Combining
these physical principles with the observed cloud patterns and deep atmosphere brightness
temperature maps led to a hypothesis for Neptune’s convection in which air rises from as
deep as 40 bars into the stratosphere at midlatitudes, and subsides over the poles and
at the equator (de Pater, Fletcher, et al. 2014), explaining the cloud bands at Neptune’s
midlatitudes and the relative paucity of clouds at the equator.

In this paper, we report the discovery of a long-lived cloud complex at Neptune’s equator,
bright enough in the near-infrared to be observed with even amateur (∼10 inch diameter)
telescopes over the second half of 2017. In Section 2.2 we present observations of the cloud
complex with infrared and optical telescopes over roughly seven months from June 2017
to January 2018. We track the position and morphology of the bright cloud feature and
perform radiative transfer calculations to estimate the pressure of the cloud top in Section
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2.3. Finally, we explore the implications of these results with respect to the fluid dynamics
processes underlying the storm in Section 2.4 before summarizing our findings in Section 2.5.

2.2 Observations and Data Reduction

We obtained near-infrared and optical images of Neptune over a seven-month period from
June 2017 to January 2018 with multiple telescopes; these observations are summarized
in Table 2.1, which lists data from large (>3 meter) telescopes with adaptive optics (AO)
systems as well as HST observations, and Table 2.5 (in the Appendix), which lists data from
smaller ground-based telescopes that lack AO systems.

Keck and Lick Observations

Observing Strategy

The Keck and Lick data used in this publication were carried out via “voluntary ToO”
scheduling, which we describe here. We produced an automated script to carry out short
(10- to 40-minute) snapshot observations of bright solar system objects at short notice. With
these in place, any observer could choose to carry out our observations during their observing
time by running the script. In practice, this occurred mainly during poor weather conditions
or twilight hours, when many observations (e.g. spectroscopy of faint targets at optical wave-
lengths) could not be carried out effectively, and relied heavily on the Observing Assistant
(OA) on duty to provide both the impetus and expertise to carry out the observation. The
benefits of this model are twofold: telescope time that would have otherwise gone to waste
was used for science, and high-cadence short observations were made possible at a classically-
scheduled observatory. However, because the observations needed to be short and easy for
any classically-scheduled observer at the telescope to carry out, photometric calibration of
the data could not be obtained. For this reason, only two of the Keck observations and none
of the Lick observations used in this publication have been photometrically calibrated. This
observing strategy was pioneered at Keck Observatory as the Twilight Zone program.1 It
had already been in place at Lick Observatory since 2015 and led to one previous publication
(Hueso, de Pater, et al. 2017).

Data Reduction

Data were obtained on 14 nights from the Keck II telescope on Maunakea, Hawaii. We
used the NIRC2 near-infrared camera coupled with the adaptive optics (AO) system, using
Neptune itself as the AO guide star. Using the narrow camera on NIRC2, the instrument’s
smallest pixel scale, yielded a pixel scale of 9.94 mas px−1 (de Pater, Gibbard, and Hammel
2006), or ∼210 km px−1 at Neptune’s distance. Data were obtained in the broadband H and

1https://www2.keck.hawaii.edu/inst/tda/TwilightZone.html
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UT Date & Sub-Observer Ang. Diam.
Telescope Start Time Observer Longitude (arcsec) Filters

Keck 2017-06-26 14:52 TZ 298 2.31 H, Kp, CH4S
Keck 2017-07-02 12:06 TZ 214 2.32 H, Kp, CH4S
Lick 2017-07-07 09:47 Gates 324 2.32 H, Ks
Lick 2017-07-10 10:32 Gates 150 2.33 H, Ks
Lick 2017-07-13 10:36 Lynam/de Rosa 321 2.33 H, Ks
Keck 2017-07-16 15:08 Puniwai/TZ 231 2.33 H, Kp, CH4S
Keck 2017-07-24 12:53 TZ 152 2.34 H, Kp, CH4S, PaBeta
Keck 2017-07-25 15:14 TZ 21 2.34 H, Kp, CH4S, PaBeta
Keck 2017-08-03 13:25 Jordan/TZ 127 2.35 H, Kp, CH4S, PaBeta
Keck 2017-08-03 15:26 Jordan/TZ 172 2.35 H, Kp
Lick 2017-08-06 11:36 Ammons/Dennison/Lynam 256 2.35 H, Ks
Lick 2017-08-08 12:00 Rich/Lepine/Gates 258 2.35 H, Ks
Keck 2017-08-25 11:23 Sromovsky/Fry/TZ 2 2.36 H, Kp
Keck 2017-08-26 10:31 Sromovsky/Fry/TZ 159 2.36 H, Kp
Lick 2017-08-31 08:11 Crossfield/Gonzales/Gates 268 2.36 H, Ks
Lick 2017-09-01 10:42 Crossfield/Gonzales/Gates 141 2.36 H, Ks
Keck 2017-09-03 10:31 TZ 130 2.36 H, Kp, CH4S
Keck 2017-09-03 12:57 TZ 184 2.36 H, Kp, CH4S
Keck 2017-09-04 10:32 TZ 306 2.36 H, Kp, CH4S
Keck 2017-09-04 12:40 TZ 354 2.36 H, Kp, CH4S
Keck 2017-09-27 04:56 Mcllroy/Magnier 277 2.35 H, Kp, CH4S, PaBeta
Lick 2017-10-04 06:47 Duchene/Oon/Coy 112 2.35 H, Ks
Lick 2017-10-05 03:52 Duchene/Oon/Coy 224 2.35 H, Ks
Lick 2017-10-05 07:29 Duchene/Oon/Coy 304 2.35 H, Ks
Lick 2017-10-06 06:08 Rich/Lepine/Gates 91 2.35 H, Ks
HST 2017-10-06 09:02 OPAL Program 155 2.35 F467M, F547M, F657M,

F619N, F763N, F845M
Keck 2017-10-06 10:54 Aycock/Ragl 197 2.35 H, Kp
HST 2017-10-07 02:40 OPAL Program 155 2.35 F467M, F547M, F657M,

F619N, F763N, F845M
Keck 2017-11-08 04:14 Alvarez/Licandro 106 2.31 H, Kp, CH4S
Lick 2017-11-29 01:47 Wang/Gates 152 2.29 H, Ks
Lick 2017-11-30 02:01 Melis/Gates 334 2.29 H, Ks
Lick 2017-12-01 01:46 Melis/Gates 145 2.28 H, Ks
Lick 2017-12-02 01:47 Melis/Gates 321 2.28 H, Ks
Lick 2017-12-06 02:31 Hirsch/Gates 323 2.28 H, Ks
Lick 2017-12-29 02:08 Melis/Lynam 48 2.25 H, Ks
Lick 2017-12-31 02:22 Chen/Lynam 45 2.25 H, Ks
Keck 2018-01-10 04:38 Puniwai/McPartland 58 2.24 H, Kp, CH4S, PaBeta

Table 2.1: Description of Keck and Lick data used in this publication. “TZ” refers to the
Keck Twilight Zone observing team—E. Molter, C. Alvarez, I. de Pater, K. de Kleer, and
R. Campbell.
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Kp filters on all 14 nights, and narrow-band observations in the CH4S and PaBeta filters
were obtained when time permitted (see Table 2.1). The images are shown in Figure 2.1,
and characteristics of each filter are listed in Table 2.6.

Wide-band images were processed using standard data reduction techniques of sky sub-
traction, flat fielding, and median-value masking to remove bad pixels. Each image was
corrected for the geometric distortion of the NIRC2 detector array according to the solution
provided by Service et al. (2016). Cosmic rays were removed using the astroscrappy pack-
age2 (affiliated with the community-sourced astropy Python suite; The Astropy Collabora-
tion et al. 2018). This package implements a version of the standard L.A.Cosmic algorithm
(van Dokkum 2001), which relies on Laplacian edge detection to differentiate cosmic rays
from PSF-convolved sources.

Photometric calibration was carried out on 26 June and 25 July using the photometric
standard star HD1160 on both dates. This star appears in the UKIRT MKO Photomet-
ric Standards list3; its spectral type is A0V and it has J, H, and K band magnitudes of
6.983, 7.013, and 7.040, respectively (in the 2MASS system; Cutri et al. 2003). Due to our
reliance on donated observing time, these were the only dates for which photometry could
be obtained. We converted the observed flux densities to units of I/F, the ratio of the ob-
served radiance to that from a normally-illuminated white Lambertian reflector at the same
distance from the sun as the target (Hammel, Baines, et al. 1989):

I

F
=

r2

Ω

FN

F⊙
(2.1)

where r is Neptune’s heliocentric distance in AU, πF⊙ is the Sun’s flux density at Earth, FN

is the observed flux density of Neptune, and Ω is the solid angle subtended by one detector
pixel. The solar flux density was determined by convolving a high-resolution spectrum from
Gueymard (2004) with the NIRC2 filter passbands. Uncertainties in I/F were set to be 20%
to account for errors in photometry, which we estimated by looking at the difference in flux
between the three exposures taken on the standard star in each filter; this 20% uncertainty
is consistent with de Pater, Fletcher, et al. (2014).

To ensure the photometric calibration in H and Kp band from HD1160 was reasonable,
we used it to determine the geometric albedo of Neptune’s moon Proteus. Proteus was inside
the field-of-view of the narrow camera in only one image of the three-point dither on both
26 June and 25 July. The technique we employed to determine the albedo was very similar
to that used by Gibbard, de Pater, and Hammel (2005) and is summarized in Appendix 2.6;
the results of that calculation are given in Table 2.2. The geometric albedos we found were
somewhat higher than the K-band value of 0.058± 0.016 reported by Roddier et al. (1997)
but in good agreement with Dumas et al. (2003), who obtained 0.084 ± 0.002 in the HST
F160W filter at 1.6 µm and 0.075± 0.010 in the HST F204M filter at 2.04 µm.

Data were obtained on 17 nights from the Shane 120-inch reflecting telescope at the
UCO Lick Observatory on Mount Hamilton, California. We used the Shane AO infraRed

2https://github.com/astropy/astroscrappy
3http://www.gemini.edu/sciops/instruments/nearir-resources/photometric-standards/ukirt-standards
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Figure 2.1: Time series of all H-band Keck and Lick images. The last panel shows the
orientation of Neptune relative to the observer. The Keck observations are displayed on a
logarithmic scale for better viewing of both bright and faint features. One or two bright
equatorial storm features are visible in Panels 1-5, 8, 22, 25, and 26 (labeled DC for Discrete
Cloud). Multiple equatorial features or bands are visible in Panels 7, 9-14, 17-20, 28, 29, 31,
and 34 (labeled MS for Multiple Spots). One or more faint features are visible near the limb
of the planet in panels 27, 30, 32, and 33 (labeled FL for Faint Limb). No clear equatorial
features are visible in Panels 6, 15, 16, 21, 23, or 24 (labeled NF for No Features).
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Date Band F0.2/Ftot Albedo Error (%) Phase Angle (◦)
2017-06-26 H 0.63 0.080 21 1.8

Kp 0.74 0.092 21 1.8
2017-07-25 H 0.30 0.073 22 1.2

Kp 0.29 0.100 33 1.2

Table 2.2: Photometry of Neptune’s moon Proteus, used to validate our standard star photo-
metric calibration. The stated error combines the∼20% photometry error with the estimated
additional error from flux bootstrapping (see Appendix 2.6).

Camera-Spectrograph (ShARCS) camera, a Teledyne HAWAII-2RG detector, coupled with
the ShaneAO system and using Neptune itself as a guide star. The pixel scale of the ShARCS
images was 33 mas px−1, or ∼700 km px−1 at Neptune. Data were obtained in the broadband
H and Ks filters on all 17 nights. Data reduction was carried out using the same procedure
as for the Keck data, and the images are shown along with the Keck data in Figure 2.1.

Image Navigation and Orthogonal Projection

To overlay a latitude-longitude grid onto Neptune and project its ellipsoidal surface onto a
map, we followed the same general procedure as used in Sromovsky and Fry (2005); however,
we have recast those codes into the Python programming language and made a few small
changes. We summarize the steps here. First, an ellipsoidal model of Neptune was produced
with req = 24766 km and rpol = 24342 km as found by Voyager (Lindal 1992). The model
was resized, rotated, and cast into two dimensions to match the angular scale and orientation
of Neptune at the time each observation was taken, making use of data from JPL Horizons4.
Second, the model Neptune was overlain onto the image data and shifted to the location of
Neptune in the image. To achieve this, we employed the Canny edge detection algorithm
(implemented by the scikit-image Python package; Walt et al. 2014)5 to find the edges of
Neptune and then simply matched these edges to the edges of the model. The navigation
error using this method was the combination of the uncertainty in the shift required to
match the model and data (implemented by the image registration package6) and the
spread in the location of the edges the algorithm found as its parameters were varied over
a reasonable range. We found the combined error to be < 0.1 pixels in all images with
acceptable seeing conditions. Third, we interpolated this mapping between image (x, y)
coordinates and physical (latitude, longitude) coordinates onto a regular latitude-longitude
grid using a cubic spline interpolation (implemented by the scipy Python package; Jones,
Oliphant, et al. n.d.)7. Planetographic latitudes were used here and throughout this paper.
We chose the grid spacing such that one pixel in latitude-longitude space was the same size

4https://ssd.jpl.nasa.gov/horizons.cgi
5skimage.feature.canny; https://scikit-image.org/
6 image registration.chi2 shifts.chi2 shift; https://github.com/keflavich/image registration
7scipy.interpolate.griddata; https://www.scipy.org/
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as one pixel in image space at an emission angle of zero; that is, the latitude-longitude map
was oversampled compared to the data away from the sub-observer point.

The code used for NIRC2 data reduction, navigation, and projection was implemented
in Python and has been made publicly available on GitHub.8

Observations with non-AO Telescopes

We alerted the amateur community to the presence of the bright storm feature after it was
imaged with Keck on 26 June. A total of 62 near-infrared amateur observations of the
feature were made on 33 different nights. Amateur observers D. Milika & P. Nicholas in
fact made the first observation of the storm on 10 June, though it was not recognized as
noteworthy until it was later observed with Keck. The bright equatorial feature was also
observed with the PlanetCam instrument (Mendikoa et al. 2016) on the 2.2m telescope at
Calar Alto Observatory on 11 July. Table 2.5 (in the Appendix) summarizes the dates and
characteristics of these PlanetCam and amateur observations, and sample amateur images
are shown in Figure 2.13 (in the Appendix). Images were navigated in WinJupos9 using the
position of Triton as a tie-point for the Neptune latitude-longitude grid; see Hueso, de Pater,
et al. (2017) for a more complete description of this technique.

HST Observations

The Hubble Space Telescope (HST) observed Neptune in Cycle 24 on 6 October as part of
the Outer Planets Atmospheres Legacy (OPAL) program (Simon, Wong, et al. 2015).10 The
observations were described by Wong, Tollefson, et al. (2018), who presented a multi-year
study of the southern hemisphere dark vortex SDS-2015. We processed the images following
similar procedures to those described in Wong, Tollefson, et al. (2018); the images are shown
in Figure 2.2.

2.3 Results

Morphological Evolution of the Storm

An ∼8500 km diameter infrared-bright cloud complex was observed at Neptune’s equator
on several nights from June to December 2017 (see Figure 2.1). From at least 26 June to
25 July, this bright equatorial storm remained a single discrete feature, although on 25 July
the cloud had elongated compared to 26 June and 2 July and had taken on a somewhat
patchy appearance (Figure 2.3). None of the Keck or Lick observations from 3 August to
27 September (13 images on 10 dates) observed a large equatorial storm, but multiple small

8https://github.com/emolter/nirc2 reduce
9http://jupos.org/gh/download.htm

10https://archive.stsci.edu/prepds/opal/
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Figure 2.2: HST images of the equatorial features obtained on 6 October 2017. The two
upper rows show images acquired from blue to near-infrared wavelengths, and the lower row
shows high-pass versions of images at selected wavelengths. The SDS-2015 dark vortex and
its associated bright cloud in red and near IR wavelengths appears highlighted with yellow
lines in the color composite and blue image. The bright equatorial clouds do not show any
similar dark feature.
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features at different longitudes were observed at the equator in many of these images. In
the first Keck image on 3 August, two relatively faint cloud complexes were seen: one thin
band near the sub-observer point and another larger group of clouds on the eastern limb of
the planet spanning ∼15◦ in both latitude and longitude, which may have been remnants of
the storm. On 25 and 26 August as well as 3 and 4 September, many small, faint features
were observed at various longitudes across Neptune’s equator, possibly indicating that the
storm sheared apart into an equatorial cloud band. The relative paucity of observations
between 25 July and 4 October and the changing drift rate of the storm from 2 June to 25
July (see Section 2.3) made it difficult to determine precisely when the discrete equatorial
cloud feature dissipated, since in a single snapshot the storm may have simply been hidden
from view on the far side of the planet. However, if the storm maintained its drift rate
of ∼202 m s−1 (see Section 2.3) we should have detected it with Keck on 26 August. We
achieved complete longitude coverage on 25 and 26 August and again on 3 and 4 September
with Keck, determining with certainty that the storm was not present on Neptune on those
dates for any reasonable drift rate. Lick observations on 4 October revealed a bright discrete
cloud feature again, and Keck imaging on 6 October captured this feature as well as a
detached fainter equatorial cloud roughly 40◦ east of the main storm. In all observations
in which the equatorial cloud complex was detected, it was coincident in longitude with
bright cloud features at the northern midlatitudes from ∼30◦ to ∼50◦. Multiple spots and
bands were visible at the equator in 7 Lick observations and one Keck observation from
29 November 2017 to 10 January 2018, revealing that cloud activity on Neptune’s equator
remained heightened for several months after the reappearance of a large discrete cloud
complex. However, individual features could not be tracked over this time period due to the
sparse temporal coverage of the data.

The HST observations on 6 October revealed the two bright equatorial clouds observed
by Keck faintly in the F467M filter and at progressively higher contrast at increasing wave-
lengths; the highest contrast was achieved in the F845M filter, where methane absorption is
most important (see Figure 2.2). The bright equatorial storms displayed a similar morphol-
ogy in the Keck H-band observations on the same date (see Figure 2.1, panel 25). Comparing
the color-composite images of the equatorial storm taken on 6 October and 7 October reveals
that the morphology of both the main storm and its fainter companion cloud varied signif-
icantly on timescales of ≲1 day (see Figure 2.4). The dark vortex SDS-2015 was observed
near ∼45◦S at blue wavelengths (see also Wong, Tollefson, et al. 2018) and its companion
clouds were visible at red wavelengths, but no dark spot was observed in association with
the equatorial storm nor anywhere else on Neptune. Discovery of an equatorial dark spot
would have been surprising, since LeBeau et al. (1998) found that anticyclones could not
survive within 15◦ of the equator. Their simulations predicted that vortices drifting into the
equatorial region would produce extensive perturbations on a global scale, lasting for weeks.
This phenomenon was observed on Uranus when the bright “Berg” storm drifted toward
the equator and dissipated (de Pater, Sromovsky, Hammel, et al. 2011). Our observations
of persistent equatorial features over several months is therefore also inconsistent with the
dissipation of a vortex that drifted too close to the equator. However, a dark spot obscured
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Figure 2.3: Orthogonally-projected Keck images of the equatorial and northern cloud com-
plexes in H band (Top Row) and Kp band (Middle Row). Images are displayed on
logarithmic scales for better viewing of both bright and faint features. Note that the back-
ground on 25 July appeared brighter due to poorer atmospheric seeing on that date. Bottom
Row: Map of best-fit cloud pressures based on Kp/H ratio in each pixel. These pressures
were derived from a radiative transfer model assuming a discrete optically thick cloud (see
Section 2.3) and are therefore only valid in locations where clouds were visible in H band
(top row).

by the equatorial cloud complex could not be definitively ruled out by our observations.

Feature size determination

To determine the physical extent of the equatorial storm, a 50% contour was laid down
around the bright storm feature in the projected (onto a latitude-longitude grid) images.
The longest continuous line segments in the x- and y- directions that fit inside the contour
were taken to be the full widths at half-maximum of the storm feature in the zonal and
meridional directions, respectively. This measurement was repeated in both H and Kp band
on all four dates on which Keck observed the storm to be a discrete feature, as well as in the
HST F845M filter on 6 October; the results are shown in Table 2.3.

We took the error on these measurements to be one detector pixel. The size of a detector
pixel at zero emission angle was ∼210 km in the Keck images, so at any other emission
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Figure 2.4: Orthogonally-projected color-composite HST OPAL images from 6 and 7 Octo-
ber. The images reveal changes in storm morphology on ≲1 day timescales. The lower left
panel shows the angle of incidence with respect to the observer.

angle µ = cos θ the distance on the planet subtended by one pixel was x ≈ (210/µ) km.
However, the most prominent error sources in determining a single value for the cloud’s
size are the choice of what constitutes part of the cloud, i.e. whether or not the FWHM
value is the proper metric, the assumption that the size of the atmospheric disturbance is
well represented by the size of the visible region of the cloud, the filter in which the size is
measured (which is loosely tied to the pressure level of the cloud), and the short-timescale
variability in the cloud’s morphology (see Figure 2.4).

Feature tracking

We determined the speed of the equatorial storm across the planet by tracking its location
over multiple observations. To do so, we needed to find the latitude and longitude of the
storm’s center in each image. Because the physical extent of the storm was much larger than
one ShARCS or NIRC2 detector pixel and the bright cloud feature had an irregular shape,
it was not sensible to determine its center using a Gaussian or elliptical top-hat fit. Instead,
we employed a version of the technique used by Martin et al. (2012), which proceeded as
follows. First, we defined a large box around the entire bright cloud region. Second, we
computed contours around the brightest region of the storm at many levels (from 68% to
95% in intervals of 0.01%; the particular choice of starting and ending values and step size
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Zonal Meridional Zonal Meridional
Date Filter Extent (km) Extent (km) Error (km) Extent (◦) Extent (◦) Error (◦)

2017-06-26 H 8315 7036 345 19.2 16.6 0.8
Kp 7462 6396 345 17.3 15.1 0.8

2017-07-02 H 8290 8502 236 19.1 20.0 0.6
Kp 7652 7439 236 17.7 17.5 0.6

2017-07-25 H 15567 9045 368 36.0 21.3 0.9
Kp 12411 6101 368 28.7 14.4 0.9

2017-10-06 p H 12165 7341 250 28.1 17.3 0.6
Kp 11117 6921 250 25.7 16.3 0.6

F845M 11980 7244 310 27.7 17.1 0.7
2017-10-06 s H 10907 5244 442 25.2 12.3 1.0

Kp - - - - - -
F845M 13930 6408 380 32.2 15.1 0.9

Table 2.3: Sizes of the equatorial storm on all dates the storm was observed to be a discrete
feature by Keck or HST. On 6 October, the “p” and “s” refer to the primary and secondary
storm feature, respectively. The secondary feature was not detected in Kp band.

had very little effect on the result). Third, we determined the centroid of each contour.
Finally, we took the mean of these centroid positions as the derived feature center, and took
the standard deviation in the retrieved centers to be the 1σ error on that value. The feature
tracking error dominated over the error in the planet’s location on the detector (see Section
2.2). We note that this technique found the brightest region of the storm and was therefore
sensitive to changes in the storm’s morphology, which occur on short timescales (≲1 day;
see Figure 2.4), and slightly sensitive to the storm’s position with respect to the limb due to
limb-darkening/brightening effects.

Feature locations in Amateur and PlanetCam images were measured using the WinJu-
pos software, which permits determination of locations of features across the planet. Mea-
surements were obtained by two of us (R.H. and M.D.) and sometimes by the individual
observers, and these two or three location determinations were found to be coincident within
the estimated uncertainty. The measurement uncertainty was determined by marking the
center of the equatorial bright feature bye eye 3-5 times and observing the dispersion in the
measurements.

The results of our feature tracking are shown in Figures 2.5 and 2.6. The storm (when
present) was stable in latitude, remaining within ±5◦ of the equator over the entire time
baseline of our observations. The mean latitude of the feature center was found to be 2.2◦

North, with a standard deviation of ±3.7◦.
We derived the longitude drift rate of the storm by fitting our longitude tracking data

to a linear model; the details of this process are explained in Appendix 2.8. Over the first
six weeks of observations from 10 June to 25 July, we find a best-fit drift rate of 197 ± 3 m
s−1. However, this drift rate provides a relatively poor fit to the storm location on 10 June,
26 June, and 25 July: the predicted location of the feature center lies entirely outside the
∼20◦ feature. Using instead only the six data points from 2 July to 14 July in the fit, i.e.,
where the sampling is densest, yields a drift rate of 201.7 ± 2.2 m s−1 and again fails to fit



CHAPTER 2. ANALYSIS OF NEPTUNE’S 2017 BRIGHT EQUATORIAL STORM 31

Figure 2.5: Latitude of the bright equatorial feature over time. The gray region represents
the 1σ dispersion in the latitude measurements.

the data points before 2 July or after 14 July (see Figure 2.6). This implies that the storm’s
drift rate varied on timescales of a few to tens of days over the first epoch.

Two distinct bright equatorial storms offset by ∼50◦ longitude were visible from 28
September to at least 1 November. The brighter of the two storms is best fit by a constant
drift rate of 237.4 ± 0.20 m s−1, and the good fit from 28 September to 1 November implies
that a constant drift rate provides a good model for these data. The same drift rate also fits
the secondary storm over this epoch, though the data are sparser. On and after 1 November,
many equatorial features were observed at different longitudes on the same nights, and the
data are not of sufficient resolution or time coverage to track individual features without
confusion.

Radiative transfer modeling

The SUNBEAR Radiative Transfer Code

We employed an in-house radiative transfer (RT) code based on the disortmodule (Stamnes
et al. 1988), a parallelized RT equation solver. The code, which we call SUNBEAR (Spec-
tra from Ultraviolet to Near-infrared with the BErkeley Atmospheric Retrieval), has been
adapted to Python based on pydisort (Ádámkovics et al. 2016)11, and used previously
for solar system observations on Titan, Uranus, and Neptune (Ádámkovics et al. 2016; de
Kleer, Luszcz-Cook, et al. 2015a; Luszcz-Cook, de Kleer, et al. 2016) at infrared wavelengths.
SUNBEAR has been extended to visible wavelengths in order to analyze HST data by im-

11https://github.com/adamkovics/atmosphere/blob/master/atmosphere/rt/pydisort.py
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Figure 2.6: Longitude of the bright equatorial feature over time. The longitude coverage (at
the equator) of observations in which a bright equatorial storm was not detected are shown
as red bars. Observations are split into two epochs to facilitate visualizing the two different
wind speed fits. The black and gray lines are wind speed fits to the main equatorial feature
and the detached secondary feature, respectively.
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plementing several scattering processes that are important at visible wavelengths: Rayleigh
scattering, Rayleigh polarization, and Raman scattering. Rayleigh scattering was computed
by calculating the total Rayleigh-scattering cross-section per molecule (McCartney 1976),
where values for the molecular depolarization and reflective indices came from Allen (1963).
Rayleigh polarization, which increases the reflectivity of Neptune’s atmosphere at high scat-
tering angles and produces an effect as large as 9% even at zero phase angle (Sromovsky
2005b), was treated following the empirical approximation developed in Sromovsky (2005b).
This approximation agrees to the ≲1% level for cloud-free or cloud-opaque atmospheres.
Raman scattering was taken into account using the semi-empirical approximation discussed
in Karkoschka (1994, 1998); this technique transforms between the Raman and non-Raman
parts of spectra by assuming that the measured geometric albedo is a linear combination of
terms involving the spectrum without Raman scattering. Sromovsky (2005a) found that this
approximation is accurate at short wavelengths, but underperforms at longer wavelengths
within the methane absorption bands. Karkoschka and Tomasko (2009) improved their em-
pirical spectral dependencies based on these results, and we used their parameters within
SUNBEAR.

Background Model

We input a temperature-pressure profile and gas abundance profiles appropriate for Nep-
tune’s atmosphere (de Pater, Fletcher, et al. 2014; Luszcz-Cook, de Kleer, et al. 2016), along
with an optically thin haze at pressures less than 0.6 bar and an optically thick cloud layer
at 3.3 bar; see Figure 2.7. This “background” model was identical to the best-fit model
of Luszcz-Cook, de Kleer, et al. (2016) (labeled 2L DISORT in that paper) retrieved from
Keck OSIRIS spectral data of Neptune’s dark regions, but with one modification. To account
for the increase in haze albedo at visible wavelengths inferred from HST spectroscopic data
(e.g., Karkoschka and Tomasko 2011), the single-scattering albedo ϖ of the optically thick
cloud at 3.3 bar was allowed to smoothly vary from 0.45 longward of 1.6 microns, consistent
with Luszcz-Cook, de Kleer, et al. (2016), to 0.99 shortward of 0.5 microns, consistent with
Karkoschka and Tomasko (2011), according to the following equation:

ϖ = 0.45 + (0.99− 0.45)
[
1 + e

λ−λt
0.1

]
(2.2)

The transition wavelength λt between the two ϖ regimes was set to be 0.8 µm, and the 0.1 in
the denominator of the exponential, which sets the “sharpness” of the transition between the
two albedo values, was also set arbitrarily to a qualitatively reasonable value. Note that the
albedo correction at UV wavelengths from Karkoschka and Tomasko (2011) is not important
longward of 0.4 µm, so it was ignored here.

We confirmed that the “background” model fit our NIRC2 data in regions where discrete
upper tropospheric clouds were not observed by convolving the model spectrum from the
RT code with the NIRC2 filter bandpasses12. The results of this exercise for our 26 June

12https://www2.keck.hawaii.edu/inst/nirc2/filters.html
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Figure 2.7: Left: The temperature-pressure profile of Neptune’s atmosphere used in our
radiative transfer model. The cloud layers in our radiative transfer model are overlain in
blue; the arrows on the high-albedo discrete cloud indicate that we changed the pressure of
this layer to fit our observations. Right: Vertical abundance profiles of gases in our model.

and 25 July data are shown in Figure 2.8. The model fit within the error bars of the
data for all filters except Kp on 25 July. We do not view this as a severe problem for the
model because the absolute Kp band I/F values in Neptune’s dark regions were so minuscule
that small systematic modeling errors may have led to large relative offsets. For example,
Irwin, Fletcher, Tice, et al. (2016) noticed short timescale variability in the K band in
their VLT SINFONI spectrograph observations, which they attributed to changes in the
single-scattering albedo. Scattered light from the bright storms on other regions of Neptune
may have also contributed to an observed brightening compared to the model, especially in
relatively poor seeing as on 25 July; however, since we are interested in the bright cloud
regions themselves, scattered light systematics are not a serious concern.

HST OPAL data and Keck data were taken within two hours of each other on 6 October;
however, the Keck data were not photometrically calibrated, so in order to model both
datasets together it was necessary to “bootstrap” a photometric calibration to the Keck data.
To do so, we assumed that the brightness of the dark regions in the two Keck filters was



CHAPTER 2. ANALYSIS OF NEPTUNE’S 2017 BRIGHT EQUATORIAL STORM 35

Figure 2.8: Model I/F values compared to data from 26 June (left) and 25 July (right)
for a background region free of discrete upper tropospheric clouds (top), the northern cloud
complex (middle), and the equatorial storm (bottom). Triangles represent the model
values in each NIRC2 band, derived by convolving the model spectrum (shown here in blue)
with the filter passbands. Models in all plots used the reference cloud parameters, varying
only pressure and changing µ to the appropriate value for that cloud. The thin gray line in
each panel shows a model spectrum generated using the reference parameters and a discrete
cloud pressure of 0.5 bar (identical to the bottom panels, but using the appropriate value of
µ) to facilitate visualization of differences between the models.
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identical (at a given emission angle) on 26 June and 6 October, and then scaled the photon
counts in the 6 October images accordingly. This assumption is reasonable because the same
background model fit the Keck data on 26 June and 25 July within our uncertainty. Also,
the timescale of H-band variability in the haze has been observed to be much longer than
the ∼4 months between 26 June and 6 October (Hammel and Lockwood 2007; Karkoschka
2011). The comparison between our “background” model and the combined HST and Keck
data is shown in Figure 2.9.

Discrete Cloud Model

We inserted an optically thick discrete cloud layer into the “background” model to simulate
the equatorial storm. The cloud layer had the following properties, which we refer to as the
“reference” model: τ = 10.0 was the optical depth; hf = 0.05 was the fractional scale height;
g = 0.65 was the Henyey-Greenstein parameter; rp = 1.0 µm was the peak radius in the
Deirmendjian (1964) haze particle size distribution;

ϖ = 0.9 + (0.99− 0.9)
[
1 + e

λ−λt
0.1

]
(2.3)

was the single-scattering albedo. Since the optical depth, single-scattering albedo, and phase
function were all specified, the particle size distribution rp was only used to set the wavelength
dependence of the scattering cross-section and was not truly an independent parameter.
The reference cloud model was based on the properties derived by Irwin, Lellouch, et al.
(2014) and Irwin, Teanby, et al. (2011), who used the NEMESIS radiative transfer code to
model many Neptune infrared cloud spectra observed by the SINFONI spectrograph on the
Very Large Telescope (VLT). Their best-fit model spectra varied rather widely in aerosol
parameters, and since an equatorial cloud complex similar to what we observed had never
been seen before, a good a priori guess at the cloud properties was difficult. Nevertheless,
those authors favored moderately forward scattering (g = 0.6− 0.7) and moderate- to high-
albedo (ϖ = 0.4− 1.0) clouds in most cases. We chose to model a very compact cloud layer
because this was the simplest possible assumption in absence of constraining data. A short
description of, reference model values of, and bibliographic references for all of the discrete
cloud parameters are summarized in Table 2.4, and we refer the reader to Appendix A of
Luszcz-Cook, de Kleer, et al. (2016) for additional explanation of the way these parameters
were implemented in SUNBEAR.

The pressure Pm of this cloud was varied in steps of logPm = 0.25 from 10 bar to 0.01
bar to produce a suite of “discrete cloud” spectra for clouds from the deep troposphere
to the upper stratosphere. We reran these models for values of the emission angle µ from
0.1 to 1.0 in steps of 0.1, ending up with a grid of spectra in (Pm, µ) space. We then
interpolated across this grid to find the spectrum of any (Pm, µ) pair. This technique took
advantage of the fact that spectra are continuous functions of their labels; that is, changes in
cloud pressure, emission angle, or any other input parameter produce smooth changes in the
resulting spectrum. This type of interpolation is widely used to fit stellar spectra (e.g., Rix
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Figure 2.9: Model I/F values compared to combined Keck and HST data from 6 October
for a background region free of discrete upper tropospheric clouds (top), the northern cloud
complex (middle), and the equatorial storm (bottom). Triangles represent the model values
in each filter, derived by convolving the model spectrum (shown here in blue) with the filter
passbands. Models in all plots used the reference cloud parameters, varying only pressure
and changing µ to the appropriate value for that cloud.
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et al. 2016). The model spectra were convolved with the NIRC2 filter bandpasses to produce
model reflectivities in each filter for a cloud of a given pressure. Then we determined the
average reflectivity of the cloud core in the data by averaging all the pixels in a 90% contour
around the brightest pixel in the cloud, and finally compared the model reflectivities to these
data; those fits can be seen in Figure 2.8. On 26 June the reference model provided a good
fit to both the equatorial storm and northern complex data for tropospheric cloud layers at
∼0.5 bar and ∼0.1 bar, respectively; however, on 25 July the reference model fit neither the
equatorial storm nor the northern complex for any values of the cloud pressure. We assumed
this difference was caused by a decrease in the opacity of the clouds on 25 July compared
to 26 June. This interpretation was favored because the equatorial storm appeared to take
on a patchy appearance on 25 July, and changes in microphysical cloud parameters (ϖ, g,
rp) for a given cloud type are relatively small on Earth (e.g. Baum et al. 2005). Good fits to
the July 25 data were achieved using optical depths τ = 0.1 for the northern complex and
τ = 0.5 for the equatorial storm (see Figure 2.10). We caution that these assumed cloud
properties are not a unique fit to the NIRC2 data, as large degeneracies between parameters
are present (e.g., de Pater, Fletcher, et al. 2014). It was not possible to retrieve parameters
independently, since each of the three haze layers was parameterized by five parameters (ϖ,
τ , Pm, hf , and g) but we only had three or four spectral data points on each observation date.
The equatorial storm observed on 6 October with combined HST and bootstrapped Keck
data was well fit by the reference discrete cloud model at 0.5 bar pressure (see Figure 2.9),
pointing to an increase in reflectivity of the storm at visible wavelengths. In our model, this
increase in reflectivity was achieved via an increased single-scattering albedo; however, this
solution is not unique. The particle size, optical depth, and Henyey-Greenstein parameter
may also change at visible wavelengths compared to infrared wavelengths, and it is possible
to fit the sparse available data using many different combinations of these parameters. In
addition, the function we used to smoothly vary the single-scattering albedo was purely
empirical, and could also be tuned. All of the models we present here should be taken as
only one of many possible physical interpretations of the data.

The Kp/H ratio in the upper troposphere depends strongly on the cloud pressure Pm and
the opacity τ but only weakly on microphysical cloud properties. Physically, this is because
the pressure of a reflecting cloud layer changes the path length of a photon through the
atmosphere before it scatters off the cloud. The path length greatly affects the reflectivity
in Kp-band near 2.2 µm because methane absorption is very strong at those wavelengths,
and therefore a photon traveling through more atmosphere has a higher chance of being
absorbed. On the contrary, the path length has little effect on the reflectivity in H and
CH4S bands near 1.6 µm because these are much less affected by molecular absorption in
the stratosphere and upper troposphere, so the I/F value in those bands is almost entirely
governed by scattering off the cloud layer itself. Changing the opacity of the cloud produces
a similar effect: a less opaque cloud permits longer path lengths through the atmosphere,
and in Kp-band the photons traveling these paths have a high probability of being absorbed
whereas in H-band the photons may also backscatter from a haze particle or the deep H2S
cloud base. de Pater, Sromovsky, Hammel, et al. (2011) showed that by subtracting the
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Figure 2.10: Models of the northern cloud complex and equatorial on 25 July. The models
were the same as the reference model (see Figure 2.8) but with opacities τ = 0.5 for the
equatorial storm and τ = 0.1 for the northern complex. The thin gray line in each panel
shows a model spectrum generated using the reference parameters and a discrete cloud
pressure of 0.5 bar (identical to the bottom panels in Figure 2.8, but using the appropriate
value of µ) to facilitate visualization of differences between the models.

background I/F value from the I/F value of the discrete cloud, the opacity can be eliminated
and the ratio equation

Ic,Kp − Ib,Kp

Ic,H − Ib,H
=

IKp(Pm)− Ib,Kp

IH(Pm)− Ib,H
(2.4)

is obtained, where Ic is the intensity at the location of the discrete cloud, Ib is the intensity of
the background, and I(Pm) is the radiance of a very optically thick model discrete cloud at
pressure Pm (i.e. our reference model cloud). Equation 2.4 can be used to place an approxi-
mate constraint on Pm independently of opacity by simply finding the pressure at which the
left-hand side and right-hand side of the equation are equal; this idea was applied to clouds
on Uranus by de Pater, Sromovsky, Hammel, et al. (2011) and Sromovsky, Hammel, et al.
(2012). The solutions to Equation 2.4 as a function of pressure are shown for our data in Fig-
ure 2.11. The figure shows that the background-subtracted Kp/H ratio varies from 0.05−1.1
from 0.1 to 1 bar, defining the pressure range over which this ratio is a useful pressure probe.
This technique can also be used to crudely approximate cloud pressures without absolute
flux calibration from photometry, as long as the telluric atmospheric transmission between
1.6 µm and 2.2 µm was not strongly wavelength-dependent on the night of the observations.
By evaluating Equation 2.4 at every pixel in our Keck images, we produced a rough spatial
map of the pressures of Neptune’s cloud tops on each date for which the equatorial storm
was observed with Keck. These maps are shown in Figure 2.3. The validity of this tech-
nique was confirmed by fitting models to data for the two photometrically-calibrated Keck
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Figure 2.11: Effect of varying the cloud pressure and opacity in our model on the background-
subtracted Kp/H ratio. It can be seen in the bottom row that the ratio depended strongly
on the cloud pressure but very little on the opacity. The model had microphysical properties
ϖ = 0.75, g = 0.65, hf = 0.05, and µ = 1.0.

datasets. While the overall reflectivity of the clouds changed between 26 June and 25 July,
the flux density ratio (inside the 90% contour) between filters did not change significantly—
in the equatorial storm the Kp/H ratio was 0.13 on both dates, and in the northern complex
the Kp/H ratio was 0.54 on 26 June and 0.47 on 25 July—and Equation 2.4 found cloud
pressures of 0.5 bar and ≲0.1 bar for the equatorial and northern clouds, respectively, in
agreement with our radiative transfer modeling. It should be noted that the maps in Figure
2.3 are only valid at locations where a discrete opaque cloud was detected, since they are
based on a radiative transfer model that assumes such a cloud is present. Also, some of
the clouds in the images lay at pressures less than 0.1 bar or greater than 1.0 bar; in those
cases the pressures determined by this technique should be treated as upper or lower limits,
respectively.
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2.4 Discussion

The size and brightness of the equatorial storm as well as the relatively high cadence of
our observations permitted tracking of the storm over several months. The equatorial wind
speeds of 202 m s−1 and 237 m s−1 we derived for the storm are compared to previous
determinations of the equatorial wind speed in Figure 2.12. Our wind speeds are around
a factor of two smaller than the average equatorial drift rate of ∼400 m s−1 derived from
Voyager spacecraft measurements at visible wavelengths (combination of green, orange, clear,
and methane-U filters—see Table 2.6) (Limaye et al. 1991; Sromovsky, Limaye, et al. 1993),
but closer to the average equatorial drift rate of ∼300 m s−1 derived from Keck H-band
images by Tollefson, Pater, et al. (2018). Both of these average wind speed fits were derived
from measurements with relatively high scatter, meaning that a wind speed of 202 m s−1 is
not a clear outlier in either dataset. This can be seen in the Tollefson, Pater, et al. (2018)
points in Figure 2.12, which contain measurements with small error bars ranging from 200
to 450 m s−1. Several other authors (Fitzpatrick et al. 2014; Martin et al. 2012; Sromovsky,
Fry, Dowling, et al. 2001a) have tracked equatorial features using Keck or HST observations,
and all found similarly large scatter in the equatorial wind speed, with measurements ranging
from 150 to 400 m s−1. However, it is worth noting that all of the literature measurements
were derived from continuous observations of small cloud features over many hours in a single
night, whereas the equatorial feature was tracked occasionally over many weeks. The data
are therefore sensitive to different timescales, and the average equatorial drift rate may be
the most useful point of comparison to our data. Tollefson, Pater, et al. (2018) found a
significant difference in the wind speed they derived from H and Kp band measurements at
the equator, which they attributed to vertical wind shear: Kp-bright features were higher in
the atmosphere than Kp-faint features and were moving 90 to 140 m s−1 more quickly on
average. In contrast, the drift rate of the equatorial storm was found to be the same in H
and Kp band as well as at the visible and near-IR wavelengths used by amateur observers
over several months. The deeper (≳ 0.9 bar - see Figure 2.3) secondary feature observed in
the second epoch (after 6 October) also drifted at the same rate, providing evidence that
the two features formed part of the same storm system anchored deep in the atmosphere.

Although the equatorial storm with a cloud top at 0.3-0.6 bar was always seen in associ-
ation with a northern cloud complex, the pressure of the cloud top in the northern complex
was significantly lower at ≲0.1 bar (see Figure 2.3 and Section 2.3). We take this as an upper
limit on the pressure because the Kp/H ratio varied little for clouds at even lower pressures
(see Figure 2.11). The values we derived agree well with detailed spectroscopic analyses:
Irwin, Fletcher, Tice, et al. (2016), Irwin, Lellouch, et al. (2014), and Irwin, Teanby, et al.
(2011) found cloud pressures of 0.1-0.2 bar at the northern midlatitudes and 0.3-0.4 bar for
small equatorial “intermediate-level” clouds using VLT SINFONI observations. de Pater,
Fletcher, et al. (2014) derived pressures of 0.25-0.35 bar for the two equatorial clouds in
their analysis of Keck NIRC2 data, but observed mostly stratospheric (Pm < 0.05) bar and
deep (Pm ≳ 0.5) bar clouds at the midlatitudes. Gibbard, de Pater, Roe, et al. (2003),
who observed Neptune’s clouds with the NIRC2 instrument on Keck, favored stratospheric
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Figure 2.12: Drift rate of cloud features near Neptune’s equator measured by various authors.
The Voyager profile is the symmetric fourth-order polynomial given by Sromovsky, Limaye,
et al. (1993) based on points from Limaye et al. (1991). Sr01 refers to equatorial features
tracked by Sromovsky, Fry, Dowling, et al. (2001a) in HST observations. Fi14 refers to
Fitzpatrick et al. (2014), whose wind speeds came from Keck H-band observations. To18
refers to the Keck H-band data in Tollefson, Pater, et al. (2018).

(0.02-0.06 bar) clouds at northern midlatitudes but found clouds at 0.1-0.2 bar pressures at
southern midlatitudes. Interestingly, on 6 October the fainter secondary equatorial cloud
was not detected at all in the Kp filter, pointing to a much deeper cloud pressure of ≳0.9
bar.

Dynamical Origin of the Equatorial Storm

Anticyclone Interpretation

The different drift rate of the storms we observed with respect to the Voyager winds, the
different drift rates in different epochs, and the similarity in drift rate with pressure may
indicate a deep origin of the equatorial and northern clouds; the same kind of effects have
been observed in convective storms in Jupiter (Sánchez-Lavega, Orton, et al. 2008; Sánchez-
Lavega, Rogers, et al. 2017) and Saturn (Sánchez-Lavega, del Rı́o-Gaztelurrutia, et al. 2011).
An upwelling region in an area of the planet predicted by circulation models to be down-
welling (e.g. de Pater, Fletcher, et al. 2014) may be caused by an anticyclone-like vortex,
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as for the Great Dark Spot (GDS). Infrared-bright cloud features were observed along the
southward edge of the southern GDS during the 1989 Voyager flyby (Smith, Soderblom,
Banfield, et al. 1989), interpreted as methane condensation produced by upwelling air from
the vortex. Prominent companion clouds were also observed in association with the 1994-
96 northern dark spots NGDS-15 and NGDS-32 (Hammel and Lockwood 1997; Sromovsky,
Fry, and Baines 2002). In most images these companion clouds were only observed poleward
of the dark spot; however, on 10 October 1994 a very bright, extended cloud feature was
observed to the south of NGDS-32 at latitudes <15◦N. Based on this, a companion dark
spot might be expected at latitudes ≲ 15◦N; however, neither we (Figure 2.2) nor Wong,
Tollefson, et al. (2018) observed a dark spot in the HST OPAL images taken on 6 October
2017, except at ∼45◦S. Therefore, if the clouds we observed were supported by a deep vortex,
it was either too small to be detectable by HST or was covered by the bright storm clouds
even at blue wavelengths (Hueso, de Pater, et al. 2017; Wong, Tollefson, et al. 2018). The
fact that the compact cloud remained stable in a region where the Coriolis force approaches
zero, that no dark vortex is observed in HST observations in blue wavelengths at these lat-
itudes, and that several similar clouds developed over the studied period, suggest that the
bright clouds were not caused by vortices but could have been a manifestation of convective
upwelling from different coherent systems in each of the bright equatorial clouds appearing
in different epochs.

Moist Convection Interpretation

We explore the possibility that the bright spot was produced by moist convection. In the
cloudy regions of the giant and icy planets, moist air is heavier than dry air (at the same
temperature) (Guillot 1995; Sánchez-Lavega, Pérez-Hoyos, et al. 2004) and particular con-
ditions are required to trigger moist convection so that latent heat release counteracts the
larger density of the moist condensing air. (see, e.g., Hueso and Sánchez-Lavega 2004).
Methane moist convection in the upper cloud of Neptune has been studied by Stoker and
Toon (1989). We first obtain a crude estimate of the buoyancy of ascending parcels from the
temperature difference between saturated updrafts (heated by methane condensation) and
dry downdrafts, as given by

∆T ≈ q(LCH4/CP ) (2.5)

where q is the methane mass mixing ratio, LCH4 = 553 KJ kg−1 is the latent heat of
condensation of methane, and CP = 1310 J kg−1 K−1 is the specific heat of methane at
constant pressure. For a methane volume mixing ratio fB ≈ 0.02− 0.04 and an atmospheric
molecular weight ϵ = 6.97, q = ϵfB ≈ 0.14 − 0.28 and Equation 2.5 gives ∆T ≈ 6 − 12 K.
This value can be taken as an upper limit of the temperature difference between updrafts
and the environment. The Convective Available Potential Energy (CAPE) is related to the
peak vertical velocity wmax reached by the updrafts (Sánchez-Lavega 2011):

CAPE =
w2

max

2
=

∫ zn

Zf

g
(∆T

T

)
dz ≈ g∆T

⟨T ⟩
∆z (2.6)
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where zf is the height of the free convection level, zn is the height of the equilibrium (neutral
buoyancy) level, and g = 11.1 m s−2 is the gravitational acceleration in Neptune’s tropo-
sphere. A parcel that reaches the 0.3 bar altitude level (where cloud tops are observed)
having started its motion at the 1.5 bar level within the methane cloud (∆z ≈ 35 km)
should have a maximum vertical velocity of

wmax ≈

√
2g
(∆T

⟨T ⟩
∆z

)
(2.7)

which comes out to wmax ∼ 260−370 m s−1. This crude estimation agrees with the peak value
in the vertical velocity profiles obtained from a one-dimensional model by Stoker and Toon
(1989) and indicates that moist convection, if initiated, can be very vigorous in Neptune.
This vertical velocity determination is probably an overestimate for several reasons. First,
radiative effects near the tropopause create stable conditions that would reduce CAPE, since
the temperature in the convective plume is adiabatic (Guillot 1995). Second, if convective
activity is vertically confined within a limited layer, then the amount of CH4 available for
latent heating would be less than q. The temperature difference in Equation 2.5 would
then be smaller. Third, including other effects in the updrafts, such as the entrainment
of surrounding air on the ascending parcel, turbulent dissipation, and the weight of the
condensing methane ice particles, will lower this value, limiting the altitude penetration in
the atmosphere. The presence of vertical wind shears, suspected from the low velocity of the
feature relative to the Voyager profile (see also Tollefson, Pater, et al. 2018), will also put
serious constraints on the vertical propagation of the parcels (Hueso and Sánchez-Lavega
2004). If the bright equatorial spot was convective in origin, it should have been formed
by cumulus clusters with a horizontal size similar to ∆z, which is ∼35 km. The vigorous
ascent of the large number of cumulus clusters necessary to cover the whole storm area, when
interacting with the sheared zonal flow, would produce the growth of a zonal disturbance,
as observed in Jupiter and Saturn and whose propagation could reach the planetary scale
(Sánchez-Lavega, del Ŕıo-Gaztelurrutia, et al. 2011; Sánchez-Lavega, Rogers, et al. 2017).
However, the images of the equatorial storm and surrounding areas did not show the presence
of such a disturbance. It is possible that the disturbance occurred at a deeper cloud level
than that of the top of the convective clouds, and perhaps with a lower contrast so as to be
hidden at the observed wavelengths.

The energy for moist convection may also be produced by condensation of a water cloud,
analogous to observed convective upwelling events in Jupiter and Saturn (Gierasch et al. 2000;
Hueso and Sánchez-Lavega 2001, 2004; Hueso, Sánchez-Lavega, and Guillot 2002; Sanchez-
Lavega et al. 1987; Stoker 1986). However, this scenario is both unlikely and difficult to model
accurately for the following three reasons. First, the deep oxygen and water abundances, as
well as the vertical temperature profiles obtained from dry and wet adiabatic extrapolations
to the depth of water condensation, are highly uncertain (Luszcz-Cook and de Pater 2013;
Mousis et al. 2018; Owen et al. 2006; Wong, Lunine, et al. 2008). Thermochemical models
(Atreya and Wong 2005; de Pater, Romani, et al. 1991) predict the formation of water clouds
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at pressure levels P ≈ 100 − 500 bar (depending on the deep abundance of water); that is,
about 300-400 km below the observable level of 0.5-1 bar. These uncertainties mean that a
simple calculation of the CAPE (Equations 2.5-2.7) at the deep water clouds with updrafts
reaching the 0.5 bar level results in uncertain and unrealistically large vertical velocities.
Second, other cloud layers, such as NH4SH, H2S, and/or NH3 condensates, are predicted to
form in between the upper methane cloud at 0.5-1 bar and the water clouds at 100-500 bar.
Updrafts that start at the water clouds and propagate across large vertical distances would
interact with these cloud layers in a complicated way. Full 3-D moist convection models
that include microphysics and the presence of the stacked layers of different cloud types are
necessary to explore this situation, but to our knowledge these models have not yet been
developed for Neptune. Third, Cavalié, Venot, Selsis, et al. (2017) have shown based on
mixing length theory that H2O condensation in Neptune would stabilize the atmosphere
against convective motions, producing vertical gradients in water molecular weight. This is
particularly important in the case of high oxygen (and therefore water) abundance, as some
models predict, leading to significant temperature jumps at the water condensation layer.

Wave Interpretation

Another possible interpretation for the nature of this feature is that it formed part of an
equatorial wave system. The compactness and brightness of the cloud could be related to
the confinement of the moist air mass in a region showing a perturbation in the temperature,
geopotential and local wind field caused by the wave. The slow motion of the feature relative
to the Voyager profile could represent the zonal phase speed cx of the wave. Adopting cx ≈
-202 or -237 m s−1 and taking from Voyager profile u ≈ −400 m s−1 we get cx − u ≈
167 or 200 m s−1, i.e. the spot moved eastward relative to the mean flow. A variety
of eastward and westward waves have been observed and described at the equator of the
atmospheres of Venus, Earth, Mars, Jupiter and Saturn (Allison 1990; Sánchez-Lavega 2011;
Simon, Li, et al. 2015). The simplest description of equatorial waves is in the context
of the shallow-water model with linearized equations, on an equatorial β-plane for a fluid
with a mean depth h (Andrews et al. 1987; Matsuno 1966; Sánchez-Lavega 2011). Three
modes of eastward propagating waves result from this analysis: Rossby-gravity or Yanai
(RG), inertia-gravity (IG) and Kelvin (K) modes. IG modes have been proposed to explain
the temperature oscillations observed at pressures <1 bar during the ingress and egress at
mid and high latitudes from Voyager 2 radio-occultation experiment (Hinson et al. 1993).
The horizontal (latitude-longitude) velocity structure and vertical (pressure) perturbation
patterns for eastward-propagating RG and IG waves shows that they occur at both sides of
the Equator with symmetric and antisymmetric patterns, whereas for the Kelvin mode the
wave perturbation patterns are centered at the equator and zonally aligned (Matsuno 1966;
Wheeler et al. 2000). Identification of the convergence and divergence patterns (Wheeler
et al. 2000) with cloud formation suggests that the observed bright Neptune spot would
correspond to a Kelvin mode pattern. Due to the lack of data we cannot disregard the
possibility that the feature is an RG or IG eastward mode, but here we show that these
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data are compatible with a Kelvin mode. Numerical simulations using the shallow water
model have shown that Kelvin waves form in Jupiter’s equatorial jet (Legarreta et al. 2016).
Therefore, we explore the Kelvin wave as responsible for the Neptune spot. The eastward
phase speed for the Kelvin wave is given by

cK =
√

gh (2.8)

and using cK = 167 or 200 m s−1 we get h = 2.5 − 3.6 km or about H/6, where H ∼ 18
km is Neptune’s atmospheric scale-height. This Kelvin wave should be confined to a narrow
atmospheric layer. In addition, the velocity and geopotential perturbation in the Kelvin
wave vary with latitude as a Gaussian function centered at the equator. The e-folding decay
width is given by

yK =
∣∣∣2ck
β

∣∣∣1/2 (2.9)

and for β = 2Ω/RN = 8.72 × 10−12 m−1 s−1 (Ω = 1.8 × 10−4 s−1; RN = 24764 km) we get
yK ∼ 6500 km which is consistent with the measured size of the bright spot. The fact that
two spots were seen in some cases (see Figure 2.1) with a longitudinal separation between
them about the size of the spots themselves also agrees with the horizontal structure derived
for a Kelvin wave from such a model (Matsuno 1966).

2.5 Summary

We have discovered a large, long-lived storm at Neptune’s equator. Using near-infrared
adaptive optics snapshot imaging from Keck and Lick Observatories, optical imaging from
HST as part of the OPAL program, and near-infrared imaging from amateur astronomers,
we tracked the evolution of the storm from June 2017 to January 2018. Our findings can be
summarized as follows:

• This was the first cloud feature of its size and brightness to be observed at low latitudes
on Neptune, with an H-band-derived diameter of ∼8500 km in the zonal direction and
∼7000 km in the meridional direction. Its mean latitude remained near 2◦N over the
course of the observations. Storm activity at the equator persisted at least from 10
June to 31 December 2017 (≳7 months); a discrete feature was observed from 26 June
to 25 July but had broken up into a trail of small clouds by 04 September. On 4
October a new storm had appeared, and another breakup into small cloud features
was observed on 29 November.

• Feature tracking found best-fit drift rates of 201.7 ± 2.2 m s−1 between 7 and 14 July
and 237.4 ± 0.10 m s−1 between 28 September and 4 November for the storm feature.
The feature was found to vary in speed from 10 June to 25 July. The same wind speed
was measured at different wavelengths, pointing to a coherent storm system anchored
at ≳1 bar pressure.
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• Radiative transfer modeling suggested a cloud top pressure of 0.3-0.6 bar for the equa-
torial storm and ≲0.1 bar for the northern cloud complex for all four Keck observations
in which the storm was observed. A decrease in reflectivity of both the northern and
equatorial clouds between 26 June and 25 July was interpreted as a decrease in opacity
of the clouds between the two dates.

• A secondary equatorial storm feature was observed ∼50◦ longitude away from the main
storm and maintained the same drift rate as the main storm from 6 October to at least
4 November. However, the secondary feature was undetected in the Kp filter, meaning
its cloud top was at > 0.9 bar pressure, much deeper than the main storm.

• No “dark-spot” vortex was observed near the equator in Hubble images. The upwelling
that presumably underlay the storm may therefore have been driven by a Kelvin wave
or by moist convection. However, the dynamics of this rare event have yet to be studied
in detail.

2.6 Appendix: Proteus Albedo Determination

We determined the total flux of Proteus using a flux bootstrapping method similar to Gib-
bard, de Pater, and Hammel (2005). Since Proteus was at relatively low signal-to-noise in
a background containing considerable scattered light from Neptune, only the flux from the
inner core of its point spread function (PSF) could be reliably measured. In order to ac-
count for the missing flux in the PSF sidelobes, we measured the flux F0.2 from a 0.2′′ radius
aperture around the standard star, and compared that with the flux from a large aperture
containing all the flux Ftot from the star. On 25 July a 1.0′′ radius aperture was used to
compute Ftot, and a 0.5′′ aperture was used on 26 June. This difference was due to the better
atmospheric seeing on 26 June: the bright core of the PSF from HD1160 forced the use of
the 128 pixel subarray to avoid saturating the NIRC2 detector, making the field of view too
small to use a 1.0′′ radius aperture. However, since the PSF was very sharp on 26 June, a
0.5′′ radius aperture was sufficient to capture all of the flux. The ratio F0.2/Ftot is given in
Table 2.2 for each date and band. This correction was then applied to the measured flux
from Proteus. The total flux from the moon was also divided by the moon’s projected surface
area to retrieve an I/F value. We assumed Proteus had a spherical shape with a 210±7 km
radius (Karkoschka 2003), which corresponded to ≈0.01′′ at our pixel scales of 213 km px−1

on 26 June and 210 km px−1 on 25 July; this was smaller than Keck’s diffraction limit of
≈0.04′′ at 1.6 µm, so the moon was unresolved. The final I/F value was simply the geometric
albedo and is given in Table 2.2, ignoring phase angle effects. The phase angle was 1.8◦ on
26 June and 1.2◦ on 25 July, small enough that Proteus’s surface was in near full sun but
large enough that coherent backscattering was not yet important (Karkoschka 2001a). The
additional error introduced by our flux bootstrapping technique was estimated by varying
the inner aperture size from 0.15′′ to 0.3′′ and recalculating the final I/F value for each; the
error was found to be 5-10% except in the Kp filter on 25 July, for which the error was 26%
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due to variable atmospheric seeing. The bootstrapping error was added in quadrature to our
20% standard star photometric error, and the total is shown in Table 2.2.

2.7 Appendix: Supplementary Data

Table 2.5 contains information about the amateur and PlanetCam observations used in this
paper, and Figure 2.13 shows sample thumbnail images from these observations. Table 2.6
shows central wavelengths and full bandpass widths for all filters referenced in this paper.

2.8 Appendix: Wind Speed Retrievals

The longitude tracking data were fit to a linear wind speed via Markov Chain Monte-Carlo
(MCMC) maximum likelihood estimation, implemented by the emcee package in Python

(Foreman-Mackey et al. 2013)13. Our application of this technique is explained briefly here.
Assuming a cloud on Neptune drifts at a linear wind speed w, and given a time t0 at

which the cloud’s longitude is L0, the longitude Lm of the cloud at any other time tn is given
by

Lm(w, tn, L0, t0) = L0 + (tn − t0)w (2.10)

The likelihood function ln p is then

ln p(L|t, σ, w, f) = −1

2

∑
n

[
(Ln − Lm(w, tn, L0, t0))

2s−2
n + ln(s−2

n )
]

(2.11)

where s2n = σ2
n + f 2 is the longitude variance. Writing the variance this way allows for

the possibility that the longitude error σn (see Section 2.3 for an explanation of how this
was determined) was underestimated by some constant amount f . The MCMC algorithm
maximizes ln p: in each step of the retrieval, the algorithm chooses values of w and f , uses
w to predict longitudes Lm at each time tn according to Equation 2.10, evaluates how well
the longitude data are fit by that model using Equation 2.11, and then chooses a new w and
f pair based on the goodness of fit.

Retrievals were carried out separately for the two epochs of observation. Corner plots for
both retrievals are shown in Figure 2.14. The retrieval favored nearly Gaussian errors on the
wind speed in both epochs, with best-fit values of 201.7±2.2 and 237.4±0.2, respectively. An
additional longitude error of∼11◦ was favored by the retrieval in the first epoch (which should
be added in quadrature with the original errors), but no additional error term was prescribed
in the second epoch. This difference has two possible explanations. First, since half of the
measurements in the first epoch were from Lick data whereas most of the measurements in
the second epoch were from small telescopes, it is possible that the errors on the Lick data
were underestimated while the small telescope errors were correct. The longitude errors from

13http://dfm.io/emcee/current/
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Figure 2.13: Selection of Neptune observations with small telescopes by different observers.
Each panel covers a field of view of 29 × 32 arcsec; the orientation is sky North up and
sky East to the left in all images. The sequence shows the initial equatorial feature (upper
row) since its first observation (upper left panel), and the multiple features observed over
November 2017 (middle and bottom rows). All of the images had Triton visible in their
original field of view, and the top center panel is offset so that Triton can be seen. Individual
observers and filters are identified in each panel.
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Figure 2.14: “Corner plots” showing the one- and two-dimensional projections of the poste-
rior probability distributions of the MCMC-retrieved parameters for the wind speed retrievals
on Left: the first epoch of observations, using only the data from 2 to 14 July (where the
observations are sampled most densely) and Right: the second epoch of observations from
30 September to 26 October.

Lick could be underestimated due to morphological changes in the storm cloud: since Lick
resolved the large cloud, the technique used to obtain the storm location actually measured
the location of the brightest region of the cloud, which may have changed relative to the
rest of the storm over time. The second explanation is simply that a linear wind speed fit
did not adequately describe the data over the first epoch; that is, the storm’s drift rate was
changing over timescales of a few days from 2 to 14 July. This is reasonable because the
drift rate certainly changed from 26 June to 25 July, as can be seen by the large residuals in
the wind speed fit shown in the first panel of Figure 2.6.
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UT Date & Start Time Observer Filters
2017-06-10 19:45 Darryl Milika & Pat Nicholas IR610
2017-07-11 01:53 PlanetCam: Hueso, Ordonez RG1000
2017-07-11 04:03 PlanetCam: Hueso, Ordonez M2
2017-07-14 19:22 Darryl Milika & Pat Nicholas IR610
2017-09-30 13:03 Darryl Milika & Pat Nicholas IR610
2017-10-04 03:38 Steve Fugardi IR610
2017-10-09 09:51 Phil Miles IR610
2017-10-09 10:23 Phil Miles IR610
2017-10-09 11:13 Phil Miles IR610
2017-10-10 21:23 Marc Delcroix IR685
2017-10-11 11:03 Phil Miles IR610
2017-10-11 11:24 Phil Miles IR610
2017-10-12 22:40 Martin Lewis IR610
2017-10-13 02:49 Steve Fugardi IR610
2017-10-13 20:30 Lucien Polongini IR610
2017-10-14 12:24 Darryl Milika & Pat Nicholas IR610
2017-10-15 21:30 Martin Lewis IR610
2017-10-17 11:07 Darryl Milika & Pat Nicholas IR610
2017-10-18 21:33 Emmanuel Kardasis IR610
2017-10-19 17:53 Dimitris Kolovos IR610
2017-10-20 11:10 Phil Miles IR610
2017-10-20 11:45 Darryl Milika & Pat Nicholas IR610
2017-10-21 00:59 Antonio Checco IR610
2017-10-21 03:13 Steve Fugardi IR610
2017-10-21 20:30 Dimitri Kolovos IR610
2017-10-21 20:19 Emmanuel Kardasis IR610
2017-10-25 13:04 Phil Miles IR610
2017-10-26 04:36 Blake Estes IR685
2017-10-26 05:37 Randy Christensen IR610
2017-10-30 17:14 Clyde Foster IR610
2017-10-30 17:48 Clyde Foster IR610
2017-10-31 09:35 Phil Miles IR610
2017-10-31 11:29 Darryl Milika & Pat Nicholas IR610
2017-10-31 11:59 Darryl Milika & Pat Nicholas IR610
2017-10-31 12:23 Darryl Milika & Pat Nicholas IR610
2017-11-01 21:19 Martin Lewis IR610
2017-11-02 18:54 Nick Haigh IR
2017-11-03 09:23 Phil Miles IR610
2017-11-03 10:26 Phil Miles IR610
2017-11-04 19:57 Clyde Foster IR610
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2017-11-04 20:10 Clyde Foster IR610
2017-11-04 20:58 Clyde Foster IR610
2017-11-06 09:08 Phil Miles IR610
2017-11-06 10:11 Phil Miles IR610
2017-11-07 18:36 John Sussenbach IR685
2017-11-07 18:44 John Sussenbach IR685
2017-11-07 19:20 Manos Kardasis IR610
2017-11-07 20:00 Michel Miniou IR
2017-11-07 20:48 Marc Delcroix IR610
2017-11-08 11:07 Phil Miles IR610
2017-11-08 11:36 Darryl Milika & Pat Nicholas IR610
2017-11-08 11:42 Phil Miles IR610
2017-11-08 12:25 Phil Miles IR610
2017-11-10 18:51 Clyde Foster IR685
2017-11-11 09:48 Phil Miles IR610
2017-11-11 11:14 Phil Miles IR610
2017-11-11 12:11 Phil Miles IR610
2017-11-13 18:04 John Sussenbach IR685
2017-11-14 09:55 Anthony Wesley IR610
2017-11-14 09:56 Phil Miles IR610
2017-11-14 10:08 Phil Miles IR610
2017-11-14 10:27 Phil Miles IR610
2017-11-14 10:54 Phil Miles IR610
2017-11-15 23:30 Almir Germano IR610
Table 2.5: Description of amateur observations. Filter
wavelengths are given in Table 2.6.
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Instrument Filter λc (µm) ∆λ (µm)
Keck NIRC2 H 1.63 0.30
Keck NIRC2 Kp 2.20 0.35
Keck NIRC2 CH4S 1.59 0.13
Keck NIRC2 PaBeta 1.290 0.019
Lick ShARCS H 1.66 0.30
Lick ShARCS Ks 2.15 0.32
HST WFC3 F467M 0.4675 0.0230
HST WFC3 F547M 0.5475 0.0710
HST WFC3 FQ619N 0.6194 0.0062
HST WFC3 F657N 0.6573 0.0094
HST WFC3 F763M 0.7630 0.0780
HST WFC3 F845M 0.8454 0.0870

Calar Alto PlanetCam RG1000 1.0 0.6
Calar Alto PlanetCam M2 0.727 0.005

Amateur IR610 0.610 LP
Amateur IR685 0.685 LP

Voyager ISS Clear 0.460 0.360
Voyager ISS Green 0.585 0.110
Voyager ISS Orange 0.615 0.050
Voyager ISS Methane-U 0.540 0.012

Table 2.6: Central wavelengths and full bandpass widths for Keck, Lick, HST, PlanetCam,
amateur, and Voyager filters referenced in this paper. “LP” denotes a long-pass filter.
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Chapter 3

Thermal Emission from the Uranian
Ring System

The published version of this chapter was coauthored by the following individuals, and is included in this

thesis with their express permission: Imke de Pater, Michael T. Roman, Leigh N. Fletcher.

The narrow main rings of Uranus are composed of almost exclusively centimeter- to
meter-sized particles, with a very small or nonexistent dust component; however, the filling
factor, composition, thickness, mass, and detailed particle size distribution of these rings
remain poorly constrained. Using millimeter (1.3 - 3.1 mm) imaging from the Atacama Large
(sub-)Millimeter Array and mid-infrared (18.7 µm) imaging from the Very Large Telescope
VISIR instrument, we observed the thermal component of the Uranian ring system for the
first time. The ϵ ring is detected strongly and can be seen by eye in the images; the other
main rings are visible in a radial (azimuthally-averaged) profile at millimeter wavelengths. A
simple thermal model similar to the NEATM model of near-Earth asteroids is applied to the
ϵ ring to determine a ring particle temperature of 77.3 ± 1.8 K. The observed temperature
is higher than expected for fast-rotating ring particles viewed at our observing geometry,
meaning that the data favor a model in which the thermal inertia of the ring particles is low
and/or their rotation rate is slow. The ϵ ring displays a factor of 2-3 brightness difference
between periapsis and apoapsis, with 49.1 ± 2.2% of sightlines through the ring striking
a particle. These observations are consistent with optical and near-infrared reflected light
observations, confirming the hypothesis that micron-sized dust is not present in the ring
system.

3.1 Introduction

To date, observational data for the Uranian ring system were obtained from a combination of
Earth-based stellar occultation measurements (French, Nicholson, et al. 1991, and references
within), visible-light and radio occultation data from Voyager 2 (e.g., Gresh et al. 1989;
Smith, Soderblom, Beebe, et al. 1986; Tyler, Sweetnam, Anderson, Campbell, et al. 1986),
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visible-light HST (e.g., Karkoschka 2001b), and ground-based near-IR observations with
adaptive optics (e.g., de Kleer, de Pater, et al. 2013; de Pater, Dunn, et al. 2013; de Pater,
Gibbard, and Hammel 2006; de Pater, Hammel, et al. 2007). Together, these observations
revealed a complex system of ten narrow rings, three broad dusty rings, and at least thirteen
associated small satellites (Karkoschka 2001d; Showalter et al. 2006; Smith, Soderblom,
Beebe, et al. 1986). The broad spectral coverage of these observations permitted inferences
about the particle size distribution of the rings, showing that the narrow rings (except the
λ ring) are composed primarily of centimeter- to meter-sized particles, with a very small or
nonexistent dust component (Gresh et al. 1989; Karkoschka 2001c). The ϵ ring, the brightest
and most massive of the narrow rings, was shown to maintain an appreciable eccentricity
(e = 0.00794) and an azimuthally-varying width; the ring is five times wider and ∼2.5 times
brighter in reflected sunlight at apoapsis than at periapsis (French, Elliot, French, et al. 1988;
Karkoschka 2001b). However, many fundamental parameters about the ring system remain
unknown, including the filling factor, composition, thickness, mass, and detailed particle size
distribution of each ring (see review in Nicholson et al. 2018).

In this chapter, we present the first millimeter and mid-infrared observations of the
Uranian ring system, obtained in 2017 and 2018 with ALMA at three wavelengths (Band
3; 3.1 mm, Band 4: 2.1 mm, Band 6: 1.3 mm) and the VISIR instrument (Lagage et
al. 2004) Q2 filter (18.72 µm) on the Very Large Telescope (VLT). In contrast to images at
visible/near-infrared wavelengths, which show the rings in reflected sunlight, our ALMA and
VISIR images detect thermal emission from the rings, a component that has never before
been imaged. Any contribution from scattered light from Uranus or the Sun is <0.01% (see
Appendix 3.7). Our observations and data reduction procedures are presented in Section
3.2. We describe how total flux measurements were derived from radial profiles of the rings
in Section 3.3, and then compare these total flux measurements to a thermal model of the
ϵ ring in Section 3.4. Finally, we present the measured azimuthal structure of the ϵ ring’s
thermal component in 3.5 before summarizing our results in Section 3.6.

3.2 Observations and Data Reduction

We observed the Uranian ring system at millimeter wavelengths with the Atacama Large
(sub-)Millimeter Array (ALMA) and at mid-infrared wavelengths with the VISIR instrument
on the VLT between December 2017 and September 2018. An observing log is shown in Table
3.1, and descriptions of our data processing procedures are given in Sections 3.2 and 3.2 for
the ALMA and VLT data, respectively. Images of the ring system at all four observed
wavelengths are shown in Figure 3.1; each clearly detects the massive ϵ ring.

ALMA Data

The data in each of the three bands were flagged and calibrated by the North Ameri-
can ALMA Science Center using the standard data reduction procedures contained in the
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Figure 3.1: Images of the Uranian ring system at 3.1 mm (ALMA Band 3; 97.5 GHz), 2.1
mm (ALMA Band 4; 144 GHz), 1.3 mm (ALMA Band 6; 233 GHz), and 18.7 µm (VLT
VISIR; 100 THz). The synthesized beams of the ALMA images are shown as gray ellipses in
the bottom left corner of each image, and an image of a point source is shown in the bottom
left corner of the VLT 18.7 µm image. The planet itself is masked since it is very bright
compared to the rings.

UT Date & On-Source Minimum Maximum Flux & Gain Phase
Wavelength Start Time Time (min) Baseline (m) Baseline (m) Calibrator Calibrator
3.1 mm 2017-12-03 23:52 42 41.4 5200 J0238+1636 J0121+1149
3.1 mm 2017-12-06 23:42 42 41.4 3600 J0238+1636 J0121+1149
2.1 mm 2017-12-27 22:56 22 15.1 2500 J0238+1636 J0121+1149
1.3 mm 2018-09-13 07:02 24 15.1 1200 J0237+2848 J0211+1051
18.72 µm 2018-09-04 08:14 42.3 — — HD009692 & HD013596 —
18.72 µm 2018-10-03 05:18 42.3 — — HD008498 & HD010380 —
18.72 µm 2018-10-13 05:28 42.3 — — HD011353 & HD040808 —

Table 3.1: Table of observations.

NRAO’s CASA software version 5.1.1. Standard flux and phase calibration procedures were
carried out by applying the pipeline using the quasars listed in Table 3.1 as calibrator sources.
The CASA pipeline retrieved flux calibration errors of 5.0%, 5.4%, and 5.3% at 3.1 mm, 2.1
mm, and 1.3 mm, respectively. The flux calibration was sanity-checked by comparing the
measured total flux of Uranus to previous millimeter-wavelength observations; the result of
this exercise is shown in Figure 3.2. To improve the quality of the map, iterative phase-
only self-calibration was performed using a procedure similar to that outlined in Brogan
et al. (2018) using solution intervals of 20, 10, 5, and 1 minutes in that order. To reduce
ringing in the image plane from the presence of a bright planet with sharp edges, a uni-
form limb-darkened disk model of Uranus was subtracted from the data in the u-v plane,
as done in e.g. de Pater, Fletcher, et al. (2014) and de Pater, Sault, Butler, et al. (2016).
The disk-subtracted data were inverted into the image plane and deconvolved using CASA’s
tclean function. The ring geometry at the time of observation in each band, taken from
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Figure 3.2: ALMA-derived (red; this paper) and literature (black; de Pater and Gulkis 1988;
Gulkis and de Pater 1984) measurements of the average millimeter- and radio-wavelength
brightness temperature of Uranus’s disk.

Wavelength d (AU) Bobs (degrees) Ω (degrees) w (degrees)
3.1 mm 19.2 36.8 192 337 - 341
2.1 mm 19.6 36.4 192 10
1.3 mm 19.1 43.7 190 3
18.72 µm 18.9-19.2 42.7 - 43.9 190 351 - 44

Table 3.2: Observing geometry of the Uranian ring system at the time of our observations.
Ω denotes the longitude of the ring plane ascending node, and w denotes the argument of
periapsis of the ϵ ring. Ranges of values are shown for the 3.1 mm and 18.7 µm observations
because they were taken over the course of several nights.

JPL Horizons1 and the Planetary Ring Node,2 are given in Table 3.2.

VLT Data

The 18.72 µm (Q2 filter) VISIR image combined observations from three nights in September
and October 2018; details of these observations are listed in Table 3.1. Data from each night
were reduced with standard infrared chopping and nodding techniques using the European
Southern Observatory VISIR pipeline, and resulting images were flux calibrated via com-

1https://ssd.jpl.nasa.gov/horizons.cgi
2https://pds-rings.seti.org/
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parison to observed standard stars using custom-written IDL routines. The three calibrated
images were then combined and weighted by the inverse of their errors squared to yield the
final, absolutely calibrated mean image. Random errors were estimated from the standard
deviation of the background sky, and we estimate a 20% systematic error in radiance due to
the uncertainty in the stellar flux and sky subtraction (Dobrzycka et al. 2008).

3.3 Radial Profiles and Total Flux Measurements

We measured the radial profile of the rings in each ALMA image by integrating the rings in
azimuth as follows. First, the images were divided into elliptical annuli using the astropy-
affiliated photutils Python package (Bradley et al. 2019). Each annulus was centered at
the center of Uranus and given an eccentricity and angle of rotation such that it mimicked
a circular annulus projected into Uranus’s ring plane. Each annulus was given a ring-plane
width of 500 km, and the ring-plane radius of the annulus inner edge was varied in steps
of 500 km from 35000 km to 64500 km. The planet Uranus was masked out to a distance
equal to its mean radius plus three times the ALMA full beam width at half power in each
observing band. The photutils package was used to compute the geometric fraction of
each pixel contained within a given annulus, weight the flux within that pixel according
to that fraction, then sum up the weighted flux of all unmasked pixels. This provided a
total flux measurement within the exact elliptical region specified by each annulus (ignoring
any masked pixels). The result was a radial flux profile of the ring system in which each
unmasked pixel was counted exactly once total, splitting its flux between two annuli if it fell
on an annulus edge. The error σn on each flux measurement was taken to be the RMS noise
in the image (computed far from the planet and rings) times the area of the annulus (not
including any masked pixels) in units of the synthesized beam area. The observed profile is
shown in Figure 3.3.

The radial flux profile was modeled as the sum of flux contributions from the 6/5/4,
α/β, η/γ/δ, and ϵ ring groups. Each of the narrow main rings (6, 5, 4, α, β, η, γ, δ, ϵ) was
projected separately (i.e. one 2-D model per ring, ignoring all other rings) onto a very high
resolution (0.01′′/pixel) 2-D grid with proper semimajor axis, eccentricity, inclination, and
observing geometry3 using the PyAstronomy package in Python4. These super-resolution
model rings were convolved with the Gaussian synthesized beam of ALMA, then summed
into a radial profile in the same way as the data (see previous paragraph). The result of this
exercise was a 1-D pseudo-Gaussian profile of each ring on each observing date that accounted
for its eccentricity. These ring profiles were weighted according to their equivalent widths
at visible wavelengths as measured by stellar occultations (French, Elliot, and Levine 1986),
added together, and then scaled by eye to match the data to produce an a-priori model
radial profile of the ring system. A suite of models was then produced in a Markov Chain

3Ephemeris data were taken from JPL Horizons and the Planetary Ring Node.
4https://github.com/sczesla/PyAstronomy
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Figure 3.3: Radial flux profiles of the Uranian ring system at 3.1 mm, 2.1 mm, and 1.3 mm.
The data, binned into 500 km intervals, are shown as blue dots. The best-fitting model is
shown as an orange line, and draws from the distribution of allowed models are shown as
thin gray lines. Locations of the main rings are labeled.
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Wavelength Bobs Total Flux, Fν (mJy)
(mm) UT Date (degrees) 6/5/4 α/β η/γ/δ ϵ
3.1 2017-12-03 36.8 1.29± 0.15 1.91± 0.19 2.77± 0.22 13.73± 0.73
2.1 2017-12-27 36.4 5.19± 0.67 6.49± 0.80 8.15± 0.89 36.0± 2.2
1.3 2018-09-13 43.7 35.5± 2.4 15.5± 2.2 44.4± 3.2 112.2± 6.3

Table 3.3: Total millimeter flux measurements of each ring group. Bobs denotes ring opening
angle with respect to the observer. Note that two observations were taken at 3.1 mm, on
2017-12-03 and 2017-12-06, and co-added.

Monte Carlo (MCMC) framework implemented using the Python emcee package5 (Foreman-
Mackey et al. 2013), wherein the fluxes F654, Fαβ, Fηγδ, and Fϵ of the four ring groups were
allowed to vary freely while the relative contribution from each ring within a group was set
according to its visible-wavelength equivalent width (French, Elliot, and Levine 1986). The
flux of the 1-D model profile Fm at all radii r was thus fully specified by the fluxes of the
four ring groups. Letting θ = [F654, Fαβ, Fηγδ, Fϵ], the likelihood function ln p was given by

ln p(F |r, σ, θ) = −1

2
Σn

[
(Fn − Fm(θ))

2σ−2
n + ln(σ−2

n )
]

(3.1)

where σ2
n was the variance of the measured fluxes at each radius Fn. The MCMC simulation

produced posterior probability distributions of F654, Fαβ, Fηγδ, and Fϵ, which are given
in Appendix 3.8 Figures 3.7, 3.8, and 3.9 for images at 3.1 mm, 2.1 mm, and 1.3 mm
wavelengths, respectively. The probability distributions show that mild degeneracy between
the fluxes of the ring groups is present, and was most apparent at 1.3 mm, where the spatial
resolution was poorest. The mean flux values of each group are given in Table 3.3. The
uncertainties given in that table are a quadrature sum of the standard deviation of the
MCMC-derived probability distribution and the flux calibration error (Section 3.2). Those
mean values were used to generate the best-fitting radial profiles shown in orange in Figure
3.3, and random sets of θ values drawn from the MCMC samples were used to produce the
light gray model profiles shown in the same figure.

The lower resolution and SNR of the VLT Q2 image precluded retrieval of the ϵ ring
flux from a radial profile. We instead measured the total flux within an elliptical annulus
of 3 beam-widths thickness (∼33 pixels) centered on the ϵ ring. To minimize contamination
from the bright planet, we masked the planet such that the pixels within two beam widths of
the planet’s outer edge were omitted from the calculated ring flux. The choice of the mask
size was informed by line scans through the images along the ansae, where the contributions
from the rings and planet were most cleanly separated. Due to the viewing geometry, the
PSFs from the ring system and the planet partly overlapped away from the ansae; the mask-
ing consequently removed more pixels from these portions of the contributing ellipse and
potentially underestimated the flux of the rings. To evaluate the accuracy of our approach,

5http://dfm.io/emcee/current/
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we applied the same method to synthetic images with azimuthally-uniform rings of known
brightness, blurred by the observed PSF of our images and corrupted by different manifes-
tations of synthetic noise. These tests showed that neglecting any attempt at correcting
for the planetary contribution overestimated the ring flux by nearly 20%, while the simple
mask tended to underestimate the ring flux by less than 10%. We therefore conservatively
estimate our measured ring system total flux is accurate to within 20%. Finally, we assumed
the contribution of the ϵ ring to the total flux of the ring system was the same at 18.7 µm
as at 3 mm to get an approximate ϵ ring flux.

We find the best fit to the 3.1 mm radial profile with total fluxes relative to the ϵ ring of
9.4±1.4%, 13.9±1.4%, and 20.2±1.6% for the 6/5/4, α/β, and η/γ/δ groups. These values
are close to the relative equivalent widths at visible wavelengths, which French, Elliot, and
Levine (1986) give as 7%, 16%, and 15%, respectively. However, at shorter wavelengths we
find the 6/5/4 and η/γ/δ groups to be much brighter than expected based on the equivalent
width measurements, by factors of 2.1 and 1.5 at 2.1 mm and 4.4 and 2.7 at 1.3 mm.
This discrepancy may be due to unmodeled contributions from diffuse millimeter-sized dust
between the inner rings, a larger fraction of millimeter-sized grains in those ring groups
than in the ϵ ring, or systematic errors due to imperfect subtraction of the PSF around the
bright planet. The latter effect may be especially consequential at 1.3 mm due to the poorer
resolution of our data at that frequency.

The ring is bathed by the cosmic microwave background (CMB) from every angle, except
from the angles where it is blocked by Uranus. The final reported brightness temperature of
Uranus was corrected to account for the blocked CMB photons according to the prescription
in de Pater, Fletcher, et al. (2014), which gives correction factors of 1.02 K, 0.59 K, and 0.12
K at 3.1 mm, 2.1 mm, and 1.3 mm, respectively. If that CMB correction is undone (that
is, Uranus is assumed to be fainter than it really is), then the CMB appears to reach the
rings fully isotropically and thus be scattered isotropically. The interferometer is insensitive
to scattered CMB photons from the rings since it, too, is bathed isotropically by the CMB;
thus, the measured flux from the rings does not need to be corrected for the CMB (Dunn
et al. 2005; Zhang et al. 2019).

3.4 Thermal Modeling of the ϵ Ring

We converted the ϵ ring total flux measurements derived in Section 3.3 into spectral radiance
(hereafter, “brightness”) units to produce a coarse spectrum of the ring. To do so, we simply
divided the total flux measurements by the projected geometric area of the ϵ ring, which
was computed as follows. Let the measured width of the ring at periapsis and apoapsis
be denoted wp and wa (19.7 km and 96.4 km for the ϵ ring Karkoschka 2001c). The inner
and outer edge of the ring are defined by two ellipses sharing one focus (the center of mass
of Uranus) but with semimajor axes a and eccentricities e such that wp and wa take their
measured values. The inner ellipse has ainner = a − (wp + wa)/4 and the outer ellipse has
aouter = a + (wp + wa)/4. To keep the focus at the same location requires the equation
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aouter − couter = ainner − cinner + wp to be satisfied, where c = ae is the focal distance of the
ellipse. The equation is satisfied when couter − cinner = (wa − wp)/2. Thus the area is given
by

Ar = πa2outer
√
1− e2outer − πa2inner

√
1− e2inner (3.2)

Projecting into the observing geometry and scaling to the observer-Uranus distance yields
an angular area of Ωr,obs = Ar sinB/d2 = 1.57× 10−12 steradians.

We compare these four brightness measurements to a simple thermal model modified
from the NEATM model for near-earth asteroids (Harris 1998) to constrain the properties
of the ϵ ring. The model gives the measured temperature T of a ring particle as

T 4 =
L⊙(1− AB)

4πη̄σϵd2
(3.3)

where L⊙ is the solar luminosity, d is the heliocentric distance to the asteroid, ϵ is the
bolometric emissivity of the asteroid, AB is the Bond albedo, σ is the Boltzmann constant,
and η̄ is the “beaming factor”, a catch-all correction factor for low-phase-angle beaming,
rotation, thermal inertia, and geometry (see Section 3.4 for a discussion of how η̄ differs
from the standard NEATM model’s η). To translate this temperature into a brightness Sν

we use the equation
Sν = f(B)B(ν, T ) (3.4)

where B(ν, T ) is the Planck function at frequency ν and temperature T , and f(B) is the
ring’s “fractional visible area”, the fraction of paths from the observer through the projected
geometric ring area that strike a ring particle (as opposed to passing through to background
space).

We performed a Markov Chain Monte Carlo (MCMC) sampling of our model’s parameter
space using the emcee Python package (Foreman-Mackey et al. 2013) to explore the proba-
bility distributions of the free parameters in the thermal model. We allowed four parameters
to vary: η, ϵ, and AB in Equation 3.3, and f(B) in Equation 3.4. We treated η, ϵ, and f(B)
as completely unknown, but provided a Gaussian prior on AB with mean value 0.061 and
standard deviation 0.006 (Karkoschka 1997). In each MCMC iteration, a set of these param-
eters was drawn and plugged into the NEATM model, yielding a Planck function. The value
of that Planck function at the ALMA- and VLT-observed frequencies was compared with
the measured ring group brightness using a likelihood function similar in form to Equation
3.1. The simulation constrains the fractional visible area to f(B) = 0.491 ± 0.022 and the
particle temperature to T = 77.3 ± 1.8 K; the best-fit model, as well as a suite of random
model draws from the posterior distribution, are plotted against the observed ϵ ring total
flux in Figure 3.4. That figure also shows posterior probability distributions for f(B) and T ,
and a full “corner plot” displaying the one- and two-dimensional projections of the posterior
probability distribution is shown in Appendix Figure 3.10. The two figures show that η̄ and
the emissivity are completely degenerate with one another, and the retrieved albedo values
are constrained only by the Karkoschka (1997) prior; however, the fractional visible area
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Figure 3.4: (a) Brightness and (b) brightness temperature comparison between retrieved
NEATM model (red line: maximum-likelihood model, translucent black lines: random draws
from probability distribution) and ϵ ring brightness measurements (blue points). c) Prob-
ability distribution function of ϵ ring temperature. (d) Probability distribution function of
fractional visible area of ϵ ring. The mean value and quartiles are shown as dashed and
dotted black lines, respectively.

f(B) and temperature T (derived by combining η̄, ϵ, and AB) are strongly constrained and
minimally degenerate with one another.

Our derived fractional visible area is consistent with the Karkoschka (2001c) model,
which gives f(B) ≈ 0.5 at zero phase angle for a ring opening angle B = 40◦ (B ranges
from 37◦ to 44◦ for our observations). The emissivity of the ring cannot be constrained since
it is degenerate with η̄ and both are unknown a-priori. However, the product of the two
quantities is determined to be η̄ϵ = 1.62 ± 0.17. If we assume the ring particles are perfect
graybody emitters such that ϵ = 1− AB, then η̄ takes a best-fit value of 1.72. This η̄ value
is larger, and the observed temperature is lower, than expected from the Standard Thermal
Model for near-Earth asteroids (STM; Lebofsky, Sykes, et al. 1986), which assumes very low
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thermal inertia and/or slow rotation such that all flux is emitted on the sun-facing side of
the particle, leading to a predicted temperature TSTM = 79.5 K. However, η̄ is smaller and
T higher than expected for a particle with thermal timescales long enough and rotation fast
enough that the particle’s temperature is independent of longitude as in the Fast-Rotating
Model (FRM) (Lebofsky and Spencer 1989), which yields TFRM = 71.5 K (sub-solar latitude
≈40◦; see Section 3.4 for a description of our ring particle thermal model). This finding may
indicate that the ring particles are closer to STM-like than FRM-like; that is, their thermal
inertia is low enough, and their rotation rate is slow enough, that their dayside and nightside
temperatures are different at a given latitude. However, beaming due to surface roughness
tends to increase the amount of flux an observer sees, leading to lower η̄ values and higher
observed temperatures (Lagerros 1998; Spencer et al. 1989, and references within). Surface
roughness is not included in our model, so we cannot disentangle the effects of beaming from
the effects of thermal inertia.

Ring Particle Model

The NEATM-like model we employ defines η̄ as a property of the ring particles as a whole
according to Equation 3.3. This differs slightly from the original NEATM model (Harris
1998), which defines η as a function of the temperature at the sub-solar point T0 such that
T 4
0 ∝ η and T (µ) = T0µ

1/4, where µ is the cosine of the emission angle. That is, η̄ represents
a geometric average while η does not. To determine the physical meaning of our observed
value of η̄ for the ϵ ring, we produced a toy model of a ring particle. The model assumes
a spherical particle with no surface roughness and no lateral heat conduction within the
particle. The mean diurnal insolation Q̄ for such a particle is given by

Q̄ =
L⊙

4πd2
1

π

(
h0 sinϕ sin δ + cosϕ cos δ sinh0

)
(3.5)

(Pierrehumbert 2010), where δ is the sub-solar latitude of the particle, ϕ is the latitude at a
given location on the particle, and h0 is the hour angle at sunrise and sunset in radians at
a given location (cosh0 = − tanϕ tan δ), which is equal to π times the fraction of the day
that location spends in sunlight (note that h0 is set to π at the summer pole and zero at
the winter pole). The temperature at each point is given by T (ϕ) = Q̄1/4, and the total flux
from the particle at the observed frequencies is found by applying a Planck function at each
point on the model particle, then taking the mean. We retrieve a blackbody temperature
T of the particle as a whole by fitting a single Planck function to these model flux values.
Finally, η̄ is found by comparing T to the subsolar temperature of the STM at the same
distance: 1/η̄ = (T/T0,STM)4. Taking T0,STM = 88.3 K as appropriate at Uranus’s distance,
this procedure yields T = 79.5 and η̄ = 1.5 for the STM as well as T = 64.1 and η̄ = 3.6 for
the FRM. The FRM-derived temperature depends on the orientation of a particle’s rotation
axis with respect to the Sun, and the dense packing of the ϵ ring means its particles are
likely to undergo frequent collisions that lead to a large spread in rotation axis orientations.
However, the total angular momentum of the ring system should dictate that the average
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Figure 3.5: Left: Fraction h0/π of one rotation period that a model ring particle spends
in sunlight. Right: Diurnal mean insolation Q̄ of a model ring particle, normalized to the
insolation received by a non-rotating (STM-like) model particle at the sub-solar point.

rotation axis is aligned with that of Uranus, so we assume this average rotation axis (sub-
solar latitude ≈40◦) for all ring particles. Spatial variations in h0/π and Q̄ are mapped in
Figure 3.5 for this geometry. In this case, our model yields T = 71.5 and η̄ = 2.3. This
temperature is lower, and η̄ is higher, than retrieved from the data.

3.5 Azimuthal Structure

We searched for azimuthal structure in the ϵ ring by breaking the ring into 30 bins, each
subtending 12◦ of azimuth and having a width equal to two times the FWHM of the ALMA
point-spread function. The measured brightness in these bins as a function of angle from pe-
riapsis is shown in Extended Data Figure 3.6. We find the ϵ ring to be a factor of 2-3 brighter
at apoapsis than at periapsis at 3.1 and 2.1 mm, in good agreement with stellar occultation
measurements (French, Elliot, and Levine 1986), visible/infrared reflected light observations
(de Pater, Dunn, et al. 2013; de Pater, Gibbard, Macintosh, et al. 2002; Karkoschka 1997)
and radio occultation measurements (Gresh et al. 1989). No clear periapsis-apoapsis asym-
metry is seen at 1.3 mm or 18.7 µm; however, the signal-to-noise ratio is lower in those data,
and due to the poorer resolution of those data the measurements are contaminated by the
presence of the inner rings to a greater extent. Note that we exclude the portions of the ring
nearest (in projection) to Uranus due to contamination by imaging artifacts arising from the
very millimeter-bright planet.
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Figure 3.6: ϵ ring brightness as a function of azimuth. The grayed-out regions are contam-
inated by artifacts from the bright planet. A clear periapsis-apoapsis asymmetry is present
at 3.1 mm and 2.1 mm wavelengths.

3.6 Summary

Using ALMA and the VLT VISIR instrument, we have observed the thermal emission com-
ponent of the Uranian ring system for the first time. Our observations of the ϵ ring agree
very well with the Karkoschka (2001c) model, supporting its derivation of the fractional vis-
ible area as a function of ring opening angle, and the 3.1 mm brightnesses of the inner main
ring groups take the same ratio as observed at visible wavelengths. The consensus between
our millimeter and mid-infrared observations and literature visible-wavelength observations
shows that the properties of the main rings remain the same at any observed wavelength
despite the fact that our observations are not sensitive to micron-sized dust. This finding
confirms the hypothesis, proposed based on radio occultation results (Gresh et al. 1989),
that the main rings are composed of centimeter-sized or larger particles. A simple thermal
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model similar to the NEATM model for asteroids was applied to determine that the ϵ ring
particles display roughly black-body behavior at millimeter/mid-infrared wavelengths at a
temperature of 77± 2 K, suggesting the particles’ thermal inertia may be small enough and
rotation rate slow enough, to induce longitudinal temperature differences between their day-
side and nightside. Observations at higher spatial resolution, achievable using ALMA, would
resolve the inner main rings separately and quantify the millimeter-sized dust component if
present.

3.7 Appendix: Scattered Light Contribution

We adopt a simple analytical radiative transfer calculation (after Chandrasekhar 1960) to
determine the contribution of scattered millimeter-wavelength light from Uranus to the mil-
limeter brightness of the ϵ ring. The radiative transfer equation reads:

dIν
dτν

= Sν − Iν (3.6)

where Sν = jν/αν is the source function. For scattered light from direction (θ′, ϕ′) into
direction (θ, ϕ), the source function is given by

Sν(θ, ϕ) = ϖν

∫
4π

p(Θ)

4π
Iν(θ

′, ϕ′)dΩ′ (3.7)

where p(Θ) is the scattering phase function, Θ is the scattering angle, ϖν is the single-
scattering albedo, and

∫
4π
Iν(θ

′, ϕ′)dΩ′ is the flux density incident on the rings from the
entire 4π steradian sky. Since light from Uranus is the only contributor to the incident
radiation at the ϵ ring, ∫

4π

Iν(θ
′, ϕ′)dΩ′ = Iν,uΩu,r (3.8)

where Iν,u is the specific intensity of Uranus at the observed frequency and Ωu,r is the solid
angle of Uranus as seen from the ring. Then the source function of the rings reads

Sν = ϖν
p(Θ)

4π
Iν,uΩu,r (3.9)

To convert this into a flux density as seen from ALMA, we must multiply by the solid angle
of the rings with respect to the observer Ωr,obs:

Fν,r,obs = ϖν
p(Θ)

4π
Iν,uΩu,rΩr,obs (3.10)

The specific intensity is the same for any observer, so the same Iν,u measured by ALMA
would be measured by an observer at the ϵ ring, and thus

Iν,u =
Fν,u,r

Ωu,r

=
Fν,u,obs

Ωu,obs

(3.11)
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where Fν,u,r and Fν,u,obs denote the spectral flux density of Uranus as seen from the rings
and from Earth, respectively. Substituting Equation 3.11 into Equation 3.10, we have

Fν,r,obs = ϖν
p(Θ)

4π

Ωu,rΩr,obs

Ωu,obs

Fν,u,obs (3.12)

The solid angle is defined as Ω = A/d2, where A is the projected area of an object and d is
the distance from that object to the observer, so

Ωu,r

Ωu,obs

=
Aud

2
obs

Aur2r
=

d2obs
r2r

(3.13)

where Au is the cross-sectional area of Uranus and rr is the distance from Uranus to the ϵ
ring. Combining this with the fact that Ωr,obs = Ar,obs/d

2
obs, where Ar,obs is the cross-sectional

area of the ϵ ring with respect to the observer, we end up with

Fν,r,obs = ϖν
p(Θ)

4π

Ar,obs

r2r
Fν,u,obs (3.14)

This derivation assumed that the entire area of the ring is illuminated by light from
Uranus as seen by the observer. However, due to shadowing and gaps in the ring, only a
fraction of the ring f(Bu, B) is illuminated, where Bu denotes the ring opening angle for
an observer on Uranus and B denotes the ring opening angle for an observer on Earth. In
reality, the flux comes from a distribution of angles: the diameter of Uranus is roughly 52.6◦

at the distance to the ϵ ring, giving ring opening angles between −26.3◦ and 26.3◦. To
evaluate f(Bu, B) precisely is a difficult task, since one must integrate over many Uranus-
ring-observer angles. To simplify the problem, we shall make two assumptions. First, we
assume Bu is well represented by the geometric average opening angle Bu = 18.4◦ (the orbital
inclination of the ring with respect to Uranus is i = 0.001◦, which is negligible). Second,
we assume that half of the ring area illuminated by light from Uranus can be seen from
Earth, to account for surfaces that point away from the observer. Under these assumptions,
f(Bu, B) = f(Bu)/2, and we can again use the Karkoschka (2001c) prescription to calculate
f(Bu). Since the photons originate from Uranus itself, the phase angle is 0◦ and the model
gives us f(Bu, B) = f(18.4)/2 = 0.18. The physical interpretation of such a low value is
that at small incident angles particles cast long shadows on each other, blocking much of the
flux. Applying this correction to Equation 3.14 gives us

Fν,r,obs = f(Bu, B)ϖ
p(Θ)

4π

Ar,obs

r2r
Fν,u,obs (3.15)

Since the particles in the ϵ ring are assumed to be ≳10 cm in diameter (Gresh et al. 1989;
Karkoschka 2001c), we assume a phase function p(Θ) = 1 appropriate for geometric scatter-
ing.

Our ALMA observations give the total 3 mm flux density of Uranus to be Fν,u,obs = 8.80
Jy. We assume the ring particles have albedo ϖ3mm = 1 − ϵ3mm = 0.05. For simplicity,
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we take rr = 51148 km, the average of the ϵ ring semimajor and semiminor axes. At ring
opening angle Bobs = 36.77◦, the projected ring area is A sinBobs = 1.11×107 km2. Plugging
these numbers into Equation 3.15 yields F3mm,r,obs = 28 µJy. This value is a factor of ∼500
smaller than the measured ring flux at 3.1 mm. Since both the planet and rings are at least
relatively near the same temperature, the ratio between the reflected thermal emission from
the planet and the direct thermal emission from the rings is nearly wavelength-independent,
and similarly small values are found in the mid-infrared. While many simplifying assumptions
were made in this derivation, such a small scattered light contribution means that scattered
light from Uranus can be ignored.

Equation 3.15 can be applied to quantify the contribution of scattered radio flux from the
Sun with the following modifications. The fraction f(B⊙, B) can once again be taken from
the Karkoschka (2001c) model, where B⊙ is the ring opening angle as viewed from the Sun
(in fact, this geometry is the scenario for which the model was developed). Instead of the
Uranus-ring distance rr, the distance from the Sun to the ring d⊙,r should be used. Finally,
the Sun’s radio flux at Earth Fν,⊙,obs replaces Fν,u,obs. Thus we have

Fν,r,obs = f(B⊙, B)ϖ
p(Θ)

4π

Ar,obs

d2⊙,r

Fν,⊙,obs (3.16)

At the time of our 3.1 mm observations, the phase angle was very nearly 2◦, so the Karkoschka
(2001c) model gives f(B⊙, B) = 0.5. Alissandrakis et al. (2017) used ALMA observations to
find a solar brightness temperature of 7250± 170 K at 100 GHz, as well as a solar radius of
964.1± 4.5′′ at 1 AU at 100 GHz. Assuming the same temperature and radius at 97.5 GHz
(3.1 mm), we get Fν,⊙,obs = 1.45 × 108 Jy. Finally, taking d⊙,r at the time of observation
from JPL Horizons, we find Fν,r,obs = 0.38 µJy, which is ∼0.002% of the measured flux. At
18 µm wavelengths, we find Fν,r,obs = 7.8 mJy, or ∼2% of the measured flux; this is much
smaller than the 20% VLT flux calibration error and so is ignored.



CHAPTER 3. THERMAL EMISSION FROM THE URANIAN RING SYSTEM 71

3.8 Appendix: Extended Data

Figures 3.7, 3.8, and 3.9 display “corner plots” for the MCMC-derived total flux measure-
ments discussed in Section 3.3. Figure 3.10 displays a corner plot for the thermal model
discussed in Section 3.4.
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Figure 3.7: “Corner plot” showing the one- and two-dimensional projections of the posterior
probability distributions of the MCMC-retrieved total fluxes of each ring group in Band 3
(3.1 mm), derived from comparing our model to the observed the radial profile.
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Figure 3.8: “Corner plot” showing the one- and two-dimensional projections of the posterior
probability distributions of the MCMC-retrieved total fluxes of each ring group in Band 4
(2.1 mm), derived from comparing our model to the observed the radial profile.
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Figure 3.9: “Corner plot” showing the one- and two-dimensional projections of the posterior
probability distributions of the MCMC-retrieved total fluxes of each ring group in Band 6
(1.3 mm), derived from comparing our model to the observed the radial profile.
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Figure 3.10: “Corner plot” showing the one- and two-dimensional projections of the posterior
probability distributions of the MCMC-retrieved thermal model parameters.
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Chapter 4

Tropospheric Composition and
Circulation of Uranus with ALMA
and the VLA

The published version of this chapter was coauthored by the following individuals, and is included in this

thesis with their express permission: Imke de Pater, Statia Luszcz-Cook, Joshua Tollefson, Robert J. Sault,

Bryan Butler, David de Boer.

We present ALMA and VLA spatial maps of the Uranian atmosphere taken between 2015
and 2018 at wavelengths from 1.3 mm to 10 cm, probing pressures from ∼1 to ∼50 bar at
spatial resolutions from 0.1” to 0.8”. Radiative transfer modeling was performed to determine
the physical origin of the brightness variations across Uranus’s disk. The radio-dark equator
and midlatitudes of the planet (south of ∼50◦ N) are well fit by a deep H2S mixing ratio
of 8.7+3.1

−1.5 × 10−4 (37+13
−6 × Solar) and a deep NH3 mixing ratio of 1.7+0.7

−0.4 × 10−4 (1.4+0.5
−0.3×

Solar), in good agreement with literature models of Uranus’s disk-averaged spectrum. The
north polar region is very bright at all frequencies northward of ∼50◦N, which we attribute
to strong depletions extending down to the NH4SH layer in both NH3 and H2S relative to the
equatorial region; the model is consistent with an NH3 abundance of 4.7

+2.1
−1.8×10−7 and an H2S

abundance of < 1.9×10−7 between ∼20 and ∼50 bar. Combining this observed depletion in
condensible molecules with methane-sensitive near-infrared observations from the literature
suggests large-scale downwelling in the north polar vortex region from ∼0.1 to ∼50 bar.
The highest-resolution maps reveal zonal radio-dark and radio-bright bands at 20◦S, 0◦, and
20◦N, as well as zonal banding within the north polar region. The difference in brightness
is a factor of ∼10 less pronounced in these bands than the difference between the north
pole and equator, and additional observations are required to determine the temperature,
composition and vertical extent of these features.
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4.1 Introduction

Uranus’s 82◦ obliquity leads to drastic seasonal variations in insolation, with both poles
receiving more annual sunlight than the equator. In addition, Uranus is the only giant
planet that lacks an apparent internal heat source (Pearl et al. 1990). The unusual pattern
of heat flux into the Uranian troposphere resulting from these two characteristics provides an
extreme test of our understanding of atmospheric circulation (for recent reviews see Fletcher,
de Pater, et al. 2020; Hueso and Sánchez-Lavega 2019). The strong seasonal forcing also plays
a role in altering Uranus’s atmospheric composition; for example, Uranus’s insolation pattern
has been invoked to explain the disequilibrium in the H2 ortho-para fraction in the upper
troposphere as well as the seasonal variation in haze properties and/or methane abundance
in the stratosphere (Hueso and Sánchez-Lavega 2019). Radio observations provide a unique
tool for probing the atmosphere of Uranus beneath its tropospheric cloud layers, permitting
inferences about its tropospheric properties (de Pater and Gulkis 1988; de Pater, Romani,
et al. 1991; Hofstadter 1992; Hofstadter, Berge, et al. 1990; Hofstadter and Butler 2003;
Hofstadter and Muhleman 1989; Jaffe et al. 1984; Klein et al. 2006).

Central to these questions is Uranus’s global circulation pattern. Remote-sensing obser-
vations probe atmospheric vertical motions indirectly by determining the zonal-mean distri-
bution of condensible gases and clouds. Regions of large-scale upwelling are cloudy and rich
in condensible gases up to the condensation pressure of that gas, while downwelling regions
are drier and less cloudy. This point can be understood by analogy to the Hadley cell on
Earth (see, e.g., Marshall et al. 1989). Water vapor evaporated from the deep reservoir (the
ocean) moves equatorward into the Intertropical Convergence Zone (ITCZ), where it rises,
condenses as the tropospheric temperature decreases with altitude, and then rains back into
the deep reservoir. The air leaving the top of the ITCZ has thus been robbed of its water
vapor by the tropopause cold trap, so the divergent upper branch and subsiding subtropical
branch of the circulation cell are much drier than the ITCZ both in terms of relative humidity
and column-integrated water vapor. The atmospheres of the giant planets organize into a se-
ries of alternating thermally direct and thermally indirect circulation cells similar to Earth’s
Hadley and Ferrel cells, giving rise to the spectacular jets of Jupiter and Saturn. Global
circulation models (GCMs) of Jupiter show that the zonal-mean column-integrated abun-
dances of both ammonia and water are indeed higher in the upwelling branches and lower
in the downwelling branches (Young, Read, et al. 2019a,b), in agreement with ground-based
(e.g., de Pater, Sault, Butler, et al. 2016; de Pater, Sault, Wong, et al. 2019) and spacecraft
(Li, Ingersoll, et al. 2017) data. Based on Voyager thermal-infrared measurements, Flasar
et al. (1987) suggested a circulation model for Uranus with gas rising at latitudes near 30◦

and subsiding at the equator and poles. Observations with the Very Large Array (VLA)
revealed a bright south pole on Uranus, interpreted as a relative lack of microwave opacity
in the deep troposphere down to ∼50 bar, which pointed to large-scale subsidence of dry air
(de Pater and Gulkis 1988; de Pater, Romani, et al. 1991; de Pater, Romani, et al. 1989;
Hofstadter 1992; Hofstadter, Berge, et al. 1990; Hofstadter and Butler 2003; Jaffe et al. 1984;
Klein et al. 2006). A polar depletion in both methane and hydrogen sulfide (H2S) at higher
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altitudes observed at visible and near-infrared wavelengths corroborated this interpretation
(Irwin, Toledo, et al. 2018; Karkoschka and Tomasko 2009; Sromovsky, Karkoschka, Fry,
de Pater, et al. 2019; Sromovsky, Karkoschka, Fry, Hammel, et al. 2014). Together, these
multi-wavelength observations lent further support to the Flasar et al. (1987) non-seasonal
equator-to-pole single-cell meridional circulation pattern (de Pater, Romani, et al. 1991; Hof-
stadter 1992; Sromovsky, Karkoschka, Fry, Hammel, et al. 2014). However, a single-celled
model has difficulty explaining the observed bands of clouds at 38◦ and 58◦ in both hemi-
spheres. An alternative model prescribing circulation in three vertically stacked layers was
proposed by Sromovsky, Karkoschka, Fry, Hammel, et al. (2014), although those authors
make clear that the three-layer model has shortcomings of its own. It also remains unclear
how the bright storm systems observed occasionally at near-infrared wavelengths, which ap-
pear to migrate in latitude (de Pater, Sromovsky, Hammel, et al. 2011; de Pater, Sromovsky,
Fry, et al. 2015; Sromovsky, Fry, Hammel, de Pater, Rages, and Showalter 2007), fit into
either model.

Previously published radio and millimeter observations of Uranus (e.g. de Pater and
Gulkis 1988; Jaffe et al. 1984), mostly taken prior to 1990, have mostly considered the disk-
integrated planet and primarily imaged Uranus’s southern hemisphere. More recent spatially
resolved observations using the VLA have been presented at conferences (e.g., Hofstadter,
Orton, et al. 2009) and featured in a recent white paper (de Pater, Butler, et al. 2018). Both
the Hofstadter, Orton, et al. (2009) image from 2005 and the de Pater, Butler, et al. (2018)
image from 2015, which is analyzed in detail in this paper, show alternating bright and dark
zonal bands in the midlatitudes, indicating a more complex circulation pattern than current
models. The bright polar regions display similar brightness temperatures and zonal extents
in the 2005 image, in which both poles are visible, and in the 2015 image zonal banding is
visible within the bright polar region.

Inferences about the vertical cloud structure of giant planets are made by comparing
radiative transfer and chemical modeling to observational data across the electromagnetic
spectrum. Visible and near-infrared spectroscopy (e.g., de Kleer, Luszcz-Cook, et al. 2015b;
Karkoschka and Tomasko 2009; Sromovsky, Karkoschka, Fry, de Pater, et al. 2019; Sro-
movsky, Karkoschka, Fry, Hammel, et al. 2014; Tice et al. 2013) have identified methane
as the major condensible species in the upper troposphere, producing bright clouds and
weather readily observed in visible/IR imaging (e.g., de Pater, Sromovsky, Hammel, et al.
2011; de Pater, Sromovsky, Fry, et al. 2015; Sromovsky, de Pater, et al. 2015). At ∼35 bar,
gaseous NH3 and H2S are expected to precipitate into a cloud of solid NH4SH, effectively
removing either all nitrogen or all sulfur from the upper atmosphere. Gulkis, Janssen, et al.
(1978) showed that Uranus must be ammonia-poor above the NH4SH layer in order to fit the
planet’s disk-integrated radio spectrum. This finding suggested, contrary to solar composi-
tion models, that more H2S than NH3 was present in Uranus’s deep atmosphere. Further
work indicated that H2S itself was also a major absorber, and new models, still with more
sulfur than nitrogen, were developed that improved the fit to the observed spectra (de Pater,
Romani, et al. 1991; de Pater 2018). Based on these studies, the uniform cloud layer at ∼3
bar, evident in IR spectroscopy, was long assumed to be composed of H2S ice particles; this
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hypothesis was confirmed recently by the direct detection of H2S spectral lines above the
cloud (Irwin, Toledo, et al. 2018). The chemistry becomes more speculative at pressures
deeper than ∼50 bars, as those depths have not been accessed observationally. Models sug-
gest Uranus’s oxygen is locked in a water-ice cloud at ∼270 K (∼50 bar), and beneath this,
an aqueous nitrogen-, sulfur-, and oxygen-bearing solution is expected to form (Atreya and
Romani 1985; Weidenschilling et al. 1973). The effects of phosphine (PH3) have also been
considered in the ice giants. Its condensation pressure is near 80 K (∼1 bar on Uranus), and
modeling shows that its absorption at deeper layers may be important to Uranus’s infrared
and millimeter spectrum (e.g., Fegley et al. 1986; Hoffman et al. 2001), especially near its
J = 1 → 0 rotational transition at 1.123 mm (266.9 GHz). However, its presence has never
been confirmed observationally (Moreno et al. 2009; Orton and Kaminski 1989).

In this paper, we present new VLA and ALMA observations of Uranus’s atmosphere from
2015 to 2018, representing the highest sensitivity and spatial resolution measurements of the
planet at wavelengths from 1.3 mm to 10 cm. In Section 4.2 we outline the observational
techniques and data processing procedures used to produce science images of Uranus. We
present our results in Section 4.3, including seasonal brightness trends, spatial variations in
brightness temperature, and inferred properties of Uranus’s troposphere as determined from
radiative transfer modeling. Finally, we put our results in a broader context and provide
concluding remarks in Section 4.4.

4.2 Observations and Data Reduction

We obtained observations of Uranus with the Karl G. Jansky Very Large Array (VLA) from
0.9-10 cm (3.0-33 GHz) in August 2015 and the Atacama Large (sub-)Millimeter Array
(ALMA) from 1.3-3.1 mm (98-233 GHz) between December 2017 and September 2018. A
table of observations is provided in Table 4.1. The data-reduction procedures are outlined
in the following two subsections.

ALMA Data

The data in each of the three ALMA bands were flagged and calibrated by the North Amer-
ican ALMA Science Center using the standard data-reduction procedures contained in the
National Radio Astronomy Observatory (NRAO) Common Astronomy Software Applica-
tions (CASA) software version 5.1.1. Standard flux- and phase-calibration procedures were
carried out by applying the pipeline using the quasars listed in Table 4.1 as calibrator sources.
The CASA pipeline retrieved flux calibration errors of ∼5% in all three bands. Iterative
phase-only self-calibration, which is routinely applied to radio observations of bright planets
(e.g., Butler et al. 2001; de Pater, Fletcher, et al. 2014; de Pater, Sault, Wong, et al. 2019),
was performed using a procedure similar to that outlined in Brogan et al. (2018) using solu-
tion intervals of 20, 10, 5, and 1 minutes in that order. To reduce ringing in the image plane
from the presence of the bright planet, a uniform limb-darkened disk model of Uranus was
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Figure 4.1: Disk-subtracted images of Uranus from ALMA (top) at 3.1 mm (Band 3), 2.1
mm (Band 4), and 1.3 mm (Band 6), and the VLA (bottom) from 0.9-20 cm. The color bars
below each image indicate the brightness temperature residuals in Kelvin. The synthesized
beam is shown as a white ellipse in the bottom left corner of each image. The ring of light
and dark one-beam-size spots around the planet are artefacts produced by applying a Fourier
transform to the UV-plane data near the sharp edges of the bright planet.

subtracted from the data in the UV plane in each band, as done in, e.g., de Pater, Fletcher,
et al. (2014) and de Pater, Sault, Butler, et al. (2016). The disk-subtracted data were in-
verted into the image plane and deconvolved using CASA’s tclean function. The resulting
disk-subtracted images are shown in Figure 4.1. These images are also shown cylindrically
projected onto a latitude-longitude grid in Figure 4.2. It should be noted that the planet’s
rotation smears out features in longitude: the ∼20 minute observations at 2.1 mm and 1.3
mm are smeared by ∼8◦, and the 3.1 mm image is a sum of two ∼40 minute observations
taken at different sub-observer longitudes.

Images were also produced from the calibrated but non-disk-subtracted data; these im-
ages were used to measure absolute fluxes across the disk for radiative transfer modeling.
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Figure 4.2: Left: Reprojected ALMA maps of Uranus. The ∼20-minute observations at
2.1 mm and 1.3 mm are smeared by ∼8◦, and the 3.1 mm image is a sum of two ∼40
minute observations taken at different sub-observer longitudes. The alternating bright and
dark spots near the planet’s limb are due to CLEAN artefacts, induced by attempting to
Fourier transform a sharp-edged planet and made larger in apparent size by projection effects.
Right: Longitude-resolved VLA maps of Uranus, produced using the faceting technique
(Sault, Engel, et al. 2004). The distortions near 300◦W are due to poor zonal coverage at
those longitudes in the observations. The spatial resolution of the 5 cm and 10 cm data is
not sufficient to produce reliable longitude-resolved maps, so these are not shown.
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Figure 4.3: Disk-integrated brightness temperatures of Uranus from this work (red points)
compared to measurements from the literature (black points; de Pater and Gulkis 1988;
Griffin et al. 1993; Gulkis and de Pater 1984; Muhleman et al. 1991; Orton, Griffin, et al.
1986). As shown by those authors (see also Figure 4.4), the scatter in the data is primarily
due to real seasonal fluctuations in Uranus’s observed brightness temperature as the planet’s
poles move into and out of view. Our data fall at a lower brightness temperature than the
majority of the literature data because those were observed in southern summer, when the
bright south polar region made up a large fraction of Uranus’s disk. A radiative transfer
model with parameters retrieved to match our 25◦N data (Section 4.3), shown by a blue line,
matches the disk-averaged data quite well.

The ∼3.5” disk of Uranus was smaller than the maximum recoverable scale of the ALMA
array configuration in all three observing bands1; therefore we have short enough baselines
to faithfully measure Uranus’s total flux. These flux measurements were confirmed by fit-
ting the visibility data to a Bessel function; the difference between the UV-plane-derived
and image-plane-derived total flux measurements was much smaller than the flux calibra-
tion error at all wavelengths. The total flux measurements were corrected for the cosmic
microwave background (CMB) according to the prescription detailed in Appendix A of de
Pater, Fletcher, et al. (2014). Final measurements of Uranus’s disk-averaged brightness tem-
perature are plotted against measurements from the literature in Figure 4.3 and tabulated
in Table 4.2.

1See the ALMA Technical Handbook for further discussion of the maximum recoverable scale
https://almascience.nrao.edu/documents-and-tools/cycle5/alma-technical-handbook
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Wavelength Frequency Disk-averaged 25◦ N 75◦ N Flux Cal RMS per Latitude Bin
(mm) (GHz) TB (K) TB (K) TB (K) Error (K) Beam (K) Error (K)
95 3.2 251.3 261.3 293.4 7.5 2.2 3.6
51 5.8 219.3 219.2 262.0 6.6 0.8 2.6
30. 9.9 184.5 182.8 224.4 5.5 1.2 2.6
20. 15 173.9 169.4 205.0 5.2 1.3 2.6
9.1 33 152.4 157.8 180.6 10.7 3.4 2.6
3.1 98 140.7 142.6 165.1 7.0 0.3 1.1
2.1 144 122.5 126.5 139.1 6.6 0.1 0.9
1.3 233 91.1 96.0 101.8 4.8 0.1 0.5

Table 4.2: Brightness temperature measurements and errors extracted from the ALMA and
VLA maps. See Section 4.2 for discussion of the flux calibration and per-bin RMS errors,
and Section 4.3 for discussion of the latitude-bin error.

VLA Data

The data in each of the five VLA bands were flagged and calibrated using the standard data-
reduction procedures contained in the Miriad software package2 (Sault, Teuben, et al. 1995).
Standard flux- and phase-calibration procedures were carried out using the calibrator sources
listed in Table 4.1; the absolute flux calibration error was assumed to be 3% at the longest
four wavelengths and 7% at 0.9 cm (Butler et al. 2001; Perley et al. 2013, 2017). Iterative
self-calibration, disk subtraction, imaging, and deconvolution were carried out in a similar
manner to the ALMA data but using Miriad. The CMB correction was applied in the same
way as for the ALMA images. The resulting disk-subtracted images are shown in Figure 4.1.
It should be noted that the 0.9 cm images are more strongly affected by imaging artefacts
than the other bands because this wavelength sits near a telluric water absorption band,
leading to relatively poor phase stability. Longitude-resolved images, produced using the
faceting technique developed and recently used for VLA observations of Jupiter (de Pater,
Sault, Wong, et al. 2019; Sault, Engel, et al. 2004), are shown in Figure 4.2. This represents
the first attempt to resolve Uranus in longitude at these wavelengths. Limited UV-plane
coverage leads to significant artefacts in these maps, including large-scale alternating bright
and dark regions (e.g., bright at 60◦W and 200◦W in the 2 cm and 3 cm images) that cross
many latitude bands. An apparent warping near 300◦W is also present, caused by poor
zonal coverage at those longitudes. Nevertheless, if any vortex-like disturbances at the scale
of Jupiter’s Great Red Spot were present on Uranus, these maps should have detected them.
No such structures are found, so in this work we focus our analysis on the longitude-smeared
maps only.

2https://www.atnf.csiro.au/computing/software/miriad/
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4.3 Results and Discussion

Seasonal Brightness Variations

We explore long-term trends in Uranus’s radio brightness in Figure 4.4, which plots our VLA
3.0 cm data along with 3.5 cm data obtained by Klein et al. (2006) and older disk-averaged
data from various telescopes (Gulkis and de Pater 1984) as a function of sub-observer latitude.
Our data were taken with Uranus’s north pole facing the observer, whereas the Klein et al.
(2006) data were taken toward the south pole; nevertheless, Uranus’s brightness temperature
was the same within the error bars of the data at a sub-observer longitude of ∼35◦. The ∼40
K brightness difference we observe between Uranus’s northern midlatitudes and its north pole
at 2-3 cm is of the same magnitude as VLA measurements of the difference between the south
polar region and southern midlatitudes (e.g., Hofstadter, Berge, et al. 1990). Imaging at 1.3
cm taken near equinox (observers Hofstadter & Butler; de Pater, Butler, et al. 2018), which
appears to show that both poles are roughly equally bright, further supports the similarity in
brightness temperature between the north and south pole. Any trend in the 3 mm brightness
temperature (right panel of Figure 4.4) is much less clear; the error bars are large for all
observations taken near equinox, and all data taken at sub-observer latitudes larger than
40◦ have the same brightness to within the 2σ level. This is confusing given the very large
and bright north polar region we observe and the clear brightness temperature variations at
longer wavelengths. However, the flux calibration uncertainty from measurements in some
older papers (see references in Gulkis and de Pater 1984) have not been reported, and so
this result should be treated with caution.

Spatially Resolved Brightness Temperatures

The images in Figures 4.1 and 4.2 reveal complex banding structure in Uranus’s troposphere.
For better visual comparison of the zonal features in the maps at different frequencies, a ver-
tical slice of width 30◦ longitude centered on the sub-observer point was taken from the
longitude-smeared, disk-subtracted, projected maps (shown in Figure 4.2 for the ALMA
data) at each frequency, then averaged into a 1-D brightness versus latitude profile. The
resulting profiles are shown normalized relative to one another in Figure 4.5. To extract
spatially-resolved brightness temperatures for radiative transfer modeling, we simply aver-
aged non-disk-subtracted latitude profiles over ten degrees latitude; that is, the 25◦N region
represents latitudes from 20-30◦N and the 75◦N region represents latitudes from 70-80◦N.
The error in the extracted brightness temperatures was determined by making latitude pro-
files over several different 30◦ longitude ranges and computing the standard deviation in
the brightness measurements from those profiles. These “latitude-bin” errors are given in
Table 4.2. It is worth noting that they are larger than the per-beam RMS error extracted
from background regions of the radio maps (except at 0.9 cm). This is due to systematic
errors arising from inverting and CLEANing visibility data of a very bright, extended, and
sharp-edged source.
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Figure 4.4: Left: VLA 3.0 cm total flux measurement of Uranus’s disk from this work
(red) compared to 3.5 cm flux measurements made with the Goldstone station of NASA’s
Deep Space Network (DSN) at a range of sub-observer latitudes (Klein et al. 2006), as
well as 3.5 cm measurements made prior to 1984 as summarized in Gulkis and de Pater
(1984). Right: ALMA 3.1 mm total flux measurement of Uranus’s disk from this work
(red) compared to previous mm-wavelength measurements from various authors (Gulkis and
de Pater 1984; Muhleman et al. 1991; Orton, Griffin, et al. 1986). The error bars on the
literature measurements in both panels should be treated with caution, as flux calibration
errors are often not reported. For the purposes of this plot, we have added 5% flux calibration
errors to the points from the Gulkis and Muhleman papers. The x-axis in both panels shows
the absolute value of sub-observer latitude; note that all previous measurements were made
at negative sub-observer latitudes.

The north polar region is readily observed across the radio and millimeter spectrum as a
prominent brightening northward of ∼50◦N. At 3.1 mm wavelength, this brightening reaches
>25 K, nearly ten times the magnitude of any other brightness variations observed across
Uranus’s disk. The edge of this brightening appears sharply defined: the transition from
the darker midlatitudes to the bright poles occurs over less than a single resolution element
in all the observing bands. The magnitude of the polar brightening is much too large to
be explained by variations in kinetic temperature (see Appendix 4.5), so we attribute it to
downwelling air dry in absorbing species such as NH3 and H2S. Keck observations in the
methane-sensitive PaBeta and H2-sensitive He1A filters in 2015 (Sromovsky, Karkoschka,
Fry, de Pater, et al. 2019, simultaneous with our VLA observations) revealed a strong polar
methane depletion that is spatially correlated with the bright polar region observed in the
millimeter and radio data (see Figure 4.5). This implies continuously downwelling dry air
over a wide range of pressures from 0.1 to at least 20 bar (see Section 4.3) at latitudes
northward of 50◦N. However, localized regions of upwelling (i.e. convection) or a temporally
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Figure 4.5: Meridional brightness profiles of the zonally-averaged radio/millimeter maps.
Left: The 3.1 mm ALMA and 2.0 cm VLA data are plotted separately because they provide
the best combination of high signal-to-noise ratio and resolution. These are compared to
the brightness ratio between the Keck PaBeta (1.29 µm) and He1A (1.08 µm) filters, which
is a tracer of the upper tropospheric methane abundance, as derived from 2015 imaging
(Sromovsky, Karkoschka, Fry, de Pater, et al. 2019, black dashed line). The PaBeta/He1A
ratio curve and VLA 2 cm curve have been convolved with a 1-D Gaussian beam at the
ALMA 3.1 mm resolution (0.19 arcsec); the ∼6◦ FWHM of the beam at the sub-observer
point is shown in the bottom right corner. Right: Latitudinal brightness profiles at all
the observed wavelengths are plotted against one another. The FWHM of the beam at the
sub-observer point is shown for representative frequencies in the same color as the data for
that frequency. To facilitate visual comparison, the brightness temperature units in both
panels are normalized so that each band has maximum one.
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variable circulation pattern at the north pole cannot be ruled out. At 0.9 cm and 2 cm
wavelengths, the highest-resolution VLA bands, a polar collar is observed at ∼60◦N, just
north of the 45◦ polar collar seen at near-infrared wavelengths (see also Figure 4.5) but at
the same latitude as the transition to solid-body rotation in Uranus’s zonal wind profile
(Sromovsky, Fry, Hammel, de Pater, and Rages 2012). The polar collar is bounded by a
somewhat fainter band at ∼75◦N, then another brightening right at the north pole. However,
this banding is not observed in the ALMA data despite similar spatial resolutions in the 3
mm and 2 cm data.

Alternating bright and dark bands are observed near Uranus’s equator in some of our
images, with brighter latitudes at ∼20◦S, ∼0◦, and ∼20◦N. At 3.1 mm, these bands are ∼1
K, ∼4 K, and ∼1 K brighter, respectively, than their surroundings. The banding is visible
in all the ALMA data (3.1 mm, 2.1 mm, and 1.3 mm). It is also observed faintly in the
2 cm and 0.9 cm VLA bands, but not at longer wavelengths. Using our radiative transfer
model (see Section 4.3), we find that variations in the CH4 abundance, the PH3 abundance,
the relative humidity of H2S, or the ortho-para fraction can all produce stronger absorption
from 1 to 3 mm than at wavelengths longer than 2 cm. Changes in the kinetic tempera-
ture may also be responsible for all or part of the brightness temperature banding; however,
this would require unusual atmospheric temperature profiles to fit our radio-millimeter spec-
trum (see Appendix 4.5 for a discussion of the kinetic temperature as it relates to the polar
region). These putative abundance variations suggest downwelling and depletion in con-
densing species extending at least from ∼1 to 5 bar at the brighter latitudes. The lack of
strong banding at longer wavelengths means that either the depletions do not extend deeper
than 5-10 bar, the depletions are caused by a species that absorbs more strongly at shorter
wavelengths, or the longer-wavelength VLA observations lack the sensitivity and spatial res-
olution to detect these faint equatorial bands. These observations point to a more complex
circulation pattern than predicted by models (Allison et al. 1991; Flasar et al. 1987; Sro-
movsky, Karkoschka, Fry, Hammel, et al. 2014), which suggested upwelling near 30◦N and
30◦S and subsidence at the equator and poles. A recent review paper (Fletcher, de Pater,
et al. 2020) considered a more complex model that prescribes tropospheric upwelling at the
equator and just equatorward of the polar region (∼40◦N), and downwelling between these.
This model captures the large region of subsidence that we require at the poles. However,
the alternating bright and dark bands we see, if indeed tied to upwelling and downwelling,
do not match very well the locations prescribed in their model.

Radiative Transfer Modeling

The combined ALMA and VLA datasets comprise a spectrum of Uranus. Here, we use
radiative transfer models to fit this spectrum and infer the vertical distribution of condensible
species in Uranus’s atmosphere. Radiative transfer modeling was carried out using the
radio-BEAR (radio-BErkeley Atmospheric Radiative transfer) code3. The cloud model and

3https://github.com/david-deboer/radiobear
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Figure 4.6: Vertical abundance profiles for trace gases in our radiative transfer model. Deep
atmospheric abundances are set to 35× Solar except for NH3, which has an abundance of 1×
Solar. The dashed black line plots the assumed temperature-pressure profile, which follows
a moist adiabat.

radiative transfer scheme are described in detail in de Pater, Fletcher, et al. (2014), de Pater,
DeBoer, et al. (2005), and de Pater, Sault, Wong, et al. (2019). Radio-BEAR assumes that
the atmosphere is in local thermodynamic equilibrium; its temperature follows an adiabat
with a temperature of 76.4 K at 1 bar as determined by radio-occultation experiments with
Voyager 2 (Lindal et al. 1987). At higher altitudes, where radiative effects become important,
we used the temperature-pressure profile derived from Voyager/IRIS observations by Orton,
Fletcher, et al. (2015). The temperature-pressure profile is shown in Figure 4.6. Cloud
densities may affect the millimeter and/or radio spectrum via absorption and scattering;
however, too little is known about the cloud properties on Uranus to make an accurate cloud
density model and clouds have been shown not to significantly affect the opacity at these
wavelengths on Jupiter (de Pater, Sault, Wong, et al. 2019). RadioBEAR therefore ignores
cloud opacity and considers only gas absorption.

We started with a nominal disk-averaged model that assumed deep H2S, H2O, and CH4

abundances of 30× Solar and a deep NH3 abundance of 1× Solar (de Pater, Romani, et al.
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1991; de Pater, Butler, et al. 2018).4 The vertical profiles of these gases were determined
using a cloud-physics model (Atreya and Romani 1985; de Pater, Romani, et al. 1991; Romani
1986) that includes prescriptions for a water-solution cloud at ≳100 bar and an NH4SH layer
at ∼35 bar. We added in PH3 with a nominal deep abundance of 30× Solar and a simple
prescription for its saturation vapor curve (Orton and Kaminski 1989). Vertical profiles of
all the condensible gases included in the radiative transfer code are plotted in Figure 4.6.
The observed frequencies are sensitive to the atmospheric abundance and temperature from
∼0.1-50 bar; contribution functions at each frequency for the nominal model are shown in
Figure 4.7.

We next perturbed many possible variables within this model one at a time to observe
their effect on the spectrum, namely: the abundances of NH3, H2S, CH4, and PH3 from
500 bar up to just below the NH4SH layer5; the relative humidity of the H2S ice cloud
(H2S hrel); the ortho-para hydrogen fraction; and a wet vs dry adiabat. Only NH3 and
H2S gas absorb strongly enough to impact the radio spectrum by ≳5 K, i.e. above the
flux calibration error, at the observed frequencies. We therefore expect strong constraints
on only the H2S and NH3 abundances and the H2S relative humidity; the impacts of these
three parameters on Uranus’s radio spectrum are shown in Figure 4.8. The effect of the
NH4SH cloud can be seen on the spectrum as NH3 and H2S are varied (Figure 4.8a and
4.8b): at low H2S abundances and high NH3 abundances, NH3 survives above the NH4SH
cloud and absorbs strongly at long wavelengths, whereas at high H2S abundances and low
NH3 abundances (including the nominal values), H2S survives above the NH4SH cloud and
absorbs most strongly at millimeter wavelengths. In the intermediate regime, where the NH3

and H2S abundances are nearly equal, the lower H2S abundance leads to less absorption from
1-3 cm, but at 10 cm the NH3 absorption deeper than the NH4SH cloud is still important
(see salmon line in Figure 4.8b). Pressure-broadened absorption near the 1.123 mm (266.9
GHz) rotational line of phosphine may also be important in ALMA Band 6, i.e. at 1.3
mm (see Figure 4.8d). Methane has no strong lines at millimeter or radio wavelengths,
but alters Uranus’s millimeter/radio spectrum at the ∼1σ level by altering the strength of
H2-CH4 collision-induced absorption (CIA; Borysow et al. 1986). The ortho-para fraction of
molecular hydrogen changes the strength of H2-H2 CIA as well as modifying the adiabatic
lapse rate, and thus also affects the mm/radio spectrum (Trafton 1967; Wallace 1980).6 Since

4Solar abundances are assumed to be the protosolar values given in Asplund et al. (2009) C/H2 =
5.90 × 10−4; N/H2 = 1.48 × 10−4; O/H2 = 1.07 × 10−3; S/H2 = 2.89 × 10−5; Ar/H2 = 5.51 × 10−6; P/H2

= 5.64× 10−7

5This effectively ignores the solution cloud at ∼100 bar. However, we are mostly insensitive to the
solution cloud’s effect on the spectrum, so for practical purposes this is the same as varying the abundances
just above the solution cloud. The reason we made this choice and its effects are discussed further in Sections
4.3 and 4.3.

6The default ortho-para hydrogen state is “normal” H2, which denotes high-temperature-limit value of
3:1 orthohydrogen:parahydrogen, which is reached near 300 K. “Equilibrium” H2 refers to the equilibrium
ortho-para fraction at the temperature of each atmospheric layer according to the T-P profile in Figure 4.6.
The ortho-para fraction may achieve disequilibrium due to vertical mixing, since the timescale to convert
between the ortho- and para-states is much longer than dynamical timescales (Trafton 1967; Wallace 1980).
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Figure 4.7: Normalized contribution function at each observed frequency for the best-fitting
radiative transfer models at (a) 25◦N and (b) 75◦N. The spike in panel (b) at ∼40 bar
is caused by the discontinuity in the vertical abundance profiles at the retrieved mixing
pressure. (c) Cloud density as a function of pressure for clouds expected to form under
thermochemical equilibrium assuming the abundance profiles in Figure 4.6.

in our model the CH4 abundance, PH3 abundance, and ortho-para fraction of H2 may all
affect the spectrum to near the ∼1σ level at some frequencies, we allow them to vary as well.
The deep H2O abundance has no impact on the spectrum because the H2O cloud forms well
below the maximum depth to which we are sensitive; we set the deep H2O abundance to a
fixed 30× Solar. The difference between a wet and dry adiabat is small; we assumed a dry
adiabat.

Radiative transfer modeling was carried out within a Markov Chain Monte Carlo (MCMC)
framework, implemented using the emcee Python package (Foreman-Mackey et al. 2013).7

Letting θ represent the set of free parameters in the model, the likelihood function ln p is
given by

ln p(T |ν, σ, θ) = −1

2

∑
n

[
(Tn − Tm(θ))

2σ−2
n + ln(2πσ−2

n )
]

(4.1)

7https://emcee.readthedocs.io/en/v2.2.1/
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Figure 4.8: Effect of changing radiative transfer model parameters on the radio spectrum
of Uranus. In each panel, one parameter was changed from its nominal value; the resulting
model spectrum was subtracted from the nominal model such that ∆TB represents the
departure from the nominal model. Legend labels denote a multiplicative factor applied to
the model parameter of interest, where 1.0 is the nominal value (30× Solar for H2S and PH3;
1× Solar for NH3, 1.0 for H2S hrel). The black points plotted along the zero line show the
size of the error bars on the data at the observed frequencies. All models were produced
assuming viewing geometry from the sub-observer point.

where σ2
n is the variance of the measured brightness temperature Tn at each frequency νn. At

each MCMC step, a set of test parameters θ is selected, a model brightness temperature Tm(θ)
is generated by RadioBEAR at each frequency, and the likelihood function is evaluated. The
result of many MCMC iterations is a joint probability distribution over the free parameters
in the radiative transfer model. Each of the MCMC runs presented in this paper used 500
iterations and 40 walkers. As is standard practice with MCMC (Foreman-Mackey et al.
2013), we cut out the “burn-in” phase by using only the second half of the iterations to
describe the posterior distribution; plotting the parameter values as a function of iteration
confirmed that this procedure had worked as intended. We refer the interested reader to
Hogg et al. (2018) for an overview of how MCMC works and is used in astrophysics research.



CHAPTER 4. TROPOSPHERIC COMPOSITION AND CIRCULATION OF URANUS
WITH ALMA AND THE VLA 93

Parameter 2.5% (−2σ) 16% (−1σ) Median 84% (+1σ) 97.5% (+2σ) Abu./Solar (1σ)

NH3 below NH4SH 4.07× 10−9 2.63× 10−7 7.23× 10−6 8.49× 10−5 7.40× 10−4 0.06+0.6
−0.04

H2S below NH4SH 5.34× 10−4 6.88× 10−4 8.27× 10−4 1.12× 10−3 1.50× 10−3 35.2+12.5
−5.9

H2S hrel 0.005 0.02 0.05 0.13 0.34 —

CH4 below NH4SH 2.68× 10−4 1.77× 10−3 8.29× 10−3 2.39× 10−2 5.73× 10−2 17+33
−14

ortho-para 0.03 0.19 0.58 0.87 0.97 —

PH3 below NH4SH 4.52× 10−9 2.86× 10−7 3.43× 10−6 1.16× 10−5 2.72× 10−5 18+43
−17

H2S above NH4SH 4.29× 10−4 6.32× 10−4 8.09× 10−4 1.00× 10−3 1.31× 10−3 34.4+8.3
−7.7

Deep H2S 5.59× 10−4 7.20× 10−4 8.65× 10−4 1.17× 10−3 1.57× 10−3 36.8+13.1
−6.2

Table 4.3: Values and errors for radiative transfer model parameters for the “enriched”
region at 25◦N. The median values are reported, along with the 16th/84th percentile values,
which represent the 1σ interval, and the 2.5/97.5 percentile values, which represent the 2σ
interval. The quantities below the horizontal line are not free parameters in the model, but
can be determined from the retrieved vertical profiles. The values below the solution cloud
are measured at 35 bar. The ortho-para fraction takes a value between 0 and 1, where 1
is “equilibrium” H2 and 0 is “normal” H2. The deep H2S abundance refers to the model
abundance below the water solution cloud.

Enriched Region

We first fit the radio-dark region at 25◦N, chosen as the representative “enriched” or volatile-
rich region because of its location at small emission angles with respect to the observer
as well as relatively similar brightnesses at nearby latitudes, minimizing beam smearing
effects. For computational efficiency, we simplified the full cloud-physics model to include
only prescriptions for the NH4SH cloud and the H2S, NH3, CH4, and PH3 ice clouds. The
solution cloud beneath the NH4SH cloud was ignored; this was a reasonable compromise
because its location at ∼100 bar pressures is deeper than the observed frequencies probe (see
Figure 4.7). The vertical abundance profile of H2O as well as all other inputs (ortho-para
fraction, adiabat) were set to their nominal values. We checked our simplified implementation
against the full cloud-physics model, and found that the difference in brightness temperature
between them was at least an order of magnitude smaller than the flux calibration errors at
all frequencies. However, it should be noted that the MCMC retrieval estimates the NH3

and H2S abundances below the NH4SH layer but above the solution cloud, i.e. at ∼50-100
bar. The solution cloud in the full model removes ∼5% of the deep H2S and ∼25% of the
deep NH3; this is discussed further in Section 4.3. The retrieved values for all the parameters
at 25◦N are given in Table 4.3. The best-fitting model is compared to the data in Figure
4.9, and a “corner plot” displaying the one- and two-dimensional projections of the posterior
probability distribution of the retrieved parameters is shown in Figure 4.10. The observed
disk-averaged brightness temperatures are also reasonably well fit by the 25◦ model (see
Figure 4.3).

The abundance of ammonia below the NH4SH cloud is only weakly constrained in the
enriched region, with a best-fitting value of 6% Solar but a 1σ confidence interval from 0.2%
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Figure 4.9: Left: Brightness temperature measurements of Uranus (blue dots) compared
to our radiative transfer models at 25◦N (top) and 75◦N (bottom). The best-fitting model
is shown as a thick red line, and 50 MCMC draws are shown as thin gray lines. Right:
Abundance profiles of H2S (dark blue) and NH3 (light blue) for the best-fitting model (thick
line) and the same 50 draws (thin lines) at 25◦N (top) and 75◦N (bottom). We refer the
reader to Hogg et al. (2018) for an explanation of the meaning of model draws.
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Figure 4.10: “Corner plot” showing the one-dimensional (top panels, corresponding to the
label at the bottom of each column) and two-dimensional (other panels) projections of the
posterior probability distribution of the MCMC-retrieved parameters for the radiative trans-
fer models at 25◦N. The mean value (solid red line) and 16th and 84th percentile (dotted red
lines) of each probability distribution are plotted. We refer the reader to Hogg et al. (2018)
for an explanation of how to interpret a corner plot.
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Figure 4.11: Same as Figure 4.10 but for the depleted model and data at 75◦N.
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to 70% Solar. This quantity is better constrained in the depleted north polar region, where
the very low H2S absorption allows our observations to probe deeper into the atmosphere
(see Section 4.3). The hydrogen sulfide abundance takes a 1σ value of 35.2+12.3

−5.9 × Solar
below the NH4SH cloud, in excellent agreement with previous results (de Pater, Romani,
et al. 1991). The relative humidity of the H2S ice cloud takes an 84th percentile value of
0.13, meaning that hrel < 13% is preferred to higher values. Models that include at least
some PH3 are preferred, as absorption from the pressure-broadened PH3 line at 1.123 mm
(266.9 GHz) is the only way in our model to decrease the brightness temperature at 1.3 mm
relative to 2.1 mm. Indeed, a PH3 abundance below ∼3% Solar is disfavored at the 2σ level.
However, the spectral slope within the 1.3 mm ALMA band is more consistent with models
lacking phosphine absorption than models including it (see Figure 4.12). A detailed study of
Uranus’s radio spectrum around the PH3 J = 1 → 0 absorption line at 1.123 mm (266.9 GHz)
is required to confirm or rule out the presence of significant PH3 in the Uranian troposphere.
The methane abundance is only weakly constrained. Our retrieved abundance agrees with
previous measurements at near-infrared and visible wavelengths, which range from ∼3 to
∼5% in the equatorial regions (Irwin, Fletcher, Teanby, et al. 2019; Karkoschka and Tomasko
2009; Sromovsky, Karkoschka, Fry, de Pater, et al. 2019; Sromovsky, Karkoschka, Fry,
Hammel, et al. 2014; Tice et al. 2013), but is not as constraining as these studies. The
average spin state of hydrogen (ortho-para) remains completely unconstrained by our data.

North Pole

We then modeled the brightness temperature of the depleted north polar region at 75◦

N. Physically, the situation in the downwelling depleted region differs from that in the
upwelling enriched region: the subsiding air is already depleted in condensible species, so
strong subsaturations are likely at certain pressures. In addition, the depletion in abundances
does not extend to infinite depth—the atmosphere must be well-mixed deeper than some
pressure Pmix. Thus the deep abundance should remain the same as retrieved in the enriched
region. With these considerations in mind, we employ a model for the depleted region that
prescribes a step function in the H2S and NH3 abundances. We set the prior probability
distribution functions of the deep abundances equal to the posterior probability distribution
functions found for the enriched region; that is, the deep abundances are constrained to agree
with the enriched region. The H2S and NH3 abundances are uniform above some mixing
pressure Pmix until the species reaches its condensation level; the depletion factor of each
species and Pmix are allowed to vary freely. The retrieved values for all the parameters at
75◦N are given in Table 4.4. The best-fitting model is compared to the data in Figure 4.9,
and a “corner plot” displaying the one- and two-dimensional projections of the posterior
probability distribution of the retrieved parameters is shown in Figure 4.11.

The MCMC simulation shows that strong depletions in both NH3 and H2S are required
above the mixing pressure. The results are consistent with zero H2S above the mixing
pressure; the simulation yields a 1σ upper limit of 0.8% Solar, which translates to at least
∼4000 times less H2S above Pmix than in the enriched region, i.e., an abundance ≲2× 10−7.
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Figure 4.12: Main: ALMA data at 25◦N (black points) plotted over radiative transfer
models with 35× Solar phosphine (red line) and without any phosphine (purple line). The
inclusion of phosphine marginally improves the fit. In this plot, the error bars include the
flux calibration error and are identical to those in the left panel of Figure 4.9. Inset: ALMA
data in Band 6 (1.24-1.35 mm) split into its four spectral windows. We plot here only the
error due to random noise, which is very small compared to the brightness of Uranus; the
error bars are of the same order as the thickness of the data points. The radiative transfer
models are normalized so that their value at 1.29 mm (233 GHz) is equal to the mean of
the Band 6 data, to facilitate visual comparison of the spectral slopes. The inclusion of
phosphine makes the spectral slope agreement poorer.

Parameter 2.5% (−2σ) 16% (−1σ) Median 84% (+1σ) 97.5% (+2σ) Abu./Solar (1σ)

NH3 below Pmix 8.46× 10−5 1.00× 10−4 1.31× 10−4 1.86× 10−4 2.74× 10−4 1.10+0.46
−0.26

H2S below Pmix 8.46× 10−5 2.07× 10−4 8.46× 10−4 3.61× 10−3 6.41× 10−3 36+118
−27

NH3 above Pmix 1.09× 10−7 2.88× 10−7 4.67× 10−7 6.75× 10−7 9.53× 10−7 3.9+1.7
−1.5 × 10−3

H2S above Pmix — — — 1.89× 10−7 1.11× 10−6 <0.008
Pmix 30.64 42.23 54.59 63.23 75.58 —

Deep NH3 1.02× 10−4 1.31× 10−4 1.71× 10−4 2.43× 10−4 3.92× 10−4 1.44+0.60
−0.34

Table 4.4: Values and errors for radiative transfer model parameters for the “depleted” north
polar region at 75◦N. The median values are reported, along with the 16th/84th percentile
values, which represent the 1σ interval, and the 2.5/97.5 percentile values, which represent
the 2σ interval. The quantities below the horizontal line are not free parameters in the
model, but can be determined from the retrieved vertical profiles. The deep NH3 abundance
refers to the model abundance below the H2O solution cloud.
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The results do not constrain the H2S abundance below Pmix any more than did the enriched
region model. Because so little H2S absorption is present, the spectrum of the depleted north
polar region is more sensitive than the enriched equatorial region to the NH3 abundance below
the mixing pressure, and this quantity is constrained to 1.10+0.45

−0.26× Solar (1σ). Above the
mixing pressure, the model is consistent with a factor of ∼280 depletion in NH3 in the north
polar region compared to the enriched midlatitude region, i.e., an abundance of ∼5× 10−7.
The retrieved mixing pressure of 55+9

−12 (1σ) is somewhat deeper than the level at which
the NH4SH cloud is expected to form in equilibrium (∼35 bar); however, this value remains
within the 95% (2σ) confidence interval. It is thus a reasonable guess that the atmosphere
transitions from well-mixed to depleted at the NH4SH cloud.

RT Modeling Discussion

The good fit to the data provided by our cloud-physics model (Figure 4.9) lends strong
support to a Uranian atmosphere dominated by H2S absorption in the upwelling regions,
with most or all NH3 removed from the troposphere by the NH4SH cloud. This model,
which is similar to that of de Pater, Romani, et al. (1991) and de Pater, Romani, et al.
(1989), permits significant H2S above the NH4SH cloud. The nitrogen-to-sulfur (N/S) ratio
does not need to be tuned to very near unity as required by the H2S-inclusive models of
Hofstadter (1992). The midlatitudes are fit by a solar NH3 abundance below the NH4SH
layer, which forms at a pressure of ∼35 bar. This is deeper than the midlatitude mixing
pressure of ∼22 bar determined by Hofstadter, Berge, et al. (1990); however, those authors
did not consider the role of H2S absorption on Uranus’s radio spectrum. In the downwelling
north polar region, our model agrees well with the Hofstadter, Berge, et al. (1990) and
Hofstadter (1992) south polar region model: those authors required an NH3 abundance of
∼5 × 10−7 down to ∼50 bar pressures (they ignored H2S gas opacity). All three of those
requirements are within 1σ of our results, providing evidence that the north- and south-polar
warm spots may arise from the same chemical processes.

The retrieved abundances derived in the previous subsections came from a simplified
cloud-physics model that did not take into account the solution cloud at pressures deeper
than 50 bars. Thus, to make inferences about the true deep abundances of nitrogen- and
sulfur-bearing species, we returned to the full cloud-physics model of de Pater, Romani, et al.
(1991), which includes prescriptions for the deep water and water-solution clouds from Atreya
and Romani (1985). We tuned the model such that the NH3 and H2S abundances between
the solution cloud and the NH4SH cloud matched our retrieved abundances of those species.
For this purpose, we used the best-fitting H2S abundance below the NH4SH cloud from the
enriched region and the best-fitting NH3 abundance below Pmix from the depleted region,
since those were the best-constrained values and the two regions are assumed to be well-
mixed below the mixing layer. This procedure yielded abundances in the deep troposphere
of 1.7+0.7

−0.4× 10−4 (1.4+0.6
−0.3× Solar; 1σ) for NH3 and 8.7+3.1

−1.5× 10−4 (37+13
−6 × Solar; 1σ) for H2S.

Using the NH3/H2S ratio as a proxy for the nitrogen/sulfur (N/S) ratio, our results
provide a much stronger constraint on Uranus’s bulk atmospheric N/S ratio than previous



CHAPTER 4. TROPOSPHERIC COMPOSITION AND CIRCULATION OF URANUS
WITH ALMA AND THE VLA 100

work. We find N/S = 0.20+0.08
−0.07 (1σ), in agreement with de Pater, Romani, et al. (1991) and

de Pater, Romani, et al. (1989), who required N/S< 0.2. This is a very strong selective
enrichment in sulfur considering the Solar N/S value of ∼5. Our observed sulfur-to-nitrogen
ratio can be explained by an ice giant formation scenario in which volatiles were trapped as
clathrate hydrates and then swept up by planetesimals (Hersant et al. 2004). Those authors
argue that in the cold, ice-rich conditions of the outer disk, NH3 and H2S would be trapped
very efficiently by clathration and accrete onto solid grains, while N2 would remain in the
gas phase. At the temperature and pressure of the outer disk, nearly all sulfur is in the form
of H2S, and the N2:NH3 ratio is roughly 10:1. Therefore, Uranus and Neptune should have
accreted nearly all available sulfur but only a small fraction of available nitrogen, decreasing
the N/S ratio by a factor of ∼20, which is close to what we observe.

4.4 Conclusions

The millimeter and radio observations presented here provide a unique view of Uranus’s
troposphere: we provide the first published millimeter-wavelength maps of the planet, as well
as the first VLA observations taken during northern summer. Our results are summarized
as follows.

• High-spatial-resolution maps reveal a complex tropospheric circulation pattern, includ-
ing thin, bright, likely downwelling bands at ∼0◦N, 20◦N, and 20◦S in the 2 cm VLA
and 2.1/3.1 mm ALMA maps. The identity of the absorber in these bands remains
unknown, but variations in the relative humidity of H2S or the methane abundance
are good candidates to explain these features. Kinetic temperature variations may also
play a role.

• The north polar region is approximately equal in brightness and extent to the south
polar region observed three decades ago, with a radio brightness temperature ∼35 K
brighter at 2 cm than the midlatitudes. The polar brightening can be observed over a
large range of frequencies from 10 cm - 1 mm. Taken together with methane sensitive
infrared measurements, this implies a single vertical cell of downwelling air from ∼0.1
to 50 bars. Radiative transfer modeling suggests the north polar region is depleted
in ammonia to a similar degree as the south polar region observed 30 years ago; both
have an NH3 volume mixing ratio of ∼5× 10−7 above the ∼50 bar level and zero H2S
opacity.

• The radio spectrum of the dark upwelling midlatitude regions between ∼40◦S and
∼40◦N is consistent with a model in which all NH3 is removed by the NH4SH cloud at
∼35 bar, and constrains the deep H2S abundance to 37+13

−6 × Solar.

• The radio spectrum of the downwelling north polar region at latitudes north of ∼50◦N
is consistent with strong depletions in both ammonia and hydrogen sulfide from the
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top of the atmosphere down to a mixing pressure Pmix = 55+9
−12. The strong depletion

in H2S in this region permits the deep NH3 abundance to be well constrained, taking
a value of 1.4+0.6

−0.3× Solar.

• The deep sulfur-to-nitrogen ratio in Uranus’s troposphere is N/S = 0.20+0.08
−0.07 (note

protosolar N/S ∼ 5), assuming the Atreya and Romani (1985) prescription for the
water-solution cloud at pressures deeper than 50 bars and no temperature difference
between the equator and the pole. This is the most stringent constraint on that ratio
to date.

• The phosphine abundance in the ice giants remains unknown; the observations pre-
sented in this work are only sensitive to pressure-broadened phosphine spectral lines
at the 2σ level in one band (ALMA Band 6; 1.3 mm), and the spectral slope in this
band does not support a pressure-broadened phosphine line.

This paper lays the groundwork for more detailed studies of Uranus’s tropospheric circu-
lation and composition with the upcoming next-generation Very Large Array (ngVLA). The
ngVLA will perform 10 cm and 20 cm observations at resolutions of ∼3 mas and ∼10 mas,
respectively, permitting a much stronger constraint on the ammonia abundance in the ice
giants. Observations from 3 cm to 3 mm at resolutions down to 0.1 mas will resolve the new
dark and bright bands discovered in this work well enough to extract robust brightness tem-
perature measurements from those regions; applying radiative transfer models may identify
the absorbers responsible for these bands. An outline of the solar system science that will
become possible with the ngVLA is given in de Pater, Butler, et al. (2018).

4.5 Appendix: Meridional Temperature Gradients

The radio occultation experiment aboard the Voyager 2 spacecraft determined the temperature-
pressure profile in Uranus down to roughly 2.7 bar (Lindal et al. 1987); however, this mea-
surement was made using two occultations between 0◦ and -10◦ latitude, so meridional
differences were not observed. The IRIS instrument determined the temperature structure
down to ∼0.6 bar as a function of latitude, finding temperature differences smaller than 2
K (Pearl et al. 1990). Similarly small temperature differences have also been observed in
the upper troposphere from more recent ground-based studies (Roman et al. 2020). The
latitudinal temperature structure of Uranus has not been directly observed below 1 bar.
Most atmospheric models predict that meridional temperature gradients should be small
because the orbital period is much shorter than the radiative relaxation time in Uranus’s
troposphere (Conrath et al. 1990; Friedson et al. 1987; Wallace 1983); however, recent cal-
culations have cast doubt on the radiative timescales used in those papers (Li, Le, et al.
2018). We must therefore consider the possibility that the observed brightness tempera-
ture difference between the midlatitude and polar regions is driven primarily by differences
in kinetic temperature, instead of differences in composition as assumed in the main text.
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The strength of an absorption feature is set by both the abundance profile of the absorbing
species and the atmospheric temperature profile. To disentangle temperature and abundance
is an underconstrained problem; however, a large midlatitude-to-pole temperature difference
between ∼0.6 and 50 bar is generally considered unlikely based on several lines of evidence.
These have been summarized convincingly by Hofstadter and Butler (2003), and here we
leverage our new data to expand upon the arguments of those authors.

The radio/millimeter spectra at the midlatitudes and poles cannot both be fit with the
same composition unless a highly unphysical temperature-pressure profile is assumed. The
latent heat of condensation of H2S (or H2S/NH3 in the NH4SH cloud) at saturation is very
small compared to the enthalpy of a parcel of air in Uranus, so the difference between a
moist and dry adiabat is very small. However, if the requirement to fit the Voyager data at
pressures less than 0.6 bar is relaxed, warmer or cooler adiabats can be considered. Starting
with our best-fitting gas abundances and vertical temperature structure in the midlatitude
region (Section 4.3), we tried using warmer adiabatic profiles; a sample result is shown in
Figure 4.13. No adiabatic profile can effectively fit the north polar data. To achieve a
reasonable fit to the observed north polar spectrum using only kinetic temperature changes
requires many unphysical kinks in the temperature structure (Figure 4.13). The “solutions”
we find require a strongly superadiabatic lapse rate near the H2S ice cloud level to bring
H2S condensation high in the atmosphere, and a strongly subadiabatic lapse rate deeper
than that to keep the NH4SH cloud deep enough. Overall, we find that the spectra, and in
particular the millimeter wavelengths, are highly sensitive to the pressure level of the H2S
and NH4SH clouds; the kinetic temperature must be tuned very finely to place these at the
correct equilibrium level. It is worth noting that a discontinuity in the temperature profile at
a condensation layer is possible if a large vertical gradient in atmospheric molecular weight
is also present, as has been suggested for both the methane and H2O cloud layers (Cavalié,
Venot, Selsis, et al. 2017; Cavalié, Venot, Miguel, et al. 2020; Guillot 1995). However, the
abundances of NH3 and H2S have a factor of ≳25 less effect on the atmospheric molecular
weight than those of CH4 and H2O, so this effect is not expected to be important near the
NH4SH or H2S cloud layers.

Hofstadter and Butler (2003) considered the complementary situation, in which the bright
polar region followed an adiabat and the equatorial region was fit using strongly subadiabatic
temperature profiles. This goes contrary to most theory, which generally predicts that the
pole should be more stably stratified (Briggs et al. 1980; Friedson et al. 1987; Wallace 1983),
but shall be considered regardless. In this case, the temperature profiles at the midlatitudes
and poles were both forced to fit the Voyager data, but allowed to diverge below. Hofstadter
and Butler (2003) note that the temperature differences needed to make this work, which
reach 90 K at 20 bar pressure, imply a vertical wind shear of −100 m s−1 per scale height at
20 bar by the thermal wind equation. However, they stop short of integrating the thermal
wind equation vertically to produce a geostrophic wind profile. We have done this, and
find that the winds must be supersonic deeper than ∼20 bar, which is unphysical. It is
worth noting that the thermal wind equation assumes a compositionally constant atmosphere
wherein density differences are due to temperature only. Significant meridional gradients in
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Figure 4.13: Effect of temperature profile perturbations on the radio/millimeter spectrum
of Uranus. Using the same chemical abundances as for our best-fitting model at 25◦N, we
consider a wet adiabat (blue line) and a warmer and cooler adiabat (orange and salmon
lines). We also attempt to perturb the temperature profile ad-hoc until a reasonable fit to
the north-polar-region data is achieved (purple line).

composition could arise on Uranus via gradients in the methane abundance, since methane
accounts for up to 5% of the troposphere by volume and is much heavier than hydrogen
and helium (Sun, Schubert, et al. 1991; Tollefson, Pater, et al. 2018). However, methane is
observed to be depleted in the poles relative to the midlatitudes (Irwin, Fletcher, Teanby,
et al. 2019; Karkoschka and Tomasko 2009; Sromovsky, Karkoschka, Fry, de Pater, et al.
2019; Sromovsky, Karkoschka, Fry, Hammel, et al. 2014; Tice et al. 2013), so the implied
compositional (and therefore density) gradients would lead to even larger vertical wind shear.
The observed thermal wind (e.g., Sromovsky, de Pater, et al. 2015) also points, again by
the thermal wind equation, to a warmer midlatitude region than polar region.

Taken together, these arguments show that composition is the primary driver of the
observed brightness temperature differences at millimeter and radio wavelengths. However,
the possibility that both temperature and composition change between the midlatitudes and
poles cannot be ruled out. A different assumed polar temperature profile would have a
relatively small but perhaps non-negligible effect on the deep NH3 abundance retrieved in
this paper.
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Chapter 5

Quantitative Precipitation Estimation
of Extremes in CONUS with Radar
Data

The published version of this chapter was coauthored by the following individuals, and is included in this

thesis with their express permission: William D. Collins, Mark D. Risser.

Constructing an accurate, continental, in-situ-based, kilometer-scale, long-term record of
the precipitation field and its spatio-temporal changes remains a significant challenge. Here,
we determine the extreme-value behavior of the NEXRAD Stage IV radar-based quantitative
precipitation estimate (QPE). We find that the climatology of 5-year daily return values in
CONUS East of the Rocky Mountains shows only slight variability on spatial scales smaller
than ∼100 km. In light of this finding, we test whether rain-gauge-only daily precipitation
datasets can produce accurate extreme-value behavior at spatial scales finer than the spacing
between gauges. We find that the 5-year daily return values are accurate at locations far from
rain gauges only if the interpolation between gauges is carried out appropriately for extremes.
Precipitation statistics derived from in-situ rain gauge data are therefore of sufficient spatial
resolution to faithfully capture daily extremes over much of the eastern United States.

Plain Language Summary

Accurate measurement of the amount of precipitation that falls within a given region and
time period is crucial for environmental modeling, climate change research, and resource and
risk management. For all of those applications, it is desirable to understand not only how
much precipitation falls on average, but also how much precipitation falls during an extreme
event, such as a severe storm. Using data from weather radar, we show that certain statistical
properties of extreme rainfall are highly correlated on spatial scales up to 100 kilometers over
the eastern United States. This means that rain gauge networks, which have typical inter-
gauge spacings of roughly 30 kilometers over the eastern United States, are dense enough
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to accurately measure these statistical properties. However, it’s imperative to interpolate
between the rain gauge measurements in a way that explicitly captures extremes if the
application of interest requires capturing extremes accurately. Our research represents a step
toward constructing an accurate, continental-scale, long-term, high-resolution precipitation
dataset.

5.1 Introduction

Accurate measurement of the amount of precipitation that falls within a given region and
time period is crucial for environmental modeling (e.g. Abatzoglou 2013; Jones, Gladkow,
et al. 2001; Parra et al. 2004), climate change research (e.g. Alexander et al. 2006; Groisman
et al. 1999; Schär et al. 2016), and resource and risk management (e.g. Rosenzweig et al.
2002; Schumann 2011; Vogel et al. 2019). All of these applications require understanding
not only the seasonal-mean or annual-mean precipitation, but also the extreme tail of the
daily or sub-daily precipitation distribution. Precise measurements of the total rainfall over
a specific area at scales of tens of kilometers or less, such as a city or watershed, are often
also needed.

Estimating the true spatio-temporal distribution of precipitation from observational data
is known as quantitative precipitation estimation (QPE), and is currently obtained from
three main data sources: satellite, rain gauges, and ground-based radar. Each source pro-
vides unique advantages subject to specific limitations. Satellite observations provide spa-
tially continuous measurements, but are subject to severe uncertainty because precipitation
must be inferred from cloud top height or temperature as derived from microwave and/or
infrared spectra (Iguchi et al. 2009; Tapiador, Turk, et al. 2012). This uncertainty generally
leads to overestimation of extreme precipitation events relative to gauge- or radar-based es-
timates (AghaKouchak et al. 2011; Mehran et al. 2014). Over the contiguous United States
(CONUS), where the density of both rain gauges and radar stations is high, satellite-based
QPE products tend to perform compared unfavorably to other estimates. For example, Tim-
mermans et al. (2019) found significant biases in the representation of daily precipitation
extremes from satellite-based gridded QPEs compared with rain gauge estimates. Satellite
products are therefore not considered further here.

Rain gauges provide the most accurate and temporally continuous point measurements of
precipitation despite errors from undercatch, variance in management quality, and changes
in location or equipment (see Tapiador, Turk, et al. 2012, for a recent review). They also
provide the longest time record of any precipitation measurement by far. However, gauges
yield point measurements only, and one must interpolate spatially between them to estimate
precipitation over an area. Ground-based radar observations provide very high native spatial
and temporal resolution. Each Weather Surveillance Radar 88 Doppler Radar (WSR-88D)
radar stations in CONUS (NOAA 2006) completes a full scan of the sky every ∼10 minutes,
and the station’s preprocessing algorithm bins the scan into 1 km range by 1◦ azimuth sec-
tions, amounting to sub-hourly precipitation estimates on a ≲4 km grid (Fulton et al. 1998).
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However, the relationship between radar reflectivity and precipitation rate is degenerate and
differs for different types of storms, and therefore it must thus be determined empirically
via comparison with rain gauge data (Fulton et al. 1998; Young, Bradley, et al. 2000). Mul-
tisensor estimates combine the high spatial and temporal coverage of the radar data with
the high fidelity of the gauge data, and hence represent the state-of-the-art in operational
QPE. However, experiments to validate these QPEs often take place over small regions and
on timescales shorter than a few months (e.g., Seo, Krajewski, et al. 2018; Spies et al. 2018;
Willie et al. 2017).

A variety of studies make use of gauge-based QPE and solve the aforementioned spa-
tial interpolation problem in various ways, sometimes making use of elevation corrections
or models of climatology (e.g. Daly, Neilson, et al. 1994; Daly, Smith, et al. 2015; Livneh,
Rosenberg, et al. 2013; Schaake et al. 2004; Sheridan et al. 2010). We refer to this class of
gauge-based analysis of extremes as “grid-then-fit” techniques because they interpolate at
the native temporal scale (e.g., daily) and then calculate statistical properties of the inter-
polated data. These approaches tend to underestimate extreme precipitation, especially at
small (0.25◦) scales (Behnke et al. 2016; Gervais et al. 2014; Sun and Barros 2010). To rectify
this issue, Risser et al. (2019) have developed a statistical “fit-then-grid” technique in which
Generalized Extreme-Value (GEV) statistics (see Coles et al. 2001) are calculated at individ-
ual rain gauges, the GEV parameters are spatially interpolated, and then the gridded GEV
distributions are reconstructed from these interpolated parameters. This method implicitly
assumes that the parameters of the GEV distribution vary smoothly in space, such that
high-quality inference about extremes can be made in between stations. The optimal gauge
interpolation technique depends on both the grid resolution and the application of interest
(Chen et al. 2008; Gervais et al. 2014), and best practices for interpolating to smaller scales
than the inter-gauge spacing have not been established.

This study seeks to determine whether the extreme statistics of daily precipitation vary
smoothly between rain gauges over the CONUS, testing the assumption of Risser et al.
(2019) over that domain, and to evaluate the accuracy of this novel fit-then-grid technique
as compared with standard grid-then-fit algorithms. To these ends, we consider the GEV
statistics of a dataset at very high (4 km) spatial resolution, namely the NEXRAD Stage IV
daily dataset (Fulton et al. 1998; Lin 2011; Lin and Mitchell 2005; Seo and Breidenbach
2002), a radar-based multisensor QPE, from 2002-2019. Stage IV is available at hourly,
six-hourly, and daily frequencies. We focus on daily maxima here to facilitate comparison
with the GHCN-D network, the most extensive network of rain gauges in the CONUS, and
to test the results of Risser et al. (2019) directly. Stage IV has been evaluated extensively
in the literature, including via the use of percentile-based metrics to capture extreme value
behavior (Nelson et al. 2016; Prat et al. 2015). However, percentile-based metrics have been
shown to produce different results depending on the specific metric used (Schär et al. 2016).
McGraw et al. (2019) previously employed GEV statistics in a comparison between rain
gauges and Stage IV data at hourly, 3-hourly, 6-hourly, and daily frequencies. However,
they only reported those statistics at the locations of ∼500 rain gauges and did not consider
spatial variability in their GEV fits. Our paper is the first (to our knowledge) to publish
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GEV statistics at every grid cell in Stage IV.
We describe our data processing and GEV fitting in Section 5.2. In Section 5.3, we

use this new data product to explore whether the high spatial resolution of this QPE pro-
vides new information on the climatology of extremes at finer spatial scales than accessible
using gauge-only estimates. In Section 5.4, our product is compared with the Risser et
al. (2019, hereafter R19) gauge-only interpolation technique, as well as with the Mountain
Mapper algorithm (Schaake et al. 2004), a more conventional gridded QPE that incorporates
the Parameter-elevation Relationships on Independent Slopes Model (PRISM) climatological
model (Daly, Smith, et al. 2015) and is widely used for operational weather analyses. Specif-
ically, Mountain Mapper is the official rainfall product distributed by the California-Nevada,
Colorado Basin, and Northwest River Forecast Centers of the National Oceanographic and
Atmospheric Administration (NOAA). We contextualize our findings within existing litera-
ture on the spatial scales of extremes in Section 5.5, then summarize our work in Section 5.6.

5.2 Data Processing

We computed and made use of three distinct extreme-value datasets in this paper; these are
summarized below.

Stage IV GEV: We downloaded the 4-km-resolution daily NEXRAD Stage IV gridded
multisensor QPE for every day between 1 January 2002 and 31 December 2019, totaling
6573 days (18 years) on a 881 × 1121 grid. We compared the Stage IV daily measurements
to Global Historical Climatology Network Daily (GHCN-D) rain gauge data (Menne et al.
2012) in grid cells that contained a GHCN station. These validation steps are outlined in
Supporting Information S1. Stage IV was found to agree very well with GHCN-D in both
means and extremes in grid cells that contained a gauge, meaning that the normalization of
the radar data to nearby rain gauges in the Stage IV processing pipeline preserves information
about extremes.

As noted by other authors (Nelson et al. 2016; Prat et al. 2015), Stage IV is a funda-
mentally heterogeneous dataset. The product from the three western NOAA River Forecast
Centers (California-Nevada, Northwest, and Colorado Basin, hereafter “Western RFCs”)
differs substantially from that of the nine other RFCs comprising the CONUS (hereafter
“Eastern RFCs”). Specifically, the Western RFCs produce their QPE using the gauge-only
Mountain Mapper technique discussed below and do not incorporate radar data at all, while
the Eastern RFCs use the radar-inclusive procedures outlined in Fulton et al. (1998) and Lin
and Mitchell (2005). Data from the Western RFCs are therefore not actually made using a
multisensor technique, and so are for the most part not considered further in this paper.

In each grid cell of Stage IV, we extracted seasonal maximum precipitation amounts
for each season (DJF, MAM, JJA, and SON), and then fit the GEV distribution to the 18
seasonal maxima over our period of record. This is a fairly short period of record over which
to apply GEV statistics; however, in this work we draw our conclusions from the 5-year
return values only, which are well sampled by 18 years of data. To assess whether our GEV
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fits provided an adequate representation of the data, we performed a 2-sided Kolmogorov-
Smirnov (K-S) test to quantify the likelihood that the observed seasonal maxima were drawn
from the GEV distribution. We found a p-value of < 0.05 in at least 94% of grid cells in the
Eastern RFCs in all seasons, meaning that the data were plausibly drawn from the GEV
distribution. We used the GEV fit to generate 5-year return value estimates in each grid
cell for each season. Following R19, we assessed the errors in our fit parameters using a
bootstrap resampling technique: the seasonal maxima at each grid cell were resampled with
replacement and then re-fit 250 times, and the standard deviation of the fit parameters in
those 250 fits were used to define the 1-σ error on the parameters.

R19 GEV: We used the same extreme-value dataset as R19, which is based on GHCN-D
rain gauge measurements, but extracted 5-year return values instead of 20-year return values
as in that paper. To create a mean climatology from the R19 analysis, the exact same proce-
dures described in R19 were applied to GHCN measurements of seasonal average daily pre-
cipitation (instead of seasonal maximum daily precipitation), and an ordinary least-squares
fit was applied at each station such that the spatially-interpolated parameters were the mean
and variance instead of the GEV parameters. We refer to this mean climatology hereafter
as the “R19 mean”.

Mountain Mapper: The Mountain Mapper dataset (Schaake et al. 2004) is a gauge-
only gridded precipitation product at 4-km resolution that is widely used in operational
weather analysis. It interpolates from rain gauges to the 4-km grid using an inverse-square
weighting scheme, incorporating also the PRISM climatological model (Daly, Smith, et al.
2015). However, the official Mountain Mapper product is not archived at NOAA. Instead,
we have created several versions of the dataset using an identical procedure to Schaake et al.
(2004). The creation of our own versions of the dataset is beneficial for direct comparison
to R19 and Stage IV for three reasons. First, we have used the same rain gauge network
as Risser, namely stations from the GHCN-D network in CONUS with at least 66.7% non-
missing values over our time period (8097 stations). Second, we can interpolate the gauge
network onto any grid we choose. Finally, we can force the long-term mean of Mountain
Mapper to equal any chosen climatology; versions of Mountain Mapper constrained to the
R19 mean and to the mean of our 18-year slice of Stage IV are employed in this paper. We
compute GEV statistics and their errors at each grid cell in the same way as for Stage IV.
Our computations using the Mountain Mapper procedure are discussed further in Supporting
Information S2.

5.3 Spatial Scales of Extremes

If the hypothesis that the extreme statistics of daily precipitation vary smoothly between
rain gauges over the CONUS is true, then a spatial power spectrum of the 5-year return value
map should show little power at ≲50-km scales. We thus used a wavelet decomposition to
compute a spatial power spectrum of the 5-year return values in the Stage IV dataset using
a 2-D continuous wavelet transform. Following the procedure outlined in Torrence et al.
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(1998), we used Morlet wavelets with non-dimensional frequency ω0 = 6, and 40 widths
equally spaced on a log scale from 4 km to ∼2000 km.1 Maps of the power on various
representative spatial scales are shown for JJA and DJF in Figure 5.1 to help visualize the
wavelet decomposition. The power spectrum of our 5-year return value map is presented in
Figure 5.2. (The same maps and power spectra are shown for the MAM and SON seasons in
the Supporting Information.) The spatial scales s plotted on the x-axis are nearly equal to
the Fourier wavelength λ for this choice of wavelet (formally λ = 1.02s, following Torrence
et al. 1998), and should be interpreted in the same manner as a Fourier wavelength, namely
as the combined length scale of a positive and negative fluctuation about the mean. Note
that substantial edge effects obscure any useful information at scales larger than s = 1000
km, so these are not plotted.

To aid in understanding the implications of Figure 5.2, we have overplotted the power
spectrum of a test dataset that contains pure white noise within the entire domain (the
eastern RFCs), correlated at the 25-pixel (100-km) scale; that is, we made a map of pure
Gaussian noise then oversampled it by a factor of 25. A log-linear power spectrum takes the
form

Sν(f) = cf−β (5.1)

where f is the spatial frequency and β is the spectral scaling. The correlated noise test
spectrum can be interpreted as transitioning between β = 2 at the smallest length scales,
where the map is highly autocorrelated, and β = 1 at the largest length scales, where the
map is completely uncorrelated and looks like pure white noise. Note that white noise is not
spectrally flat on a log-linear scale, but instead follows a β = 1 scaling. In between these two
regimes is stored all the information content in the map, and as such, the power spectrum
is strongly peaked at 100 km length scales. This can be seen most clearly after the spectra
have been divided by the P = s2 line in the right panel of Figure 5.2. The 5-year return
value maps in both JJA and DJF show similar behavior to the correlated noise map, with
strong autocorrelation (P ∝ s2) at small spatial scales but with a broader, less prominent
spike in power that begins near 200-km scales and continues out to 800-km scales. This
means that 5-year return values are strongly autocorrelated at s < 200 km, confirming the
hypothesis that extreme statistics of daily precipitation vary smoothly between rain gauges
over the CONUS. The power spectral density is maximized at very large length scales of
∼800 km. The strong autocorrelation at small scales is present in each of the four major
Köppen-Geiger climate classes within the eastern CONUS, as shown in the Supplementary
Material.

5.4 QPE Product Comparison

Section 5.3 validated the implicit assumption of the R19 fit-then-grid technique that extreme
statistics of daily rainfall vary smoothly between rain gauges. It is a priori unclear, though,

1Using a Morlet wavelet in this way is mathematically identical to a “short-time” Fourier transform using
a Gaussian window function
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Figure 5.1: Wavelet decomposition of Stage IV 5-year return value map for (Top:) DJF and
(Bottom:) JJA at four representative spatial scales. The colormap denotes power spectral
density in arbitrary units.
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Figure 5.2: Seasonal wavelet power spectrum of the Stage IV 5-year return value map for
Top: JJA and Bottom: DJF over the eastern RFCs only (blue lines). Vertical lines show
the mean spacing of 27 km between GHCN stations in the eastern RFC domain. The power
spectrum of white noise correlated at the 100 km scale is also shown (red line). The left
panels show the raw power spectra; the right panels show the spectra after being divided by
the P = s2 line.
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whether this fit-then-grid algorithm is actually more accurate than a standard grid-then-
fit algorithm when applied to an identical set of rain gauges and given an identical mean
climatology. We set up this test by comparing the extreme-value behavior between the
Mountain Mapper and R19 datasets. To ensure a direct comparison, we used a version
of Mountain Mapper constructed such that its long-term seasonal mean (Ȳ in Supporting
Information S2) was equal to the R19 mean. As Figure 5.3 shows, the return values are
substantially different between the two datasets, with Mountain Mapper underestimating
R19 by greater than 10% over much of the CONUS in both DJF and JJA. An assessment
of the statistical significance of this difference is given in Supporting Information S3.

We next evaluated the R19 and Mountain Mapper 5-year return values against Stage IV.
This comparison is somewhat difficult to probe directly because the long-term means of R19
and Stage IV are not strictly equal, so differences in extremes may be partially caused by
differences in the long-term means of those datasets. To get around this, we computed return
values from a version of Mountain Mapper that is forced to equal the long-term means of
Stage IV, and compared both this Mountain Mapper version and Stage IV itself with R19
(see Figure 5.4). In so doing, any differences are isolated to the treatment of extremes. This
Mountain Mapper version is found to underestimate extremes relative to Stage IV over large
portions of the Eastern RFCs, whereas R19 agrees more closely.

The difference between Mountain Mapper and R19 is attributable to the grid-then-fit ap-
proach taken by Mountain Mapper: using an inverse-square weighting scheme to interpolate
between grid points makes it unlikely for extremes to occur at grid points far from any one
rain gauge. This hypothesis is confirmed by considering the difference between Mountain
Mapper and Stage IV as a function of distance from the nearest rain gauge over the eastern
RFCs. The 5-year return values from Mountain Mapper agree well with Stage IV at distances
≲10 km from the nearest gauge, but begin to underestimate Stage IV at larger distances in
both DJF and JJA (Figure 5.5). It is important to note that the spatial averaging inherent
in the Mountain Mapper technique is not a deficiency per se, and is in fact the appropriate
way to measure the spatial average of extremes over a large grid box (Gervais et al. 2014)
for comparison to climate models at ∼100 km resolution. However, we have shown that the
Risser technique provides a more accurate estimate of rainfall extremes at ∼25 km scales,
assuming the radar-aided Stage IV dataset to be a “ground truth”.

5.5 Discussion

The long correlation lengths of 5-year return values in the eastern CONUS derived in Section
5.3 are perhaps unsurprising in the context of the dynamical systems that produce extreme
precipitation in that region. In the central and eastern United States, extreme precipitation
is most often associated with one of three categories of storm: mesoscale convective systems
(MCSs), landfalling tropical cyclones (TCs), and synoptic forcing events (i.e., extratropical
cyclones). MCSs are organized groups of thunderstorms that produce distinct circulations
at scales longer than 100 km and persist over timescales of 3 hours to 1 day (Feng et al.
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Figure 5.3: Difference between 5-year return value from R19 and our Mountain Mapper
implementation constrained to the R19 mean climatology for Top: JJA and
Bottom: DJF. The extremes in Mountain Mapper are lower in magnitude than in R19 over
the majority of CONUS in both seasons.
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Figure 5.4: Difference between 5-year return value from (a) R19 and Stage IV in JJA,
(b) R19 and Mountain Mapper in JJA, (c) R19 and Stage IV in DJF, and (d) R19 and
Mountain Mapper in DJF. Here the Mountain Mapper datasets have been constrained to
the Stage IV mean climatology. The R19 extremes agree more closely with Stage IV than
Mountain Mapper in both JJA and DJF (i.e., the discrepancies are smaller in panels a and c
than in panels b and d), validating the ability of the R19 technique to interpolate extremes
to smaller spatial scales.

2019; Houze 2004; Parker et al. 2000). These systems account for over half of extreme
rainfall events at 24-h duration in the warm season in these regions (Schumacher et al. 2006;
Stevenson et al. 2014). Landfalling tropical cyclones (TCs) also contribute substantially in
the summer and fall in the eastern and southeastern United States, especially in coastal
regions (Knight et al. 2009; Miniussi et al. 2020; Shepherd et al. 2007). In the cool season,
extreme precipitation results primarily from strong synoptic forcing events (Maddox et al.
1979; Schumacher et al. 2006; Stevenson et al. 2014). Although synoptic forcing events
occur with nearly unchanging frequency throughout the year, MCSs and TCs are much more
seldom present in DJF (Stevenson et al. 2014), and extremes in DJF tend to be of lower
magnitude than in JJA (Maddox et al. 1979; Stevenson et al. 2014). Individual storms of
these types all tend to produce heavy precipitation over length scales of 100 km or more. The
long correlation lengths in the statistics of extreme precipitation presented here can thus be
partially attributed to the long correlation lengths of individual events. This interpretation
is in good agreement with Touma et al. (2018), who used indicator semivariograms to assess
the correlation scales of 90th percentile rainfall days over CONUS. Although that analysis
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Figure 5.5: Five-year return value difference between Stage IV and Mountain Mapper as a
function of distance from the nearest rain gauge used in Mountain Mapper for Left: DJF
and Right: JJA over the eastern CONUS. The small gray points denote individual grid
cells; the contours describe the cumulative density of points. The red line shows a least-
squares linear fit to the gray points. The return values agree in grid cells near rain gauges,
but Mountain Mapper begins to underestimate Stage IV as the distance from a gauge is
increased.

was split into more climatological regions, their North, Northeast, South, and Southeast
regions all display DJF length scales within 1σ of 300 km.

Previous studies (e.g. Kursinski et al. 2008) have shown, perhaps in apparent tension with
the above, that individual extreme storms can be highly localized in both space and time,
with heavy precipitation falling over spatial scales of ∼50 km or less. Importantly, though,
the spatial statistics of rainfall depend strongly on the time cadence considered. In a case
study of the C’evennes-Vivarais region of France, Lebel et al. (1987) and Kirstetter et al.
(2010) showed that the decorrelation distance of rainfall amounts increases with lengthening
temporal scale from hourly to daily cadence. We wish to stress that our results are only
valid at the daily cadence we considered; the assumption of smoothly-varying GEV statistics
between rain gauges, and therefore the R19 technique, may not be justified at sub-daily
cadences.

It is interesting to consider Figure 5.2 in terms of the fractal properties of rainfall explored
by Lovejoy (1982) and Lovejoy and Mandelbrot (1985). Those authors describe the spatial
structure of cloud and rain areas according to N ∼ L−D, where N is the extent to which
a fractal fills space as measured at scale L. Bies et al. (2016) explored the relationship
between the fractal and power spectrum interpretations of scaling fields, finding that the
fractal dimension D and β in Equation 5.1 are related according to D = 1 + (4− β)/2 for a
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2-dimensional field. (In the terminology of Bies et al. (2016), we measured here a “surface
β” and the cited papers use a “coastal edge D”.) We find β ≈ 2 (which leads to D ≈ 2)
for this process up to scales of a few hundred km; that is, the extreme precipitation field is
2-dimensional. This is another way of interpreting the high level of autocorrelation on small
scales. D = 2 is larger than the fractal dimension found by Lovejoy and Mandelbrot (1985)
for cloud and rain areas, meaning that the spatial scales over which extreme statistics vary
in Stage IV are larger than the spatial scales of individual precipitation events.

5.6 Conclusions

We have tested the assumption that the climatology of extremes varies only minimally at
length scales smaller than the average inter-rain-gauge spacing of ∼30 km in the eastern
CONUS. We find that this assumption is valid: 5-year daily return values are strongly au-
tocorrelated at scales up to at least 100 km in both DJF and JJA. We also find that the
fit-then-grid algorithm of R19 substantially improves the fidelity of daily extreme statistics
compared with the grid-then-fit Mountain Mapper technique. On both 4-km and 25-km
scales, the grid-then-fit Mountain Mapper technique underestimates extremes relative to the
more spatially complete multi-sensor Stage IV QPE in the eastern United States, whereas
the Risser et al. (2019) technique measures extremes more accurately than Mountain Map-
per at 25 km scales. Taken together, these findings show that rain gauge observations are
sufficient to capture the large majority of the extreme-value information in the climatology
of the true rain field, but only if interpolated appropriately for the application of interest.
This paper improves confidence that appropriately-constructed gauge-only gridded products
provide an accurate historical record of daily extreme statistics beyond the years in which
radar data are available, an important step toward creating an accurate, continental-scale,
in-situ-based, long-term precipitation record for use in hydrological modeling, resource man-
agement, and climate change studies. As the resolution of global circulation models contin-
ues to increase into the future, QPEs will be required at finer and finer scales, and standard
gauge-interpolation techniques will fail to accurately represent precipitation within these grid
boxes. The human impacts of extreme events are felt at human scales, e.g. homes (10m),
farms (1 km), and watersheds (10 km). Our work moves toward casting measurements of
extremes into a risk framework at those scales.

Data Availability Statement
Datasets for this research are available at the following locations:

• The NEXRAD Stage IV data product is described in Lin (2011) and can be accessed
online at https://data.eol.ucar.edu/dataset/21.093

• The GHCN-Daily data is described in Menne et al. (2012) and can be accessed
online at https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?

id=gov.noaa.ncdc:C00861.
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• The CNRFC gridded QPE product can be accessed online at https://www.cnrfc.

noaa.gov/arc_search.php

• The PRISM NORM81 climatology is described in Daly, Smith, et al. (2015) and can
be accessed online at http://www.prism.oregonstate.edu/recent/
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5.7 Appendix: Comparison of GHCN and Stage IV

Extremes

Here we provide a direct comparison between the extreme-value behavior of the GHCN-D
rain gauge network and the daily Stage IV dataset in the Stage IV grid cells that contain a
rain gauge (hereafter “gauge-cell pair”). We also consider the effect of time-of-observation
offsets on the representation of extremes in the two datasets.

After Risser et al. (2019), we selected rain gauges from the GHCN-D network within the
boundaries of CONUS that had at least 66.7% non-missing daily precipitation measurements
over the Stage IV period of record (2002-2019). Measurements were only considered non-
missing if the data quality flag (“QFLAG”) was blank, meaning that all quality assurance
checks passed, and the source quality flag (“SFLAG”) was not set to “S” (which would
indicate that the measurement may differ significantly from the true value). Any values
with MFLAG set to “T” (a trace of precipitation) were set to 0 mm. The resulting dataset
consisted of 8097 rain gauges in total.

We first compared the daily precipitation measurements from gauge-cell pairs over our
entire period of record by computing the Pearson correlation coefficient (R-value) for each
pair. This comparison is complicated by the fact that the GHCN network and the Stage IV
dataset define the start and end time of a day differently. The day is defined to run from
12:00-11:59 UTC in the Stage IV dataset, whereas the definition of a day is non-uniform
across the GHCN-D dataset, varying according to the “data source code” flag (Menne et al.
2012). The majority of GHCN stations are maintained by volunteers (Flags 0, 7, and N;
N is the CoCoRaHS network), who are encouraged to report from 7:00 AM the previous
day to 7:00 AM on the recorded day, leading to a 0-3 hour time-of-observation offset from
the Stage IV dataset depending on the longitude of the gauge. However, this time offset
changes based on the time of year due to daylight savings time, and not all volunteer stations
follow the 7:00 AM reporting time convention. The SNOTEL gauge network (Flag T Pepin
et al. 2005), prevalent in the western United States, records from 00:00-23:59 UTC, leading
to an offset of exactly 12 hours from Stage IV. The USCRN (Flag R Diamond et al. 2013)
and ASOS (Flag W NOAA 1998) networks record from 00:00-23:59 LST, leading to a 4-8
hour difference depending on longitude. The effects of these time offsets on the correlation
coefficient can be seen clearly in Figure 5.6. The daily measurements from zero-offset pairs
are much more tightly correlated on average (left panel), and the correlation coefficients
(right panel) are correspondingly higher. Overall, our assessment of the daily precipitation
in Stage IV compared to GHCN-D reproduces the findings of (Nelson et al. 2016), who
compare Stage IV to the USCRN gauge network, and so we do not expand on those here.

It is instructive to examine the seasonal maxima of each gauge-cell pair, as these seasonal
maximum values are the input to the GEV fit; this comparison is shown in Figure 5.7 for
zero-time-offset and large-time-offset pairs. The seasonal maxima agree much better between
the two datasets than the daily measurements because radar- and gauge-based QPEs agree
better at high rain rates than at low rain rates (Nelson et al. 2016; Prat et al. 2015, and
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our own analysis). In addition, the difficulties caused by the time-of-observation offsets are
ameliorated somewhat if seasonal maximum data are considered instead of daily data.

We next computed generalized extreme value statistics for the two datasets and deter-
mined their 5-year return values. The GEV distribution is given by Coles et al. (2001)
as

Pr[z > Z] = exp
(
−
[
1 + ξ

(z − µ

σ

)]−1/ξ)
(5.2)

where µ is the location parameter, σ is the scale parameter, and ϵ is the shape parameter. At
each grid cell or rain gauge, we fit the seasonal maximum daily precipitation measurements
to this function using the climextRemes package (Paciorek et al. 2018), where σ, µ, and
ξ are fitted parameters. This family of extreme distributions encompasses all possible tail
behaviors, assuming that each seasonal maximum value is independent of the others and
that the underlying distribution does not change over the period of record. Neither of these
assumptions are strictly true for Earth’s climate; the El Niño-Southern Oscillation and other
long-period oscillations lead to possible correlation or anticorrelation from season to season,
and climate change amplifies extreme rainfall over time. However, the effects of decadal
oscillations and climate change are likely both small over our 18-year period of record (Dai
2013; O’Gorman 2015), so use of the GEV distribution is an acceptable assumption. Any
nonstationarity will affect all the different precipitation measurements used in this paper
in the same way, and so should not have a noticeable effect on intercomparisons between
datasets. As in R19, the errors on the GEV fit parameters were computed via bootstrap
resampling. Each set of seasonal maxima was resampled with replacement and then fit to
Equation 5.2 250 times; the spread in the fit parameters in these 250 samples was used to
define the standard error in σ, µ, and ξ.

The 5-year return values for each gauge-cell pair are shown in Figure 5.8. Linear fits to
the GHCN vs Stage IV measurements were computed using two methods: a least-squares
technique, which assumes the GHCN data to be the “ground truth” and does not account for
the error bars in the GHCN data, and an orthogonal distance regression (ODR) technique,
which accounts for errors in both GHCN and Stage IV. The ODR fit shows nearly a perfect
one-to-one agreement (slope = 0.98 ± 0.01) between the 5-year return values in the two
datasets, indicating that the measurements agree at the locations of rain gauges within the
fitting error. The 1σ spread about that linear fit is almost identical to the average 1σ
uncertainty in the return value arising from the GEV fit to the seasonal-maximum data,
which was ∼7 mm for both the GHCN and Stage IV datasets. This means that almost all
of the spread can be explained by the fitting error, lending further support to the conclusion
that the fitting noise dominates over any systematic difference between the Stage IV and
GHCN return values at the location of rain gauges.
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5.8 Appendix: Computation of the Mountain Mapper

Algorithm

Here we create our own versions of the Mountain Mapper dataset (Schaake et al. 2004)
over the time range 2002-2019. The Mountain Mapper technique uses an inverse distance
weighting approach to estimate precipitation at ungauged locations from values at gauged
locations while taking into account the long-term climatology of precipitation at the gauged
and ungauged locations, as follows. First define X̄ as the monthly climatological mean
precipitation at a gauge, such that FX = X/X̄ is a precipitation measurement X (mm) in
units of the mean precipitation at that gauge. Similarly, define Ȳ and FY = Y/Ȳ so FY is
the precipitation Y (mm) at the grid point in units of its monthly precipitation climatology.
Then we can compute

FY =
n∑
i

WiFXi
/

n∑
i

Wi (5.3)

where Xi are the precipitation measurements from each of n nearby gauges, and Wi = d−2
i is

an inverse-square weight on the distance between gauge and grid point. At each time step,
we used the n = 10 nearest gauges to each grid point that provided a valid precipitation
measurement. The assumption here is that if nearby rain gauges are experiencing a precipi-
tation event of intensity Xi = kX̄, then the grid point is experiencing an event of intensity
Yi = kȲ , where k is an arbitrary constant. Finally, to retrieve Y from FY we need to know
Ȳ . This cannot be measured directly, so it is taken as some mean monthly precipitation
measured another way. In the current version of the official Mountain Mapper, the PRISM
climatological model from 1981-2010 is used—this is the PRISM “Norm81” monthly clima-
tology (Daly, Smith, et al. 2015). For the purposes of this paper, we used various seasonal
normals as Ȳ , including the R19 seasonal means and the seasonal mean of the Stage IV
dataset, depending on the dataset against which we were evaluating Mountain Mapper.

To validate our implementation of Mountain Mapper, we compared our implementation
using the monthly PRISM normals against the Mountain Mapper dataset produced by the
California-Nevada River Forecast Center, whose estimate is taken as an input to NEXRAD.
Six-hourly accumulation comparisons for five consecutive randomly-chosen 6-hour periods in
January are shown in Figure 5.9. It can be seen from the plots that the spatial distribution
of rainfall agrees very well between the two datasets. However, an examination of the long-
term means revealed small but non-negligible differences in the climatology between our
implementation and theirs. These discrepancies are due to the fact that different rain gauges
are used: the CNRFC uses a custom list of∼900 gauges from various sources that are updated
periodically, whereas we use a fixed set of gauges from GHCN-D, namely all GHCN-D gauges
in CONUS with at least 67% temporal coverage between 2002 and 2019. The choice of rain
gauges has important ramifications especially in mountainous regions, where the climatology
Ȳ varies significantly on spatial scales smaller than the spacing between gauges. Despite these
differences, our choice to use GHCN-D gauges is advantageous in that it permits a more direct
comparison between Mountain Mapper and the R19 dataset in the eastern United States.
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5.9 Appendix: Uncertainty Quantification for Return

Value Differences

As shown in Figure 5.3 in the main text, the difference in 5-year return value between
Mountain Mapper and R19 exceeds 20 mm over large portions of the eastern RFCs. This
difference is on average larger than the error in the 5-year return values due to uncertainty
in the GEV fit. In Figure 5.10, we show the data from Figure 5.3 recast into units of the
quadrature sum of the 5-year return value errors from Mountain Mapper and R19, confirming
that the difference between the two QPEs is greater than 3σ in many locations, especially
in JJA.

5.10 Appendix: Spatial Statistics by Region

The wavelet power spectra shown in Figure 5.2 of the main text represent an average over
the eastern CONUS, and it is therefore possible that the behavior of this average does not
represent the behavior of all climatologies within the domain. To test this, we split the
eastern CONUS into Köppen-Geiger climate classes (from Peel et al. 2007). Wavelet power
spectra for each of the four classes is shown in Figure 5.11. We found that for all four
major classes in the eastern CONUS (steppe; temperate; cold, warm summer; and cold, hot
summer), the largest differences in daily extremes were at the largest length scales and there
was little power at the smaller scales. Note that since the areas covered by each Köppen-
Geiger class are smaller and more irregular than the eastern CONUS itself, substantial
edge effects are present in the wavelet power spectrum at the largest scales. Nevertheless,
the power spectrum in all four regions is valid out to at least 100 km, and if substantial
variability were present at smaller scales it would be detected. The same findings hold for
the other seasons (not shown).

5.11 Appendix: Wavelet Power Spectra for MAM

and SON

The wavelet decomposition of the Stage IV 5-year return value map for the MAM and SON
seasons is shown in Figure 5.12 and the resulting power spectra are shown in Figure 5.13.
Just as in DJF and JJA, the power in both MAM and SON has a broad peak at ≳200-km
scales, meaning that the statistics of extremes vary smoothly at smaller scales.
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Figure 5.6: Left: Density contour plot of daily precipitation measurements for gauge-cell
pairs. The pairs are split according to their time-of-observation offset: black contours denote
pairs with zero time-of-observation offset between the GHCN and NEXRAD measurements,
while blue contours denote pairs with a time-of-observation offset of four or more hours.
Contour levels are 84% and 97.5% of all rainy-day (>10 mm) data. Dashed lines show linear
fits to each dataset. Right: Box-and-whisker plot of NEXRAD-GHCN daily precipitation
comparison R-values, split by GHCN station type.
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Figure 5.7: Density contour plot of seasonal maximum precipitation measurements for gauge-
cell pairs in JJA. The pairs are split according to their time-of-observation offset: red con-
tours denote pairs with zero time-of-observation offset between the GHCN and Stage IV
measurements, blue contours denote pairs with a time-of-observation offset of four or more
hours, and black contours show the entire dataset. Contour levels are at 84% and 97.5% of
each dataset.
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Figure 5.8: Left: Five-year return value comparison between GHCN-D and Stage IV in
Stage IV grid cells that contain a rain gauge. The red dashed line shows the y = x line; the
blue line shows an orthogonal distance regression fit to the data, and the magenta line shows
a linear least-squares fit to the data. Right: Residual after subtracting the ODR fit (blue
line) from the data in the left panel. The blue dashed lines show the 1-σ error assuming
errors are proportional to the precipitation level, and the red dotted lines about the zero line
(red dashed) show the 1-σ error assuming errors are independent of the precipitation level.
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Figure 5.9: Validation of our Mountain Mapper implementation against the official Mountain
Mapper product from the California-Nevada River Forecast Center. The spatial distribution
and magnitude of 6-hourly and daily rainfall agree between the two datasets to a high degree
of accuracy, meaning that our Mountain Mapper implementation operates as expected.



CHAPTER 5. QUANTITATIVE PRECIPITATION ESTIMATION OF EXTREMES IN
CONUS WITH RADAR DATA 126

Figure 5.10: Same as Figure 5.3 in the main text, but in units of the 5-year return value error.
The differences between MM and R19 are larger than 3σ over large portions of CONUS.
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Figure 5.11: Wavelet power spectrum of the Stage IV 5-year return value map for each of
the four major Köppen-Geiger climate classes in the eastern CONUS in JJA. The left panel
shows the raw power spectra, and the right panel shows the spectra with the P = s2 line
subtracted. Note that substantial edge effects lead to unphysical oscillations at the largest
scales due to the small size of the Köppen-Geiger regions, so we have greyed out scales larger
than 200 km. The climate classes in the legend are: BSk = steppe; Cfa = temperate; Dfb
= cold, warm summer; and Dfa = cold, hot summer.
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Figure 5.12: Same as main text Figure 5.1, but for (Top:) MAM and (Bottom:) SON
seasons.
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Figure 5.13: Same as main text Figure 5.2, but for (Top:) MAM and (Bottom:) SON
seasons.
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Chapter 6

A Storm-Resolving Data Set for
Development of Next-Generation
Parameterizations

The newest generation of non-hydrostatic, cloud-resolving, global models (i.e., GCRMs)
promise to resolve many of the outstanding issues in the way GCMs represent storm events
by explicitly resolving atmospheric motion at cloud-system scales. To test whether this
promise is realized requires the development of new observational datasets and diagnostics;
one must simultaneously measure the meteorological drivers of cloud formation, the cloud
properties themselves, and the spatio-temporal distribution of precipitation generated by
the clouds. Reanalysis alone fails to provide adequate diagnostics, since reanalysis products
typically estimate cloud properties and precipitation using similar convective and microphys-
ical parameterizations to the GCRMs being tested. We present a new, combined dataset
at ∼8-km and hourly resolution over the eastern and Midwestern CONUS from 2005-2020
that bridges this gap. The dataset provides ERA-5 reanalysis data for synoptic-scale fields
relevant to cloud and precipitation formation, GOES-East geostationary satellite data for
cloud structure, and ground-based NEXRAD radar data for precipitation, all on the same
space-time grid. We demonstrate the added value in using observed precipitation and cloud
fields instead of reanalysis with a particular eye toward capturing extreme events. We also
report statistical properties of the cloud and precipitation fields over the CONUS that can
be used to benchmark GCMs and GCRMs, including new computations of the precipita-
tion efficiency as a function of surface equivalent potential temperature. The dataset can
be leveraged to build and validate realistic stochastic parameterizations in future climate
models.
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6.1 Introduction

Accurate predictions of how extreme storms will change under the influence of a warming
climate are of urgent importance for agricultural forecasts, infrastructure planning and risk
assessment, and policymaking (Change 2022). State-of-the-art global circulation models
(GCMs) still fail to produce extreme precipitation events that look like the observed atmo-
sphere, despite substantial effort and progress toward that goal in the past 50 years (Arias
et al. 2021); GCMs precipitate too often, but at too low intensity (Stephens et al. 2010; Sun,
Solomon, et al. 2006). This failure is attributed to the inappropriate representation of two
main physical processes taking place at smaller spatial scales than one model grid cell: cloud
and precipitation microphysics, and convection (Hourdin et al. 2006; Neggers 2015). GCMs
must work around this resolution constraint by parameterizing these processes, but accurate
parameterizations are difficult to achieve in practice. Cloud microphysics parameterizations
suffer from the severe scaling problem of trying to represent the aggregated effects of µm-
scale processes at kilometer scales, and gaps remain in both conceptual understanding of the
microphysics and numerical representation of known physics (for a review, see Khain et al.
2000). Both conceptual and computational difficulties arise in convective parameterizations,
as well, as summarized nicely by Arakawa (2004): the parameterization scheme must make
an artificial separation between resolved and sub-grid atmospheric motions, which follow a
continuous spectrum of size scales in nature, and it must formulate the statistical effects
of cloud fields given a wide range of initial synoptic-scale conditions without simulating in-
dividual clouds. One of the primary drivers toward constructing GCMs with ever higher
spatial resolutions has been the promise of ameliorating some of these difficulties by better
resolving convective processes (Arias et al. 2021).

Recent advances in computational resources and techniques have led to higher-resolution
models of cloud systems, both in regional cloud-resolving models (CRMs) and in a new
regime, that of global cloud-resolving models (GCRMs). Regional CRMs have typical spatial
resolutions from tens of meters to a few kilometers, resolving non-hydrostatic accelerations,
but suffer from sensitivity to their boundary conditions. That is, they are unable to influ-
ence or be influenced by the synoptic- and global-scale atmospheric flows in which they are
situated, and their ability to reproduce the observed long-term statistics of clouds and pre-
cipitation is limited (for a review, see Guichard et al. 2017). GCRMs resolve non-hydrostatic
accelerations globally with kilometer-scale resolution, representing moist convection without
the need for cumulus parameterization (see review by Satoh et al. 2019). The ability of
GCRMs to simulate clouds and precipitation is already being evaluated for the DYnamics of
the Atmospheric general circulation On Non-hydrostatic Domains (DYAMOND) experiment
(Stevens et al. 2019), the first GCRM ensemble. Roh et al. (2021) intercompare the cloud
radiative effects in the DYAMOND ensemble, finding large variations in the net shortwave
radiation at the top of the atmosphere. Su et al. (2022) find a large spread in the con-
vective organization in DYAMOND, with most models producing too many small, isolated
precipitation events over the tropical ocean as compared with satellite precipitation obser-
vations. The same authors also demonstrate a wide range in the ability of the models to
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reproduce the observed diurnal cycle of precipitation over land, with many models overesti-
mating its amplitude. Arnold et al. (2020) show that the NASA Goddard Earth Observing
System (GEOS) model, one member of DYAMOND, underestimates the amplitude of the
diurnal cycle of precipitation at low resolution and produces unphysical small-scale spatial
fluctuations in the diurnal cycle at high resolutions compared with satellite data.

The comparisons with satellite precipitation detailed above underscore the importance
of evaluating climate models on multiple axes using observational data; however, they paint
an incomplete picture. As pointed out by, e.g., Tapiador, Navarro, et al. (2017), satellite
precipitation estimates are either temporally sporadic, as in the case of microwave sensors
like the Tropical Rainfall Measuring Mission (TRMM), or rely on a simple relationship be-
tween infrared cloud-top brightness temperature and precipitation, as in the case of some
geostationary observatories. The majority of model evaluation efforts focus on one observed
field at a time; this approach makes it difficult to identify the physical processes that are mis-
represented in the climate model, especially given that the increased resolution of GCRMs
does not appear to be the singular “silver bullet” for modeling convection. A reexamination
of the observational quantities and datasets that are used to evaluate the fidelity of mod-
els is required in order to understand, for example, whether they accurately represent the
clouds and precipitation associated with each individual convective cell within a mesoscale
convective system over the lifetime of that system.

In the real atmosphere, a storm is defined not only by a large volume of precipitation
deposited onto the surface in a short time, but also by the synoptic-scale meteorological
drivers of the flow in which precipitating clouds are embedded, the properties of the clouds
and hydrometeors themselves, the fluid dynamics of the atmosphere within the cloud sys-
tem, and the precipitation that falls to the ground. Cloud and precipitation fields evolve
rapidly in time, so continuous, high-cadence monitoring is required to understand the in-
ception and lifetime of storm systems. Internal variability in the climate system alters the
large-scale flow year-by-year, and a wide range of meteorological systems are relevant to
the production of extreme precipitation over North America (Barlow et al. 2019), so obser-
vations over many years are needed to capture the diversity of storms. In this paper, we
present a new combination of data on an 8-km grid at hourly resolution over the Eastern and
Midwestern CONUS from 2005-present to fill this gap. We combine the European Centre
for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA-5) reanalysis data,
the Geostationary Operational Environmental Satellite East (GOES-East) cloud products,
and the ground-based Next-Generation Weather Radar (NEXRAD) Stage IV precipitation
dataset to simultaneously track the upstream drivers and downstream effects of cloud for-
mation as well as the clouds themselves.

The paper is organized as follows. We provide a short description of each of our three
data sources in Section 6.2, and discuss their benefits and drawbacks. In Section 6.3, we
present probability distribution functions (PDFs) for the NEXRAD precipitation data and
the GOES cloud liquid/ice water path. We compare these with the precipitation and cloud
statistics in ERA-5 to demonstrate the added value of using true observational data instead
of reanalysis data alone. We also provide intensity-duration-frequency (IDF) curves for
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NEXRAD for several event durations from 1 to 24 hours. Putting all three data sources
together, we present a novel statistical analysis of the precipitation efficiency according to
the recent definition put forth by Li, Studholme, et al. (2022) in Section 6.4. We explore the
implications of the observed characteristic residence times of condensate in the atmosphere
in Section 6.5. Finally, in Section 6.5, we contextualize these findings within a broader
discussion of the ways in which our dataset can be leveraged to improve predictions of
extreme weather in a warmer future climate, and summarize our results in Section 6.6.

6.2 The Dataset

We have put together a new combination of observational data sources with the goal of mea-
suring the structure and evolution of storm systems from inception to dissipation. With this
goal in mind, we include a reanalysis product (ERA-5) to probe the meteorological drivers
of storms, a satellite cloud product (GOES) to constrain the dynamical and microphysi-
cal processes within precipitating cloud systems, and a quantitative precipitation estimate
(QPE; NEXRAD) to probe the hydrological and societal impacts of precipitating storms.
These three data sources are presented in detail in the next paragraphs. Figure 6.1 shows an
example snapshot of selected fields from the dataset over a summer storm in the Midwestern
CONUS. Table 6.1 lists the meteorological fields we included in the combined dataset.

The ERA-5 and NEXRAD datasets were regridded conservatively onto the GOES grid
using the TempestRemap software (Ullrich, Devendran, et al. 2016; Ullrich and Taylor 2015).
The resulting combined dataset has ∼8-km horizontal resolution, with the size of grid cells
varying slightly over the CONUS based on the geometry of a detector at geostationary orbit
projected onto the spheroidal surface of Earth. The choice to remap ERA-5 and NEXRAD
to GOES was made for two reasons. First, this choice maintains the maximum resolution
of the observational data, which is immutable; reanalysis could later be computed at higher
spatial resolutions should the need arise. Second, it is unclear how best to conservatively
remap some of the derived cloud fields. It is important to note that this choice of regridding
super-resolves the ERA-5 data by an areal factor of ∼15, so the ERA-5 fields really represent
an average of the nearest ∼15 grid cells. Conversely, the NEXRAD precipitation data has
been spatially averaged, and the interested user could in principle achieve a higher resolution
for the precipitation data only. The spatial extent of the dataset is constrained to within
the eastern and Midwestern CONUS based on the boundary of the NEXRAD dataset (see
Section 6.2).

The temporal resolution of the dataset is hourly, from 1 January 2005 to 31 December
2021; this time range is again constrained by NEXRAD, as 2005 was the first full year
when the hourly Stage IV analysis was available. The NEXRAD and ERA-5 variables are
reported at the :00 mark of each hour, whereas the GOES data product records instantaneous
measurements once per hour at either the :30 or :45 minute mark (:30 for GOES-16; :45 for
GOES-12 and GOES-13). For the precipitation field in both NEXRAD and ERA-5 (as well
as the MER field), one hour of data represents an assumed rainfall amount in the past hour.
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Figure 6.1: Example snapshot of a few of the fields included in our dataset, taken as a
storm passed over the U.S. Midwest at 09:00 UT on 19 July 2019. Precipitation contours
are overlain in red (Ps > 1.0mm) and salmon (Ps > 5.0mm). The domain of NEXRAD
Stage IV is shown as a black contour. The acronyms on the colorbar labels in the bottom
two panels denote ERA-5 Total Column Water Vapor (TCWV) and ERA-5 Water Vapor
Convergence (WVC); see also Table 6.1.
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Short Name Full Name Source Units
LSP large-scale precipitation ERA-5 kg m−2

CP convective precipitation ERA-5 kg m−2

MTPR mean total precipitation Rate ERA-5 kg m−2

TCWV total column water vapor ERA-5 kg m−2

WVD water vapor divergence ERA-5 kg m−2 s−1

MER mean evaporation rate ERA-5 kg m−2 s−1

CLWD column liquid water divergence ERA-5 kg m−2 s−1

CIWD column ice water divergence ERA-5 kg m−2 s−1

TCLW total column liquid water ERA-5 kg m−2

TCIW total column ice water ERA-5 kg m−2

2T two-meter temperature ERA-5 K
2D two-meter dew-point temperature ERA-5 K

cloud bottom temperature GOES K
cloud top temperature GOES K
cloud bottom height GOES km
cloud effective height GOES km

cloud top height GOES km
cloud bottom pressure GOES Pa
cloud effective pressure GOES Pa

cloud top pressure GOES Pa
cloud effective temperature GOES K

LWP/IWP cloud liquid/ice water path GOES g m−2

cloud particle size GOES µm
cloud visible optical depth GOES unitless

cloud phase GOES n/a
Ps observed precipitation NEXRAD mm

Table 6.1: Fields included in the combined dataset. Raw brightness temperatures, pixel
counts, and pixel/solar zenith/azimuth information are also available for the GOES data
but not listed.
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The TCWV, TCIW, TCLW, WVD, CLWD, CIWD, 2T, and 2D fields, like all the GOES
variables, are instantaneous quantities. We made no attempt to temporally interpolate the
GOES data onto the same time grid as ERA-5 and NEXRAD or vice versa for several reasons.
First, interpolation requires averaging, which degrades the information content of the dataset.
Second, instantaneous measurements and hourly averages represent fundamentally different
quantities, and it is unclear whether the instantaneous measurements would be most useful
at the start, end, or middle of an hour. Third, the choice we made is the most flexible, since
an interested user could subsequently perform any time interpolation they choose without
having to undo any steps.

NEXRAD Quantitative Precipitation Estimate

We quantify precipitation using the operational Next-Generation Radar (NEXRAD) Stage IV
radar-based QPE (Fulton et al. 1998; Lin 2011; Lin and Mitchell 2005; Seo and Breidenbach
2002) at hourly cadence on a natively 4-km grid from 1 January 2005 to 31 December 2021.
We choose to include the NEXRAD QPE instead of state-of-the-art gauge-based QPEs like
PRISM (Daly, Neilson, et al. 1994) or the Livneh product (Livneh, Bohn, et al. 2015) because
the inclusion of radar data provides spatially-complete and temporally-continuous coverage
without reliance on elevation models or gauge interpolation, which has been shown to un-
derestimate extreme events at locations far from rain gauges (Behnke et al. 2016; Gervais
et al. 2014; Molter et al. 2021; Sun and Barros 2010).

As noted by other authors (Molter et al. 2021; Nelson et al. 2016; Prat et al. 2015),
Stage IV is a heterogeneous dataset. The product from the three western NOAA River
Forecast Centers (“Western RFCs”; California-Nevada, Northwest, and Colorado Basin) do
not incorporate radar data, instead using a gauge-based estimate, while the rest of the River
Forecast Centers use the radar-inclusive procedures outlined in Fulton et al. (1998) and Lin
and Mitchell (2005). Data from the Western RFCs are therefore not included in the dataset.
The spatial domain of the dataset is thus defined by the boundary surrounding the rest of
the River Forecast Centers; this includes the eastern and Midwestern CONUS westward to,
and mostly including, New Mexico, Colorado, Wyoming, and Montana. The boundaries of
the Eastern RFCs are plotted in Figure 6.1.

GOES Satellite Cloud Products

We take cloud information from the Advanced Baseline Imager (ABI) instruments aboard
the Geostationary Operational Environmental Satellites (GOES) as obtained from the NASA
Langley Research Center Atmospheric Science Data Center. We make use of the “pixel-level
geostationary cloud products” produced by SatCORPS group at the NASA Langley Data
Center. In this product, the multi-spectral imaging from ABI has been converted into
estimates of cloud properties such as optical depth, liquid/ice water path, and cloud top
height (among many others) using the radiative-transfer retrieval algorithms presented by
Minnis, Nguyen, et al. (2008). These retrieval algorithms have a long history of development,
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having been first implemented supporting the Tropical Rainfall Measuring Mission (TRMM)
as part of the Clouds and the Earth’s Radiant Energy System (CERES) project (Wielicki
et al. 1998, this paper is also a good overview of the algorithm’s steps) and then improved
and adapted as new satellites were launched as part of CERES (Minnis, Nguyen, et al.
2008; Minnis, Trepte, et al. 2008). Our time series spans the lifetimes of three different
GOES-East satellites: GOES-12, GOES-13, and GOES-16. It should be noted that the ABI
was substantially upgraded in the GOES-16 era from 5 spectral bands to 16 spectral bands,
splitting the same spectral coverage of from 0.5-13 µm into more channels.

We chose to include GOES instead of low-Earth orbiting (LEO) cloud satellites like
TRMM and the Global Precipitation Mapping Mission (GPM) because geostationary satel-
lites have the important advantage of near-continuous hourly monitoring, which permits
tracking of cloud evolution within throughout the storm’s lifetime. Meanwhile, LEO satel-
lites suffer from sampling biases that limit their ability to capture accurate cloud and pre-
cipitation statistics (see Bell et al. 1990; Fiolleau et al. 2013; Nijssen et al. 2004, for further
discussion).

ERA-5 Reanalysis

We employ the ERA-5 reanalysis (Hersbach et al. 2020) to measure the synoptic-scale water
vapor content and circulation of the atmosphere. The ERA-5 reanalysis was released in
the year 2020 and represents several updates over the previous-generation ERA-Interim
reanalysis, including 31-km horizontal resolution (compared with 80 km for ERA-Interim),
upgraded model physics, a larger suite of assimilated data sources, and full hourly output.
One of the upgrades from ERA-Interim is that ERA-5 now incorporates radar precipitation
data over land, including NEXRAD (Lopez 2011). This helps to explain the high level of
agreement in precipitation statistics between the two datasets at time resolutions coarser
than 12 hours, which is the cadence at which ERA5 assimilates new data (Hersbach et al.
2020); this is discussed more in Section 6.3. We incorporate only two-dimensional fields at
present; this choice was made for three reasons. First, we limit the computational expense
of regridding and the final data volume. Second, the satellite-derived cloud properties and
radar precipitation are both two-dimensional fields, and one major objective of this paper is
to directly compare these to ERA-5. Third, the large-scale precipitation efficiency definitions
we discuss in Section 6.4 rely on column-integrated quantities only.

The ERA-5 fields listed in Table 6.1 represent a mixture of “instantaneous” and “mean”
fields. The difference between the two is that instantaneous fields are measured at the single
time step in the model corresponding to the start of the hour, whereas mean fields comprise
an average over the time steps in the past hour. As discussed at the start of Section 6.2, the
preference for one or another of these fields depends on the application of interest, and we
have not attempted to alter these fields beyond their conservative remapping. The names
given in Table 6.1 are identical to those in the native-resolution ERA-5 dataset, and the
reader is referred to the documentation of ERA-5 for additional details.
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6.3 Statistical Properties of the Dataset

Comparisons between GOES/NEXRAD and ERA-5

It is natural to wonder whether the use of observational data is really required, given that
reanalysis data provides a complete four-dimensional estimate of practically every element
of the climate system. However, despite twice-daily nudging of ERA-5 toward observations,
the convective and microphysics parameters still misrepresent clouds and precipitation hour-
by-hour, even when removing systematic effects due to the difference in spatial resolution
between ERA-5 and our dataset. This is shown for precipitation in Figure 6.2; NEXRAD
was regridded conservatively to match the resolution of ERA5 using TempestRemap. When
averaged to timescales near the assimilation cadence, ERA-5 performs very well over the
CONUS, but underestimates the magnitude of extreme precipitation at hourly cadence. As
pointed out in Section 6.1, this behavior is the same as for most GCMs (Stephens et al. 2010;
Sun, Solomon, et al. 2006), which is sensible because reanalysis is simply a forced GCM. We
also make a cursory evaluation of the representation of clouds in ERA-5 by comparing the
GOES cloud liquid/ice water path with the sum of the ERA-5 total column liquid water
(TCLW) and total column ice water (TCIW). The PDFs of condensate path from both data
sources are shown in in Figure 6.3. The two datasets agree very well in a time-averaged sense;
however, GOES observes more very thick clouds and fewer very thin clouds than ERA-5.

IDF Curves of Precipitation

The hourly cadence and continuous spatio-temporal coverage of the NEXRAD precipitation
data permit the computation of extreme statistics on multiple time scales. We achieve
this using intensity-duration-frequency (IDF) curves, which are widely employed to quantify
extreme-value statistics in the literature. Our computations make use of the idf-analysis
Python package1, which follows the procedures outlined by the German Association for
Water, Wastewater and Waste (Memo 531; DWA 2012), summarized here. First, a rolling
sum is taken at the duration of interest D hours, such that each hourly datum represents the
sum of itself and its nearest neighbors. Next, maxima are identified and ordered by intensity,
counting only maxima separated by at least D hours. A discretization correction is made to
the maximum values that accounts for cases where D is only a few hours; this correction is
less than 1% if D > 4. The n largest events in the period of record, where n is the ratio of
the period of record to the return period of interest, are then fit to a Gumbel distribution.
We have computed 1-month, 2-month, 4-month, 6-month, 1-year, 2-year, 3-year, and 5-year
return values for the NEXRAD data at 1, 2, 3, 6, 12, and 24-hour duration extremes. These
will be made publicly available in the refereed version of this manuscript. An example map
of three-year return values at three-hour duration is shown in Figure 6.5, and the average
IDF curves over our entire study area are shown in Figure 6.4. Maximum values at each
duration and latitude-longitude point were also recorded.

1https://github.com/MarkusPic/intensity duration frequency analysis
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Figure 6.2: (Left:) Twelve-hourly and (Right:) one-hourly probability distribution function
of NEXRAD and ERA-5 precipitation over our study region on the native 25-km ERA-5
grid for June, July, and August 2019. The PDF of precipitation agrees to a high degree
of accuracy at timescales ≳12 hours, but ERA-5 produces too few heavy rainfall events at
shorter time scales.

Figure 6.3: (Left:) Time-mean and (Right:) hourly probability distribution function of cloud
condensate path from ERA-5 and GOES over our study region in July 2019.
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Figure 6.4: Intensity-duration-frequency (IDF) curves for the NEXRAD precipitation data
in our dataset, averaged over the full study region.

IDF curves are widely used in hydrological modeling and flood risk assessment, as well as
to characterize the climatology of different regions of Earth, including under climate change
conditions (e.g., Cronshey 1986; Luo et al. 2018; Mirhosseini et al. 2013; Panziera et al. 2016;
Scharffenberg et al. 2006; Yan et al. 2018). Previous studies have computed IDF curves
from radar data, showing that radar-based estimates agree well with rain gauge estimates
overall, with the primary source of error in radar return values being the short period of
record (Eldardiry et al. 2015; Goudenhoofdt et al. 2017; McGraw et al. 2019; Overeem et al.
2009). However, these studies are limited to small regions (e.g., a single radar station) or to
daily data only. To our knowledge, this paper is the first to compute IDF curves from an
observational precipitation dataset at sub-continental scales on a ≲10 km grid. In addition
to providing inputs to hydrological models, these IDF maps are useful as a benchmark for
global circulation models; a successful model should be capable of reproducing these curves
for all durations of extreme and for all regions of the CONUS.
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Figure 6.5: Map of three-year return values of three-hourly precipitation over our 15-year
period of record. The regions of white space, most prevalent in the far western regions of the
map, are regions where a fit to the maximum values could not be computed; this is usually
caused by poor radar coverage.

6.4 Results: Precipitation Efficiency

The fraction of cloud condensate that reaches the surface as precipitation is quantified by
the precipitation efficiency (PE). PE is related to the energy transport in storms, as a
higher PE implies less evaporation of condensate and more net latent heat release into the
atmosphere for a given amount of initial condensation. At larger space and time scales, PE
can be interpreted as a statistical average of cloud microphysics over many rainstorms. PE
is used in various situations in meteorology, including to constrain the physics of individual
storm events, as a parameter in cumulus convection schemes, and to make projections of
precipitation in future climate; see Sui, Satoh, et al. (2020) for a recent review.

Despite its wide acceptance as a diagnostic parameter for the macroscopic effects of cloud
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microphysics, multiple working definitions of PE are found in the literature (Sui, Satoh, et al.
2020). Sui, Li, et al. (2007) define PE based on the condensate budget equation,

dC

dt
= CONVc − Ps + SIqv − SOqv (6.1)

where CONVc is the convergence of condensate, Ps is the surface precipitation rate, SIqv
is the vapor condensation/deposition rate, and SOqv is the vapor evaporation/melting rate.
Their definition of the cloud microphysics precipitation efficiency (CMPE) is then

CMPE =

{
Ps/(SIqv +QCM), if QCM > 0

Ps/SIqv, otherwise

where QCM = CONVc − dC/dt = Ps + SOqv − SIqv is the rate of condensate loss from
microphysical processes. In words, this means that if clouds are dissipating, the precipitation
efficiency is the rate of precipitation divided by the loss of condensate from precipitation and
evaporation within clouds; CMPE = Ps/(Ps+SOqv). If clouds are forming, the precipitation
efficiency is the rate of precipitation divided by the rate of condensate formation. Many other
definitions of PE in the literature exhibit the same reliance on microphysical parameters, as
they have been developed for cloud-resolving models where these parameters are available
(Sui, Satoh, et al. 2020).

The definition of CMPE in Equation 6.4 is difficult to apply to observational data due to
its reliance on the microphysical rates of condensate production and loss within the cloud,
SIqv and SOqv. Sui, Li, et al. (2007) present the large-scale precipitation efficiency (LSPE)
as an alternative that depends only on macroscopic quantities. The LSPE is defined based
on the surface rainfall equation (Gao et al. 2005), and reads

LSPE = Ps

[
(−dqv

dt
) + (CONVqv) + (QE) + (CONVC − dC

dt
)
]−1

(6.2)

where, importantly, terms in parentheses in the denominator are only included if they are
positive. In words, this equation says that PE is defined by the amount of water entering the
column as vapor compared with the amount of precipitation formed from that vapor. This
definition of LSPE is attractive because it correlates closely with CMPE, can be derived
from macro-scale quantities only, and has values ranging between zero and unity as one
would intuitively expect for an efficiency. Unfortunately, this definition fails for reanalysis
data because water vapor is not conserved; the nudging terms artificially add and remove
water vapor from grid cells to force agreement between the reanalysis and the observed
satellite radiances (Hersbach et al. 2020), and this leads to unphysical values of LSPE that
are especially severe at sub-daily timescales like those in our dataset.

Recently, Li, Studholme, et al. (2022) put forth an alternative macroscopic definition of
the precipitation efficiency, which they define as

ϵ =
Ps

CWP
(6.3)
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where Ps is the surface precipitation and CWP is the condensed water path. Those authors
show that this definition of PE correlates tightly with microphysical PE in a cloud-resolving
model. We adopt ϵ as our working definition of PE for the analysis presented here for
the following reasons. First, Equation 6.3 can be calculated from NEXRAD and GOES
alone, meaning we can observe its value at the dataset’s native ∼8-km and hourly resolution.
Second, the observational estimates of ϵ can be compared directly with the ERA-5 reanalysis,
which also reports condensate path and precipitation. Third, values of ϵ remain meaningful
both within a precipitating cloud at short timescales and in a statistically-averaged sense over
months to years. Probability density functions of ϵ over our entire study domain are shown
in Figure 6.6, calculated hour-by-hour for regions of nonzero precipitation (right panel), and
as a temporal mean over both precipitating and non-precipitating times (left panel). In this
exploratory study, we compute ϵ for only two months of data, January 2019 and July 2019.
The choice of a midsummer month and a midwinter month permits us to make tentative
inferences about the differences between the mesoscale convective complexes that dominate
summertime precipitation and the baroclinic waves that dominate wintertime precipitation
over the CONUS. Future work should expand this analysis to consider the entire time domain
of our dataset.

The time-mean values in July are in good agreement between GOES/NEXRAD, ERA-5,
and the tropical, annual-mean satellite data of Li, Studholme, et al. (2022), which displays
most probable PE values of 4−8×10−4 s−1. However, ERA-5 does not make enough low-PE
regions in January, even though the most probable values of ϵ are near the same between
observations and reanalysis. ERA-5 and NEXRAD/GOES both find larger average PE values
in July than in January. In precipitating regions and at hourly cadence, PE is much higher in
both calculations: limiting the analysis to precipitating regions removes all non-precipitating
clouds from the denominator of Equation 6.3. The spread in PE is large and inclusive of
efficiencies approaching 1 s−1 in the hourly data; however, the precipitation efficiencies in
ERA-5 are systematically far lower than in NEXRAD/GOES. As shown in Section 6.3, this
discrepancy is likely driven by two factors: our super-resolution regridding of ERA-5, and the
convective and microphysics parameterizations within ERA-5. The hourly ϵ values we derive
from GOES/NEXRAD are of the same order of magnitude, albeit somewhat larger, than
those calculated from TRMM satellite cloud and precipitation data over the tropical ocean
at quarter-degree resolution by Lau et al. (2003); the discrepancy is again likely explicable
by differences in spatial resolution.

In Figures 6.7 and 6.8, we plot PE as a function of 2-meter temperature and surface
equivalent potential temperature (θe sfc), respectively. We computed θe sfc according to the
formulation of Bolton (1980), using the ERA-5 2-meter temperature and 2-meter dew-point
temperature as inputs. θe sfc is closely related to the moist static energy, and provides a
more complete view of the effects of warming an air parcel than near-surface temperature
(Song et al. 2022). Dew-point temperature has also been shown to correlate with extreme
precipitation based on gauge observations (Ali et al. 2018). Therefore, we consider θe sfc a
more useful independent variable for this analysis than 2-meter temperature. We still include
the correlation between ϵ and 2-meter temperature for direct comparison with the results of
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Figure 6.6: (Left:) Time-mean and (Right:) hourly probability distribution function of
PE from ERA-5 and GOES/NEXRAD over our study region in (Top:) January 2019 and
(Bottom:) July 2019.
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Figure 6.7: GOES/NEXRAD PE plotted against two-meter temperature at (Left:) time-
mean and (Right:) hourly cadence over our study region in (Top:) January 2019 and (Bot-
tom:) July 2019. The blue data points denote the satellite-derived annual-mean ϵ values in
the Indo-Pacific warm pool from Li, Studholme, et al. (2022).

Li, Studholme, et al. (2022).
We tested for regional differences in PE by splitting our dataset according to Köppen-

Geiger climate class (as delineated by Peel et al. 2007); this analysis is presented in Figure
6.9. No significant difference is found between the five regions in summer, but in winter, the
tropical Savannah climate region displays substantially higher precipitation efficiencies than
the other climate classes.
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Figure 6.8: GOES/NEXRAD PE plotted against surface equivalent potential temperature
at (Left:) time-mean and (Right:) hourly cadence over our study region in (Top:) January
2019 and (Bottom:) July 2019.
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Figure 6.9: Cumulative distribution function of hourly PE from the GOES/NEXRAD data,
split into the five Köppen-Geiger climate classes present in our study region for (Left:)
January 2019 and (Right:) June 2019.

6.5 Discussion

Precipitation Efficiency

Li, Studholme, et al. (2022) propose ϵ as a metric for evaluating the representation of cloud
and precipitation processes within climate models, since ϵ depends sensitively on cloud mi-
crophysics parameterizations, but can be calculated easily from large-scale fields. Those
authors find a wide range of mean values of dϵ/d∆T in the Coupled Model Intercomparison
Project Phase 6 (CMIP6) ensemble, ranging from -7% to 12%. The positive correlation of
ϵ with both near-surface temperature and equivalent potential temperature we find is in
agreement with the correlation from Li, Studholme, et al. (2022) observed over the Indo-
Pacific warm pool, and persists over a much larger temperature range than those authors
probed. This positive correlation is in line with theoretical expectations. PE should be
higher within convective aggregations because precipitation is falling through high-humidity
columns, inhibiting re-evaporation, and since convective aggregation prefers warmer near-
surface temperatures (Bao et al. 2017; Wing et al. 2017), this should lead to high PE at
high T. Large eddy simulations have shown that moisture entrained into a cloud through the
cloud base is twice as likely to precipitate as moisture entrained laterally (Langhans et al.
2015), raising PE in deep convective towers where vertical moisture transport is large. Given
these considerations, the regional difference in wintertime precipitation efficiency between
the tropical Savannah and the other K-G classes is expected, as the surface temperatures are
consistently warm in this zone (the tropical Savannah climate is only found in the southern
half of Florida in our study region). However, the relatively small areal extent of tropical
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Savannah in the CONUS means this result should be treated with caution. The lack of any
trends with climate class in July is sensible, considering that summer extreme precipitation
is driven primarily by deep convection over most of the Eastern and Midwestern CONUS
(Schumacher et al. 2006; Stevenson et al. 2014). Future studies of PE as a function of storm
type should be undertaken to test whether the temperature dependence is related only to
the proportion of rainfall in convective aggregates, or whether PE depends on equivalent
potential temperature for two different storms with similar morphological characteristics.
Lau et al. (2003) suggest that PE in warm light rain from stratiform clouds over the tropical
oceans displays strong sensitivity to sea-surface temperature, but it is unclear whether the
same relationship would hold over land.

Unlike other PE definitions, which are mostly non-dimensional, the definition of ϵ has
units of inverse time, and a timescale τ = 1/ϵ can be defined. Li, Studholme, et al. (2022)
interpret τ as the characteristic residence time of condensate in the atmosphere before either
precipitating or evaporating, and show its utility as a metric for the latent heat budget in
the atmosphere. Within a precipitating cloud, τ is related to the autoconversion timescale
1/C0, which is defined as the characteristic timescale for the conversion of cloud droplets to
raindrops (Lau et al. 2003). Those authors calculate C0 from LWP and Ps using a simple
parameterization scheme used in climate models (Sundqvist et al. 1989), given by

Ps = C0(LWP)
[
1− exp

(
− (LWP)2

m2
r

)]
(6.4)

where mr is the typical value of cloud water content beyond which the collision-coalescence
autoconversion of cloud drops to raindrops becomes substantial. In practice, mr is tuned to
fit observational data, and Lau et al. (2003) give a best-fitting value for warm rain (rain from
liquid-phase clouds) of mr = 0.7 kg m−2. Using this value of mr, we find a most-probable au-
toconversion timescale of roughly 10 minutes (600 seconds), in line with the range of 200-1000
seconds published by Lau et al. (2003). The largest precipitation efficiencies, and therefore
autoconversion timescales, in our dataset exceed those of Lau et al. (2003), who find typical
values of τ ∼ 5 minutes for the most intense precipitation events in their data. However,
their quarter-degree resolution is insufficient to resolve individual convective cells. Further
work is needed to understand whether ϵ can be applied näıvely to very intense convective
rainfall, or if the short convergence and advection timescales complicate the interpretation
of τ .

Leveraging the Dataset to Prognose Extremes in a Changing
Climate

The climate science community has put substantial effort and resources into improving pre-
dictions of how precipitation and its extremes will change in a warmer climate in the next
hundred years (see, e.g, Fowler et al. 2021, for a recent review). These efforts include theoret-
ical studies of how well the Clausius-Clapeyron (CC) relation should be followed in extreme
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storms (e.g., Trenberth et al. 2003), direct measurement of trends in extreme precipitation
from observations (e.g., Guerreiro et al. 2018), and analysis of extremes in regional and global
climate models. Models disagree on the details of how extremes will change in a warmer
climate. Large model spreads are present in predicted regional sensitivities of extremes to
global warming, especially in the tropics and during extratropical summer, when deep con-
vective precipitation is prevalent (Akinsanola et al. 2020; Ge et al. 2021; Toreti et al. 2013).
The unique combination of data we present in this paper can be leveraged to improve these
predictions in several ways, which we discuss briefly below.

The dataset presented here can be used to construct probabilistic (statistical) downscal-
ing relationships. In contrast with dynamical downscaling, in which a smaller-scale but more
detailed model is nested within a GCM, probabilistic downscaling links the local scale to the
GCM scale using transfer functions calibrated by observed high-resolution data, permitting
the inference of local-scale conditions from synoptic-scale model data (see Kallache et al.
2011, for a review). The inclusion of both ERA-5 precipitation estimates (31-km resolution)
and NEXRAD precipitation measurements (8-km resolution) permits the use of model out-
put statistics (MOS) downscaling techniques to infer sub-grid rainfall. Similarly, an MOS
technique could be used to infer cloud condensate path at the subgrid scale. The large range
of synoptic-scale environments and long time baseline of our observations will facilitate the
construction of detailed conditional PDFs to apply to these downscaling transfer functions.
These statistical downscaling relationships can be applied to generate synthetic weather in a
process known as stochastic weather generation (see Wilks et al. 1999, for a review). Weather
generators are used in several fields of research, including agriculture, hydrology, and climate
vulnerability assessment, but most stochastic weather generators to date are conditioned on
daily data only (e.g., Breinl et al. 2017; Evin et al. 2018; Sparks et al. 2018; Steinschneider
et al. 2019); our dataset fills a need for hourly data on which to condition those models.

This dataset is designed in parallel to parameterizations for clouds and precipitation in
Earth system models (ESMs). In ESMs, the physics of clouds and rainfall processes typi-
cally operate on horizontal spatial scales much smaller than the spatial grid onto which the
Euler equations governing the atmosphere are discretized. Because of the scale mismatch,
it is not possible to represent this physics explicitly, and therefore statistical models cali-
brated against observations are introduced to mimic the emergent behavior of the cloud and
precipitation physics in response to the evolving simulated atmospheric state. In our data
set, all three components are replaced by observations: the simulated state with reanalysis,
the parameterized clouds with cloud properties retrieved from GOES, and the rainfall from
NEXRAD.

Precisely because our dataset has all the requisite components of parameterizations in
ESMs, the next stage of research with it will be to construct a stochastic cloud and rainfall
parameterization. Parameterizations that respond stochastically rather than deterministi-
cally to the resolved-scale atmospheric state better represent the scaling symmetries of the
equations of motion (Palmer 2019). One such class of stochastic models are (hidden) Markov
Models (MMs and HMMs), and there has already been considerable success with emulating
rainfall using HMMs (e.g. Holsclaw et al. 2016). Our plan is to use this stochastic model



CHAPTER 6. A STORM-RESOLVING DATA SET FOR DEVELOPMENT OF
NEXT-GENERATION PARAMETERIZATIONS 150

to predict rainfall under temperature increases anticipated under a range of IPCC scenarios
by 2100. The physical principle underlying this prediction is the Fluctuation Dissipation
Theorem (FDT) from statistical physics, which has been proposed as a general mechanism
to predict the forced response of a dynamical system based on its unforced internal modes of
variability (Leith 1975). There have been several successful demonstrations of FDT to the
climate system (e.g. Gritsun et al. 2007), although the assumption of Gaussian statistics un-
derlying these demonstrations has hampered application to, in particular, critical unsolved
questions regarding the sensitivity of the Earth system to increasing CO2. Our adoption of
a general HMM framework obviates these limitations. Moreover, it has recently been shown
that MMs and therefore HMMs are subject to a discretized version of the FDT (Dembo et al.
2010; Santos Gutiérrez et al. 2020). We will try constructing an HMM of our data set and
test its response to several natural “forcings” that have occurred several times in the recent
past, namely coupled modes of internal variability driven by physics external to the spatial
domain of our data set, e.g. the El Niño Southern Oscillation (ENSO). If FDT is successful
in emulating the mean response of rainfall to ENSO etc., we will then compute the response
of rainfall to a continuously warming land surface. The advantage of this approach relative
to traditional climate projections is that our projection is entirely and rigorously grounded
in observations – the primary assumption is that the physics of clouds and rainfall and their
connections to resolved-scale meteorology is persistent under such warming.

6.6 Conclusions

We have presented a new combination of data for the analysis of storms at their native scales.
The dataset’s 8-km and hourly spatio-temporal resolution over a subcontinental and decadal
domain make it a multipurpose tool for studying the properties of storms in the current
climate and diagnosing model representation of storms. Our conclusions are summarized as
follows:

• The dataset presented herein compiles observed cloud, precipitation, and reanalysis
fields at storm-relevant length and time scales, and over a synoptic-scale and decade-
length domain.

• Observational cloud and precipitation data are imperative for correctly capturing ex-
treme storm behavior at hourly timescales; reanalysis data are not sufficient for this
purpose.

• The positive dependence of precipitation efficiency on surface temperature previously
observed over the tropical ocean also holds in the mid-latitudes over land, and across
a wide range of temperatures in both the warm and cold seasons.

• Our analyses of precipitation IDF and precipitation efficiency can be used as benchmark
metrics for current and future GCMs and GCRMs.
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Chapter 7

Conclusions & Future Work

This dissertation has focused on interpreting remote-sensing data with radiative transfer
models in order to advance our knowledge of the atmospheres of Earth, Uranus, and Neptune.
In the first few chapters, I called upon theory and intuition developed for Earth’s atmosphere
to interpret new high-resolution, multi-wavelength observations of the ice giants. In the latter
half of the thesis, I performed statistical analyses of extreme storms in Earth’s extratropics,
with an eye toward understanding the effects of climate change on extreme precipitation
events. The primary results of each chapter, along with open research questions posed by
that chapter, are summarized briefly below. I close with a short discussion of future work
to be undertaken by the climate science and planetary science communities as a whole.

In Chapter 2, I reported the discovery of a large, long-lived storm system on Neptune,
the first of its size ever recorded in Neptune’s predominantly quiescent equatorial region.
The storm’s morphology and persistent activity over a ∼7-month period were reminiscent of
Saturn’s great storms. Feature tracking and radiative transfer modeling permitted determi-
nation of the storm’s drift rate and cloud-top pressure, respectively; these parameters, along
with the absence of a dark-spot vortex at Neptune’s equator in Hubble Space Telescope op-
tical images, represented key observational constraints on the storm’s dynamical origin. The
storm outbreak was hypothesized to stem from moist convective upwelling, but an equatorial
Kelvin wave could not be ruled out as the dynamical origin. Additional theoretical work is
needed to understand the dynamics of these rare storm events; it remains to be understood
whether the Li and Ingersoll (2015) model for Saturn’s episodic storms would also work on
the ice giants, and if so, how a convective storm at the water layer in the deep atmosphere
would affect the more readily-observed H2S and CH4 cloud layers.

Chapter 3 describes the first detection of the thermal component of the narrow main
rings of Uranus. Near-simultaneous observations at mid-infrared wavelengths with the Very
Large Telescope and millimeter wavelengths with the Atacama Large (sub-)Millimeter Array
permitted a precise measurement of the ring particle temperature in the ϵ ring. The derived
temperature of 77 ± 2 K suggests that the particles’ thermal inertia is small enough (and
rotation rate slow enough) to induce longitudinal temperature differences between their day
and night sides, in line with the behavior of large particles in Saturn’s rings. Currently-
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available ground-based millimeter and radio instrumentation has the capability to separate
each of the nine inner main rings and perform these same measurements, as well as to measure
the thermal component of Uranus’s small and mid-sized moons. Future research should focus
on using measurements like these to determine whether Uranus’s circumplanetary material
was sourced from a circumplanetary disk at formation, ejecta from a giant impact, or a
combination of the two.

The millimeter and radio maps of Uranus’s troposphere presented in Chapter 4 reveal
banded structure near the equator of Uranus. I interpreted these bright and dark bands as
alternating subsiding and upwelling regions, the result of a global circulation akin to the
Hadley-Walker circulation on Earth. Radiative transfer modeling of the H2S-rich middle lat-
itudes and the H2S-depleted north polar vortex permitted precise measurements of the H2S
and NH3 abundances in Uranus, the pressure level of the NH4SH condensate cloud, and the
nitrogen-to-sulfur ratio. I found that ratio to be 0.2+0.08

−0.07, approximately 25 times lower than
the protosolar value. At present, it is difficult to confirm or refute any of the competing theo-
ries that attempt to explain this strong nitrogen depletion; the two primary explanations are
strong selective fractionation during the formation of clathrated water ice in the cold proto-
planetary disk, or dissolution of nitrogen-bearing species into a superionic fluid H2O “ocean”
in Uranus’s deep interior. Answering this question requires measurements of other elemental
abundances in Uranus’s troposphere, which can only be achieved by an atmospheric entry
probe launched aboard a spacecraft. From the ground, though, future radio observatories
like the next-generation Very Large Array (ngVLA) should leverage their increased sensi-
tivity and resolution to unambiguously determine the absorbing species responsible for the
banded structure I observed, and make use of their sensitivity to wavelengths longer than
10 cm to further tighten measurements of bulk abundances beneath the NH4SH layer.

In Chapter 5, the first of two chapters focused on the statistics of extratropical extreme
storms on Earth, I used Doppler radar rainfall data to test the assumption, often used when
constructing gauge-based quantitative precipitation estimates (QPEs), that the climatology
of extremes varies only minimally at length scales smaller than the average inter-rain-gauge
spacing. I showed that this assumption does indeed hold, but only if the interpolation
technique one uses to represent rain gauge data on a regular grid accounts for extremes in
the appropriate manner. This result facilitates extending gridded QPEs back in time to
the early 1900s when gauges were the only reliable precipitation estimates, and thus paves
the way for creating an accurate, continental-scale, in-situ-based, long-term precipitation
record. Such a product is of keen interest for hydrological modeling, resource management,
and climate change studies, and future work should prioritize the construction and evaluation
of such a dataset.

Chapter 6 presented a new dataset for characterizing storms at ∼8-km and hourly res-
olution over the Eastern and Midwestern United States from 2002-2020. I used probability
density functions and intensity-duration-frequency curves of the cloud and precipitation data
to demonstrate the advantage of using radar-observed precipitation and satellite-observed
cloud fields instead of reanalysis alone, especially in capturing the intensity of extremes. As
an advertisement for the unique capabilities of this particular data combination, I presented
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new analysis of the precipitation efficiency and its associated condensate residence times over
a wide range of synoptic-scale conditions. The first non-hydrostatic global cloud-resolving
models (GCRMs) are now in operation, albeit only over relatively short integrations (<1
simulated year), and the exquisite spatio-temporal resolution of this dataset, along with the
metrics we publish, are ideal for evaluating the fidelity of extremes in these GCRMs. How-
ever, these comparisons have yet to be carried out, and future work should prioritize this.
This combination of observational data sources also hints at novel data-driven approaches
to predicting the behavior of extreme weather events under climate change conditions.

Recent and planned advances in technology continue to push atmospheric sciences for-
ward, both on Earth and in the rest of the solar system. Terrestrial climate science must
leverage these advances to address one of humanity’s most pressing problems—an atmosphere
warming under the influence of anthropogenic greenhouse gases. With this societal need as a
driver, the climate science community has continued to improve the resolution, complexity,
and physical realism of global circulation models. This dissertation laid the groundwork for
evaluating the fidelity of such high-resolution models using observational data, especially
their representation of extratropical extremes. Much more work is required, though, before
accurate predictions of how storms will change in a warming climate are available.

Studies of the ice giants have also been prioritized by the scientific community recently:
NASA’s Planetary Decadal Survey 2023-2032 (National Academies of Sciences et al. 2022)
identified a Uranus mission as its highest-priority flagship mission for the next decade. Such
a mission will resolve fundamental questions about the conditions of the protoplanetary disk
during planetesimal formation, the migration and bombardment history of protoplanets, the
origin and history of the circumplanetary environment (including the diffuse outer rings),
and the structure and dynamics of ice giant atmospheres. To maximize the scientific return
of such a mission requires making as much progress as possible using existing observatories,
and this dissertation represents a small piece of that progress. With a flagship mission on
the horizon, the next few decades promise a revolution in our understanding of the outer
solar system; there are nearly limitless questions to answer.
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