
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
System-Aware Optimization for Machine Learning at Scale

Permalink
https://escholarship.org/uc/item/20n1k4q8

Author
Smith, Virginia

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/20n1k4q8
https://escholarship.org
http://www.cdlib.org/

System-Aware Optimization for Machine Learning at Scale

by

Virginia Smith

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Co-chair
Professor David Culler, Co-chair

Professor Benjamin Recht
Assistant Professor Joan Bruna

Summer 2017

System-Aware Optimization for Machine Learning at Scale

Copyright 2017
by

Virginia Smith

1

Abstract

System-Aware Optimization for Machine Learning at Scale

by

Virginia Smith

Doctor of Philosophy in Computer Science
and the Designated Emphasis in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor David Culler, Co-chair

New computing systems have emerged in response to the increasing size and complexity
of modern datasets. For best performance, machine learning methods must be designed to
closely align with the underlying properties of these systems.

In this thesis, we illustrate the impact of system-aware machine learning through the
lens of optimization, a crucial component in formulating and solving most machine learning
problems. Classically, the performance of an optimization method is measured in terms of
accuracy (i.e., does it realize the correct machine learning model?) and convergence rate
(after how many iterations?). In modern computing regimes, however, it becomes critical to
additionally consider a number of systems-related aspects for best overall performance. These
aspects can range from low-level details, such as data structures or machine specifications,
to higher-level concepts, such as the tradeoff between communication and computation.

We propose a general optimization framework for machine learning, CoCoA, that gives
careful consideration to systems parameters, often incorporating them directly into the
method and theory. We illustrate the impact of CoCoA in two popular distributed regimes:
the traditional cluster-computing environment, and the increasingly common setting of on-
device (federated) learning. Our results indicate that by marrying systems-level parameters
and optimization techniques, we can achieve orders-of-magnitude speedups for solving mod-
ern machine learning problems at scale. We corroborate these empirical results by providing
theoretical guarantees that expose systems parameters to give further insight into empirical
performance.

i

To my family

ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Contributions . 2
1.2 Related Work . 3
1.3 Organization . 6

2 CoCoA Framework 7
2.1 Notation . 7
2.2 Duality . 8
2.3 Assumptions and Problem Cases . 9
2.4 Running Examples . 9
2.5 Data Partitioning . 10
2.6 Method . 11
2.7 CoCoA in the Primal . 14
2.8 CoCoA in the Dual . 14
2.9 Primal vs. Dual . 15
2.10 Interpretation . 15
2.11 Comparison to ADMM . 17

3 Applications 19
3.1 Smooth `, Strongly Convex r . 19
3.2 Smooth `, Non-strongly Convex r . 21
3.3 Non-smooth `, Strongly Convex r . 22
3.4 Local Solvers . 23

4 Evaluation 25
4.1 Details and Setup . 25

4.1.1 Methods for Comparison . 26

iii

4.2 Comparison to Other Methods . 28
4.2.1 CoCoA in the Primal . 28
4.2.2 CoCoA in the Dual . 31

4.3 Properties . 32
4.3.1 Primal vs. Dual . 32
4.3.2 Effect of Communication . 33
4.3.3 Subproblem Parameter . 34

5 Theoretical Analysis 35
5.1 Preliminaries . 35

5.1.1 Conjugates . 35
5.1.2 Primal-Dual Relationship . 36
5.1.3 Primal-Dual Relationship . 36

5.2 Convergence . 39
5.2.1 Proof Strategy: Relating Subproblem Approximation to Global Progress 39
5.2.2 Rates for General Convex gi, L-Lipschitz g∗i 40
5.2.3 Bounded support modification . 40
5.2.4 Rates for Strongly Convex gi, Smooth g∗i 41
5.2.5 Convergence Cases . 42
5.2.6 Recovering Earlier Work as a Special Case 42
5.2.7 Local Subproblems . 43
5.2.8 Approximation of OA(·) by the Local Subproblems Gσ′

k (·) 43
5.2.9 Proof of Convergence Result for General Convex gi 44
5.2.10 Proof of Convergence Result for Strongly Convex gi 51

6 Extension: Federated Learning 54
6.1 Introduction . 54

6.1.1 Contributions . 55
6.2 Related Work . 55
6.3 Federated Multi-Task Learning . 57

6.3.1 Preliminaries . 57
6.3.2 General Multi-Task Learning Setup 58
6.3.3 Mocha: A Framework for Federated Multi-Task Learning 58
6.3.4 Federated Update of W . 59
6.3.5 Practical Considerations . 61

6.4 Convergence Analysis . 62
6.5 Simulations . 63

6.5.1 Federated Datasets . 63
6.5.2 Multi-Task Learning for the Federated Setting 64
6.5.3 Straggler Avoidance . 65
6.5.4 Tolerance to Dropped Nodes . 67

6.6 Multi-Task Learning . 68

iv

6.6.1 Multi-Task Learning Formulations . 68
6.6.2 Strong Convexity of MTL Regularizers 70
6.6.3 Optimizing Ω in MTL Formulations 70

6.7 Convergence Analysis . 71
6.7.1 Convergence Analysis for Smooth Losses 73
6.7.2 Convergence Analysis for Lipschitz Losses: Proof for Theorem 13 . . 74

6.8 Choosing σ′ . 74
6.8.1 The Role of Aggregation Parameter γ 75

6.9 Simulation Details . 76
6.9.1 Datasets . 76
6.9.2 Multi-Task Learning with Highly Skewed Data 76
6.9.3 Implementation Details . 77

7 Conclusion 80

Bibliography 81

v

List of Figures

4.1 Suboptimality in terms of OA(α) for fitting a lasso regression model to four
datasets: url (K=4, λ=1e-4), kddb (K=4, λ=1e-6), epsilon (K=8, λ=1e-5), and
webspam (K=16, λ=1e-5) datasets. CoCoA applied to the primal formulation
converges more quickly than all other compared methods in terms of the time in
seconds. 28

4.2 Suboptimality in terms of OA(α) for fitting a lasso regression model to the epsilon
dataset (left, K=8) and an elastic net regression model to the url dataset, (right,
K=4, λ=1e-4). Speedups are robust over different regularizers λ (left), and across
problem settings, including varying η parameters of elastic net regularization (right). 29

4.3 For pure L1 regularization, Nesterov smoothing is not an effective option for
CoCoA in the dual. It either slows convergence (as shown in the plot above), or
modifies the solution (as shown in Table 4.2). This motivates running CoCoA
instead on the primal for these problems. 30

4.4 Suboptimality in terms of OB(w) for fitting a hinge-loss support vector machine
model to various datasets: url (K=4, λ=1e-4), kddb (K=4, λ=1e-6), epsilon
(K=8, λ=1e-5), and webspam (K=16, λ=1e-5). CoCoA applied to the dual
formulation converges more quickly than all other compared methods in terms of
the time in seconds. 31

4.5 The convergence of CoCoA in the primal versus dual for various values of η in
an elastic net regression model. CoCoA in dual performs better on the epsilon
dataset, where the training point size is the dominating term, and CoCoA in
the primal performs better on the webspam dataset, where the feature size is the
dominating term. In both datasets, CoCoA in the dual performs better as the
problem becomes more strongly convex (η → 0), whereas CoCoA in the primal
is robust to changes in strong convexity. 32

4.6 Suboptimality in terms of OA(α) for fitting a lasso regression model to the web-
spam dataset (K=16, λ=1e-5). Here we illustrate how the work spent in the
local subproblem (given by H) influences the total performance of CoCoA in
terms of number of rounds as well as wall time. 33

vi

4.7 The effect of the subproblem parameter σ′ on convergence of CoCoA for the
RCV1 dataset distributed across K=8 machines. Decreasing σ′ improves per-
formance in terms of communication and overall run time until a certain point,
after which the algorithm diverges. The “safe” upper bound of σ′:=K=8 has only
slightly worse performance than the practically best “un-safe” value of σ′. 34

6.1 The performance of Mocha compared to other distributed methods for the W
update of (6.4). While increasing communication tends to decrease the perfor-
mance of the mini-batch methods, Mocha performs well in high communication
settings. In all settings, Mocha with varied approximation values, Θh

t , performs
better than without (i.e., naively generalizing CoCoA), as it avoids stragglers
from statistical heterogeneity. 66

6.2 The performance of Mocha relative to other methods is robust to variability
from systems heterogeneity (resulting from differences between nodes in terms of,
e.g., hardware, network connection, or power). We simulate this heterogeneity
by enforcing either high or low variability in the number of local iterations for
Mocha and the mini-batch size for mini-batch methods. 67

6.3 The performance of Mocha is robust to nodes periodically dropping out (fault
tolerance). As expected, however, the method will fail to converge to the correct
solution if the same node drops out at each round (i.e., ph1 := 1 for all h, as shown
in the green-dotted line). 68

vii

List of Tables

2.1 Criteria for objectives (A) and (B). 9
2.2 Criteria for running Algorithm 2 vs. Algorithm 3. 15

3.1 Common losses and regularizers. 19

4.1 Datasets for empirical study. 26
4.2 The sparsity of the final iterate is affected by Nesterov smoothing (i.e., adding

a small amount of strong convexity δ‖α‖2
2 to the objective for lasso regression).

As δ increases, the convergence improves (as shown in Figure 4.3), but the final
sparsity does not match that of pure L1-regularized regression. 30

5.1 Applications of convergence rates. 42

6.1 Average prediction error: Means and standard errors over 10 random shuffles. . . 65
6.2 Federated datasets for empirical study. 76
6.3 Skewed datasets for empirical study. 76
6.4 Average prediction error for skewed data: Means and standard errors over 10

random shuffles. 77

viii

Acknowledgments

First and foremost, I would like to thank my advisors, Michael Jordan and David Culler.
They have been exemplars of curious and committed researchers, enthusiastic teachers, and
encouraging mentors. I am extremely grateful for the many opportunities they have afforded
me and for the exceptional research environment they cultivated during my graduate studies.
I would also like to thank the remaining members of my committee, Benjamin Recht and
Joan Bruna, for their helpful advice and support.

It has been a pleasure to be part of several labs at Berkeley, including the AMPLab, SAIL,
and LoCal/SDB. Within these groups, I have had the fortune of working with many great
collaborators, including but not limited to: Sanjay Krishnan, Xinghao Pan, Evan Sparks,
and Jay Taneja. Special thanks to Evan and Shivaram Venkataraman for their friendship
and indispensable help with Spark, and to Jonathan Terhorst, Adam Bloniarz, and Sara
Alspaugh for their cookies, friendship, and humor. I am particularly grateful to Isabelle
Stanton for her mentorship during my internship at Google. Additional thanks to Kattt
Atchley, Jon Kuroda, Audrey Sillers, Shirley Salanio, and all of the amazing EECS staff who
were always there to help.

I have also had the opportunity to work with many excellent collaborators beyond Berkeley,
including Martin Jaggi, Martin Takáč, Chenxin Ma, Simone Forte, Jakub Konečný, Peter
Richtárik, Thomas Hofmann, Ameet Talwalkar, Chao-Kai Chiang, and Maziar Sanjabi. The
work in this thesis is a product of these fruitful collaborations.

My involvements with WICSE and the Women in Technology Round Table have been some of
the most rewarding in my PhD. Thank you to Gitanjali Swamy, Tsu-Jae King Liu, Camille
Crittenden, Jo Yuen, and the members of WICSE for your support, collaboration, and
continued commitment to strengthening the presence of women in tech. Thank you especially
to Sheila Humphreys for your unwavering resolve, quick wit, and warm encouragement.

Finally, I would like to thank my family and friends, who are a constant source of support
and inspiration. I am especially grateful to my parents, my brothers and their families,
CHCM, and my wonderful husband Ameet. This thesis was possible only as a result of their
love and encouragement.

1

Chapter 1

Introduction

Distributed computing architectures have come to the fore in modern machine learning, in
response to the challenges arising from a wide range of large-scale learning applications.
Distributed architectures offer the promise of scalability by increasing both computational
and storage capacities. A critical challenge in realizing this promise of scalability is to de-
velop efficient methods for communicating and coordinating information between distributed
machines, taking into account the specific needs of machine-learning algorithms.

On most distributed systems, the communication of data between machines is vastly
more expensive than reading data from main memory and performing local computation.
Moreover, the optimal trade-off between communication and computation can vary widely
depending on the dataset being processed, the system being used, and the objective be-
ing optimized. It is therefore essential for distributed methods to accommodate flexible
communication-computation profiles while still providing convergence guarantees.

Although numerous distributed optimization methods have been proposed, the mini-
batch optimization approach has emerged as one of the most popular paradigms for tackling
this communication-computation tradeoff [cf. 72, 79, 83, 90]. Mini-batch methods are often
developed by generalizing classical stochastic methods to process multiple data points at a
time, which helps to alleviate the communication bottleneck by enabling more distributed
computation per round of communication. However, while the need to reduce communication
would suggest large mini-batch sizes, the theoretical convergence rates of these methods
degrade with increased mini-batch size, reverting to the rates of classical (batch) gradient
methods. Empirical results corroborate these theoretical rates, and in practice, mini-batch
methods have limited flexibility to adapt to the communication-computation tradeoffs that
would maximally leverage parallel execution. Moreover, because mini-batch methods are
typically derived from a specific single-machine solver, these methods and their associated
analyses are often tailored to specific problem instances and can suffer both theoretically
and practically when applied outside of their restricted problem setting.

In this thesis, we propose a framework, CoCoA, that addresses these two fundamental
limitations. First, we allow arbitrary local solvers to be used on each machine in parallel.
This allows our framework to directly incorporate state-of-the-art, application-specific single-

CHAPTER 1. INTRODUCTION 2

machine solvers in the distributed setting. Second, we share information between machines
in our framework with a highly flexible communication scheme. This allows the amount
of communication to be easily tailored to the problem and system at hand, in particular
allowing for the case of significantly reduced communication in the distributed environment.

A key step in providing these features in our framework is to first define meaningful
subproblems for each machine to solve in parallel, and to then combine updates from the
subproblems in an efficient manner. Our method and convergence results rely on noting
that, depending on the distribution of the data (e.g., by feature or by training point), and
whether we solve the problem in the primal or the dual, certain machine learning objectives
can be more easily decomposed into subproblems in the distributed setting. In particular,
we categorize common machine learning objectives into several cases, and use duality to
help decompose these objectives. As we demonstrate, using primal-dual information in this
manner not only allows for highly efficient methods (achieving, e.g., up to 50x speedups
compared to state-of-the-art distributed methods), but also allows for strong primal-dual
convergence guarantees and practical benefits such as computation of the duality gap for use
as an accuracy certificate and stopping criterion.

1.1 Contributions
General framework. We develop a communication-efficient primal-dual framework that
is applicable to a broad class of convex optimization problems. Notably, in contrast to
earlier work of [38, 51, 100]; and [53], our generalized, cohesive framework: (1) specifically
incorporates difficult cases of L1 regularization and other non-strongly convex regularizers;
(2) allows for the flexibility of distributing the data by either feature or training point; and
(3) can be run on either a primal or dual formulation, which we show to have significant
theoretical and practical implications.

Flexible communication and local solvers. Two key advantages of the proposed frame-
work are its communication efficiency and ability to employ off-the-shelf single-machine
solvers internally. On real-world systems, the cost of communication versus computation
can vary widely, and it is thus advantageous to permit a flexible amount of communication
depending on the setting at hand. Our framework provides exactly such control. Moreover,
we allow arbitrary solvers to be used on each machine, which permits the reuse of existing
code and the benefits from multi-core or other optimizations therein.

Primal-dual rates. We derive convergence rates for our framework, leveraging a novel
approach in the analysis of primal-dual rates for non-strongly convex regularizers. The
proposed technique is a significant improvement over simple smoothing techniques used in,
e.g., [67, 84] and [110] that enforce strong convexity by adding a small L2 term to the
objective. Our results include primal-dual rates and certificates for the general class of
linear regularized loss minimization, and we show how earlier work can be derived as a
special case of our more general approach.

CHAPTER 1. INTRODUCTION 3

Experimental comparison. The proposed framework yields order-of-magnitude speedups
(as much as 50× faster) compared to state-of-the-art methods for large-scale machine learn-
ing. We demonstrate these performance gains with an extensive experimental comparison on
real-world distributed datasets. We additionally explore properties of the framework itself,
including the effect of running the framework in the primal or the dual. All algorithms for
comparison are implemented in Apache Spark and run on Amazon EC2 clusters. Our code is
open-source and publicly available at: github.com/gingsmith/proxcocoa.

Federated learning. Finally, we explore the framework in various distributed computing
settings, including the nascent area of federated learning, in which the aim is to perform op-
timization over large networks of low-powered devices. We propose an extension to CoCoA,
Mocha, which is ideally suited to handle the unique systems and statistical challenges of the
federated setting. We demonstrate both the superior statistical performance and empirical
speedups of this method through simulations on real-world federated datasets, and provide
a careful theoretical analysis that explores the effect of systems challenges such as stragglers
and fault tolerance on our convergence guarantees.

1.2 Related Work
Single-machine coordinate solvers. For strongly convex regularizers, the current state-
of-the-art for empirical loss minimization is randomized coordinate ascent on the dual (SDCA)
[85] and its accelerated variants [cf. 84]. In contrast to primal stochastic gradient descent
(SGD) methods, the SDCA family is often preferred as it is free of learning-rate parameters
and has faster (geometric) convergence guarantees. Interestingly, a similar trend in coordi-
nate solvers has been observed in the recent literature on the lasso, but with the roles of
primal and dual reversed. For those problems, coordinate descent methods on the primal
have become state-of-the-art, as in glmnet [28] and extensions [105] (cf. the overview in
[106]). However, primal-dual convergence rates for unmodified coordinate algorithms have
to our knowledge only been obtained for strongly convex regularizers to date [84, 110].

Coordinate descent on L1-regularized problems (i.e., (A) with g(·) = λ‖ · ‖1) can be
interpreted as the iterative minimization of a quadratic approximation of the smooth part of
the objective (as in a one-dimensional Newton step), followed by a shrinkage step resulting
from the L1 part. In the single-coordinate update case, this is at the core of glmnet [28,
106], and widely used in solvers based on the primal formulation of L1-regularized objectives
[cf. 12, 27, 82, 91, 105]. When changing more than one coordinate at a time, again employing
a quadratic upper bound on the smooth part, this results in a two-loop method as in glmnet
for the special case of logistic regression. This idea is crucial for the distributed setting.
When the set of active coordinates coincides with the ones on the local machine, these
single-machine approaches closely resemble the distributed framework proposed here.

github.com/gingsmith/proxcocoa

CHAPTER 1. INTRODUCTION 4

Parallel methods. For the general regularized loss minimization problems of interest,
methods based on stochastic subgradient descent (SGD) are well-established. Several vari-
ants of SGD have been proposed for parallel computing, many of which build on the idea of
asynchronous communication [23, 68]. Despite their simplicity and competitive performance
on shared-memory systems, the downside of this approach in the distributed environment
is that the amount of required communication is equal to the amount of data read lo-
cally, since one data point is accessed per machine per round (e.g., mini-batch SGD with a
batch size of one per worker). These variants are in practice not competitive with the more
communication-efficient methods considered in this work, which allow more local updates
per communication round.

For the specific case of L1-regularized objectives, parallel coordinate descent (with and
without using mini-batches) was proposed in [17] (Shotgun) and generalized in [12]; it is
among the best performing solvers in the parallel setting. Our framework reduces to Shotgun
as a special case when the internal solver is a single-coordinate update on the subproblem
(2.10), γ = 1, and for a suitable σ′. However, Shotgun is not covered by our convergence
theory, since it uses a potentially unsafe upper bound of β instead of σ′, which is not
guaranteed to satisfy our condition for convergence (2.11). We compare empirically with
Shotgun in Chapter 4 to highlight the detrimental effects of running this high-communication
method in the distributed environment.

One-shot communication schemes. At the other extreme, there are methods that use
only a single round of communication [cf. 57, 62, 109, 112, 32]. These methods require
additional assumptions on the partitioning of the data, which are usually not satisfied in
practice if the data are distributed “as is”, i.e., if we do not have the opportunity to distribute
the data in a specific way beforehand. Furthermore, some cannot guarantee convergence rates
beyond what could be achieved if we ignored data residing on all but a single computer, as
shown in [86]. Additional relevant lower bounds on the minimum number of communication
rounds necessary for a given approximation quality are presented in [8] and [7].

Mini-batch methods. Mini-batch methods (which use updates from several training
points or features per round) are more flexible and lie within the two extremes of paral-
lel and one-shot communication schemes. However, mini-batch versions of both SGD and
coordinate descent (CD) (e.g., [72, 79, 83, 90]) suffer from their convergence rate degrading
towards the rate of batch gradient descent as the size of the mini-batch is increased. This
follows because mini-batch updates are made based on the outdated previous parameter
vector w, in contrast to methods that allow immediate local updates like CoCoA.

Another disadvantage of mini-batch methods is that the aggregation parameter is more
difficult to tune, as it can lie anywhere in the order of mini-batch size. The optimal choice
is often either unknown or too challenging to compute in practice. In the CoCoA frame-
work there is no need to tune parameters, as the aggregation parameter and subproblem
parameters can be set directly using the safe bound discussed in Chapter 2 (Definition 5).

CHAPTER 1. INTRODUCTION 5

Batch solvers. ADMM [16], gradient descent, and quasi-Newton methods such as L-BFGS
and are also often used in distributed environments because of their relatively low commu-
nication requirements. However, they require at least a full (distributed) batch gradient
computation at each round, and therefore do not allow the gradual trade-off between com-
munication and computation provided by CoCoA. In Chapter 4, we include experimental
comparisons with ADMM, gradient descent, and L-BFGS variants, including orthant-wise
limited memory quasi-Newton (OWL-QN) for the L1 setting [3].

Finally, we note that while the convergence rates provided for CoCoA mirror the con-
vergence class of classical batch gradient methods in terms of the number of outer rounds,
existing batch gradient methods come with a weaker theory, as they do not allow general
inexactness Θ for the local subproblem (2.10). In contrast, our convergence rates incorporate
this approximation directly, and, moreover, hold for arbitrary local solvers of much cheaper
cost than batch methods (where in each round, every machine has to process exactly a full
pass through the local data). This makes CoCoA more flexible in the distributed setting,
as it can adapt to varied communication costs on real systems. We have seen in Chapter 4
that this flexibility results in significant performance gains over the competing methods.

Distributed solvers. By making use of the primal-dual structure in the line of work of [70,
100, 101, 103] and [48], the CoCoA-v1 and CoCoA+ frameworks (which are special cases of
the presented framework, CoCoA) are the first to allow the use of any local solver—of weak
local approximation quality—in each round in the distributed setting. The practical variant
of the DisDCA [100], called DisDCA-p, allows for additive updates in a similar manner to
CoCoA, but is restricted to coordinate decent (CD) being the local solver, and was initially
proposed without convergence guarantees. DisDCA-p, CoCoA-v1, and CoCoA+ are all
limited to strongly convex regularizers, and therefore are not as general as the CoCoA
framework discussed in this work.

In the L1-regularized setting, an approach related to our framework includes distributed
variants of glmnet as in [56]. Inspired by glmnet and [105], the works of [12] and [56]
introduced the idea of a block-diagonal Hessian upper approximation in the distributed L1

context. The later work of [92] specialized this approach to sparse logistic regression.
If hypothetically each of our quadratic subproblems Gσ′

k (∆α[k]) as defined in (2.10) were
to be minimized exactly, the resulting steps could be interpreted as block-wise Newton-type
steps on each coordinate block k, where the Newton-subproblem is modified to also contain
the L1-regularizer [56, 73, 105]. While [56] allows a fixed accuracy for these subproblems,
but not arbitrary approximation quality Θ as in our framework, the works of [92, 105]; and
[102] assume that the quadratic subproblems are solved exactly. Therefore, these methods
are not able to freely trade off communication and computation. Also, they do not allow
the re-use of arbitrary local solvers. On the theoretical side, the convergence rate results
provided by [56, 92]; and [105] are not explicit convergence rates but only asymptotic, as the
quadratic upper bounds are not explicitly controlled for safety as with our σ′ (2.11).

CHAPTER 1. INTRODUCTION 6

1.3 Organization
The remainder of this thesis is organized as follows. Chapter 2 presents the CoCoA frame-
work for distributed optimization. We begin by providing necessary background, including
standard definitions from optimization and duality. Using the presented primal-dual struc-
ture, we then state problem cases for our framework which we elucidate with a set of running
examples. Next, we detail CoCoA and explain how the framework may be run in either its
primal or dual form in the distributed setting. Two critical components of the method are
its updating scheme and subproblem formulation; we end the chapter by exploring several
interpretations of these components and comparing the method to related work.

The proposed method is applicable to many common problems in machine learning and
signal processing. Chapter 3 details several example applications that can be realized via
the general CoCoA framework. For each application, we describe the primal-dual setup and
algorithmic details; discuss the convergence properties of our framework for the application;
and include practical concerns such as information on relevant local solvers.

Chapters 4 and 5 provide our empirical and theoretical results, respectively. In Chapter 4
we compare CoCoA to other state-of-the-art solvers in the distributed data center setting.
Our results demonstrate order-of-magnitude speedups over competitors in solving common
machine learning problems on real-world distributed datasets. To supplement these com-
parisons, we explore various properties of the framework, including the tradeoffs of primal
vs. dual distributed optimization, the impact of communication on the framework, and the
effect of the subproblem formulation. In Chapter 5, we derive our convergence guarantees
for the framework and prove all other results given in the prior chapters. Our convergence
results include primal-dual rates and certificates for the general class of linear regularized loss
minimization. A key contribution in these results is our ability to abstract the performance
of a local solver as an approximate solution of the subproblem defined on each distributed
machine. Our convergence guarantees are derived by relating this local convergence to im-
provement made towards the global solution.

Finally, in Chapter 6, we explore an extension of CoCoA to federated learning, an in-
creasingly common scenario in which the training of a machine learning model takes place
directly on distributed devices. This setting presents new statistical challenges in our model-
ing approach, as well as new systems challenges in the training of these models. In particular,
issues such as non-IID data, stragglers, and fault tolerance are much more prevalent than in
a typical data center setting. To handle these challenges, we propose Mocha, a method that
one (1) leverages multi-task learning, (2) performs alternating minimization of the objective,
and (3) extends CoCoA to perform federated MTL updates. The resulting framework has
superior statistical performance and a highly flexible optimization scheme relative to com-
petitors. We demonstrate the empirical performance of this method through simulations on
real-world federated datasets, and provide a careful theoretical analysis that explores the
effect of the challenges prevalent in federated learning on our convergence guarantees.

7

Chapter 2

CoCoA Framework

In this work, we develop a general framework for minimizing problems of the following form:

`(u) + r(u) , (I)
for convex functions ` and r. Frequently the first term ` is an empirical loss over the data,
taking the form

∑
i `i(u), and the second term r is a regularizer, e.g., r(u) = λ‖u‖p. This

formulation includes many popular methods in machine learning and signal processing, such
as support vector machines, linear and logistic regression, lasso and sparse logistic regression,
and many others.

2.1 Notation
The following standard definitions will be used throughout the thesis.

Definition 1 (L-Lipschitz Continuity). A function h : Rm → R is L-Lipschitz continuous
if ∀u, v ∈ Rm, we have

|h(u)− h(v)| ≤ L‖u− v‖ . (2.1)

Definition 2 (L-Bounded Support). A function h : Rm → R ∪ {+∞} has L-bounded
support if its effective domain is bounded by L, i.e.,

h(u) < +∞ ⇒ ‖u‖ ≤ L . (2.2)

Definition 3 ((1/µ)-Smoothness). A function h : Rm → R is (1/µ)-smooth if it is differ-
entiable and its derivative is (1/µ)-Lipschitz continuous, or equivalently

h(u) ≤ h(v) + 〈∇h(v),u− v〉+
1

2µ
‖u− v‖2 ∀u,w ∈ Rm . (2.3)

Definition 4 (µ-Strong Convexity). A function h : Rm → R is µ-strongly convex for µ ≥ 0
if

h(u) ≥ h(v) + 〈s,u− v〉+
µ

2
‖u− v‖2 ∀u, v ∈ Rm , (2.4)

for any s ∈ ∂h(v), where ∂h(v) denotes the subdifferential of h at v.

CHAPTER 2. COCOA FRAMEWORK 8

2.2 Duality
Numerous methods have been proposed to solve (I), and these methods generally fall into
two categories: primal methods, which run directly on the primal objective, and dual meth-
ods, which instead run on the dual formulation of the primal objective. In developing our
framework, we present an abstraction that allows for either a primal or a dual variant of our
framework to be run. In particular, to solve the input problem (I), we consider mapping the
problem to one of the following two general problems:

min
α∈Rn

[
OA(α) := f(Aα) + g(α)

]
(A)

min
w∈Rd

[
OB(w) := f ∗(w) + g∗(−A>w)

]
(B)

Here α ∈ Rn and w ∈ Rd are parameter vectors, A := [x1; . . . ;xn] ∈ Rd×n is a data
matrix with column vectors xi ∈ Rd, i ∈ {1, . . . , n}, and the functions f ∗ and g∗i are the
convex conjugates of f and gi, respectively.

The dual relationship in problems (A) and (B) is known as Fenchel-Rockafellar duality [14,
Theorem 4.4.2]. We provide a self-contained derivation of the duality in Section 5.1.2. Note
that while dual problems are typically presented as a pair of (min, max) problems, we have
equivalently reformulated (A) and (B) to both be minimization problems in accordance with
their roles in our framework.

Given α ∈ Rn in the context of (A), a corresponding vector w ∈ Rd for problem (B) is
obtained by:

w = w(α) := ∇f(Aα) . (2.5)

This mapping arises from first-order optimality conditions on the f -part of the objective.
The duality gap, given by:

G(α) := OA(α)− [−OB(w(α))] (2.6)

is always non-negative, and under strong duality, the gap will reach zero only for an optimal
pair (α?,w?). The duality gap at any point provides a practically computable upper bound
on the unknown primal as well as dual optimization error (suboptimality), since

OA(α) ≥ OA(α?) ≥ −OB(w?) ≥ −OB(w(α)) .

In developing the proposed framework, noting the duality between (A) and (B) has many
benefits, including the ability to compute the duality gap, which acts as a certificate of the
approximation quality. It is also useful as an analysis tool, helping us to present a cohesive
framework and relate this work to the prior work of [100, 38]; and [53, 51]. As a word of
caution, note that we avoid prescribing the name “primal” or “dual” directly to either of the
problems (A) or (B), as we demonstrate below that their role as primal or dual can change
depending on the application problem of interest.

CHAPTER 2. COCOA FRAMEWORK 9

2.3 Assumptions and Problem Cases
Our main assumptions on problem (A) are that f is (1/τ)-smooth, and the function g
is separable, i.e., g(α) =

∑
i gi(αi), with each gi having L-bounded support. Given the

duality between the problems (A) and (B), this can be equivalently stated as assuming that
in problem (B), f ∗ is τ -strongly convex, and the function g∗(−A>w) =

∑
i g
∗
i (−x>i w) is

separable with each g∗i being L-Lipschitz.
For clarity, in Table 2.1 we relate our assumptions on objectives (A) and (B) to the

general input problem (I). Suppose, as in equation (I), we would like to find a minimizer of
the general objective `(u) + r(u). Depending on the smoothness of the function ` and the
strong convexity of the function r, we will be able to map the input function (I) to one (or
both) of the objectives (A) and (B) based on our assumptions.

In particular, we outline three separate cases: Case I, in which the function ` is smooth
and the function r is strongly convex; case II, in which ` is smooth, and r is non-strongly
convex and separable; and case III, in which ` is non-smooth and separable, and r is strongly
convex. The union of these cases will capture most commonly-used applications of linear
regularized loss minimization problems. In Section 2.9, we will see that different variants of
our framework may be realized depending on which of these three cases we consider when
solving the input problem (I).

Table 2.1: Criteria for objectives (A) and (B).

Smooth ` Non-smooth, separable `
Strongly convex r Case I: Obj (A) or (B) Case III: Obj (B)

Non-strongly convex, separable r Case II: Obj (A) –

2.4 Running Examples
To illustrate the three cases in Table 2.1, we consider several examples below. These appli-
cations will serve as running examples throughout this thesis, and we will revisit them in
our experiments (Chapter 4). Further applications and details are provided in Chapter 3.

1. Elastic Net Regression (Case I: map to either (A) or (B)). We can map elastic-net
regularized least squares regression,

min
u∈Rp

1
2
‖Au− b‖2

2 + ηλ‖u‖1 + (1− η)
λ

2
‖u‖2

2 , (2.7)

CHAPTER 2. COCOA FRAMEWORK 10

to either objective (A) or (B). To map to objective (A), we let: f(Aα) = 1
2
‖Aα −

b‖2
2 and g(α) =

∑
i gi(αi) =

∑
i ηλ|αi| + (1 − η)λ

2
α2
i , setting n to be the number of

features and d the number of training points. To map to (B), we let: g(−A>w) =∑
i g
∗
i (−x>i w) =

∑
i

1
2
(x>i w − bi)2 and f ∗(w) = ηλ‖w‖1 + (1 − η)λ

2
‖w‖2

2, setting d
to be the number of features and n the number of training points. We discuss in
Section 2.9 how the choice of mapping elastic net regression to either (A) or to (B)
will result in one of two variants of our framework, and can have implications on the
distribution scheme and overall performance of the method.

2. Lasso (Case II: map to (A)). We can represent L1-regularized least squares regression
by mapping the model:

min
u∈Rp

1
2
‖Au− b‖2

2 + λ‖u‖1 (2.8)

to objective (A), letting f(Aα) = 1
2
‖Aα − b‖2

2 and g(α) =
∑

i gi(αi) =
∑

i λ|αi|. In
this mapping, n represents the number of features, and d the number of training points.
Note that we cannot map the lasso objective to (B) directly, as f ∗ must be τ -strongly
convex and the L1-norm is non-strongly convex.

3. Support Vector Machine (Case III: map to (B)). We can represent a hinge loss support
vector machine (SVM) by mapping the model:

min
u∈Rp

1

m

m∑
i=1

max
{

0, 1− yi(x>i u)
}

+ λ
2
‖u‖2

2 , (2.9)

to objective (B), letting g∗(−A>w) =
∑

i g
∗
i (−x>i w) =

∑
i

1
n

max{0, 1 − yix>i w} and
f ∗(w) = λ

2
‖w‖2

2. In this mapping, d represents the number of features, and n the
number of training points. Note that we cannot map the hinge loss SVM primal to
objective (A) directly, as f must be (1/τ)-smooth and the hinge loss is non-smooth.

2.5 Data Partitioning
To view our setup in the distributed environment, we suppose that the dataset A is dis-
tributed over K machines according to a partition {Pk}Kk=1 of the columns of A ∈ Rd×n. We
denote the size of the partition on machine k by nk = |Pk|. For machine k ∈ {1, . . . , K}
and weight vector α ∈ Rn, we define α[k] ∈ Rn as the n-vector with elements (α[k])i := αi
if i ∈ Pk and (α[k])i := 0 otherwise. Analogously, we write A[k] for the corresponding group
of columns of A, and zeros elsewhere (note that columns can correspond to either training
examples or features, depending on the application). We discuss these distribution schemes
in greater detail in Section 2.9.

CHAPTER 2. COCOA FRAMEWORK 11

Algorithm 1 Generalized CoCoA Distributed Framework
1: Input: Data matrix A distributed column-wise according to partition {Pk}Kk=1, aggrega-

tion parameter γ∈(0, 1], and parameter σ′ for the local subproblems Gσ′

k (∆α[k];v,α[k]).
2: Starting point α(0) := 0 ∈ Rn, v(0) := 0 ∈ Rd.
3: for t = 0, 1, 2, . . . do
4: for k ∈ {1, 2, . . . , K} in parallel over computers do
5: compute Θ-approximate solution ∆α[k] of local subproblem (2.10)
6: update local variables α(t+1)

[k] := α
(t)
[k] + γ∆α[k]

7: return updates to shared state ∆vk := A[k]∆α[k]

8: reduce v(t+1) := v(t) + γ
∑K

k=1 ∆vk

2.6 Method
The goal of our framework is to find a global minimizer of the objective (A), while distribut-
ing computation based on the partitioning of the dataset A across machines (Section 2.5). As
a first step, note that distributing the update to the function g in objective (A) is straight-
forward, as we have required that this term is separable according to the partitioning of
our data, i.e., g(α) =

∑n
i=1 gi(αi). However, the same does not hold for the term f(Aα).

To minimize this part of the objective in a distributed fashion, we propose minimizing a
quadratic approximation of the function, which allows the minimization to separate across
machines. We make this approximation precise in the following subsection.

Data-local quadratic subproblems. In the general CoCoA framework (Algorithm 1),
we distribute computation by defining a data-local subproblem of the optimization prob-
lem (A) for each machine. This simpler problem can be solved on machine k and only
requires accessing data which is already available locally, i.e., the columns A[k]. More for-
mally, each machine k is assigned the following local subproblem, which depends only on the
previous shared vector v := Aα ∈ Rd, and the local data A[k]:

min
∆α[k]∈Rn

Gσ′

k (∆α[k];v,α[k]) , (2.10)

where

Gσ′

k (∆α[k];v,α[k]) :=
1

K
f(v) + w>A[k]∆α[k] +

σ′

2τ

∥∥∥A[k]∆α[k]

∥∥∥2

+
∑
i∈Pk

gi(αi + ∆α[k]i
),

and w := ∇f(v). Here we let ∆α[k] denote the change of local variables αi for indices i ∈ Pk,
and we set (∆α[k])i := 0 for all i /∈ Pk. It is important to note that the subproblem (2.10)
is simple in the sense that it is always a quadratic objective (apart from the gi term). The
subproblem does not depend on the function f itself, but only its linearization at the fixed
shared vector v. This property additionally simplifies the task of the local solver, especially
for cases of complex functions f .

CHAPTER 2. COCOA FRAMEWORK 12

Framework parameters γ and σ′. There are two parameters that must be set in our
framework: γ, the aggregation parameter, which controls how the updates from each ma-
chine are combined, and σ′, the subproblem parameter, which is a data-dependent term
measuring the difficulty of the data partitioning {Pk}Kk=1. These terms play a crucial role in
the convergence of the method, as we demonstrate in Chapter 5. In practice, we provide a
simple and robust way to set these parameters: For a given aggregation parameter γ ∈ (0, 1],
the subproblem parameter σ′ will be set as σ′ := γK, but can also be improved in a data-
dependent way as we discuss below. In general, as we show in Chapter 5, setting γ := 1 and
σ′ := K will guarantee convergence while delivering our fastest convergence rates.

Definition 5 (Data-dependent aggregation parameter). In Algorithm 1, the aggregation
parameter γ controls the level of adding (γ := 1) versus averaging (γ := 1

K
) of the partial

solutions from all machines. For our convergence results (Chapter 5) to hold, the subproblem
parameter σ′ must be chosen not smaller than

σ′ ≥ σ′min := γ max
α∈Rn

‖Aα‖2∑K
k=1 ‖A[k]α[k]‖2

. (2.11)

The simple choice of σ′ := γK is valid for (2.11), i.e.,

γK ≥ σ′min .

In some cases, it will be possible to give a better (data-dependent) choice for σ′, closer
to the actual bound given in σ′min.

Subproblem Interpretation. Here we provide further intuition behind the data-local
subproblems (2.10). The local objective functions Gσ′

k are defined to closely approximate
the global objective in (A) as the “local” variable ∆α[k] varies, which we will see in the
analysis (Chapter 5, Lemma 15). In fact, if the subproblem were solved exactly, this could
be interpreted as a data-dependent, block-separable proximal step, applied to the f part of
the objective (A) as follows:

K∑
k=1

Gσ′

k (∆α[k];v,α[k]) = R + f(v) +∇f(v)>A∆α +
σ′

2τ
∆α>

A>[1]A[1] 0
. . .

0 A>[K]A[K]

∆α ,

where R =
∑

i∈[n] gi(−αi −∆αi) .
However, note that in contrast to traditional proximal methods, our algorithm does not

assume that this subproblem is solved to high accuracy, as we instead allow the use of local
solvers of any approximation quality Θ.

CHAPTER 2. COCOA FRAMEWORK 13

Reusability of existing single-machine solvers. Our local subproblems (2.10) have
the appealing property of being very similar in structure to the global problem (A), with
the main difference being that they are defined on a smaller (local) subset of the data, and
are simpler because they are not dependent on the shape of f . For a user of CoCoA, this
presents a major advantage in that existing single machine-solvers can be directly re-used in
our distributed framework (Algorithm 1) by employing them on the subproblems Gσ′

k .
Therefore, problem-specific tuned solvers which have already been developed, along with

associated speed improvements (such as multi-core implementations), can be easily leveraged
in the distributed setting. We quantify the dependence on local solver performance with the
following assumption and remark, and relate this performance to our global convergence
rates in Chapter 5.

Assumption 1 (Θ-approximate solution). We assume that there exists Θ ∈ [0, 1) such
that ∀k ∈ [K], the local solver at any outer iteration t produces a (possibly) randomized
approximate solution ∆α[k], which satisfies

E
[
Gσ′

k (∆α[k]; v,α[k])− Gσ
′

k (∆α?
[k]; v,α[k])

]
≤ Θ

(
Gσ′

k (0; v,α[k])− Gσ
′

k (∆α?
[k]; v,α[k])

)
, (2.12)

where

∆α?
[k] ∈ arg min

∆α∈Rn

Gσ′

k (∆α[k]; v,α[k]), ∀k ∈ [K] . (2.13)

Remark 1. In practice, the time spent solving the local subproblems in parallel should be
chosen comparable to the required time of a communication round, for best overall efficiency
on a given system. We study this trade-off both in theory (Chapter 5) and experiments
(Chapter 4).

Remark 2. Note that the accuracy parameter Θ does not have to be chosen a priori: Our
convergence results (Chapter 5) are valid if Θ is an upper bound on the actual empirical
values Θ in the rounds of Algorithm 1. This allows for some of the K machines to at times
deliver better or worse accuracy (e.g., if a slow local machine is stopped early during a specific
round, to avoid the others needing to wait).

With this general framework in place, we next discuss two variants of our framework,
CoCoA-Primal and CoCoA-Dual. In running either the primal or dual variant of our
framework, the goal will always be to solve objective (A) in a distributed fashion. The
main difference will be whether this objective is viewed as the primal or dual of the input
problem (I). If we map the input (I) to objective (A), then (A) will be viewed as the primal.
If we map (I) to (B), the objective (A) will be viewed as the dual. We make this mapping
technique precise and discuss its implications in the following sections (Sections 2.7–2.9).

CHAPTER 2. COCOA FRAMEWORK 14

2.7 CoCoA in the Primal
In the primal distributed version of the framework (Algorithm 2), the framework is run by
mapping the initial problem (I) directly to objective (A) and then applying the generalized
CoCoA framework described in Algorithm 1. In other words, we view problem (A) as the
primal objective, and solve this problem directly.

From a theoretical perspective, viewing (A) as the primal will allow us to consider non-
strongly convex regularizers, since we allow the terms gi to be non-strongly convex. This
setting was not covered in earlier work of [38, 53, 100]; and [51], and we discuss it in detail
in Chapter 5, as additional machinery must be introduced to develop primal-dual rates for
this setting.

Running the primal version of the framework has important practical implications in the
distributed setting, as it typically implies that the data is distributed by feature rather than
by training point. In this setting, the amount of communication at every outer iteration will
be O(# of training points). When the number of features is high (as is common when using
sparsity-inducing regularizers) this can help to reduce communication and improve overall
performance, as we demonstrate in Chapter 4.

Algorithm 2 CoCoA-Primal (Mapping Problem (I) to (A))
1: Map: Input problem (I) to objective (A)
2: Distribute: Dataset A by columns (here typically features) according to par-

tition {Pk}Kk=1

3: Run: Algorithm 1 with aggregation parameter γ and subproblem parameter σ′

2.8 CoCoA in the Dual
In the dual distributed version of the framework (Algorithm 3), we run the framework by
mapping the original problem (I) to objective (B), and then solve the problem by running
Algorithm 1 on the dual (A). In other words, we view problem (B) as the primal, and solve
this problem via the dual (A).

This version of the framework will allow us to consider non-smooth losses, such as the
hinge loss or absolute deviation loss, since the terms g∗i can be non-smooth. From a practical
perspective, this version of the framework will typically imply that the data is distributed by
training point, and for a vector O(# of features) to be communicated at every outer iteration.
This variant may therefore be preferable when the number of training points exceeds the
number of features.

CHAPTER 2. COCOA FRAMEWORK 15

Algorithm 3 CoCoA-Dual (Mapping Problem (I) to (B))
1: Map: Input problem (I) to objective (B)
2: Distribute: Dataset A by columns (here typically training points) according

to partition {Pk}Kk=1

3: Run: Algorithm 1 with aggregation parameter γ and subproblem parameter σ′

2.9 Primal vs. Dual
In Table 2.2, we revisit the three cases from Section 2.3 showing how the primal and dual
variants of CoCoA can be applied to various input problems `(u) + r(u), depending on
properties of the functions ` and r. In particular, in the setting where ` is smooth and r
is strongly convex, the user may choose whether to run the framework in the primal (Al-
gorithm 2), or in the dual (Algorithm 3). Intuitively, Algorithm 2 will be preferable as r
loses strong convexity, and Algorithm 3 will be preferable as ` loses smoothness. However,
there are also systems-related aspects to consider. In Algorithm 2, we typically distribute
the data by feature, and in Algorithm 3, by training point (this distribution depends on how
the terms n and d are defined in our mapping, see Chapter 3). Depending on whether the
number of features or number of training points is the dominating term, we may chose to
run Algorithm 2 or Algorithm 3, respectively, in order to reduce communication costs. We
validate these ideas empirically in Chapter 4 by comparing the performance of each variant
(primal vs. dual) on real distributed datasets.

Table 2.2: Criteria for running Algorithm 2 vs. Algorithm 3.

Smooth ` Non-smooth and separable `
Strongly convex r Case I: Alg.2 or 3 Case III: Alg.3

Non-strongly convex and separable r Case II: Alg.2 –

In the following two sections, we provide greater insight into the form of the generalized
CoCoA framework and its relation to prior work. An extended discussion on related work
is available in Section 1.2.

2.10 Interpretation
There are numerous methods that have been developed to solve (A) and (B) in parallel and
distributed environments. We describe related work in detail in Section 1.2, and here briefly
highlight a major algorithmic difference between CoCoA and other widely-used parallelized

CHAPTER 2. COCOA FRAMEWORK 16

methods. In particular, we contrast CoCoA with mini-batch and batch methods commonly
used in distributed computing environments, such as mini-batch stochastic gradient descent
or coordinate descent, gradient descent, and quasi-Newton methods.

CoCoA is similar to these methods in that they are all iterative, i.e., they make progress
towards the optimal solution by updating the parameter vector α according to some function
h : Rn → Rn at each iteration t:

α(t+1) = h(α(t)) t = 0, 1, . . . ,

until convergence is reached. From a coordinate-wise perspective, two approaches for
updating the parameter vector α in an iterative fashion include the Jacobi method, in which
updates made to coordinates of α do not take into account the most recent updates to the
other coordinates, and Gauss-Seidel, in which the most recent information is used [11]. In
particular, these two paradigms make the following updates to a coordinate i at iteration
t+ 1:

Jacobi: α
(t+1)
i = hi(α

(t)
1 , . . . , α(t)

n), i = 1, . . . , n,

Gauss-Seidel: α
(t+1)
i = hi(α

(t+1)
1 , . . . , α

(t+1)
i−1 , α

(t)
i , . . . , α

(t)
n), i = 1, . . . , n.

The Jacobi method does not require information from the other coordinates to update
coordinate i, which makes this style of method well-suited for parallelization. However, the
Gauss-Seidel style method tends to converge faster in terms of iterations, since it is able to
incorporate information from the other coordinates more quickly. This difference is well-
known and evident in single machine solvers, where stochastic methods (benefiting from
fresh updates) tend to outperform their batch counterparts.

Typical mini-batch methods, e.g., mini-batch coordinate descent, perform a Jacobi-style
update on a subset of the coordinates at each iteration. This makes these methods amenable
to high levels of parallelization. However, they are unable to incorporate information as
quickly as their serial counterparts in terms of number of data points accessed, because they
must wait for a synchronization step to update the coordinates. As the size of the mini-batch
grows, this can slow them down in terms of overall runtime, and can even lead to divergence
in practice [58, 79, 89, 90].

CoCoA instead attempts to combine attractive properties of both of these update
paradigms. It performs Jacobi-style parallel updates to blocks of the coordinates of α to
parallelize the method, while allowing for (though not necessarily requiring) faster Gauss-
Seidel style updates on each machine. This change in parallelization scheme is one of the
major reasons for improved performance over simpler mini-batch or batch style methods.

CoCoA incorporates an additional level of flexibility by allowing an arbitrary number
of Gauss-Seidel iterations (or any other local solver for that matter) to be performed on
each machine, which lets the framework scale from very low-communication environments,

CHAPTER 2. COCOA FRAMEWORK 17

where more iterations will be made before communicating, to higher communication envi-
ronments, where fewer internal iterations are necessary. We will see in Chapter 4 that this
communication flexibility also greatly improves the overall runtime in practice.

2.11 Comparison to ADMM
Finally, in this section we provide a direct comparison between CoCoA and ADMM [16].
Alternating direction method of multipliers (ADMM) is a well-established framework for
distributed optimization. Similar to CoCoA, ADMM differs from the methods discussed in
the previous section in that it defines a subproblem for each problem to solve in parallel,
rather than parallelizing a global batch or mini-batch update. It also leverages duality
structure, similar to that presented in Section 2.2.

For consensus ADMM, the objective (B) is decomposed with a re-parameterization:

max
w1,...wK ,w

K∑
k=1

∑
i∈Pk

g∗(−x>i wk) + f ∗(w)

s.t. wk = w, k = 1, . . . , K.

This problem is then solved by constructing the augmented Lagrangian, which yields the
following decomposable updates:

w(t)
k = arg min

wk

∑
i∈Pk

g∗(−x>i wk) +
ρ

2
‖wk −

(
w(t−1) − u(t−1)

k

)
‖2, (2.14)

w(t) = arg min
w

f ∗(w) + ρ
K∑
k=1

u>k (wk −w) +
ρ

2

K∑
k=1

‖wk −w‖2,

u(t)
k = u(t−1)

k + w(t)
k −w(t),

where ρ is a penalty parameter that must be tuned for best performance. When running
CoCoA in the dual (Algorithm 3) and setting f(·) = 1

2
‖ · ‖2

2, we can derive a similar sub-
problem for updating wk in the CoCoA framework. In particular, the following subproblem
can be found by unrolling the CoCoA update and viewing the dual subproblem in its primal
formulation:

min
wk

∑
i∈Pk

g∗i (−x>i wk) +
τ

2σ′

∥∥∥wk −
(
w(t−1) + γ∆v(t−1)

)∥∥∥2

. (2.15)

CHAPTER 2. COCOA FRAMEWORK 18

Comparing (2.14) and (2.15) we can see that in the specific case where f(·) = 1
2
‖ · ‖2

2

and we solve the problem in the dual (according to Algorithm 3), ADMM and CoCoA
consider a similar subproblem on each machine, but where the parameter ρ is explicitly
set in CoCoA as τ

σ′ . However, there are major differences between the methods even in
this setting. First, CoCoA has a more direct and simplified scheme for updating the global
weight vector w. Second, and most importantly, in the CoCoA method and theory, we allow
for the subproblem to be solved approximately, rather than requiring a full batch update
as in ADMM. We will see in our experiments that these differences have a large impact in
practice (Chapter 4). We provide a full derivation of the comparison to ADMM for reference
in Section 5.1.3.

19

Chapter 3

Applications

In this chapter, we provide a detailed treatment of example applications that can be cast
within the general CoCoA framework. For each example, we describe the primal-dual setup
and algorithmic details, discuss the convergence properties our framework for the application,
and include practical concerns such as information on state-of-the-art local solvers. We
discuss examples according to the three cases defined in Table 2.1 of Chapter 2 for finding
a minimizer of the general objective `(u) + r(u), and provide a summary of these common
examples in Table 3.1.

Table 3.1: Common losses and regularizers.

(i) Losses

Loss Obj f / g∗

Least Squares (A) f= 1
2‖Aα− b‖22

(B) g∗= 1
2‖A

>w− b‖22

Logistic Reg. (A) f= 1
d

∑
j log(1+exp(bjx>j α))

(B) g∗= 1
n

∑
ilog(1+exp(bix>i w))

SVM (B) g∗= 1
n

∑
imax(0, 1−yix>i w)

Absolute Dev. (B) g∗ = 1
n

∑
i |x>i w− yi|

(ii) Regularizers

Regularizer Obj g / f∗

Elastic Net (A) g=λ(η‖α‖1+ 1−η
2 ‖α‖

2
2)

(B) f∗=λ(η‖w‖1+ 1−η
2 ‖w‖

2
2)

L2 (A) g=λ
2 ‖α‖

2
2

(B) f∗=λ
2 ‖w‖

2
2

L1 (A) g=λ‖α‖1
Group Lasso (A) g=λ

∑
p‖αIp‖2, Ip ⊆ [n]

3.1 Smooth `, Strongly Convex r

For input problems (I) with smooth ` and strongly convex r, Theorem 6 from Chapter 5 gives
a global linear (geometric) convergence rate. Smooth loss functions can be mapped either
to the function f in objective (A), or g∗ in (B). Similarly, strongly convex regularizers can
be mapped either to function g in objective (A), or f ∗ in (B). To illustrate the role of f as a
smooth loss function and g as a strongly convex regularizer in objective (A), contrasting with

CHAPTER 3. APPLICATIONS 20

their traditional roles in prior work [38, 51, 53, 100], we consider the following examples.
Note that mapping to objective (B) instead will follow trivially assuming that the loss is
separable across training points (see Table 3.1).

For the examples in this section, we use nonstandard definitions of the number of training
points as d and the number of features as n. These definitions are intentionally used so that
we can present both the primal and dual variations of our framework (Algorithms 2 and 3)
with a single abstracted method (Algorithm 1).

Smooth `: least squares loss. Let b ∈ Rd be labels or response values, and consider
the least squares objective, f(v) := 1

2
‖v − b‖2

2, which is 1-smooth. We obtain the familiar
least-squares regression objective in our optimization problem (A), using

f(Aα) := 1
2
‖Aα− b‖2

2 . (3.1)

Observing that the gradient of f is ∇f(v) = v−b, the primal-dual mapping is given by:
w(α) := ∇f(v(α)) = Aα − b, which is well known as the residual vector in least-squares
regression.

Smooth `: logistic regression loss. For classification problems, we consider a logistic
regression model with d training examples, yj ∈ Rn for j ∈ [d], collected as the rows of the
data matrix A. For each training example, we are given a binary label, which we collect in the
vector b ∈ {−1, 1}d. Formally, the objective is defined as f(v) :=

∑d
j=1 log (1 + exp (−bjvj)),

which is again a separable function. The classifier loss is given by

f(Aα) :=
d∑
j=1

log (1 + exp (−bjy>j α)) , (3.2)

where α ∈ Rn is the parameter vector. It is not hard to show that f is 1-smooth if the
labels satisfy bj ∈ [−1, 1]. The primal-dual mapping w(α) := ∇f(v(α)) = ∇f(Aα) is given
by wj(α) :=

−bj
1+exp (bjy>

j α)
.

Strongly convex r: elastic net regularizer. An application we can consider for a
strongly convex regularizer, g in (A) or f ∗ in (B), is elastic net regularization, ηλ‖u‖1 + (1−
η)λ

2
‖u‖2

2, for fixed parameter η ∈ (0, 1]. This can be obtained in (A) by setting

g(α) =
n∑
i=1

gi(αi) :=
n∑
i=1

ηλ|αi|+ (1− η)λ
2
α2
i . (3.3)

For the special case η = 1, we obtain the L1-norm, and for η = 0, we obtain the L2-norm.
The conjugate of gi is given by: g∗i (x) := 1

2(1−η)

([
|x| − η

]
+

)2, where [.]+ is the positive part
operator, [s]+ = s for s > 0, and zero otherwise.

CHAPTER 3. APPLICATIONS 21

3.2 Smooth `, Non-strongly Convex r

In case II, we consider mapping the input problem (I) to objective (A), where ` is assumed
to be smooth, and r non-strongly convex and separable. For smooth losses in (A), we can
consider as examples those provided in Section 3.1, e.g., the least squares loss or logistic
loss. For an example of a non-strongly convex regularizer, we consider the important case
of L1 regularization below. Again, we note that this application cannot be realized by
objective (B), where it is assumed that the regularization term f ∗ is strongly convex.

Non-strongly convex r: L1 regularizer. L1 regularization is obtained in objective (A)
by letting gi(·) := λ| · |. However, an additional modification is necessary to obtain primal-
dual convergence and certificates for this setting. In particular, we employ the modification
introduced in Chapter 5, which will guarantee L-bounded support. Formally, we replace
gi(·) = | · | by

ḡ(α) :=

{
|α| : α ∈ [−B,B],

+∞ : otherwise.

For large enough B, this problem yields the same solution as the original L1-objective.
Note that this only affects convergence theory, in that it allows us to present a strong
primal-dual rate (Theorem 5 for L=B). With this modified L1-regularizer, the optimization
problem (A) with regularization parameter λ becomes

min
α∈Rn

f(Aα) + λ
n∑
i=1

ḡ(αi) . (3.4)

For large enough choice of the value B, this problems yields the same solution as the
original objective:

min
α∈Rn

{
OA(α) := f(Aα) + λ

n∑
i=1

|αi|
}
. (3.5)

The modified ḡ is simply a constrained version of the absolute value to the interval
[−B,B]. Therefore by setting B to a large enough value that the values of αi will never
reach it, ḡ∗ will be continuous and at the same time make (3.4) equivalent to (3.5).

Formally, a simple way to obtain a large enough value of B, so that all solutions of (3.5)
are unaffected, is the following: If we start the algorithm at α = 0, for every solution
encountered during execution, the objective values will never become worse than OA(0).
Formally, under the assumption that f is non-negative, we will have that (for each i):

CHAPTER 3. APPLICATIONS 22

λ|αi| ≤ f(0) = OA(0) =⇒ |αi| ≤
f(0)

λ
.

We can therefore safely set the value of B as f(0)
λ

. For the modified ḡi, the conjugate ḡ∗i
is given by:

ḡ∗i (x) :=

{
0 : x ∈ [−1, 1],

B(|x| − 1) : otherwise.

We provide a proof of this in Section 5.1.2 (Lemma 3).

Non-strongly convex r: group lasso. The group lasso penalty can be mapped to ob-
jective (A), with:

g(α) := λ
P∑
p=1

‖αIp‖2 with
P⋃
p=1

Ip = {1, . . . , n} , (3.6)

where the disjoint sets Ip ⊆ {1, . . . , n} represent a partitioning of the total set of variables.
This penalty can be viewed as an intermediate between a pure L1 or L2 penalty, performing
variable selection only at the group level. The term αIp ∈ R|Ip| denotes part of the vector α
with indices Ip. The conjugate is given by:

g∗(w) = I{w|maxIp∈[n] ‖αIp‖2≤λ}(w).

For details, see, e.g., [24] or Boyd and Vandenberghe [15, Example 3.26].

3.3 Non-smooth `, Strongly Convex r

Finally, in case III, we consider mapping the input problem (I) to objective (B), where `
is assumed to be non-smooth and separable, and r strongly convex. We discuss two com-
mon cases of general non-smooth losses `, including the the hinge loss for classification and
absolute deviation loss for regression. When paired with a strongly convex regularizer, the
regularizer via f gives rise to the primal-dual mapping, and Theorem 5 provides a sublinear
convergence rate for objectives of this form. We note that these losses cannot be realized
directly by objective (A), where it is assumed that the data fit term f is smooth.

CHAPTER 3. APPLICATIONS 23

Non-smooth `: hinge loss. For classification problems, we can consider a hinge loss
support vector machine model, on n training points in Rd, given with the loss:

g∗(−A>w) =
n∑
i=1

g∗i (−x>i w) :=
1

n

n∑
i=1

max{0, 1− yix>i w}. (3.7)

The conjugate function of the hinge loss φ(a) = max{0, 1 − b} is given by φ∗(b) = {b
if b ∈ [−1, 0], else ∞ .}. When using the L2 norm for regularization in this problem:
f ∗(w) := λ‖w‖2

2, a primal-dual mapping is given by: w(α) := 1
λn
Aα.

Non-smooth `: absolute deviation loss. The absolute deviation loss, used, e.g., in
quantile regression or least absolute deviation regression, can be realized in objective (B) by
setting:

g∗(−A>w) =
n∑
i=1

g∗i (−x>i w) :=
1

n

n∑
i=1

∣∣x>i w− yi∣∣ . (3.8)

The conjugate function of the absolute deviation loss φ(a) = |a−yi| is given by φ∗(−b) =
−byi, with b ∈ [−1, 1].

3.4 Local Solvers
As discussed in Chapter 2, the subproblems solved on each machine in the CoCoA frame-
work are appealing in that they are very similar in structure to the global problem (A), with
the main difference being that they are defined on a smaller (local) subset of the data, and
have a simpler dependence on the term f . Therefore, solvers which have already proven
their value in the single machine or multicore setting can be easily leveraged within the
framework. We discuss some specific examples of local solvers below, and point the reader
to [51] for an empirical exploration of these choices.

In the primal setting (Algorithm 2), the local subproblem (2.10) becomes a simple
quadratic problem on the local data, with regularization applied only to local variables
α[k]. For the L1 examples discussed, existing fast L1-solvers for the single-machine case,
such as glmnet variants [28] or blitz [40] can be directly applied to each local subproblem
Gσ′

k (· ;v,α[k]) within Algorithm 1. The sparsity induced on the subproblem solutions of each
machine naturally translates into the sparsity of the global solution, since the local variables
α[k] will be concatenated.

In terms of the approximation quality parameter Θ for the local problems (Assumption 1),
we can apply existing recent convergence results from the single machine case. For example,
for randomized coordinate descent (as part of glmnet), Lu and Xiao [50, Theorem 1] gives
a O(1/t) approximation quality for any separable regularizer, including L1 and elastic net;
see also [91] and [82].

CHAPTER 3. APPLICATIONS 24

In the dual setting (Algorithm 3) for the discussed examples, the losses are applied only
to local variables α[k], and the regularizer is approximated via a quadratic term. Current
state of the art for the problems of the form in (B) are variants of randomized coordinate
ascent—Stochastic Dual Coordinate Ascent (SDCA) [85]. This algorithm and its variants
are increasingly used in practice [98], and extensions such as accelerated and parallel versions
can directly be applied [26, 84] in our framework. For non-smooth losses such as SVMs, the
analysis of [85] provides a O(1/t) rate, and for smooth losses, a faster linear rate. There
have also been recent efforts to derive a linear convergence rate for problems like the hinge-
loss SVM that could be applied, e.g., by using error bound conditions [66, 97], weak strong
convexity conditions [52, 65] or by considering Polyak-Łojasiewicz conditions [41].

25

Chapter 4

Evaluation

In this chapter we demonstrate the empirical performance of CoCoA in the distributed
data center setting. We first compare CoCoA to competing methods for two common
machine learning applications: lasso regression (Section 4.2.1) and support vector machine
(SVM) classification (Section 4.2.2). We then explore the performance of CoCoA in the
primal versus the dual directly by solving an elastic net regression model with both variants
(Section 4.3.1). Finally, we illustrate general properties of the CoCoA method empirically
in Section 4.3.2.

4.1 Details and Setup
We compare CoCoA to numerous state-of-the-art general-purpose methods for large-scale
optimization, including:

• Mb-SGD: Mini-batch stochastic gradient. For our experiments with lasso, we compare
against Mb-SGD with an L1-prox.

• GD: Full gradient descent. For lasso we use the proximal version, Prox-GD.

• L-BFGS: Limited-memory quasi-Newton method. For lasso, we use OWL-QN (orthant-
wise limited quasi-Newton).

• ADMM: Alternating direction method of multipliers. We use conjugate gradient inter-
nally for the lasso experiments, and SDCA for SVM experiments.

• Mb-CD: Mini-batch parallel coordinate descent. For SVM experiments, we implement
Mb-SDCA (mini-batch stochastic dual coordinate ascent).

The first three methods are optimized and implemented in Apache Spark’s MLlib (v1.5.0)
[63]. We test the performance of each method in large-scale experiments fitting lasso, elastic
net regression, and SVM models to the datasets shown in Table 4.1. In comparing to other
methods, we plot the distance to the optimal primal solution. This optimal value is calculated
by running all methods for a large number of iterations (until progress has stalled), and then

CHAPTER 4. EVALUATION 26

selecting the smallest primal value amongst the results. All code is written in Apache Spark
and experiments are run on public-cloud Amazon EC2 m3.xlarge machines with one core
per machine. Our code is publicly available at github.com/gingsmith/proxcocoa.

Table 4.1: Datasets for empirical study.

Dataset Training Size Feature Size Sparsity

url 2 M 3 M 3.5e-5
epsilon 400 K 2 K 1.0
kddb 19 M 29 M 9.8e-7
webspam 350 K 16 M 2.0e-4

We carefully tune each competing method in our experiments for best performance.
ADMM requires the most tuning, both in selecting the penalty parameter ρ and in solving
the subproblems. Solving the subproblems to completion for ADMM is prohibitively slow,
and we thus use an iterative method internally and improve performance by allowing early
stopping. We also use a varying penalty parameter ρ — practices described in Boyd et al.
[16, Sections 4.3, 8.2.3, 3.4.1]. For Mb-SGD, we tune the step size and mini-batch size
parameters. For Mb-CD and Mb-SDCA, we scale the updates at each round by β

b
for

mini-batch size b and β ∈ [1, b], and tune both parameters b and β. Further implementation
details for all methods are given in Section 4.1.1.

For simplicity of presentation and comparison, in all of the following experiments, we
restrict CoCoA to only use simple coordinate descent as the local solver. We note that even
stronger empirical results for CoCoA could be obtained by plugging in state of the art local
solvers for each application at hand.

4.1.1 Methods for Comparison

In this section we provide thorough details on the experimental setup and methods used in
our comparison. All experiments are run on Amazon EC2 clusters of m3.xlarge machines,
with one core per machine. The code for each method is written in Apache Spark, v1.5.0. Our
code is open source and publicly available at github.com/gingsmith/proxcocoa.

ADMM. Alternating Direction Method of Multipliers (ADMM) [16] is a popular method
that lends itself naturally to the distributed environment. For lasso regression, implementing
ADMM for the problems of interest requires solving a large linear system Cx = d on each
machine, where C ∈ Rn×n with n scaling beyond 107 for the datasets in Table 4.1, and
with C being possibly dense. It is prohibitively slow to solve this directly on each machine,
and we therefore employ the iterative method of conjugate gradient with early stopping
[cf. 16, Section 4.3]. For SVM classification, we use stochastic dual coordinate ascent as an

http://github.com/gingsmith/proxcocoa
github.com/gingsmith/proxcocoa

CHAPTER 4. EVALUATION 27

internal optimizer, which is shown in [107] to have superior performance. We further improve
performance by using a varying rather than constant penalty parameter, as suggested in Boyd
et al. [16, Section 3.4.1].

Mini-batch SGD and proximal GD. Mini-batch SGD is a standard and widely used
method for parallel and distributed optimization. We use the optimized code provided in
Spark’s machine learning library, MLlib, v1.5.0 [63]. We tune both the size of the mini-
batch and the SGD step size using grid search. For lasso, we use the proximal version of the
method. Full gradient descent can be seen as a specific setting of mini-batch SGD, where
the mini-batch size is equal to the total number of training points. We thus also use the
implementation in MLlib for full GD, and tune the step size parameter using grid search.

Mini-batch CD and SDCA. Mini-batch CD (for lasso) and SDCA (for SVM) aim to
improve mini-batch SGD by employing coordinate descent, which has theoretical and practi-
cal justifications [27, 82, 89, 90, 91]. We implement mini-batch CD and SDCA in Spark and
scale the updates made at each round by β

b
for mini-batch size b and β ∈ [1, b], tuning both

parameters b and β via grid search. For the case of lasso regression, we implement Shotgun
[17], which is a popular method for parallel optimization. Shotgun can be seen an extreme
case of mini-batch CD where the mini-batch is set to K, i.e., there is a single update made
by each machine per round. We see in the experiments that communicating this frequently
becomes prohibitively slow in the distributed environment.

OWL-QN. OWN-QN [104] is a quasi-Newton method optimized in Spark’s spark.ml pack-
age [63]. Outer iterations of OWL-QN make significant progress towards convergence, but
the iterations themselves can be slow because they require processing the entire dataset.
CoCoA, the mini-batch methods, and ADMM with early stopping all improve on this by
allowing the flexibility of only a subset of the dataset to be processed at each iteration.
CoCoA and ADMM have even greater flexibility by allowing internal methods to process
the dataset more than once. CoCoA makes this approximation quality explicit, both in
theoretical convergence rates and by providing general guidelines for setting the parameter.

CoCoA. We implement CoCoA with coordinate descent as the local solver. We note that
since the framework and theory allow any internal solver to be used, CoCoA could benefit
even beyond the results shown, e.g., by using existing fast L1-solvers for the single-machine
case, such as glmnet variants [28] or blitz [40] or SVM solvers like liblinear [26]. The
only parameter necessary to tune for CoCoA is the level of approximation quality, which we
parameterize in the experiments through H, the number of local iterations of the iterative
method run locally. Our theory relates local approximation quality to global convergence
(Chapter 5), and we provide a guideline for how to choose this value in practice that links
the parameter to the systems environment at hand (Remark 1).

CHAPTER 4. EVALUATION 28

4.2 Comparison to Other Methods
In the following sections we explore the performance of CoCoA in the primal and CoCoA
in the dual compared to other distributed optimization methods.

4.2.1 CoCoA in the Primal

We demonstrate the performance of CoCoA in the primal (Algorithm 2) by fitting a lasso
regression model (2.8) to the distributed datasets in Table 4.1. We use stochastic coordinate
descent as a local solver for CoCoA, and select the number of local iterations H (a proxy
for subproblem approximation quality, Θ) from several options with best performance.

Seconds
0 100 200 300 400 500 600

P
rim

al
 S

ub
op

tim
al

ity
: O

A
(,

)-
O

A
(,

*)

10-3

10-2

10-1

100 Url - Lasso: Suboptimality vs. Time

CoCoA-Primal
Shotgun
Mb-CD
Mb-SGD
Prox-GD
OWL-QN
ADMM

Seconds
0 500 1000 1500 2000

P
rim

al
 S

ub
op

tim
al

ity
: O

A
(,

)-
O

A
(,

*)

10-3

10-2

10-1

100 KDDB - Lasso: Suboptimality vs. Time

CoCoA-Primal
Shotgun
Mb-CD
Mb-SGD
Prox-GD
OWL-QN
ADMM

Seconds
0 500 1000 1500

P
rim

al
 S

ub
op

tim
al

ity
: O

A
(,

)-
O

A
(,

*)

10-3

10-2

10-1

100 Epsilon - Lasso: Suboptimality vs. Time

CoCoA-Primal
Shotgun
Mb-CD
Mb-SGD
Prox-GD
OWL-QN
ADMM

Seconds
0 500 1000 1500 2000 2500

P
rim

al
 S

ub
op

tim
al

ity
: O

A
(,

)-
O

A
(,

*)

10-3

10-2

10-1

100 Webspam - Lasso: Suboptimality vs. Time

CoCoA-Primal
Shotgun
Mb-CD
Mb-SGD
Prox-GD
OWL-QN
ADMM

Figure 4.1: Suboptimality in terms of OA(α) for fitting a lasso regression model to four
datasets: url (K=4, λ=1e-4), kddb (K=4, λ=1e-6), epsilon (K=8, λ=1e-5), and webspam
(K=16, λ=1e-5) datasets. CoCoA applied to the primal formulation converges more quickly
than all other compared methods in terms of the time in seconds.

CHAPTER 4. EVALUATION 29

We compare CoCoA to the general methods listed above, including Mb-SGD with an
L1-prox, Prox-GD, OWL-QN, ADMM and Mb-CD. A comparison with Shotgun [17], a
popular method for solving L1-regularized problems in the multicore environment, is provided
as an extreme case to highlight the detrimental effects of frequent communication in the
distributed environment. For Mb-CD, Shotgun, and CoCoA in the primal, datasets are
distributed by feature, whereas for Mb-SGD, Prox-GD, OWL-QN and ADMM they are
distributed by training point.

In analyzing the performance of each algorithm (Figure 4.1), we measure the improvement
to the primal objective given in (A) (OA(α)) in terms of wall-clock time in seconds. We see
that both Mb-SGD and Mb-CD are slow to converge, and come with the additional burden
of having to tune extra parameters (though Mb-CD makes clear improvements over Mb-
SGD). As expected, naively distributing Shotgun (single coordinate updates per machine)
does not perform well, as it is tailored to shared-memory systems and requires communicating
too frequently. OWL-QN performs the best of all compared methods, but is still much slower
to converge than CoCoA, and converges, e.g., 50× more slowly for the webspam dataset.
The optimal performance of CoCoA is particularly evident in datasets with large numbers
of features (e.g., url, kddb, webspam), which are exactly the datasets of interest for L1

regularization.
Results are shown for regularization parameters λ such that the resulting weight vector α

is sparse. However, our results are robust to varying values of λ as well as to various problem
settings, as we illustrate in Figure 4.2.

Seconds
0 100 200 300 400 500 600 700 800

P
rim

al
 S

ub
op

tim
al

ity
: O

A
(,

)
-

O
A
(,

*)

10-3

10-2

10-1

100
Epsilon - Lasso: Convergence Across 6

CoCoA-Primal 6=1e-4
OWL-QN 6=1e-4
CoCoA-Primal 6=1e-5
OWL-QN 6=1e-5
CoCoA-Primal 6=1e-6
OWL-QN 6=1e-6

Seconds
0 100 200 300 400 500

P
rim

al
 S

ub
op

tim
al

ity
: O

A
(,

)
-

O
A
(,

*)

10-3

10-2

10-1

100
Url - Elastic Net: Convergence Across 2

CoCoA-Primal 2=.25
OWL-QN 2=.25
CoCoA-Primal 2=.5
OWL-QN 2=.5
CoCoA-Primal 2=.75
OWL-QN 2=.75

Figure 4.2: Suboptimality in terms of OA(α) for fitting a lasso regression model to the
epsilon dataset (left, K=8) and an elastic net regression model to the url dataset, (right,
K=4, λ=1e-4). Speedups are robust over different regularizers λ (left), and across problem
settings, including varying η parameters of elastic net regularization (right).

CHAPTER 4. EVALUATION 30

Seconds
0 500 1000 1500

P
rim

al
 S

ub
op

tim
al

ity

10-3

10-2

10-1

100 Epsilon - Lasso: Effect of Smoothing CoCoA-Dual

CoCoA-Primal
CoCoA-Dual /=.0001
CoCoA-Dual /=.001
CoCoA-Dual /=.01

Figure 4.3: For pure L1 regularization, Nes-
terov smoothing is not an effective option for
CoCoA in the dual. It either slows conver-
gence (as shown in the plot above), or mod-
ifies the solution (as shown in Table 4.2).
This motivates running CoCoA instead on
the primal for these problems.

Method Sparsity

CoCoA-Primal 0.6030
CoCoA-Dual: δ = 0.0001 0.6035
CoCoA-Dual: δ = 0.001 0.6240
CoCoA-Dual: δ = 0.01 0.6465

Table 4.2: The sparsity of the final iterate is
affected by Nesterov smoothing (i.e., adding
a small amount of strong convexity δ‖α‖2

2 to
the objective for lasso regression). As δ in-
creases, the convergence improves (as shown
in Figure 4.3), but the final sparsity does not
match that of pure L1-regularized regression.

A case against smoothing. We additionally motivate the use of CoCoA in the primal by
showing how it improves upon CoCoA in the dual [38, 51, 53, 100] for non-strongly convex
regularizers. First, CoCoA in the dual cannot be included in the set of experiments in
Figure 4.1 because it cannot be directly applied to the lasso objective (recall that Algorithm 3
only allows for strongly convex regularizers).

To get around this requirement, previous work has suggested implementing the Nesterov
smoothing technique used in, e.g., [84, 110] — adding a small amount of strong convexity
δ‖α‖2

2 to the objective for lasso regression. In Figure 4.3 and Table 4.2, we demonstrate
the issues with this approach, comparing CoCoA in the primal on a pure L1-regularized
regression problem to CoCoA in the dual for decreasing levels of δ. The smaller we set δ,
the less smooth the problem becomes. As δ decreases, the final sparsity of running CoCoA
in the dual starts to match that of running pure L1 (Table 4.2), but the performance also
degrades (Figure 4.3). We note that by using CoCoA in the primal with the modification
presented in Chapter 5, we can deliver strong rates without having to make these fundamental
alterations to the problem of interest.

CHAPTER 4. EVALUATION 31

Seconds
0 100 200 300 400 500 600

P
rim

al
 S

ub
op

tim
al

ity
: O

B
(w

)
-

O
B
(w

*)

10-4

10-3

10-2

10-1

100 Url - SVM: Suboptimality vs. Time

CoCoA-Dual
Mb-CD
Mb-SGD
GD
LBFGS
ADMM

Seconds
0 100 200 300 400 500

P
rim

al
 S

ub
op

tim
al

ity
: O

B
(w

)
-

O
B
(w

*)

10-4

10-3

10-2

10-1

100 KDDB - SVM: Suboptimality vs. Time

CoCoA-Dual
Mb-CD
Mb-SGD
GD
LBFGS
ADMM

Seconds
0 100 200 300 400 500

P
rim

al
 S

ub
op

tim
al

ity
: O

B
(w

)
-

O
B
(w

*)

10-4

10-3

10-2

10-1

100 Epsilon - SVM: Suboptimality vs. Time

CoCoA-Dual
Mb-CD
Mb-SGD
GD
LBFGS
ADMM

Seconds
0 200 400 600 800 1000 1200

P
rim

al
 S

ub
op

tim
al

ity
: O

B
(w

)
-

O
B
(w

*)

10-4

10-3

10-2

10-1

100 Webspam - SVM: Suboptimality vs. Time

CoCoA-Dual
Mb-CD
Mb-SGD
GD
LBFGS
ADMM

Figure 4.4: Suboptimality in terms of OB(w) for fitting a hinge-loss support vector ma-
chine model to various datasets: url (K=4, λ=1e-4), kddb (K=4, λ=1e-6), epsilon (K=8,
λ=1e-5), and webspam (K=16, λ=1e-5). CoCoA applied to the dual formulation converges
more quickly than all other compared methods in terms of the time in seconds.

4.2.2 CoCoA in the Dual

Next we present results on CoCoA in the dual against competing methods, for an SVM
model (2.9) on the datasets in Table 4.1. We use stochastic dual coordinate ascent (SDCA)
as a local solver for CoCoA in this setting, again selecting the number of local iterations H
from several options with best performance. We compare CoCoA to the general methods
listed above, including Mb-SGD, GD, L-BFGS, ADMM, and Mb-SDCA. All datasets are
distributed by training point for these methods.

In analyzing the performance the methods in this setting (Figure 4.4), we measure the
improvement to the primal objective given in (B) (OB(w)) in terms of wall-clock time in
seconds. We see again that Mb-SGD and Mb-CD are slow to converge, and come with

CHAPTER 4. EVALUATION 32

the additional burden of having to tune extra parameters. ADMM performs the best of the
methods other than CoCoA, followed by L-BFGS. However, both are still much slower to
converge than CoCoA in the dual. ADMM was in particular affected by the fact that many
internal iterations of SDCA were necessary in order to guarantee convergence. In contrast,
CoCoA is able to incorporate arbitrary amounts of work locally and still converge. We
note that although CoCoA, ADMM and Mb-SDCA run in the dual, the plots in Figure 4.4
mark progress towards the primal objective, OB(w).

4.3 Properties
Finally, we explore several properties of CoCoA, including the tradeoff between primal vs.
dual distributed optimization, the effect of communication on the distributed method, and
the impact of the subproblem parameter, σ′, on overall convergence.

4.3.1 Primal vs. Dual

To understand the effect of primal versus dual optimization for CoCoA, we compare the
performance of both variants by fitting an elastic net regression model (2.7) to two datasets.
For comparability of the methods, we use coordinate descent (with closed-form updates) as
the local solver in both variants. From the results in Figure 4.5, we see that CoCoA in the

Seconds
0 200 400 600 800 1000

P
rim

al
 S

ub
op

tim
al

ity

10-3

10-2

10-1

100
Epsilon - Primal vs. Dual: Convergence Across 2

Primal 2=0
Dual 2=0
Primal 2=.25
Dual 2=.25
Primal 2=.5
Dual 2=.5
Primal 2=.75
Dual 2=.75

Seconds
0 500 1000 1500 2000

P
rim

al
 S

ub
op

tim
al

ity

10-3

10-2

10-1

100
Webspam - Primal vs. Dual: Convergence Across 2

Primal 2=0
Dual 2=0
Primal 2=.25
Dual 2=.25
Primal 2=.5
Dual 2=.5
Primal 2=.75
Dual 2=.75

Figure 4.5: The convergence of CoCoA in the primal versus dual for various values of η
in an elastic net regression model. CoCoA in dual performs better on the epsilon dataset,
where the training point size is the dominating term, and CoCoA in the primal performs
better on the webspam dataset, where the feature size is the dominating term. In both
datasets, CoCoA in the dual performs better as the problem becomes more strongly convex
(η → 0), whereas CoCoA in the primal is robust to changes in strong convexity.

CHAPTER 4. EVALUATION 33

dual tends to perform better on datasets with a large number of training points (relative to
the number of features), and that as expected, the performance deteriorates as the strong
convexity in the problem disappears. In contrast, CoCoA in the primal performs well on
datasets with a large number of features relative to training points, and is robust to changes
in strong convexity. These changes in performance are to be expected, as we have already
discussed that CoCoA in the primal is more suited for non-strongly convex regularizers
(Section 4.2.1), and that the feature size dominates communication for CoCoA in the dual,
as compared to the training point size for CoCoA in the primal (Section 2.9).

4.3.2 Effect of Communication

In contrast to the compared methods from Sections 4.2.1 and 4.2.2, CoCoA comes with the
benefit of having only a single parameter to tune: the subproblem approximation quality, Θ,
which we control in our experiments via the number of local subproblem iterations, H, for
the example of local coordinate descent. We further explore the effect of this parameter
in Figure 4.6, and provide a general guideline for choosing it in practice (see Remark 1).
In particular, we see that while increasing H always results in better performance in terms
of the number of communication rounds, smaller or larger values of H may result in bet-
ter performance in terms of wall-clock time, depending on the cost of communication and
computation. The flexibility to fine-tune H is one of the reasons for CoCoA’s significant
performance gains.

Rounds
0 20 40 60 80 100

P
rim

al
 S

ub
op

tim
al

ity
: O

A
(,

)-
O

A
(,

*)

10-3

10-2

10-1

100 Effect of H on CoCoA: Rounds

H=n
k

H=0.1*n
k

H=0.01*n
k

H=.001*n
k

Seconds
0 500 1000 1500 2000 2500

P
rim

al
 S

ub
op

tim
al

ity
: O

A
(,

)-
O

A
(,

*)

10-3

10-2

10-1

100 Effect of H on CoCoA: Time

H=n
k

H=0.1*n
k

H=0.01*n
k

H=.001*n
k

Figure 4.6: Suboptimality in terms of OA(α) for fitting a lasso regression model to the
webspam dataset (K=16, λ=1e-5). Here we illustrate how the work spent in the local
subproblem (given by H) influences the total performance of CoCoA in terms of number
of rounds as well as wall time.

CHAPTER 4. EVALUATION 34

4.3.3 Subproblem Parameter

Finally, in Figure 4.7, we consider the effect of the choice of the subproblem parameter σ′
on convergence. We plot both the number of communications and clock time on a log-log
scale for the RCV11 dataset with K=8 and H=1e4. For CoCoA in the dual, we solve an
SVM model and consider several different values of σ′, ranging from 1 to 8. The value σ′=8
represents the safe upper bound of γK. The optimal convergence occurs around σ′=4, and
diverges for σ′ ≤ 2. Notably, we see that the easy to calculate upper bound of σ′ := γK (as
given by Definition 5) has only slightly worse performance than best possible subproblem
parameter in our setting. This indicates that, even though stronger performance is possible,
the bound can be used effectively in practice.

Number of Communications
101 102 103

D
ua

lit
y

G
ap

10-4

10-3

10-2

10-1

100

101
Effect of <` for . = 1 (adding)

<` = 8 (K)
<` = 6
<` = 4
<` = 2
<` = 1

Elapsed Time (s)
101

D
ua

lit
y

G
ap

10-4

10-3

10-2

10-1

100

101
Effect of <` for . = 1 (adding)

<` = 8 (K)
<` = 6
<` = 4
<` = 2
<` = 1

Figure 4.7: The effect of the subproblem parameter σ′ on convergence of CoCoA for the
RCV1 dataset distributed across K=8 machines. Decreasing σ′ improves performance in
terms of communication and overall run time until a certain point, after which the algorithm
diverges. The “safe” upper bound of σ′:=K=8 has only slightly worse performance than the
practically best “un-safe” value of σ′.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary

35

Chapter 5

Theoretical Analysis

In this chapter, we derive our convergence guarantees for the CoCoA framework and prove
all other results given in the prior chapters. We begin by providing several important results
and definitions needed for our primal-dual analysis.

5.1 Preliminaries

5.1.1 Conjugates

The convex conjugate of a function f : Rd → R is defined as

f ∗(v) := max
u∈Rd

v>u− f(u) . (5.1)

Below we list several useful properties of conjugates [cf. 15, Section 3.3.2]:

• Double conjugate: (f ∗)∗ = f if f is closed and convex.

• Value Scaling: (for α > 0) f(v) = αg(v) ⇒ f ∗(w) = αg∗(w/α) .

• Argument Scaling: (for α 6= 0) f(v) = g(αv) ⇒ f ∗(w) = g∗(w/α) .

• Conjugate of a separable sum: f(v) =
∑

i φi(vi) ⇒ f ∗(w) =
∑

i φ
∗
i (wi) .

Lemma 1 (Duality between Lipschitzness and L-Bounded Support, [80, Corollary 13.3.3]).
Given a proper convex function f , it holds that f is L-Lipschitz if and only if f ∗ has L-
bounded support.

Lemma 2 (Duality between Smoothness and Strong Convexity, [33, Theorem 4.2.2]). Given
a closed convex function f , it holds that f is µ strongly convex w.r.t. the norm ‖ · ‖ if and
only if f ∗ is (1/µ)-smooth w.r.t. the dual norm ‖ · ‖∗.

CHAPTER 5. THEORETICAL ANALYSIS 36

5.1.2 Primal-Dual Relationship

In the following sections we provide derivations of the primal-dual relationship of the general
objectives (A) and (B), and then show how to derive the conjugate of the modified L1-norm
as an example of the bounded-support modification introduced in Section 5.2.3.

5.1.3 Primal-Dual Relationship

The relation of our original formulation (A) to its dual formulation (B) is standard in convex
analysis, and is a special case of the concept of Fenchel Duality. Using the combination with
the linear map A as in our case, the relationship is called Fenchel-Rockafellar Duality (cf.
Borwein and Zhu [14, Theorem 4.4.2] or Bauschke and Combettes [9, Proposition 15.18]).
For completeness, we illustrate this correspondence with a self-contained derivation of the
duality.

Starting with the original formulation (A), we introduce an auxiliary vector v ∈ Rd

representing v = Aα. Then optimization problem (A) becomes:

min
α∈Rn

f(v) + g(α) such that v = Aα . (5.2)

Introducing Lagrange multipliers w ∈ Rd, the Lagrangian is given by:

L(α,v;w) := f(v) + g(α) + w> (Aα− v) .

The dual problem of (A) follows by taking the infimum with respect to both α and v:

inf
α,v

L(w,α,v) = inf
v

{
f(v)−w>v

}
+ inf

α

{
g(α) + w>Aα

}
= − sup

v

{
w>v− f(v)

}
− sup

α

{
(−w>A)α− g(α)

}
= −f ∗(w)− g∗(−A>w) . (5.3)

We change signs and turn the maximization of the dual problem (5.3) into a minimization,
thereby arriving at the dual formulation (B) as claimed:

min
w∈Rd

[
OB(w) := g∗(−A>w) + f ∗(w)

]
.

Continuous Conjugate Modification for Indicator Functions

Lemma 3 (Conjugate of the modified L1-norm). The convex conjugate of the bounded sup-
port modification of the L1-norm, as defined in (5.7), is:

ḡ∗i (x) :=

{
0 : x ∈ [−1, 1],

B(|x| − 1) : otherwise,

and is B-Lipschitz.

CHAPTER 5. THEORETICAL ANALYSIS 37

Proof. We start by applying the definition of convex conjugate:

ḡi(α) = sup
x∈R

[αx− ḡ∗i (x)] .

We begin by looking at the case in which α ≥ B; in this case it’s easy to see that when
x→ +∞, we have:

αx−B(|x| − 1) = (α−B)x−B → +∞ ,

as α − B ≥ 0. The case α ≤ −B holds analogously. We now look at the case α ∈ [0, B]; in
this case it is clear we must have x? ≥ 0. It also must hold that x? ≤ 1, since

αx−B(x− 1) < αx ,

for every x > 1. Therefore the maximization becomes

ḡi(α) = sup
x∈[0,1]

αx ,

which has maximum α at x = 1. The remaining α ∈ [−B, 0] case follows in similar fashion.
Lipschitz continuity of ḡ∗i follows directly, or alternatively also from the general result

that g∗i is L-Lipschitz if and only if gi has L-bounded support [80, Corollary 13.3.3] or [24,
Lemma 5].

Comparison to ADMM. Here we derive the comparison of ADMM and CoCoA dis-
cussed in Section 2.11, following the line of reasoning in [100]. For consensus ADMM, the
objective (B) is decomposed using the following re-parameterization:

max
w1,...wK ,w

K∑
k=1

∑
i∈Pk

g∗(−x>i wk) + f ∗(w)

s.t. wk = w, k = 1, . . . , K.

To solve this problem, we construct the augmented Lagrangian:

Lρ(w1, . . . ,wk,u1, . . . ,uk,w) :=
K∑
k=1

∑
i∈Pk

g∗(−x>i wk)

+ f ∗(w) + ρ
K∑
k=1

u>k (wk −w) +
ρ

2

K∑
k=1

‖wk −w‖2 ,

CHAPTER 5. THEORETICAL ANALYSIS 38

which yields the following decomposable updates:

w(t)
k = arg min

wk

∑
i∈Pk

g∗(−x>i wk) +
ρ

2
‖wk −w(t−1) + u(t−1)

k ‖2,

w(t) = arg min
w

f ∗(w) + ρ
K∑
k=1

u>k (wk −w) +
ρ

2

K∑
k=1

‖wk −w‖2,

u(t)
k = u(t−1)

k + w(t)
k −w(t).

To compare this to the proposed framework, recall that the subproblem (2.10) (excluding
the extraneous term f(v)) can be written as:

min
α[k]∈Rn

∑
i∈Pk

gi((α[k])i) + w>Aα[k] +
σ′

2τ

∥∥∥A[k]α[k]

∥∥∥2

.

We can further reformulate by completing the square:

min
α[k]∈Rn

∑
i∈Pk

gi((α[k])i) +
τ

2σ′

∥∥∥ w +
σ′

τ
A[k]α[k]

∥∥∥2

.

Assuming for the time being that f(·) = 1
2
‖ · ‖2

2 such that w = ∇f(v) = v, we can unroll
the update as follows, using γ∆v(t−1) = γ

∑K
i=1 ∆v(t−1)

k :

min
α[k]∈Rn

∑
i∈Pk

gi((α[k])i) +
τ

2σ′

∥∥∥ w(t−1) + γ∆v(t−1) +
σ′

τ
A[k]α[k]

∥∥∥2

.

We will show that the above objective has the following primal form for each machine k:

min
w

∑
i∈Pk

g∗i (−x>i w) +
τ

2σ′

∥∥∥w− (w(t−1) + γ∆v(t−1)
)∥∥∥2

. (5.4)

Indeed, suppressing the subscript k for simplicity, we have:

min
w

∑
i

g∗i (−x>i w) +
τ

2σ′

∥∥∥w− (w(t−1) + γ∆v(t−1)
)∥∥∥2

= min
w

∑
i

max
αi

−x>i wαi − gi(αi) +
τ

2σ′

∥∥∥w− (w(t−1) + γ∆v(t−1)
)∥∥∥2

= max
α

min
w

∑
i

−x>i wαi − gi(αi) +
τ

2σ′

∥∥∥w− (w(t−1) + γ∆v(t−1)
)∥∥∥2

.

CHAPTER 5. THEORETICAL ANALYSIS 39

Solving the minimization yields: w = wt−1 + γ∆v(t−1) + σ′

τ
Aα. Plugging this back in yields:

= max
α

∑
i

−gi(αi)− (Aα)>w(t−1) − (Aα)>γ∆v(t−1) − σ′

τ
‖Aα‖2 +

τ

2σ′

∥∥∥σ′
τ
Aα
∥∥∥2

= max
α

∑
i

−gi(αi)− (Aα)>w(t−1) − (Aα)>γ∆v(t−1) − σ′

2τ
‖Aα‖2

= min
α

∑
i

gi(αi) + (Aα)>w(t−1) + (Aα)>γ∆v(t−1) +
σ′

2τ
‖Aα‖2

= min
α

∑
i

gi(αi) +
τ

2σ′

∥∥∥ w(t−1) + γ∆v(t−1) +
σ′

τ
Aα
∥∥∥2

.

5.2 Convergence
In this section, we provide convergence rates for the proposed framework and introduce an
important theoretical technique in analyzing non-strongly convex terms in the primal-dual
setting. For simplicity of presentation, we assume in the analysis that the data partitioning
is balanced; i.e., nk = n/K for all k. Furthermore, we assume that the columns of A satisfy
‖xi‖ ≤ 1 for all i ∈ [n]. We present rates for the case where γ := 1 in Algorithm 1, and
where the subproblems (2.10) are defined using the corresponding safe bound σ′ := K. This
case will guarantee convergence while delivering our fastest rates in the distributed setting,
which in particular do not degrade as the number of machines K grows and n remains fixed.

5.2.1 Proof Strategy: Relating Subproblem Approximation to
Global Progress

To guarantee convergence, it is critical to show how progress made on the local subprob-
lems (2.10) relates to the global objective OA. Our first lemma provides exactly this in-
formation. In particular, we see that if the aggregation and subproblem parameters are
selected according to Definition 5, the sum of the subproblem objectives,

∑K
k=1 Gσ

′

k , will form
a block-separable upper bound on the global objective OA.

Lemma 4. For any weight vector α,∆α ∈ Rn, v = v(α) := Aα, and real values γ, σ′
satisfying (2.11), it holds that

OA
(
α + γ

K∑
k=1

∆α[k]

)
≤ (1− γ)OA(α) + γ

K∑
k=1

Gσ′

k (∆α[k]; v,α[k]) . (5.5)

CHAPTER 5. THEORETICAL ANALYSIS 40

A proof of Lemma 15 is provided in Section 5.2.8. We use this main lemma, in combina-
tion with our assumption on the quality of the subproblem approximations (Assumption 1),
to deliver our global convergence rates.

5.2.2 Rates for General Convex gi, L-Lipschitz g∗i
Our first main theorem provides convergence guarantees for objectives with general convex gi
(or, equivalently, L-Lipschitz g∗i), including models with non-strongly convex regularizers
such as lasso and sparse logistic regression, or models with non-smooth losses, such as the
hinge loss support vector machine.

Providing primal-dual rates and globally defined primal-dual accuracy certificates for
these objectives may require an important theoretical technique that we introduce below, in
which we show how to satisfy the notion of L-bounded support for gi, as stated in Definition 2.

Theorem 5. Consider Algorithm 1 with γ := 1, and let Θ be the quality of the local solver
as in Assumption 1. Let gi have L-bounded support, and let f be (1/τ)-smooth. Then after
T iterations, where

T ≥ T0 + max{
⌈ 1

1−Θ

⌉
,

4L2n2

τεG(1−Θ)
} , (5.6)

T0 ≥ t0 +
[2

1−Θ

(
8L2n2

τεG
− 1

)]
+
,

t0 ≥ max(0,
⌈

1
(1−Θ)

log
(
τ(OA(α(0))−OA(α?))

2L2Kn

)⌉
) ,

we have that the expected duality gap satisfies

E
[
OA(α)− (−OB(w(α)))

]
≤ εG ,

where α is the averaged iterate: 1
T−T0

∑T−1
t=T0+1 α

(t).

5.2.3 Bounded support modification

As mentioned earlier, additional work is necessary if Theorem 5 is to be applied to non-
strongly convex regularizers such as the L1 norm, which do not have L-bounded support for
each gi, and thus violate the assumptions of the theorem. Note for example that the conjugate
function of gi = | · |, which is the indicator function of an interval, is not defined globally over
R, and thus (without further modification) the duality gap G(α) := OA(α)− (−OB(w(α)))
is not even defined at all points α.

CHAPTER 5. THEORETICAL ANALYSIS 41

Smoothing. To address this problem, existing approaches typically use a simple smoothing
technique [as in 67, 84]: by adding a small amount of L2 to the objective gi, the functions
gi become strongly convex. Followed by this change, the algorithms are then run on the
dual of instead of the original primal problem at hand. While this modification satisfies the
necessary assumptions for convergence of our framework, this Nesterov smoothing technique
is often undesirable in practice, as it changes the iterates, the algorithms at hand, the
convergence rate, and the tightness of the resulting duality gap compared to the original
objective. Further, the amount of smoothing can be difficult to tune and can have a large
influence on the performance of the method at hand. We show practical examples of these
difficulties in Chapter 4.

Bounded support modification. In contrast to smoothing, our approach preserves all
solutions of the original objective, leaves the iterate sequence unchanged, and allows for
direct reusability of existing solvers for the original gi objectives (such as L1 solvers). It
also removes the need for tuning a smoothing parameter. To achieve this, we modify the
function gi by imposing an additional weak constraint that is inactive in our region of interest.
Formally, we replace gi(αi) by the following modified function:

ḡi(αi) :=

{
gi(αi) : αi ∈ [−B,B]

+∞ : otherwise.
(5.7)

For large enough B, this problem yields the same solution as the original objective. Note also
that this only affects convergence theory, in that it allows us to present a strong primal-dual
rate (Theorem 5 for L=B). The modification of gi does not affect the algorithms for the
original problems. Whenever a monotone optimizer is used, we will never leave the level set
defined by the objective at the starting point.

Using the resulting modified function will allow us to apply the results of Theorem 5
for general convex functions gi. This technique can also be thought of as “Lipschitzing” the
dual g∗i , because of the general result that g∗i is L-Lipschitz if and only if gi has L-bounded
support [80, Corollary 13.3.3]. We derive the conjugate function ḡ∗i for completeness in
Section 5.1.2 (Lemma 3). In Chapter 3, we show how to leverage this technique for a variety
of application input problems. See also [24] for a follow-up discussion of this technique in
the non-distributed case.

5.2.4 Rates for Strongly Convex gi, Smooth g∗i

For the case of objectives with strongly convex gi (or, equivalently, smooth g∗i), e.g., elastic
net regression or logistic regression, we obtain the following faster linear convergence rate.

Theorem 6. Consider Algorithm 1 with γ := 1, and let Θ be the quality of the local solver
as in Assumption 1. Let gi be µ-strongly convex ∀i ∈ [n], and let f be (1/τ)-smooth. Then
after T iterations where

T ≥ 1
(1−Θ)

µτ+n
µτ

log n
εOA

, (5.8)

CHAPTER 5. THEORETICAL ANALYSIS 42

it holds that
E
[
OA(α(T))−OA(α?)

]
≤ εOA .

Furthermore, after T iterations with

T ≥ 1
(1−Θ)

µτ+n
µτ

log
(

1
(1−Θ)

µτ+n
µτ

n
εG

)
,

we have the expected duality gap

E
[
OA(α(T))− (−OB(w(α(T)))

]
≤ εG .

We provide proofs of Theorem 5 and Theorem 6 below.

5.2.5 Convergence Cases

Revisiting Table 2.1 from Chapter 2, we summarize our convergence guarantees for the three
cases of input problems (I) in the following table. In particular, we see that for cases II and
III, we obtain a sublinear convergence rate, whereas for case I we can obtain a faster linear
rate, as provided in Theorem 6.

Table 5.1: Applications of convergence rates.

Smooth ` Non-smooth, separable `
Strongly convex r Case I: Theorem 6 Case III: Theorem 5

Non-strongly convex, separable r Case II: Theorem 5 –

5.2.6 Recovering Earlier Work as a Special Case

As a special case, the proposed framework and rates directly apply to L2-regularized loss-
minimization problems, including those presented in the earlier work of [38] and [53].

Remark 3. If we run Algorithm 3 (mapping (I) to (B)), restrict f ∗(·) := λ
2
‖ · ‖2 (so that

τ = λ), and let g∗i := 1
n
`∗i , Theorem 5 recovers as a special case the CoCoA+ rates for

general L-Lipschitz `∗i losses [see 53, Corollary 9]. The earlier work of CoCoA-v1 [38] did
not provide rates for L-Lipschitz `∗i losses.

These cases follow since g∗i is L-Lipschitz if and only if gi has L-bounded support [80,
Corollary 13.3.3].

Remark 4. If we run Algorithm 3 (mapping (I) to (B)), restrict f ∗(·) := λ
2
‖ · ‖2 (so that

τ = λ), and scale g∗i := 1
n
`∗i , Theorem 6 recovers as a special case the CoCoA+ rates for

(1/`∗i)-smooth losses [see 53, Corollary 11]. The earlier rates of CoCoA-v1 can be obtained
by setting γ:= 1

K
and σ′=1 in Algorithm 1 [38, Theorem 2].

CHAPTER 5. THEORETICAL ANALYSIS 43

These cases follow since g∗i is µ-strongly convex if and only if gi is (1/µ)-smooth [33,
Theorem 4.2.2].

5.2.7 Local Subproblems

In this section we provide proofs of our main convergence results. The arguments follow the
reasoning in [53, 51], but where we have generalized them to be applicable directly to (A).
We provide full details of Lemma 15 as a proof of concept, but omit details in later proofs
that can be derived using the arguments in [53] or earlier work of [85], and instead outline
the proof strategy and highlight sections where the theory deviates.

5.2.8 Approximation of OA(·) by the Local Subproblems Gσ′k (·)
Our first lemma in the overall proof of convergence helps to relate progress on the local
subproblems to the global objective OA(·).

Lemma’ 15. For any dual variables α,∆α ∈ Rn, v = v(α) := Aα, and real values γ, σ′
satisfying (2.11), it holds that

OA
(
α + γ

K∑
k=1

∆α[k]

)
≤ (1− γ)OA(α) + γ

K∑
k=1

Gσ′

k (∆α[k]; v,α[k]) . (5.9)

Proof. In this proof we follow the line of reasoning in Ma et al. [53, Lemma 4] with a more
general (1/τ) smoothness assumption on f(·). An outer iteration of CoCoA performs the
following update:

OA(α + γ
K∑
k=1

∆α[k]) = f(v(α + γ
K∑
k=1

∆α[k]))︸ ︷︷ ︸
A

+
n∑
i=1

gi(αi + γ(
K∑
k=1

∆α[k])i)︸ ︷︷ ︸
B

. (5.10)

We bound A and B separately. First we bound A using (1/τ)-smoothness of f :

A = f
(
v(α + γ

K∑
k=1

∆α[k])
)

= f
(
v(α) + γ

K∑
k=1

v(∆α[k])
)

smoothness of f as in (2.3)
≤ f(v(α)) +

K∑
k=1

γ∇f(v(α))>v(∆α[k]) +
γ2

2τ
‖

K∑
k=1

v(α[k])‖2

definition of w as in (2.5)
≤ f(v(α)) +

K∑
k=1

γv(∆α[k])
>w(α) +

γ2

2τ
‖

K∑
k=1

v(α[k])‖2

CHAPTER 5. THEORETICAL ANALYSIS 44

safe choice of σ′ as in (2.11)
≤ f(v(α)) +

K∑
k=1

γv(∆α[k])
>w(α) +

1

2τ
γσ′

K∑
k=1

‖v(α[k])‖2 .

Next we use Jensen’s inequality to bound B:

B =
K∑
k=1

(∑
i∈Pk

gi(αi + γ(∆α[k])i)

)
=

K∑
k=1

(∑
i∈Pk

gi((1− γ)αi + γ(α + ∆α[k])i)

)

≤
K∑
k=1

(∑
i∈Pk

(1− γ)gi(αi) + γgi(αi + ∆α[k]i
)

)
.

Plugging A and B back into (5.10) yields:

OA
(
α + γ

K∑
k=1

∆α[k]

)
≤ f(v(α))± γf(v(α)) +

K∑
k=1

γv(∆α[k])
>w(α)

+
1

2τ
γσ′

K∑
k=1

‖v(α[k])‖2 +
K∑
k=1

∑
i∈Pk

(1− γ)gi(αi) + γgi(αi + ∆α[k]i
)

= (1− γ)f(v(α)) +
K∑
k=1

(∑
i∈Pk

(1− γ)gi(αi)

)
︸ ︷︷ ︸

(1−γ)OA(α)

+ γ
K∑
k=1

(
1

K
f(v(α)) + v(∆α[k])

>w(α) +
σ′

2τ
‖v(α[k])‖2

+
∑
i∈Pk

gi(αi + ∆α[k]i
)

)

(2.10)
= (1− γ)OA(α) + γ

K∑
k=1

Gσ′

k (∆α[k];v) ,

where the last equality is by the definition of the subproblem objective Gσ′

k (.) as in (2.10).

5.2.9 Proof of Convergence Result for General Convex gi

Before proving the main convergence results, we introduce several useful quantities, and
establish the following lemma, which characterizes the effect of iterations of Algorithm 1 on
the duality gap for any chosen local solver of approximation quality Θ.

CHAPTER 5. THEORETICAL ANALYSIS 45

Lemma 7. Let gi be strongly convex 1 with convexity parameter µ ≥ 0 with respect to the
norm ‖ · ‖, ∀i ∈ [n]. Then at each iteration of Algorithm 1 under Assumption 1, and any
s ∈ [0, 1], it holds that

E[OA(α(t))−OA(α(t+1))] ≥ γ(1−Θ)
(
sG(α(t))− σ′s2

2τ
R(t)

)
, (5.11)

where

R(t) := − τµ(1−s)
σ′s
‖u(t) −α(t)‖2 +

∑K
k=1‖A[k](u(t) −α(t))[k]‖2 , (5.12)

for u(t) ∈ Rn with
u

(t)
i ∈ ∂g∗i (−x>i w(α(t))) . (5.13)

Proof. This proof is motivated by Shalev-Shwartz and Zhang [85, Lemma 19] and follows Ma
et al. [53, Lemma 5], with a difference being the extension to our generalized subproblems
Gσ′

k (·;v,α[k]) along with the mappings w(α) := ∇f(v(α)) with v(α) := Aα.
For simplicity, we write α instead of α(t), v instead of v(α(t)), w instead of w(α(t)) and

u instead of u(t). We can estimate the expected change of the objective OA(α) as follows.
Starting from the definition of the update α(t+1) := α(t) + γ

∑
k ∆α[k] from Algorithm 1,

we apply Lemma 15, which relates the local approximation Gσ′

k (α;v,α[k]) to the global
objective OA(α), and then bound this using the notion of quality of the local solver (Θ), as
in Assumption 1. This gives us:

E
[
OA(α(t))−OA(α(t+1))

]
= E

[
OA(α)−OA

(
α + γ

K∑
k=1

∆α[k]

)]

≥ γ(1−Θ)

OA(α)−
K∑
k=1

Gσ′

k (∆α?
[k];v,α[k])︸ ︷︷ ︸

C

 . (5.14)

We next upper bound the C term, denoting ∆α? =
∑K

k=1 ∆α?
[k]. We first plug in the

definition of the objective OA in (A) and the local subproblems (2.10), and then substitute
1Note that the case of weakly convex gi(.) is explicitly allowed here as well, as the Lemma holds for the

case µ = 0.

CHAPTER 5. THEORETICAL ANALYSIS 46

s(ui − αi) for ∆α?
i and apply the µ-strong convexity of the gi terms. This gives us:

C =
n∑
i=1

(gi(αi)− gi(αi + ∆α?i))− (A∆α?)>w(α)−
K∑
k=1

σ′

2τ

∥∥∥A[k]∆α?
[k]

∥∥∥2

≥
n∑
i=1

(
sgi(αi)− sgi(ui) +

µ

2
(1− s)s(ui − αi)2

)

− A(s(u−α))>w(α)−
K∑
k=1

σ′

2τ

∥∥∥A[k](s(u−α)[k])
∥∥∥2

. (5.15)

From the definition of the optimization problems (A) and (B), and definition of convex
conjugates, we can write the duality gap as:

G(α) := OA(α)− (−OB(w(α))

(A),(B)
=

n∑
i=1

(
g∗i (−x>i w(α)) + gi(αi)

)
+ f ∗(w(α)) + f(Aα))

=
n∑
i=1

(
g∗i (−x>i w(α)) + gi(αi)

)
+ f ∗(∇f(Aα)) + f(Aα)

=
n∑
i=1

(
g∗i (−x>i w(α)) + gi(αi)

)
+ (Aα)>w(α)

=
n∑
i=1

(
g∗i (−x>i w(α)) + gi(αi) + αix>i w(α)

)
. (5.16)

The convex conjugate maximal property from (5.13) implies that

gi(ui) = ui(−x>i w(α))− g∗i (−x>i w(α)) . (5.17)

CHAPTER 5. THEORETICAL ANALYSIS 47

Using (5.17) and (5.16), we therefore have:

C
(5.17)
≥

n∑
i=1

(
sgi(αi)− sui(−x>i w(α)) + sg∗i (−x>i w(α)) +

µ

2
(1− s)s(ui − αi)2

)

− A(s(u−α))>w(α)−
K∑
k=1

σ′

2τ

∥∥∥A[k](s(u−α)[k])
∥∥∥2

=
n∑
i=1

[
sgi(αi) + sg∗i (−x>i w(α)) + sx>i w(α)αi

]

−
n∑
i=1

[
sx>i w(α)(αi − ui)−

µ

2
(1− s)s(ui − αi)2

]

− A(s(u−α))>w(α)−
K∑
k=1

σ′

2τ

∥∥∥A[k](s(u−α)[k])
∥∥∥2

(5.16)
= sG(α) +

µ

2
(1− s)s‖u−α‖2 − σ′s2

2τ

K∑
k=1

‖A[k](u−α)[k]‖2 . (5.18)

The claimed improvement bound (5.11) then follows by plugging (5.18) into (5.14).

The following Lemma provides a uniform bound on R(t):

Lemma 8. If g∗i are L-Lipschitz continuous for all i ∈ [n], then

∀t : R(t) ≤ 4L2

K∑
k=1

σknk︸ ︷︷ ︸
=:σ

, (5.19)

where

σk := max
α[k]∈Rn

‖A[k]α[k]‖2

‖α[k]‖2
. (5.20)

Proof. [53, Lemma 6]. For general convex functions, the strong convexity parameter is µ = 0,
and hence the definition (5.12) of the complexity constant R(t) becomes

R(t) =
K∑
k=1

‖A[k](u(t) −α(t))[k]‖2
(5.20)
≤

K∑
k=1

σk‖(u(t) −α(t))[k]‖2 ≤
K∑
k=1

σk|Pk|4L2 .

Here the last inequality follows from [85, Lemma 21], which shows that for g∗i : R→ R being
L-Lipschitz, it holds that for any real value a with |a| > L one has that gi(a) = +∞.

CHAPTER 5. THEORETICAL ANALYSIS 48

Remark 5. [53, Remark 7] If the data points xi are normalized such that ‖xi‖ ≤ 1, ∀i ∈ [n],
then σk ≤ |Pk| = nk. Furthermore, if we assume that the data partition is balanced, i.e., that
nk = n/K for all k, then σ ≤ n2/K. This can be used to bound the constants R(t), above, as
R(t) ≤ 4L2n2

K
.

Theorem 9. Consider Algorithm 1, using a local solver of quality Θ (See Assumption 1).
Let g∗i (·) be L-Lipschitz continuous, and εG > 0 be the desired duality gap (and hence an
upper-bound on suboptimality εOA). Then after T iterations, where

T ≥ T0 + max{
⌈ 1

γ(1−Θ)

⌉
,

4L2σσ′

τεGγ(1−Θ)
} , (5.21)

T0 ≥ t0 +
[2

γ(1−Θ)

(
8L2σσ′

τεG
− 1

)]
+
,

t0 ≥ max(0,
⌈

1
γ(1−Θ)

log
(
τ(OA(α(0))−OA(α?))

2L2σσ′

)⌉
) ,

we have that the expected duality gap satisfies

E[OA(α)− (−OB(w(α)))] ≤ εG

at the averaged iterate
α := 1

T−T0

∑T−1
t=T0+1α

(t) . (5.22)

Proof. We begin by estimating the expected change of feasibility for OA. We can bound this
above by using Lemma 7 and the fact that the OB(·) is always a lower bound for −OA(·),
and then applying (5.19) to find:

E[OA(α(t+1))−OA(α?)] ≤ (1− γ(1−Θ)s) (OA(α(t))−OA(α?))

+ γ(1−Θ)σ
′s2

2τ
4L2σ . (5.23)

Using (5.23) recursively we have

E[OA(α(t))−OA(α?)] ≤ (1− γ(1−Θ)s)t (OA(α(0))−OA(α?)) + s
4L2σσ′

2τ
. (5.24)

Choosing s = 1 and t = t0 := max{0, d 1
γ(1−Θ)

log(2(OA(α(0))−OA(α?))/(4L2σσ′))e} leads to

E[OA(α(t))−OA(α?)] ≤ (1− γ(1−Θ))t0 (OA(α(0))−OA(α?)) +
4L2σσ′

2τ

≤ 4L2σσ′

τ
. (5.25)

CHAPTER 5. THEORETICAL ANALYSIS 49

Next, we show inductively that

∀t ≥ t0 : E[OA(α(t))−OA(α?)] ≤ 4L2σσ′

τ(1 + 1
2
γ(1−Θ)(t− t0))

. (5.26)

Clearly, (5.25) implies that (5.26) holds for t = t0. Assuming that it holds for any t ≥ t0, we
show that it must also hold for t+ 1. Indeed, using

s =
1

1 + 1
2
γ(1−Θ)(t− t0)

∈ [0, 1] , (5.27)

we obtain

E[OA(α(t+1))−OA(α?)] ≤ 4L2σσ′

τ

(
1 + 1

2
γ(1−Θ)(t− t0)− 1

2
γ(1−Θ)

(1 + 1
2
γ(1−Θ)(t− t0))2

)
︸ ︷︷ ︸

D

by applying the bounds (5.23) and (5.26), plugging in the definition of s (5.27), and simpli-
fying. We upper bound the term D using the fact that geometric mean is less or equal to
arithmetic mean:

D =
1

1 + 1
2
γ(1−Θ)(t+ 1− t0)

(1 + 1
2
γ(1−Θ)(t+ 1− t0))(1 + 1

2
γ(1−Θ)(t− 1− t0))

(1 + 1
2
γ(1−Θ)(t− t0))2︸ ︷︷ ︸

≤1

≤ 1

1 + 1
2
γ(1−Θ)(t+ 1− t0)

.

If α is defined as (5.22), we apply the results of Lemma 7 and Lemma 8 to obtain

E[G(α)] = E

[
G

(
T−1∑
t=T0

1
T−T0α

(t)

)]
≤ 1

T−T0E

[
T−1∑
t=T0

G
(
α(t)

)]

≤ 1

γ(1−Θ)s

1

T − T0

E
[
OA(α(T0))−OA(α?)

]
+ 4L2σσ′s

2τ
. (5.28)

If T ≥ d 1
γ(1−Θ)

e+ T0 such that T0 ≥ t0 we have

E[G(α)]
(5.28),(5.26)
≤ 1

γ(1−Θ)s

1

T − T0

(
4L2σσ′

τ(1 + 1
2
γ(1−Θ)(T0 − t0))

)
+

4L2σσ′s

2τ

=
4L2σσ′

τ

(
1

γ(1−Θ)s

1

T − T0

1

1 + 1
2
γ(1−Θ)(T0 − t0)

+
s

2

)
. (5.29)

CHAPTER 5. THEORETICAL ANALYSIS 50

Choosing

s =
1

(T − T0)γ(1−Θ)
∈ [0, 1] (5.30)

gives us

E[G(α)]
(5.29),(5.30)
≤ 4L2σσ′

τ

(
1

1 + 1
2
γ(1−Θ)(T0 − t0)

+
1

(T − T0)γ(1−Θ)

1

2

)
. (5.31)

To have right hand side of (5.31) smaller then εG it is sufficient to choose T0 and T such that

4L2σσ′

τ

(
1

1 + 1
2
γ(1−Θ)(T0 − t0)

)
≤ 1

2
εG , (5.32)

4L2σσ′

τ

(
1

(T − T0)γ(1−Θ)

1

2

)
≤ 1

2
εG . (5.33)

Hence if T0 ≥ t0 + 2
γ(1−Θ)

(
8L2σσ′

τεG
− 1
)

and T ≥ T0 + 4L2σσ′

τεGγ(1−Θ)
then (5.32) and (5.33) are

satisfied.

The following main theorem simplifies the results of Theorem 9 and is a generalization
of Ma et al. [53, Corollary 9] for general f ∗(·) functions:

Theorem’ 5. Consider Algorithm 1 with γ := 1, using a local solver of quality Θ (see
Assumption 1). Let g∗i (·) be L-Lipschitz continuous, and assume that the columns of A
satisfy ‖xi‖ ≤ 1, ∀i ∈ [n]. Let εG > 0 be the desired duality gap (and hence an upper-bound
on primal sub-optimality). Then after T iterations, where

T ≥ T0 + max{
⌈ 1

1−Θ

⌉
,

4L2n2

τεG(1−Θ)
} , (5.34)

T0 ≥ t0 +
[2

1−Θ

(
8L2n2

τεG
− 1

)]
+
,

t0 ≥ max(0,
⌈

1
(1−Θ)

log
(
τ(OA(α(0))−OA(α?))

2L2Kn

)⌉
) ,

we have that the expected duality gap satisfies

E[OA(α)− (−OB(w(α)))] ≤ εG ,

where α is the averaged iterate returned by Algorithm 1.

Proof. Plug in parameters γ := 1, σ′ := γK = K to the results of Theorem 9, and note that
for balanced datasets we have σ ≤ n2

K
(see Remark 5). We can further simplify the rate by

noting that τ = 1 for the 1-smooth losses (least squares and logistic) given as examples in
this work.

CHAPTER 5. THEORETICAL ANALYSIS 51

5.2.10 Proof of Convergence Result for Strongly Convex gi

Our second main theorem follows reasoning in [85] and is a generalization of Ma et al. [53,
Corollary 11]. We first introduce a lemma to simplify the proof.

Lemma 10. Assume that gi(0) ∈ [0, 1] for all i ∈ [n], then for the zero vector α(0) := 0 ∈ Rn,
we have

OA(α(0))−OA(α?) = OA(0)−OA(α?) ≤ n . (5.35)

Proof. For α := 0 ∈ Rn, we have w(α) = Aα = 0 ∈ Rd. Therefore, since the dual −OA(·)
is always a lower bound on the primal OB(·), and by definition of the objective OA given
in (A),

0 ≤ OA(α)−OA(α?) ≤ OA(α)− (−OB(w(α)))
(A)
≤ n .

Theorem 11. Assume that gi are µ-strongly convex ∀i ∈ [n]. We define σmax = maxk∈[K] σk.
Then after T iterations of Algorithm 1, with

T ≥ 1
γ(1−Θ)

µτ+σmaxσ′

µτ
log n

εOA

,

it holds that
E[OA(α(T))−OA(α?)] ≤ εOA .

Furthermore, after T iterations with

T ≥ 1
γ(1−Θ)

µτ+σmaxσ′

µτ
log
(

1
γ(1−Θ)

µτ+σmaxσ′

µτ
n
εG

)
,

we have the expected duality gap

E[OA(α(T))− (−OB(w(α(T))))] ≤ εG .

Proof. Given that gi(.) is µ-strongly convex with respect to the ‖ · ‖ norm, we can apply
(5.12) and the definition of σk to find:

R(t) ≤ − τµ(1−s)
σ′s
‖u(t) −α(t)‖2 +

∑K

k=1
σk‖u(t) −α

(t)
[k]‖

2

≤
(
− τµ(1−s)

σ′s
+ σmax

)
‖u(t) −α(t)‖2 , (5.36)

where σmax = maxk∈[K] σk. If we plug the following value of s

s =
τµ

τµ+ σmaxσ′
∈ [0, 1] (5.37)

CHAPTER 5. THEORETICAL ANALYSIS 52

into (5.36) we obtain that ∀t : R(t) ≤ 0. Putting the same s into (5.11) will give us

E[OA(α(t))−OA(α(t+1))]
(5.11),(5.37)
≥ γ(1−Θ)

τµ

τµ+ σmaxσ′
G(α(t))

≥ γ(1−Θ)
τµ

τµ+ σmaxσ′
(OA(α(t))−OA(α?)) . (5.38)

Using the fact that

E[OA(α(t))−OA(α(t+1))] = E[OA(α?)−OA(α(t+1))] +OA(α(t))−OA(α?) ,

we have

E[OA(α?)−OA(α(t+1))] +OA(α(t))−OA(α?)

(5.38)
≥ γ(1−Θ)

τµ

τµ+ σmaxσ′
(OA(α(t))−OA(α?)) ,

which is equivalent to

E[OA(α(t+1))−OA(α?)] ≤
(

1− γ(1−Θ)
τµ

τµ+ σmaxσ′

)
(OA(α(t))−OA(α?)) . (5.39)

Therefore if we denote ε(t)OA = OA(α(t))−OA(α?), we have recursively that

E[ε
(t)
OA]

(5.39)
≤
(

1− γ(1−Θ)
τµ

τµ+ σmaxσ′

)t
ε

(0)
OA

(5.35)
≤
(

1− γ(1−Θ)
τµ

τµ+ σmaxσ′

)t
n

≤ exp

(
−tγ(1−Θ)

τµ

τµ+ σmaxσ′

)
n .

The right hand side will be smaller than some εOA if

t ≥ 1

γ(1−Θ)

τµ+ σmaxσ
′

τµ
log

n

εOA
.

Moreover, to bound the duality gap, we have

γ(1−Θ)
τµ

τµ+ σmaxσ′
G(α(t))

(5.38)
≤ E[OA(α(t))−OA(α(t+1))]

≤ E[OA(α(t))−OA(α?)] .

CHAPTER 5. THEORETICAL ANALYSIS 53

Thus, G(α(t)) ≤ 1
γ(1−Θ)

τµ+σmaxσ′

τµ
ε

(t)
OA . Hence, if εOA ≤ γ(1−Θ) τµ

τµ+σmaxσ′ εG, then G(α(t)) ≤ εG.
Therefore after

t ≥ 1

γ(1−Θ)

τµ+ σmaxσ
′

τµ
log

(
1

γ(1−Θ)

τµ+ σmaxσ
′

τµ

n

εG

)
iterations, we have obtained a duality gap less than εG.

Theorem’ 6. Consider Algorithm 1 with γ := 1, using a local solver of quality Θ (see
Assumption 1). Let gi(·) be µ-strongly convex, ∀i ∈ [n], and assume that the columns of A
satisfy ‖xi‖ ≤ 1 ∀i ∈ [n]. Then we have that T iterations are sufficient for suboptimality
εOA, with

T ≥ 1
γ(1−Θ)

τµ+n
τµ

log n
εOA

.

Furthermore, after T iterations with

T ≥ 1
γ(1−Θ)

τµ+n
τµ

log
(

1
γ(1−Θ)

τµ+n
τµ

n
εG

)
,

we have the expected duality gap

E[OA(α(T))− (−OB(w(α(T))))] ≤ εG .

Proof. Plug in parameters γ := 1, σ′ := γK = K to the results of Theorem 11 and note that
for balanced datasets we have σmax ≤ n

K
(see Remark 5). We can further simplify the rate

by noting that τ = 1 for the 1-smooth losses (least squares and logistic) given as examples
in this work.

54

Chapter 6

Extension: Federated Learning

Federated learning poses new statistical and systems challenges in training machine learning
models over distributed networks of devices. In this chapter, we show that multi-task learning
is naturally suited to handle the statistical challenges of this setting, and propose system-
aware optimization method, Mocha, that extends our earlier work on CoCoA and is robust
to practical systems issues. Our method and theory for the first time consider issues of high
communication cost, stragglers, and fault tolerance for distributed multi-task learning. The
resulting method achieves significant speedups compared to alternatives in the federated
setting, as we demonstrate through simulations on real-world federated datasets.

6.1 Introduction
Mobile phones, wearable devices, and smart homes are just a few of the modern distributed
networks generating massive amounts of data each day. Due to the growing storage and
computational power of devices in these networks, it is increasingly attractive to store data
locally and push more network computation to the edge. The nascent field of federated
learning explores training statistical models directly on devices [60]. Examples of potential
applications include: learning sentiment, semantic location, or activities of mobile phone
users; predicting health events like low blood sugar or heart attack risk from wearable devices;
or detecting burglaries within smart homes [4, 69, 75]. Following [43, 44, 61], we summarize
the unique challenges of federated learning below.

1. Statistical Challenges: The aim in federated learning is to fit a model to distributed
data, {X1, . . . ,Xm}, generated by m nodes. Each node, t ∈ [m], collects data in a non-
IID manner across the network, with data on each node being generated by a distinct
distribution Xt ∼ Pt. The number of data points on each node, nt, may also vary signif-
icantly, and there may be an underlying structure present that captures the relationship
amongst nodes and their associated distributions.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 55

2. Systems Challenges: There are typically a large number of nodes, m, in the net-
work, and communication is often a significant bottleneck. Additionally, the storage,
computational, and communication capacities of each node may differ due to variability
in hardware (CPU, memory), network connection (3G, 4G, WiFi), and power (battery
level). These systems challenges, compounded with unbalanced data and statistical het-
erogeneity, make issues such as stragglers and fault tolerance significantly more prevalent
than in typical data center environments.

In this work, we propose a modeling approach that differs significantly from prior work
on federated learning, where the aim thus far has been to train a single global model across
the network [43, 44, 61]. Instead, we address statistical challenges in the federated setting
by learning separate models for each node, {w1, . . . ,wm}. This can be naturally captured
through a multi-task learning (MTL) framework, where the goal is to consider fitting sep-
arate but related models simultaneously [2, 25, 46, 108]. Unfortunately, current multi-task
learning methods are not suited to handle the systems challenges that arise in federated
learning, including high communication cost, stragglers, and fault tolerance. Addressing
these challenges is therefore a key component of our work.

6.1.1 Contributions

We make the following contributions. First, we show that MTL is as a natural choice to
handle statistical challenges in the federated setting. Second, we develop a novel method,
Mocha, to solve a general MTL framework. Our method generalizes the distributed opti-
mization method CoCoA in order to address systems challenges associated with network
size and node heterogeneity. Third, we provide convergence guarantees for Mocha that
carefully consider these unique systems challenges and provide insight into practical perfor-
mance. Finally, we demonstrate the superior empirical performance of Mocha with a new
benchmarking suite of federated datasets.

6.2 Related Work
Learning Beyond the Data Center. Computing SQL-like queries across distributed,
low-powered nodes is a decades-long area of research that has been explored under the
purview of query processing in sensor networks, computing at the edge, and fog computing
[13, 21, 29, 34, 54, 55]. Recent work has also considered training machine learning models
centrally but serving and storing them locally, e.g., this is a common approach in mobile user
modeling and personalization [45, 76, 77]. However, as the computational power of nodes
within distributed networks grows, it is possible to do even more work locally, which has
led to recent interest in federated learning.1 In contrast to our proposed approach, existing

1The term on-device learning has been used to describe both the task of model training and of model
serving. Due to the ambiguity of this phrase, we exclusively use the term federated learning.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 56

federated learning approaches [43, 44, 60, 61] aim to learn a single global model across the
data.2 This limits their ability to deal with non-IID data and structure amongst the nodes.
These works also come without convergence guarantees, and have not addressed practical
issues of stragglers or fault tolerance, which are important characteristics of the federated
setting. The work proposed here is, to the best of our knowledge, the first federated learning
framework to consider these challenges, theoretically and in practice.

Multi-Task Learning. In multi-task learning, the goal is to learn models for multiple
related tasks simultaneously. While the MTL literature is extensive, most MTL modeling
approaches can be broadly categorized into two groups based on how they capture relation-
ships amongst tasks. The first (e.g., [6, 20, 25, 42]) assumes that a clustered, sparse, or
low-rank structure between the tasks is known a priori. A second group instead assumes
that the task relationships are not known beforehand and can be learned directly from the
data (e.g., [30, 37, 108]). In this work, we focus our attention on this latter group, as task
relationships may not be known beforehand in real-world settings. In comparison to learn-
ing a single global model, these MTL approaches can directly capture relationships amongst
non-IID and unbalanced data, which makes them particularly well-suited for the statistical
challenges of federated learning. We demonstrate this empirically on real-world federated
datasets in Section 6.5. However, although MTL is a natural modeling choice to address
the statistical challenges of federated learning, currently proposed methods for distributed
MTL (discussed below) do not adequately address the systems challenges associated with
federated learning.

Distributed Multi-Task Learning. Distributed multi-task learning is a relatively new
field, in which the aim is to solve an MTL problem when data for each task is distributed over
a network. While several recent works [1, 59, 95, 96] have considered the issue of distributed
MTL training, the proposed methods do not allow for flexibility of communication versus
computation. As a result, they are unable to efficiently handle concerns of fault tolerance
and stragglers, the latter of which stems from both data and system heterogeneity. The
works of [39] and [10] allow for asynchronous updates to help mitigate stragglers, but do
not address fault tolerance. Moreover, [39] provides no convergence guarantees, and the
convergence of [10] relies on a bounded delay assumption that is impractical for the federated
setting, where delays may be significant and devices may drop out completely. Finally, [49]
proposes a method and setup leveraging the distributed framework CoCoA, which we show
in Section 6.3 to be a special case of the more general approach in this work. However, the
authors in [49] do not explore the federated setting, and their assumption that the same
amount of work is done locally on each node is prohibitive in federated settings, where
unbalance is common due to data and system variability.

2While not the focus of our work, we note privacy is an important concern in the federated setting, and
that the privacy benefits associated with global federated learning (as discussed in [61]) also apply to our
approach.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 57

6.3 Federated Multi-Task Learning
In federated learning, the aim is to learn a model over data that resides on, and has been
generated by, m distributed nodes. As a running example, consider learning the activities
of mobile phone users in a cell network based on their individual sensor, text, or image
data. Each node (phone), t ∈ [m], may generate data via a distinct distribution, and so
it is natural to fit separate models, {w1, . . . ,wm}, to the distributed data—one for each
local dataset. However, structure between models frequently exists (e.g., people may behave
similarly when using their phones), and modeling these relationships via multi-task learning
is a natural strategy to improve performance and boost the effective sample size for each
node [2, 5, 19]. In this section, we suggest a general MTL framework for the federated
setting, and propose a novel method, Mocha, to handle the systems challenges of federated
MTL.

6.3.1 Preliminaries

Notation. We use Id×d to represent an identity matrix of size d × d. When the context
allows, we use the notation I to denote an identity matrix of an appropriate size. We also
use ⊗ to denote the Kronecker product between two matrices.

Definition 6 (Matrix norm). Given a symmetric positive definite matrix M, the norm of u
with respect to M is given by ‖u‖M :=

√
uTMu .

Definition 7 (L-smooth). A convex function f is L-smooth with respect to M if

f(u) ≤ f(v) + 〈∇f(v),u− v〉+
L

2
‖u− v‖2

M ∀u, v . (6.1)

If M = I then, we simply say f is L-smooth.

Definition 8 (τ -strongly convex). A function f is τ -strongly convex with respect to M if

f(u) ≥ f(v) + 〈z,u− v〉+
τ

2
‖u− v‖2

M ∀u, v, z ∈ ∂f(v) , (6.2)

where ∂f(v) is the set of sub-differentials of function f at v. If M = I then, we simply say
f is τ -strongly convex.

Definition 9. The function f is called L-Lipchitz if for any x and y in its domain

|f(x)− f(y)| ≤ L‖x− y‖2 . (6.3)

If a function f is L-Lipchitz then its dual will be L-bounded, i.e., for any α such that
‖α‖2 > L, then f ∗(α) = +∞.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 58

6.3.2 General Multi-Task Learning Setup

Given data Xt ∈ Rd×nt from m nodes, multi-task learning fits separate weight vectors wt ∈
Rd to the data for each task (node) through arbitrary convex loss functions `t (e.g., the
hinge loss for SVM models). Many MTL problems can be captured in the following general
formulation:

min
W,Ω

{
m∑
t=1

nt∑
i=1

`t(wT
t x

i
t, y

i
t) +R(W,Ω)

}
, (6.4)

where W := [w1, . . . ,wm] ∈ Rd×m is a matrix whose t-th column is the weight vector for the
t-th task. The matrix Ω ∈ Rm×m models relationships amongst tasks, and is either known a
priori or estimated while simultaneously learning task models. MTL problems differ based
on their assumptions on R, which takes Ω as input and promotes some suitable structure
among the tasks.

As an example, several popular MTL approaches assume that tasks form clusters based
on whether or not they are related [25, 37, 108, 111]. This can be expressed via the following
bi-convex formulation:

R(W,Ω) = λ1 tr
(
WΩWT

)
+ λ2‖W‖2

F , (6.5)

with constants λ1, λ2 > 0, and where the second term performs L2 regularization on each local
model. We use a jointly convex relaxation of this (6.12) in our experiments in Section 6.5,
and provide details on other common classes of MTL models that can be formulated via
(6.4) in Section 6.6.

6.3.3 Mocha: A Framework for Federated Multi-Task Learning

In the federated setting, the aim is to train statistical models directly on the edge, and thus
we solve (6.4) while assuming that the data {X1, . . . ,Xm} is distributed across m nodes or
devices. Before proposing our federated method for solving (6.4), we make the following
observations:

• Observation 1: In general, (6.4) is not jointly convex in W and Ω, and even in the cases
where (6.4) is convex, solving for W and Ω simultaneously can be difficult [5].

• Observation 2: When fixing Ω, updating W depends on both the data X, which is
distributed across the nodes, and the structure Ω, which is known centrally.

• Observation 3: When fixing W, optimizing for Ω only depends on W and not on the
data X.

Based on these observations, it is natural to propose an alternating optimization approach
to solve problem (6.4), in which at each iteration we fix either W or Ω and optimize over
the other, alternating until convergence is reached. Note that solving for Ω is not dependent

CHAPTER 6. EXTENSION: FEDERATED LEARNING 59

Algorithm 4 Mocha: Federated Multi-Task Learning Framework
1: Input: Data Xt from t = 1, . . . ,m tasks, stored on m nodes, and initial matrix Ω0

2: Starting point α(0) := 0 ∈ Rn, v(0) := 0 ∈ Rb

3: for iterations i = 0, 1, . . . do
4: Set subproblem parameter σ′ and number of federated iterations, Hi

5: for iterations h = 0, 1, · · · , Hi do
6: for tasks t ∈ {1, 2, . . . ,m} in parallel over m nodes do
7: compute θht -approximate solution ∆αt of local subproblem (6.7)
8: update local variables αt ← αt + ∆αt

9: return updates ∆vt := Xt∆αt

10: reduce: vt ← vt + ∆vt
11: Update Ω centrally based on w(α) for latest α

12: Central node computes w = w(α) based on the lastest α
13: return: W := [w1, . . . ,wm]

on the data and therefore can be computed centrally; as such, we defer to prior work for this
step [30, 37, 108, 111]. In Section 6.6, we discuss updates to Ω for several common MTL
models.

In this work, we focus on developing an efficient distributed optimization method for
the W step. In traditional data center environments, the task of distributed training is
a well-studied problem, and various communication-efficient frameworks have been recently
proposed, including the state-of-the-art primal-dual CoCoA framework previously discussed
in this thesis. Although CoCoA can be extended directly to update W in a distributed
fashion across the nodes, it cannot handle the unique systems challenges of the federated
environment, such as stragglers and fault tolerance, as discussed in Section 6.3.5. To this end,
we extend CoCoA and propose a new method, Mocha, for federated multi-task learning.
Our method is given in Algorithm 4 and described in detail in Sections 6.3.4 and 6.3.5.

6.3.4 Federated Update of W

To update W in the federated setting, we begin by extending works on distributed primal-
dual optimization [38, 49, 53] to apply to the generalized multi-task framework (6.4). This
involves deriving the appropriate dual formulation, subproblems, and problem parameters,
as we detail below.

Dual problem. Considering the dual formulation of (6.4) will allow us to better sepa-
rate the global problem into distributed subproblems for federated computation across the
nodes. Let n :=

∑m
t=1 nt and X := Diag(X1, · · · ,Xm) ∈ Rmd×n. With Ω fixed, the dual of

CHAPTER 6. EXTENSION: FEDERATED LEARNING 60

problem (6.4), defined with respect to dual variables α ∈ Rn, is given by:

min
α

{
D(α) :=

m∑
t=1

nt∑
i=1

`∗t (−αit) +R∗(Xα)

}
, (6.6)

where `∗t and R∗ are the conjugate dual functions of `t and R, respectively, and αi
t is the

dual variable for the data point (xit, yit). Note that R∗ depends on Ω, but for the sake of
simplicity, we have removed this in our notation. To derive distributed subproblems from
this global dual, we make an assumption described below on the regularizer R.

Assumption 2. Given Ω, we assume that there exists a symmetric positive definite matrix
M ∈ Rmd×md, depending on Ω, for which the function R is strongly convex with respect to
M−1. Note that this corresponds to assuming that R∗ will be smooth with respect to matrix
M.

Remark 6. We can reformulate the MTL regularizer in the form of R̄(w, Ω̄) = R(W,Ω),
where w ∈ Rmd is a vector containing the columns of W and Ω̄ := Ω ⊗ Id×d ∈ Rmd×md.
For example, we can rewrite the regularizer in (6.5) as R̄(w, Ω̄) = tr

(
wT (λ1Ω̄ + λ2I)w

)
.

Writing the regularizer in this form, it is clear that it is strongly convex with respect to
matrix M−1 = λ1Ω̄ + λ2I.

Data-local quadratic subproblems. To solve (6.4) across distributed nodes, we define
the following data-local subproblems, which are formed via a careful quadratic approximation
of the dual problem (6.6) to separate computation across the nodes. These subproblems find
updates ∆αt ∈ Rnt to the dual variables in α corresponding to a single node t, and only
require accessing data which is available locally, i.e., Xt for node t. The t-th subproblem is
given by:

min
∆αt

Gσ′

k (∆αt;vt,αt) :=
nt∑
i=1

`∗t (−α
i
t−∆αit)+〈wt(α),Xt∆αt〉+

σ′

2
‖Xt∆αt‖2

Mt
+c(α) , (6.7)

where c(α) := 1
m
R∗(Xα), andMt ∈ Rd×d is the t-th diagonal block of the symmetric positive

definite matrix M. Given dual variables α, corresponding primal variables can be found via
w(α) = ∇R∗(Xα), where wt(α) is the t-th block in the vector w(α). Note that computing
w(α) requires the vector v = Xα. The t-th block of v, vt ∈ Rd, is the only information
that must be communicated between nodes at each iteration. Finally, σ′ > 0 measures the
difficulty of the data partitioning, and helps to relate progress made to the subproblems to
the global dual problem. It can be easily selected based on M for many applications of
interest; we provide details in Lemma 20 in Section 6.8.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 61

6.3.5 Practical Considerations

During Mocha’s federated update of W, the central node requires a response from all
workers before performing a synchronous update. In the federated setting, a naive execu-
tion of this communication protocol could introduce dramatic straggler effects due to node
heterogeneity. To avoid stragglers, Mocha provides the t-th node with the flexibility to
approximately solve its subproblem Gσ′

k (·), where the quality of the approximation is control
by a per-node parameter θht . The following factors determine the quality of the t-th node’s
subproblem solution:

1. Statistical challenges, such as the size of Xt and the intrinsic difficulty of subproblem
Gσ′

k (·).

2. Systems challenges, such as the node’s storage, computational, and communication
capacities due to hardware (CPU, memory), network connection (3G, 4G, WiFi), and
power (battery level).

3. A global clock cycle imposed by the central node specifying a deadline for receiving
updates.

We define θht as a function of these factors, and assume that each node has a controller that
may derive θht from the current clock cycle and statistical/systems setting. θht ranges from
zero to one, where θht = 0 indicates an exact solution to Gσ′

k (·) and θht = 1 indicates that node
t made no progress during iteration h (which we refer to as a dropped node). For instance,
a node may ‘drop’ if it runs out of battery, or if its network bandwidth deteriorates during
iteration h and it is thus unable to return its update within the current clock cycle. A formal
definition of θht is provided in (6.8) of Section 6.4.

Mocha mitigates stragglers by enabling the t-th node to define its own θht . On every
iteration h, the local updates that a node performs and sends in a clock cycle will yield a
specific value for θht . As discussed in Section 6.4, Mocha is additionally robust to a small
fraction of nodes periodically dropping and performing no local updates (i.e., θht := 1) under
suitable conditions, as defined in Assumption 3. In contrast, prior work of CoCoA may
suffer from severe straggler effects in federated settings, as it requires a fixed θht = θ across all
nodes and all iterations while still maintaining synchronous updates, and it does not allow
for the case of dropped nodes (θ := 1).

Finally, we note that asynchronous updating schemes are an alternative approach to
mitigate stragglers. We do not consider these approaches in this work, in part due to
the fact that the bounded-delay assumptions associated with most asynchronous schemes
limit fault tolerance. However, it would be interesting to further explore the differences and
connections between asynchronous methods and approximation-based, synchronous methods
like Mocha in future work.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 62

6.4 Convergence Analysis
Mocha is based on a bi-convex alternating approach, which is guaranteed to converge [31,
78] to a stationary solution of problem (6.4). In the case where this problem is jointly convex
with respect to W and Ω, such a solution is also optimal. In the rest of this section, we
therefore focus on the convergence of solving theW update of Mocha in a federated setting.
Following the discussion in Section 6.3.5, we first introduce the following per-node, per-round
approximation parameter.

Definition 10 (Per-Node-Per-Iteration-Approximation Parameter). At each iteration h, we
define the accuracy level of the solution calculated by node t to its subproblem (6.7) as:

θht :=
Gσ′

k (∆α
(h)
t ; v(h),α

(h)
t)− Gσ′

k (∆α?
t ; v(h),α

(h)
t)

Gσ′
k (0; v(h),α

(h)
t)− Gσ′

k (∆α?
t ; v(h),α

(h)
t)

, (6.8)

where ∆α?
t is the minimizer of subproblem Gσ′

k (· ; v(h),α
(h)
t). We allow this value to vary

between [0, 1], with θht := 1 meaning that no updates to subproblem Gσ′

k are made by node t
at iteration h.

While the flexible per-node, per-iteration approximation parameter θht in (6.8) allows the
consideration of stragglers and fault tolerance, these additional degrees of freedom also pose
new challenges in providing convergence guarantees for Mocha. We introduce the following
assumption on θht to provide our convergence guarantees.

Assumption 3. Let Hh := (α(h),α(h−1), · · · ,α(1)) be the dual vector history until the be-
ginning of iteration h, and define Θh

t := E[θht |Hh]. For all tasks t and all iterations h, we
assume pht := P[θht = 1] ≤ pmax < 1 and Θ̂h

t := E[θht |Hh, θ
h
t < 1] ≤ Θmax < 1.

This assumption states that at each iteration, the probability of a node sending a result
is non-zero, and that the quality of the returned result is, on average, better than the
previous iterate. Compared to the earlier work in Chapter 5 which assumes θht = θ < 1,
our assumption is significantly less restrictive and better models the federated setting, where
nodes are unreliable and may periodically drop out.

Using Assumption 3, we derive the following theorem, which characterizes the conver-
gence of the federated update of Mocha in finite horizon when the losses `t in (6.4) are
smooth.

Theorem 12. Assume that the losses `t are (1/µ)-smooth. Then, under Assumptions 2 and
3, there exists a constant s ∈ (0, 1] such that for any given convergence target εD, choosing
H such that

H ≥ 1

(1− Θ̄)s
log

n

εD
, (6.9)

will satisfy E[D(α(H))−D(α?)] ≤ εD .

CHAPTER 6. EXTENSION: FEDERATED LEARNING 63

Here, Θ̄ := pmax +(1−pmax)Θmax < 1. While Theorem 12 is concerned with finite horizon
convergence, it is possible to get asymptotic convergence results, i.e., H → ∞, with milder
assumptions on the stragglers; see Corollary 19 in Section 6.7.1 for details.

When the loss functions are non-smooth, e.g., the hinge loss for SVM models, we provide
the following sub-linear convergence for L-Lipschitz losses.

Theorem 13. If the loss functions `t are L-Lipschitz, then there exists a constant σ, defined
in (6.24), such that for any given εD > 0, if we choose

H ≥ H0 +

⌈
2

(1− Θ̄)
max

(
1,

2L2σσ′

n2εD

)⌉
, (6.10)

with

H0 ≥
⌈
h0+

16L2σσ′

(1− Θ̄)n2εD

⌉
, h0 =

[
1 +

1

(1− Θ̄)
log

(
2n2(D(α?)−D(α0))

4L2σσ′

)]
+

,

then ᾱ := 1
H−H0

∑H
h=H0+1 α

(h) will satisfy E[D(ᾱ)−D(α?)] ≤ εD .

These theorems guarantee that Mocha will converge in the federated setting, under
mild assumptions on stragglers and capabilities of the nodes. While these results consider
convergence in terms of the dual, we show that they hold analogously for the duality gap.
We provide all proofs in Section 6.7.

Remark 7. Following from the discussion in Section 6.3.5, our method and theory generalize
the results of CoCoA from Chapter 5. In the limiting case that all θht are identical, our
results extend the results of CoCoA to the multi-task framework described in (6.4).

6.5 Simulations
In this section we validate the empirical performance of Mocha. First, we introduce a
benchmarking suite of real-world federated datasets and show that multi-task learning is
well-suited to handle the statistical challenges of the federated setting. Next, we demonstrate
the ability of Mocha to handle stragglers, both from statistical and systems heterogeneity.
Finally, we explore the performance of Mocha when devices periodically drop out.

6.5.1 Federated Datasets

In our simulations, we use several real-world datasets that have been generated in federated
settings. We provide additional details in the Section 6.9, including information about data
size skew, nt.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 64

• Google Glass (GLEAM)3: This dataset consists of two hours of high resolution sensor
data collected from 38 participants wearing Google Glass for the purpose of activity recog-
nition. Following [74], we featurize the raw accelerometer, gyroscope, and magnetometer
data into 180 statistical, spectral, and temporal features. We model each participant as
a separate task, and predict between eating and other activities (e.g., walking, talking,
drinking).

• Human Activity Recognition4: Mobile phone accelerometer and gyroscope data col-
lected from 30 individuals, performing one of six activities. We use the provided 561-length
feature vectors of time and frequency domain variables generated for each instance [4]. We
model each individual as a separate task and predict between sitting and other activities
(e.g., walking, lying down).

• Land Mine5: Radar image data collected from 29 land mine fields. Each instance consists
of nine features extracted from the images [99]. We model each field as a task, and predict
whether or not landmines are present in each field. Notably, the data is collected from two
different terrains—highly foliated and desert regions—and the tasks therefore naturally
form two clusters.

• Vehicle Sensor6: Acoustic, seismic, and infrared sensor data collected from a distributed
network of 23 sensors, deployed with the aim of classifying vehicles driving by a segment
of road [22]. Each instance is described by 50 acoustic and 50 seismic features. We model
each sensor as a separate task and predict between AAV-type and DW-type vehicles.

6.5.2 Multi-Task Learning for the Federated Setting

We demonstrate the benefits of multi-task learning for the federated setting by comparing
the error rates of a multi-task model to that of a fully local model (i.e., learning a model for
each task separately) and a fully global model (i.e., combining the data from all tasks and
learning one single model). Notably, existing work on federated learning focuses on learning
fully global models [43, 44, 61].

We use a cluster-regularized multi-task model [37, 111], as described in Section 6.3.2.
For each dataset from Section 6.5.1, we randomly split the data into 75% training and 25%
testing, and learn multi-task, local, and global support vector machine models, selecting the
best regularization parameter, λ ∈{1e-5, 1e-4, 1e-3, 1e-2, 0.1, 1, 10}, for each model using
5-fold cross-validation. We repeat this process 10 times and report the average prediction
error across tasks, averaged across these 10 trials.

3http://www.skleinberg.org/data/GLEAM.tar.gz
4https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
5http://www.ee.duke.edu/~lcarin/LandmineData.zip
6http://www.ecs.umass.edu/~mduarte/Software.html

http://www.skleinberg.org/data/GLEAM.tar.gz
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://www.ee.duke.edu/~lcarin/LandmineData.zip
http://www.ecs.umass.edu/~mduarte/Software.html

CHAPTER 6. EXTENSION: FEDERATED LEARNING 65

Table 6.1: Average prediction error: Means and standard errors over 10 random shuffles.

Model Human Activity Google Glass Land Mine Vehicle Sensor

Global 2.23 (0.30) 5.34 (0.26) 27.72 (1.08) 13.4 (0.26)

Local 1.34 (0.21) 4.92 (0.26) 23.43 (0.77) 7.81 (0.13)

MTL 0.46 (0.11) 2.02 (0.15) 20.09 (1.04) 6.59 (0.21)

In Table 6.1, we see that for each dataset, multi-task learning significantly outperforms
the other models in terms of achieving the lowest average error across tasks. The global
model, as proposed in [43, 44, 61] performs the worst, particularly for the Human Activity
and Vehicle Sensor datasets. Although the datasets are already somewhat unbalanced, a
global modeling approach may additionally benefit tasks that have a very small number of
instances, as information can be shared across tasks. For this reason, we additionally explore
the performance of global, local, and multi-task modeling for highly skewed data in Table 6.4
of Section 6.9. Although the performance of the global model improves slightly relative to
local modeling in this setting, the global model still performs the worst for the majority of
the datasets, and MTL still significantly outperforms both global and local approaches.

6.5.3 Straggler Avoidance

Two challenges that are prevalent in federated learning are stragglers and high communi-
cation. Stragglers can occur when a subset of the devices take much longer than others to
perform local updates, which can be caused either from statistical or systems heterogeneity.
Communication can also exacerbate poor performance, as it can be slower than computation
by many orders of magnitude in typical cellular or wireless networks [18, 36, 64, 87, 93]. In
our experiments below, we simulate the time needed to run each method by tracking the
operations and communication complexities, and scaling the communication cost relative to
computation by one, two, or three orders of magnitude, respectively. These numbers corre-
spond roughly to the clock rate vs. network bandwidth/latency [cf. 93] for modern cellular
and wireless networks. Details are provided in Section 6.9.

Statistical Heterogeneity. We explore the effect of statistical heterogeneity on stragglers,
for various methods and communication regimes (3G, LTE, WiFi). For a fixed communi-
cation network, we compare Mocha to CoCoA, which has a single θ parameter, and to
mini-batch stochastic gradient descent (Mb-SGD) and mini-batch stochastic dual coordinate
ascent (Mb-SDCA), which have limited communication flexibility depending on the batch
size. We tune all compared methods for best performance, as we detail in Section 6.9. In
Figure 6.1, we see that while the performance degrades for mini-batch methods in high

CHAPTER 6. EXTENSION: FEDERATED LEARNING 66

0 1 2 3 4 5 6 7
Estimated Time 106

10-3

10-2

10-1

100

101

102

P
rim

al
 S

ub
-O

pt
im

al
ity

Human Activity: Statistical Heterogeneity (WiFi)

MOCHA
CoCoA
Mb-SDCA
Mb-SGD

0 1 2 3 4 5 6 7 8
Estimated Time 106

10-3

10-2

10-1

100

101

102

P
rim

al
 S

ub
-O

pt
im

al
ity

Human Activity: Statistical Heterogeneity (LTE)

MOCHA
CoCoA
Mb-SDCA
Mb-SGD

0 0.5 1 1.5 2
Estimated Time 107

10-3

10-2

10-1

100

101

102

P
rim

al
 S

ub
-O

pt
im

al
ity

Human Activity: Statistical Heterogeneity (3G)

MOCHA
CoCoA
Mb-SDCA
Mb-SGD

Figure 6.1: The performance of Mocha compared to other distributed methods for the W
update of (6.4). While increasing communication tends to decrease the performance of the
mini-batch methods, Mocha performs well in high communication settings. In all settings,
Mocha with varied approximation values, Θh

t , performs better than without (i.e., naively
generalizing CoCoA), as it avoids stragglers from statistical heterogeneity.

communication regimes, Mocha and CoCoA are robust to high communication. How-
ever, CoCoA is significantly effected by stragglers—because θ is fixed across nodes and
rounds, difficult subproblems adversely impact convergence. In contrast, Mocha performs
well regardless of communication cost, and is robust to statistical heterogeneity.

Systems Heterogeneity. Mocha is also equipped to handle heterogeneity from changing
systems environments, such as battery power, memory, or network connection, as we show in
Figure 6.2. In particular, we simulate systems heterogeneity by randomly choosing the num-

CHAPTER 6. EXTENSION: FEDERATED LEARNING 67

0 1 2 3 4 5 6 7 8
Estimated Time 106

10-3

10-2

10-1

100

101

102

P
rim

al
 S

ub
-O

pt
im

al
ity

Vehicle Sensor: Systems Heterogeneity (Low)

MOCHA
CoCoA
Mb-SDCA
Mb-SGD

0 1 2 3 4 5 6 7 8
Estimated Time 106

10-3

10-2

10-1

100

101

102

P
rim

al
 S

ub
-O

pt
im

al
ity

Vehicle Sensor: Systems Heterogeneity (High)

MOCHA
CoCoA
Mb-SDCA
Mb-SGD

Figure 6.2: The performance of Mocha relative to other methods is robust to variability
from systems heterogeneity (resulting from differences between nodes in terms of, e.g., hard-
ware, network connection, or power). We simulate this heterogeneity by enforcing either
high or low variability in the number of local iterations for Mocha and the mini-batch size
for mini-batch methods.

ber of local iterations for Mocha or the mini-batch size for mini-batch methods, between
10% and 100% of the local data points for high variability environments, to between 90% and
100% for low variability (see Section 6.9 for full details). We do not vary the performance
of CoCoA, as the impact from statistical heterogeneity alone significantly reduces perfor-
mance. However, adding systems heterogeneity would reduce performance even further, as
the maximum θ value across all nodes would only increase if additional systems challenges
were introduced.

6.5.4 Tolerance to Dropped Nodes

Finally, we explore the effect of nodes dropping on the performance of Mocha. We do not
draw comparisons to other methods, as to the best of our knowledge, no other methods for
distributed multi-task learning directly address fault tolerance. In Mocha, we incorporate
this setting by allowing θht := 1, as explored theoretically in Section 6.4. In Figure 6.3, we
look at the performance of Mocha, either for one fixed W update, or running the entire
Mocha method, as the probability that nodes drop at each iteration (pht in Assumption 3)
increases. We see that the performance of Mocha is robust to relatively high values of pht ,
both during a single update of W and in how this effects the performance of the overall
method. However, as intuition would suggest, if one of the nodes never sends updates (i.e.,
ph1 := 1 for all h), the method does not converge to the correct solution. This provides
validation for our Assumption 3.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 68

0 2 4 6 8 10
Estimated Time 106

10-3

10-2

10-1

100

101

102

P
rim

al
 S

ub
-O

pt
im

al
ity

Google Glass: Fault Tolerance, W Step

0 1 2 3 4 5 6 7 8
Estimated Time 107

10-3

10-2

10-1

100

101

102

P
rim

al
 S

ub
-O

pt
im

al
ity

Google Glass: Fault Tolerance, Full Method

Figure 6.3: The performance of Mocha is robust to nodes periodically dropping out (fault
tolerance). As expected, however, the method will fail to converge to the correct solution if
the same node drops out at each round (i.e., ph1 := 1 for all h, as shown in the green-dotted
line).

6.6 Multi-Task Learning
In this section, we summarize several popular multi-task learning formulations that can be
written in the form of (6.4) and can therefore be addressed by our framework, Mocha.
While the W update is discussed in Section 6.3, we provide details here on how to solve the
Ω update for these formulations.

6.6.1 Multi-Task Learning Formulations

MTL with cluster structure among the tasks. In these MTL models, it is assumed
that the weight vectors for each task, wt, form clusters, i.e., tasks that belong to the same
cluster should be ‘close’ according to some metric. This idea goes back to mean-regularized
MTL [25], which assumes that all the tasks form one cluster, and that the weight vectors are
close to their mean. Such a regularizer could be formulated in the form of (6.4) by choosing
Ω = (Im×m − 1

m
11T)2, where Im×m is the identity matrix of size m ×m and 1m represents

a vector of all ones with size m. In this case, we set R to be

R(W,Ω) = λ1 tr
(
WΩWT

)
+ λ2‖W‖2

F , (6.11)

where λ1, λ2 > 0 are parameters. Note that in this formulation, the structural dependence
matrix Ω is known a-priori. However, it is natural to assume multiple clusters exist, and to
learn this clustering structure directly from the data [111]. For such a model, the problem
formulation is non-convex if a perfect clustering structure is imposed [37, 111]. However, by

CHAPTER 6. EXTENSION: FEDERATED LEARNING 69

performing a convex relaxation, the following regularizer is obtained [37, 111]

R(W,Ω) = λ tr
(
W(ηI + Ω)−1WT

)
, Ω ∈ Q =

{
Q | Q � 0, tr(Q) = k, Q � I

}
, (6.12)

where λ and η are regularization parameters, k is the number of clusters, and Ω defines the
clustering structure.

MTL with probabilistic priors. Another set of MTL models that can be realized by
our framework enforce structure by putting probabilistic priors on the dependence among
the columns of W. For example, in [108] it is assumed that the weight matrix W has a prior
distribution of the form:

W ∼

(
m∏
i=1

N (0, σ2I)

)
MN (0, Id×d ⊗Ω) , (6.13)

where N (0, σ2I) denotes the normal distribution with mean 0 and covariance σ2I, and
MN (0, Id×d ⊗ Ω) denotes the matrix normal distribution with mean 0, row covariance
Id×d, and column covariance Ω. This prior generates a regularizer of the following form
[108]:

R(W,Ω) = λ

(
1

σ2
‖W‖2 + tr

(
WΩ−1WT

)
+ d log |Ω|

)
, λ > 0 .

Unfortunately, such a regularizer is non-convex with respect to Ω due to the concavity of
log |Ω|. To obtain a jointly convex formulation in Ω and W, the authors in [108] propose
omitting log |Ω| and controling the complexity of Ω by adding a constraint on tr(Ω):

R(W,Ω) = λ

(
1

σ2
‖W‖2 + tr

(
WΩ−1WT

))
, Ω ∈ Q =

{
Q | Q � 0, tr(Q) = 1

}
. (6.14)

It is worth noting that unlike the clustered MTL formulations, such as (6.5), the probabilistic
formulation in (6.14) can model both positive and negative relationships among the tasks
through the covariance matrix.

MTL with graphical models. Another way of modeling task relationships is through
the precision matrix. This is popular in graphical models literature [47] because it encodes
conditional independence among variables. In other words, if we denote the precision matrix
among tasks in matrix variate Gaussian prior with Ω, then Ωi,j = 0 if and only if tasks
weights wi and wj are independent given the rest of the task weights [30]. Therefore,
assuming sparsity in the structure among the tasks translates to sparsity in matrix Ω. As a
result, we can formulate a sparsity-promoting regularizer by:

R(W,Ω) = λ

(
1

σ2
‖W‖2 + tr

(
WΩWT

)
− d log |Ω|

)
+ λ1‖W‖1 + λ2‖Ω‖1 , (6.15)

where λ1, λ2 ≥ 0 control the sparsity of W and Ω respectively [30]. It is worth noting that
although this problem is jointly non-convex in W and Ω, it is bi-convex.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 70

6.6.2 Strong Convexity of MTL Regularizers

Recall that in Assumption 2, we presumed that the vectorized formulation of the MTL
regularizer is strongly convex with respect to a matrix M−1. In this section we discuss the
choice of matrix M for the widely-used MTL formulations introduced in Section 6.6.1.

Using the notation from Remark 6 for the clustered MTL formulation (6.11), it is easy
to see that R̄(w, Ω̄) = λ1wT Ω̄w+λ2‖w‖2

2, where Ω̄ := Ω⊗ Id×d. As a result, it is clear that
R̄(w, Ω̄) is 1-strongly convex with respect to M−1 = λ1Ω̄ + λ2Imd×md.

Using a similar reasoning, it is easy to see that the matrixM can be chosen as λ−1(ηI+Ω̄),
λ−1(1

σ2 I + Ω̄
−1

)−1 and λ−1(1
σ2 I + Ω̄)−1 for (6.12), (6.14) and (6.15) respectively.

6.6.3 Optimizing Ω in MTL Formulations

In this section, we briefly cover approaches to update Ω in the MTL formulations introduced
in Section 6.6.1. First, it is clear that (6.5) does not require any updates to Ω, as it is assumed
to be fixed. In (6.12), it can be shown [37, 111] that the optimal solution for Ω has the same
column space as the rows of W. Therefore, the problem boils down to solving a simple
convex optimization problem over the eigenvalues of Ω; see [37, 111] for details. Although
outside the scope of this thesis, we note that the bottleneck of this approach to finding Ω
is computing the SVD of W, which can be a challenging problem when m is large. In the
probabilistic model of (6.14), the Ω update is given in [108] by (WTW)

1
2 , which requires

computing the eigenvalue decomposition of WTW. For the graphical model formulation,
the problem of solving for Ω is called sparse precision matrix estimation or graphical lasso
[30]. This is a well-studied problem, and many scalable algorithms have been proposed to
solve it [30, 35, 94].

Reducing the Size of Ω by Sharing Tasks

One interesting aspect of Mocha is that the method can be easily modified to accommodate
the sharing of tasks among the nodes without any change to the local solvers. This property
helps the central node to reduce the size of Ω and the complexity of its update with minimal
changes to the whole system. The following remark highlights this capability.

Remark 8. Mocha can be modified to solve problems when there are tasks that are shared
among nodes. In this case, each node still solves a data local sub-problem based on its own
data for the task, but the central node needs to do an additional aggregation step to add the
results for all the nodes that share the data of each task. This reduces the size of matrix Ω
and simplifies its update.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 71

6.7 Convergence Analysis
Notation. In the rest of this section we use the superscript (h) or h to denote the corre-
sponding variable at iteration (h) of the federated update in Mocha. When context allows,
we drop the superscript to simplify notation.

In order to provide a general convergence analysis, similar to our earlier work, we assume
an aggregation parameter γ ∈ (0, 1] in this section. With such an aggregation parameter,
the updates in each federated iteration would be αt ← αt + γ∆αt and vt ← vt + γ∆vt. For
a more detailed discussion on the role of aggregation parameter, see Section 6.8.1. Note that
in Algorithm 4, Mocha is presented assuming γ = 1 for simplicity.

Before proving our convergence guarantees, we provide several useful definitions and key
lemmas.

Definition 11. For each task t, define

σt := max
α∈Rnt

‖Xtα‖2
Mt

‖α‖2
and σmax := max

t∈[m]
σt. (6.16)

Definition 12. For any α, define the duality gap as

G(α) := D(α)− (−P(W(α))), (6.17)

where P(W) :=
∑m

t=1

∑nt

i=1 `t(w
T
t xit, yit) +R(W,Ω) as in (6.4).

The following lemma uses Assumption 3 to bound the average performance of θht , which
is crucial in providing global convergence guarantees for Mocha.

Lemma 14. Under Assumption 3, Θh
t ≤ Θ̄ = pmax + (1− pmax)Θmax < 1.

Proof. Recalling the definitions pht := P[θht = 1] and Θ̂h
t := E[θht |θht < 1,Hh], we have

Θh
t = E[θht |Hh]

= P[θht = 1] · E[θht |θht = 1,Hh] + (1− P[θht < 1]) · E[θht |θht < 1,Hh]

= pht · 1 + (1− pht) · Θ̂h
t ≤ Θ̄ < 1,

where the last inequality is due to Assumption 3, and the fact that Θ̂h
t < 1 by definition.

The next key lemma bounds the dual objective of an iterate based on the dual objective
of the previous iterate and the objectives of local subproblems.

Lemma 15. For any α,∆α ∈ Rn and γ ∈ (0, 1] if σ′ satisfies (6.28), then

D (α + γ∆α) ≤ (1− γ)D(α) + γ
m∑
t=1

Gσ′

k (∆αt; v,αt) . (6.18)

CHAPTER 6. EXTENSION: FEDERATED LEARNING 72

Proof. The proof of this lemma is similar to [88, Lemma 1] and follows from the definition
of local sub-problems, smoothness of R∗ and the choice of σ′ in (6.28).

Recall that if the functions `t are (1/µ)-smooth, their conjugates `∗t will be µ-strongly
convex. The lemma below provides a bound on the amount of improvement in dual objective
in each iteration.

Lemma 16. If the functions `∗t are µ-strongly convex for some µ ≥ 0. Then, for any
s ∈ [0, 1].

E[D(α(h))−D(α(h+1))|Hh] ≥ γ

m∑
t=1

(1− Θ̄)

(
sGt(α

(h))− σ′s2

2
Jt

)
, (6.19)

where

Gt(α) :=
nt∑
i=1

[
`∗t (−αi

t) + `t(wt(α)>xit, y
i
t) + αi

twt(α)>xit
]
, (6.20)

Jt := −µ(1−s)
σ′s
‖(ut −α

(h)
t)‖2 + ‖Xt(ut −α

(h)
t)‖2

Mt
, (6.21)

for ut ∈ Rnt with
uit ∈ ∂`t(wt(α)>xit, y

i
t) . (6.22)

Proof. Applying Lemma 15 and recalling D(α) =
∑m

t=1 Gσ
′

k (0;v,αt), we can first bound
the improvement for each task separately. Following a similar approach as in the proof of
[88, Lemma 7] we can obtain the bound (6.19) which bounds the improvement from α(h) to
α(h+1).

The following lemma relates the improvement of the dual objective in one iteration to
the duality gap for the smooth loss functions `t.

Lemma 17. If the loss functions `t are (1/µ)-smooth, then there exists a proper constants
s ∈ (0, 1] , such that for any γ ∈ (0, 1] at any iteration h

E
[
D(α(h))−D(α(h+1))|Hh

]
≥ sγ(1− Θ̄)G(α(h)), (6.23)

where G(α(h)) is the duality gap of α(h) which is defined in (6.17).

Proof. Recall the definition of σmax in (6.16). Now, if we carefully choose s = µ/(µ+σmaxσ
′),

it is easy to show that Jt ≤ 0 in (6.19); see [88, Theorem 11] for details. The final result
follows as a consequence of Lemma 16.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 73

Note that Lemma 16 holds even if the functions are non-smooth, i.e. µ = 0. However,
we cannot infer sufficient decrease of Lemma 17 from Lemma 16 when µ = 0. Therefore,
we need additional tools when the losses are L-Liptchitz. The first is the following lemma,
which bounds the J term in (6.19).

Lemma 18. Assume that the loss functions `t are L-Lipschitz. Denote J :=
∑m

t=1 Jt, where
Jt is defined in (6.21), then

J ≤ 4L2

m∑
t=1

σtnt := 4L2σ, (6.24)

where σt is defined in (6.16).

Proof. The proof is similar to [53, Lemma 6] and using the definitions of σ and σt and the
fact that the losses are L-Lipchitz.

6.7.1 Convergence Analysis for Smooth Losses

Proof of Theorem 12

Let us rewrite (6.23) from Lemma 17 as

E[D(α(h))−D(α(h+1))|Hh] = D(α(h))−D(α?) + E[D(α?)−D(α(h+1))|Hh]

≥ sγ(1− Θ̄)G(α(h))

≥ sγ(1− Θ̄)
(
D(α(h))−D(α?)

)
,

where the last inequality is due to weak duality, i.e. G(α(h)) ≥ D(α(h)) − D(α?). Re-
arranging the terms in the above inequality, we can easily get

E[D(α(h+1))−D(α?)|Hh] ≤
(
1− sγ(1− Θ̄)

) (
D(α(h))−D(α?)

)
(6.25)

Recursively applying this inequality and taking expectations from both sides, we arrive at

E[D(α(h+1))−D(α?)] ≤
(
1− sγ(1− Θ̄)

)h+1 (D(α(0))−D(α?)
)
. (6.26)

Now we can use a simple bound on the initial duality gap [88, Lemma 10], which states that
D(α(0)) − D(α?) ≤ n, to get the final result. It is worth noting that we can translate the
bound on the dual distance to optimality to the bound on the duality gap using the following
inequalities

sγ(1− Θ̄) E[G(α(H))] ≤ E[D(α(H))−D(α(H+1))] ≤ E[D(α(H))−D(α?)] ≤ εD, (6.27)

where the first inequality is due to (6.23), the second inequality is due to the optimality of
α?, and the last inequality is the bound we just proved for the dual distance to optimality.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 74

Asymptotic Convergence

In the case of smooth loss functions, it is possible to get asymptotic convergence results
under milder assumptions. The following corollary is an extension of Theorem 12.

Corollary 19. If the loss functions `t are µ-smooth, then under Assumption 2, E[D(α(H))−
D(α?)]→ 0 as H →∞ if either of the following conditions hold

• lim suph→∞ p
h
t < 1 and lim suph→∞ Θ̂h

t < 1.

• For any task t,
(
1− pht

)
×
(

1− Θ̂h
t

)
= ω(1

h
). Note that in this case limh→∞ p

h
t can be

equal to 1.

Proof. The proof is similar to the proof of Theorem 12. We can use the same steps to get a
sufficient decrease inequality like the one in (6.25), with Θ̄ replaced with Θ̄h := maxt Θh

t .

E[D(α(h+1))−D(α?)|Hh] ≤
(
1− sγ(1− Θ̄h)

) (
D(α(h))−D(α?)

)
The rest of the argument follows by applying this inequality recursively and using the as-
sumptions in the corollary.

6.7.2 Convergence Analysis for Lipschitz Losses: Proof for
Theorem 13

Proof. For L-Lipschitz loss functions, the proof follows the same line of reasoning as the
proof of Theorem 8 in [53] and therefore we do not cover it in detail. Unlike the case with
smooth losses, it is not possible to bound the decrease in dual objective by (6.23). However,
we can use Lemma 16 with µ = 0. The next step is to bound J =

∑m
t=1 Jt in (6.19), which

can be done via Lemma 18. Finally, we apply the inequalities recursively, choose s carefully,
and bound the terms in the final inequality. We refer the reader to the proof of Theorem 8
in [53] for more details. It is worth noting that similar to Theorem 12, we can similarly get
bounds on the expected duality gap, instead of the dual objective.

6.8 Choosing σ′

In order to guarantee the convergence of the federated update of Mocha, the parameter σ′,
which can be seen as a measure of the difficulty of the data partitioning, must satisfy:

σ′
m∑
t=1

‖Xtαt‖2
Mt
≥ γ‖Xα‖2

M ∀α ∈ Rn , (6.28)

where γ ∈ (0, 1] is the aggregation parameter for Mocha Algorithm. Note that in Algorithm
4 we have assumed that γ = 1. Based on Remark 6, it can be seen that the matrix M in
Assumption 2 can be chosen of the form M = M̄ ⊗ Id×d, where M̄ is a positive definite
matrix of size m×m. For such a matrix, the following lemma shows how to choose σ′.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 75

Lemma 20. For any positive definite matrix M = M̄⊗ Id×d,

σ′ := γmax
t

m∑
t′=1

|M̄tt′|
M̄tt

(6.29)

satisfies the inequality (6.28).

Proof. First of all it is worth noting that for any t, Mt = M̄t ⊗ Id×d. For any α ∈ Rn

γ‖Xα‖2
M = γ

∑
t,t′

M̄tt′〈Xtαt,Xt′αt′〉

≤ γ
∑
t,t′

1

2
|M̄tt′|

(
1

M̄tt

‖Xtαt‖2
Mt

+
1

M̄t′t′
‖Xt′αt′‖2

Mt′

)

= γ
∑
t

(∑
t′

|M̄tt′ |
M̄tt

)
‖Xtαt‖2

Mt

≤ σ′
∑
t

‖Xtαt‖2
Mt
,

where the first inequality is due to Cauchy-Schwartz and the second inequality is due to
definition of σ′.

Remark 9. Based on the proof of Lemma 20, it is easy to see that we can choose σ′ differently
across the tasks in our algorithm to allow tasks that are more loosely correlated with other
tasks to update more aggressively. To be more specific, if we choose σ′t = γ

∑
t′
|M̄tt′ |
M̄tt

, then
it it is possible to show that γ‖Xα‖2

M ≤
∑m

t=1 σ
′
t‖Xtαt‖2

Mt
for any α, and the rest of the

convergence proofs will follow.

6.8.1 The Role of Aggregation Parameter γ

The following remark highlights the role of aggregation parameter γ.

Remark 10. Note that the when γ < 1 the chosen σ′ in (6.28) would be smaller compared
to the case where γ = 1. This means that the local subproblems would be solved with less
restrictive regularizer. Therefore, the resulting ∆α would be more aggressive. As a result,
we need to do a more conservative update α + γ∆α in order to guarantee the convergence.

Although aggregation parameter γ is proposed to capture this trade off between aggres-
sive subproblems and conservative updates, in most practical scenarios γ = 1 has the best
empirical performance.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 76

6.9 Simulation Details
In this section, we provide additional details and results of our empirical study.

6.9.1 Datasets

In Table 6.2, we provide additional details on the number of tasks (m), feature size (d), and
per-task data size (nt) for each federated dataset described in Section 6.5. The standard
deviation nσ is a measure data skew, and calculates the deviation in the sizes of training
data points for each task, nt. All datasets are publicly available.

Table 6.2: Federated datasets for empirical study.

Dataset Tasks (m) Features (d) Min nt Max nt Std. Deviation nσ

Human Activity 30 561 210 306 26.75

Google Glass 38 180 524 581 11.07

Land Mine 29 9 333 517 65.39

Vehicle Sensor 23 100 872 1,933 267.47

6.9.2 Multi-Task Learning with Highly Skewed Data

Table 6.3: Skewed datasets for empirical study.

Dataset Tasks (m) Features (d) Min nt Max nt Std. Deviation σ

HA-Skew 30 561 3 306 84.41

GG-Skew 38 180 6 581 111.79

LM-Skew 29 9 5 517 181.92

VS-Skew 23 100 19 1,933 486.08

To generate highly skewed data, we sample from the original training datasets so that the
task dataset sizes differ by at least two orders of magnitude. The sizes of these highly skewed
datasets are shown in Table 6.3. When looking at the performance of local, global, and multi-
task models for these datasets (Table 6.4), the global model performs slightly better in this
setting (particularly for the Human Activity and Land Mine datasets). However, multi-task
learning still significantly outperforms all models.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 77

Table 6.4: Average prediction error for skewed data: Means and standard errors over 10
random shuffles.

Model HA-Skew GG-Skew LM-Skew VS-Skew
Global 2.41 (0.30) 5.38 (0.26) 29.28 (2.47) 13.58 (0.23)

Local 3.87 (0.37) 4.96 (0.20) 27.63 (1.15) 8.15 (0.19)

MTL 1.93 (0.44) 3.28 (0.15) 24.12 (1.08) 6.91 (0.21)

6.9.3 Implementation Details

In this section, we provide thorough details on the experimental setup and methods used in
our comparison.

Methods.

• Mb-SGD. Mini-batch stochastic gradient descent is a standard, widely used method for
parallel and distributed optimization. See, e.g., a discussion of this method for the SVM
models of interest [81]. We tune both the mini-batch size and step size for best performance
using grid search.

• Mb-SDCA.Mini-batch SDCA aims to improve mini-batch SGD by employing coordinate
ascent in the dual, which has encouraging theoretical and practical backings [85, 90]. For
all experiments, we scale the updates for mini-batch stochastic dual coordinate ascent at
each round by β

b
for mini-batch size b and β ∈ [1, b], and tune both parameters with grid

search.

• CoCoA. We generalize CoCoA [38, 53] to solve (6.4), and tune θ, the fixed approxima-
tion parameter, between (0, 1) via grid search. For both CoCoA, and Mocha, we use
coordinate ascent as a local solver for the dual subproblems (6.7).

• Mocha. The only parameter necessary to tune for Mocha is the level of approximation
quality θht , which can be directly tuned via Hi, the number of local iterations of the
iterative method run locally. In Section 6.4, our theory relates this parameter to global
convergence, and we discuss the practical effects of this parameter in Section 6.3.5.

Estimated Time. To estimate the time to run methods in the federated setting, we
carefully count the floating-point operations (FLOPs) performed in each local iteration for
each method, as well as the size and frequency of communication. We convert these counts
to estimated time (in milliseconds), using known clock rate and bandwidth/latency numbers
for mobile phones in 3G, LTE, and wireless networks [18, 36, 64, 87, 93]. In particular,

CHAPTER 6. EXTENSION: FEDERATED LEARNING 78

we use the following standard model for the cost of one round, h, of local computation /
communication on a node t:

Time(h, t) :=
FLOPs(h, t)
Clock Rate(t)

+ Comm(h, t) (6.30)

Note that the communication cost Comm(h, t) includes both bandwidth and latency mea-
sures. Detailed models of this type have been used to closely match the performance of
real-world systems [71].

Statistical Heterogeneity. To account for statistical heterogeneity, Mocha and the
mini-batch methods (Mb-SGD and Mb-SDCA) can adjust the number of local iterations
or batch size, respectively, to account for difficult local problems or high data skew. How-
ever, because CoCoA uses a fixed accuracy parameter θ across both the tasks and rounds,
changes in the subproblem difficulty and data skew can make the computation on some
nodes much slower than on others. For CoCoA, we compute θ via the duality gap, and
carefully tune this parameter between (0, 1) for best performance. Despite this, the number
of local iterations needed for θ varies significantly across nodes, and as the method runs, the
iterations tend to increase as the subproblems become more difficult.

Systems Heterogeneity. Beyond statistical heterogeneity, there can be variability in the
systems themselves that cause changes in performance. For example, low battery levels,
poor network connections, or low memory may reduce the ability a solver has on a local
node to compute updates. As discussed in Section 6.3.5, Mocha assumes that the central
node sets some global clock cycle, and the t-th worker determines the amount of feasible
local computation given this clock cycle along with its systems constraints. This specified
amount of local computation corresponds to some implicit value of θht based on the underlying
systems and statistical challenges for the t-th node.

To model this setup in our simulations, it suffices to fix a global clock sycle and then
randomly assign various amounts of local computation to each local node at each iteration.
Specifically, in our simulations we charge all nodes for the cost of one local pass through
the data, but some nodes are forced to perform less updates given their current systems
constraints. In particular, at each round, we assign the number of updates for node t
between [0.1nt, nt] for high variability environments, and between [0.9nt, nt] for low variability
environments. For the mini-batch methods, we vary the mini-batch size in a similar fashion.
However, we do not follow this same process for CoCoA, as this would require making the
θ parameter worse than what was optimally tuned given statistical heterogeneity. Hence,
in these simulations we do not introduce any additional variability for CoCoA (and thus
present overly optimistic results for CoCoA). In spite of this, we see that in both low and
high variability settings, Mocha outperforms all other methods and is robust to systems-
related heterogeneity.

CHAPTER 6. EXTENSION: FEDERATED LEARNING 79

Fault Tolerance. Finally, we demonstrate that Mocha can handle nodes periodically
dropping out, which is also supported in our convergence results in Section 6.4. We perform
this simulation using the notation defined in Assumption 3, i.e., that each node t temporarily
drops on iteration h with probability pht . In our simulations, we modify this probability
directly and show that Mocha is robust to fault tolerance in Figure 6.3. However, note that
this robustness is not because of statistical redundancy: If we are to drop out a node entirely
(as shown in the green dotted line), Mocha will not converge to the correct solution. This
provides insight into our Assumption 3, which says that the probability that a node drops
at each round cannot be exactly equal to one.

80

Chapter 7

Conclusion

To enable large-scale machine learning, we have developed, analyzed, and evaluated a general-
purpose framework for communication-efficient primal-dual optimization in the distributed
environment. Our framework, CoCoA, takes a unique approach by using duality to derive
subproblems for each machine to solve in parallel. These subproblems closely match the
global problem of interest, which allows for state-of-the-art single-machine solvers to be easily
re-used in the distributed setting. Further, by allowing the local solvers to find solutions
of arbitrary approximation quality to the subproblems on each machine, our framework
permits a highly flexible communication scheme. In particular, as the local solvers make
updates directly to their local parameters, the need to communicate reduces and can be
adapted to the system at hand, which helps to manage the communication bottleneck in the
distributed setting.

We have analyzed the impact of the local solver approximation quality, and have derived
global primal-dual convergence rates for our framework that are agnostic to the specifics of
the local solvers. We have taken particular care in extending our framework to the case
of non-strongly convex regularizers, where we introduced a bounded-support modification
technique to provide robust convergence guarantees. We demonstrated the efficiency of our
framework in an extensive experimental comparison with state-of-the-art distributed solvers.
Our framework achieves up to a 50× speedup over other widely-used methods on real-world
distributed datasets in the data center setting.

Finally, we have extended our general framework to the burgeoning federated setting,
which presents a number of new systems and statistical challenges. The proposed modifica-
tions in Mocha allow the method to handle practical issues such as non-IID data, stragglers,
and fault tolerance. Our methodology is supported by a system-aware analysis that explores
the effect of these issues on our convergence guarantees. We demonstrate the effect of the
proposed modifications in Mocha with simulations on real-world federated datasets.

In whole, the results in this thesis indicate that by developing methods and theory that
carefully expose and consider systems parameters, we can create solutions for modern ma-
chine learning are well-aligned with the underlying systems, yielding significant empirical
speedups as well as insightful theoretical guarantees.

81

Bibliography

[1] Amr Ahmed, Abhimanyu Das, and Alexander J Smola. “Scalable hierarchical multi-
task learning algorithms for conversion optimization in display advertising”. In: Con-
ference on Web Search and Data Mining. 2014.

[2] Rie Kubota Ando and Tong Zhang. “A framework for learning predictive structures
from multiple tasks and unlabeled data”. In: Journal of Machine Learning Research
6 (2005), pp. 1817–1853.

[3] Galen Andrew and Jianfeng Gao. “Scalable training of L1-regularized log-linear mod-
els”. In: International Conference on Machine Learning. 2007.

[4] Davide Anguita et al. “A Public Domain Dataset for Human Activity Recognition
using Smartphones.” In: European Symposium on Artificial Neural Networks, Com-
putational Intelligence and Machine Learning. 2013.

[5] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. “Convex multi-task
feature learning”. In: Machine Learning 73.3 (2008), pp. 243–272.

[6] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. “Multi-task feature
learning”. In: Neural Information Processing Systems. 2007.

[7] Yossi Arjevani and Ohad Shamir. “Communication complexity of distributed convex
learning and optimization”. In: Neural Information Processing Systems. 2015.

[8] Maria-Florina Balcan et al. “Distributed learning, communication complexity and
privacy”. In: Conference on Learning Theory. 2012.

[9] Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. New York, NY: Springer Science & Business Media, 2011.

[10] I. M. Baytas et al. “Asynchronous Multi-Task Learning”. In: International Conference
on Data Mining. 2016.

[11] Dimitri P Bersekas and John N Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Englewood Cliffs, NJ: Prentice Hall, 1989.

BIBLIOGRAPHY 82

[12] Yatao Bian et al. “Parallel Coordinate Descent Newton Method for Efficient `1-
Regularized Minimization”. In: arXiv.org (2013). arXiv: 1306.4080v3 [cs.LG].

[13] Flavio Bonomi et al. “Fog computing and its role in the internet of things”. In: SIG-
COMM Workshop on Mobile Cloud Computing. 2012.

[14] J M Borwein and Q Zhu. Techniques of Variational Analysis. New York, NY: Springer
Science & Buisness Media, 2005.

[15] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[16] Stephen Boyd et al. “Distributed Optimization and Statistical Learning via the Al-
ternating Direction Method of Multipliers”. In: Foundations and Trends in Machine
Learning 3.1 (2010), pp. 1–122.

[17] Joseph K Bradley et al. “Parallel coordinate descent for l1-regularized loss minimiza-
tion”. In: International Conference on Machine Learning. 2011.

[18] Aaron Carroll and Gernot Heiser. “An Analysis of Power Consumption in a Smart-
phone”. In: USENIX Annual Technical Conference. 2010.

[19] Rich Caruana. “Multitask learning”. In: Machine Learning 28 (1997), pp. 41–75.

[20] Jianhui Chen, Jiayu Zhou, and Jieping Ye. “Integrating low-rank and group-sparse
structures for robust multi-task learning”. In: Conference on Knowledge Discovery
and Data Mining. 2011.

[21] Amol Deshpande et al. “Model-based approximate querying in sensor networks”. In:
VLDB Journal 14.4 (2005), pp. 417–443.

[22] Marco F Duarte and Yu Hen Hu. “Vehicle classification in distributed sensor net-
works”. In: Journal of Parallel and Distributed Computing 64.7 (2004), pp. 826–838.

[23] John Duchi, Michael I Jordan, and Brendan McMahan. “Estimation, optimization,
and parallelism when data is sparse”. In: Neural Information Processing Systems
(2013).

[24] Celestine Dünner et al. “Primal-dual rates and certificates”. In: International Confer-
ence on Machine Learning. 2016.

[25] Theodoros Evgeniou and Massimiliano Pontil. “Regularized multi-task learning”. In:
Conference on Knowledge Discovery and Data Mining. 2004.

[26] Rong-En Fan et al. “LIBLINEAR: A library for large linear classification”. In: Journal
of Machine Learning Research 9 (2008), pp. 1871–1874.

http://arxiv.org/abs/1306.4080v3

BIBLIOGRAPHY 83

[27] Olivier Fercoq and Peter Richtárik. “Accelerated, Parallel, and Proximal Coordinate
Descent”. In: SIAM Journal on Optimization 25.4 (2015), pp. 1997–2023.

[28] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Regularization paths for
generalized linear models via coordinate descent”. In: Journal of Statistical Software
33.1 (2010), pp. 1–22.

[29] Pedro Garcia Lopez et al. “Edge-centric computing: Vision and Challenges”. In: SIG-
COMM Computer Communication Review 45.5 (2015), pp. 37–42.

[30] André R Gonçalves, Fernando J Von Zuben, and Arindam Banerjee. “Multi-task
sparse structure learning with Gaussian copula models”. In: Journal of Machine Learn-
ing Research 17.33 (2016), pp. 1–30.

[31] Jochen Gorski, Frank Pfeuffer, and Kathrin Klamroth. “Biconvex sets and optimiza-
tion with biconvex functions: a survey and extensions”. In: Mathematical Methods of
Operations Research 66.3 (2007), pp. 373–407.

[32] Christina Heinze, Brian McWilliams, and Nicolai Meinshausen. “DUAL-LOCO: Dis-
tributing Statistical Estimation Using Random Projections”. In: International Con-
ference on Artificial Intelligence and Statistics. 2016.

[33] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex anal-
ysis. Berlin: Springer–Verlag, 2001.

[34] Kirak Hong et al. “Mobile Fog: A Programming Model for Large-scale Applications
on the Internet of Things”. In: SIGCOMM Workshop on Mobile Cloud Computing.
2013.

[35] Cho-Jui Hsieh et al. “Sparse Inverse Covariance Matrix Estimation Using Quadratic
Approximation”. In: NIPS 2014 - Advances in Neural Information Processing Systems
27.

[36] Junxian Huang et al. “An In-depth Study of LTE: Effect of Network Protocol and
Application Behavior on Performance”. In: ACM SIGCOMM Conference. 2013.

[37] Laurent Jacob, Jean-philippe Vert, and Francis R Bach. “Clustered multi-task learn-
ing: A convex formulation”. In: Neural Information Processing Systems. 2009.

[38] Martin Jaggi et al. “Communication-efficient distributed dual coordinate ascent”. In:
Neural Information Processing Systems. 2014.

[39] Xin Jin et al. “Collaborating between local and global learning for distributed online
multiple tasks”. In: Conference on Information and Knowledge Management. 2015.

[40] Tyler Johnson and Carlos Guestrin. “Blitz: A Principled Meta-Algorithm for Scaling
Sparse Optimization”. In: International Conference on Machine Learning. 2015.

BIBLIOGRAPHY 84

[41] Hamed Karimi, Julie Nutini, and Mark Schmidt. “Linear Convergence of Gradient and
Proximal-Gradient Methods under the Polyak-Łojasiewicz Condition”. In: European
Conference on Machine Learning. 2016.

[42] Seyoung Kim and Eric P Xing. “Statistical estimation of correlated genome associa-
tions to a quantitative trait network”. In: PLoS Genet 5.8 (2009), e1000587.

[43] Jakub Konečnỳ, H. Brendan McMahan, and Daniel Ramage. “Federated Optimiza-
tion: Distributed Optimization Beyond the Datacenter”. In: arXiv:1511.03575 (2015).

[44] Jakub Konečnỳ et al. “Federated learning: Strategies for improving communication
efficiency”. In: arXiv:1610.05492 (2016).

[45] Tsvi Kuflik, Judy Kay, and Bob Kummerfeld. “Challenges and solutions of ubiquitous
user modeling”. In: Ubiquitous display environments. Springer, 2012, pp. 7–30.

[46] Abhishek Kumar and Hal Daumé. “Learning Task Grouping and Overlap in Multi-
task Learning”. In: International Conference on Machine Learning. 2012.

[47] Steffen L Lauritzen. Graphical Models. Vol. 17. Clarendon Press, 1996.

[48] Ching-Pei Lee and Dan Roth. “Distributed box-constrained quadratic optimization
for dual linear SVM”. In: International Conference on Machine Learning. 2015.

[49] Sulin Liu, Sinno Jialin Pan, and Qirong Ho. “Distributed Multi-task Relationship
Learning”. In: Conference on Knowledge Discovery and Data Mining (2017).

[50] Zhaosong Lu and Lin Xiao. “On the Complexity Analysis of Randomized Block-
Coordinate Descent Methods”. In: arXiv.org (2013). arXiv: 1305.4723v1 [math.OC].

[51] C. Ma et al. “Distributed Optimization with Arbitrary Local Solvers”. In: arXiv.org
(2015).

[52] Chenxin Ma, Rachael Tappenden, and Martin Takáč. “Linear Convergence of the Ran-
domized Feasible Descent Method Under the Weak Strong Convexity Assumption”.
In: arXiv.org (2015).

[53] Chenxin Ma et al. “Adding vs. Averaging in Distributed Primal-Dual Optimization”.
In: International Conference on Machine Learning. 2015.

[54] Samuel Madden et al. “TAG: A tiny aggregation service for ad-hoc sensor networks”.
In: Symposium on Operating Systems Design and Implementation. 2002.

[55] Samuel Madden et al. “TinyDB: An Acquisitional Query Processing System for Sensor
Networks”. In: ACM Transactions on Database Systems 30.1 (2005), pp. 122–173.

http://arxiv.org/abs/1305.4723v1

BIBLIOGRAPHY 85

[56] Dhruv Mahajan, S Sathiya Keerthi, and S Sundararajan. “A distributed block co-
ordinate descent method for training l1 regularized linear classifiers”. In: arXiv.org
(2014). arXiv: 1405.4544v1 [cs.LG].

[57] Gideon Mann et al. “Efficient Large-Scale Distributed Training of Conditional Maxi-
mum Entropy Models”. In: Neural Information Processing Systems (2009).

[58] Jakub Marecek, Peter Richtárik, and Martin Takáč. Distributed Block Coordinate
Descent for Minimizing Partially Separable Functions. Vol. 134. Springer Proceedings
in Mathematics & Statistics 261–288. Switzerland: Springer International Publishing,
2015.

[59] David Mateos-Núñez and Jorge Cortés. “Distributed optimization for multi-task learn-
ing via nuclear-norm approximation”. In: IFAC Workshop on Distributed Estimation
and Control in Networked Systems. 2015.

[60] H Brendan McMahan and Daniel Ramage. “http://www.googblogs.com/federated-
learning-collaborative-machine-learning-without-centralized-training-
data/”. In: Google (2017).

[61] H. Brendan McMahan et al. “Communication-Efficient Learning of Deep Networks
from Decentralized Data”. In: Conference on Artificial Intelligence and Statistics.
2017.

[62] Brian McWilliams et al. “LOCO: Distributing Ridge Regression with Random Pro-
jections”. In: arXiv.org (2014). arXiv: 1406.3469v2.

[63] Xiangrui Meng et al. “MLlib: Machine Learning in Apache Spark”. In: Journal of
Machine Learning Research 17.34 (2016), pp. 1–7. arXiv: 1505.06807v1 [cs.LG].

[64] Antti P. Miettinen and Jukka K. Nurminen. “Energy Efficiency of Mobile Clients
in Cloud Computing”. In: USENIX Conference on Hot Topics in Cloud Computing.
2010.

[65] Ion Necoara. “Linear convergence of first order methods under weak nondegeneracy
assumptions for convex programming”. In: arXiv.org (2015).

[66] Ion Necoara and Valentin Nedelcu. “Distributed dual gradient methods and error
bound conditions”. In: arXiv.org (2014).

[67] Yurii Nesterov. “Smooth minimization of non-smooth functions”. In: Mathematical
Programming 103.1 (2005), pp. 127–152.

[68] Feng Niu et al. “Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent”. In: Neural Information Processing Systems. 2011.

http://arxiv.org/abs/1405.4544v1
http://www.googblogs.com/federated-learning-collaborative-machine-learning-without-centralized-training-data/
http://www.googblogs.com/federated-learning-collaborative-machine-learning-without-centralized-training-data/
http://www.googblogs.com/federated-learning-collaborative-machine-learning-without-centralized-training-data/
http://arxiv.org/abs/1406.3469v2
http://arxiv.org/abs/1505.06807v1

BIBLIOGRAPHY 86

[69] Alexandros Pantelopoulos and Nikolaos G Bourbakis. “A survey on wearable sensor-
based systems for health monitoring and prognosis”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics 40.1 (2010), pp. 1–12.

[70] Dmitry Pechyony, Libin Shen, and Rosie Jones. “Solving Large Scale Linear SVM
with Distributed Block Minimization”. In: International Conference on Information
and Knowledge Management. 2011.

[71] Hang Qi, Evan R Sparks, and Ameet Talwalkar. “Paleo: A performance model for deep
neural networks”. In: International Conference on Learning Representations. 2017.

[72] Zheng Qu, Peter Richtárik, and Tong Zhang. “Quartz: Randomized dual coordinate
ascent with arbitrary sampling”. In: Neural Information Processing Systems. 2015.

[73] Zheng Qu et al. “SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimiza-
tion”. In: International Conference on Machine Learning. 2016. arXiv: 1502.02268v1
[cs.LG].

[74] Shah Atiqur Rahman et al. “Unintrusive eating recognition using Google Glass”. In:
Conference on Pervasive Computing Technologies for Healthcare. 2015.

[75] Parisa Rashidi and Diane J Cook. “Keeping the resident in the loop: Adapting the
smart home to the user”. In: IEEE Transactions on systems, man, and cybernetics
39.5 (2009), pp. 949–959.

[76] Mohammad Rastegari et al. “XNOR-Net: ImageNet Classification Using Binary Con-
volutional Neural Networks”. In: European Conference on Computer Vision. 2016.

[77] Sujith Ravi. “https://research.googleblog.com/2017/02/on-device-machine-
intelligence.html”. In: Google (2017).

[78] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. “A unified convergence analy-
sis of block successive minimization methods for nonsmooth optimization”. In: SIAM
Journal on Optimization 23.2 (2013), pp. 1126–1153.

[79] Peter Richtárik and Martin Takáč. “Distributed coordinate descent method for learn-
ing with big data”. In: Journal of Machine Learning Research 17 (2016), pp. 1–25.

[80] R Tyrrell Rockafellar. Convex Analysis. Princeton, NJ: Princeton University Press,
1997.

[81] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. “Pegasos: Primal Estimated
sub-GrAdient SOlver for SVM”. In: ICML ’07: Proceedings of the 24th international
conference on Machine learning (June 2007).

[82] Shai Shalev-Shwartz and Ambuj Tewari. “Stochastic methods for l1-regularized loss
minimization”. In: Journal of Machine Learning Research 12 (2011), pp. 1865–1892.

http://arxiv.org/abs/1502.02268v1
http://arxiv.org/abs/1502.02268v1
https://research.googleblog.com/2017/02/on-device-machine-intelligence.html
https://research.googleblog.com/2017/02/on-device-machine-intelligence.html

BIBLIOGRAPHY 87

[83] Shai Shalev-Shwartz and Tong Zhang. “Accelerated mini-batch stochastic dual coor-
dinate ascent”. In: Neural Information Processing Systems. 2013.

[84] Shai Shalev-Shwartz and Tong Zhang. “Accelerated proximal stochastic dual coordi-
nate ascent for regularized loss minimization”. In: Mathematical Programming Series
A (2014), pp. 1–41.

[85] Shai Shalev-Shwartz and Tong Zhang. “Stochastic Dual Coordinate Ascent Methods
for Regularized Loss Minimization”. In: Journal of Machine Learning Research 14
(2013), pp. 567–599.

[86] Ohad Shamir, Nathan Srebro, and Tong Zhang. “Communication-Efficient Distributed
Optimization using an Approximate Newton-type Method”. In: International Confer-
ence on Machine Learning. 2014.

[87] Dave Singelée et al. “The communication and computation cost of wireless security”.
In: ACM Conference on Wireless Network Security. 2011.

[88] Virginia Smith et al. “CoCoA: A General Framework for Communication-Efficient
Distributed Optimization”. In: arXiv:1611.02189 (2016).

[89] Martin Takáč, Peter Richtárik, and Nathan Srebro. “Distributed Mini-Batch SDCA”.
In: arXiv.org (2015).

[90] Martin Takáč et al. “Mini-Batch Primal and Dual Methods for SVMs”. In: Interna-
tional Conference on Machine Learning. 2013.

[91] Rachael Tappenden, Martin Takáč, and Peter Richtárik. “On the Complexity of Par-
allel Coordinate Descent”. In: arXiv.org (2015). arXiv: 1503.03033v1 [math.OC].

[92] Ilya Trofimov and Alexander Genkin. “Distributed Coordinate Descent for L1-regularized
Logistic Regression”. In: arXiv.org (2014). arXiv: 1411.6520v1 [stat.ML].

[93] CH Van Berkel. “Multi-core for mobile phones”. In: Proceedings of the Conference on
Design, Automation and Test in Europe. European Design and Automation Associa-
tion. 2009, pp. 1260–1265.

[94] Huahua Wang et al. “Large scale distributed sparse precision estimation”. In: Neural
Information Processing Systems. 2013.

[95] Jialei Wang, Mladen Kolar, and Nathan Srebro. “Distributed multi-task learning”. In:
Conference on Artificial Intelligence and Statistics. 2016.

[96] Jialei Wang, Mladen Kolar, and Nathan Srebro. “Distributed Multi-Task Learning
with Shared Representation”. In: arXiv:1603.02185 (2016).

http://arxiv.org/abs/1503.03033v1
http://arxiv.org/abs/1411.6520v1

BIBLIOGRAPHY 88

[97] Po-Wei Wang and Chih-Jen Lin. “Iteration complexity of feasible descent methods
for convex optimization.” In: Journal of Machine Learning Research 15.1 (2014),
pp. 1523–1548.

[98] Stephen J Wright. “Coordinate descent algorithms”. In: Mathematical Programming
151.1 (2015), pp. 3–34.

[99] Ya Xue et al. “Multi-task learning for classification with dirichlet process priors”. In:
Journal of Machine Learning Research 8 (2007), pp. 35–63.

[100] Tianbao Yang. “Trading Computation for Communication: Distributed Stochastic
Dual Coordinate Ascent”. In: Neural Information Processing Systems. 2013.

[101] Tianbao Yang et al. “On Theoretical Analysis of Distributed Stochastic Dual Coor-
dinate Ascent”. In: arXiv.org (Dec. 2013).

[102] Ian En-Hsu Yen, Shan-Wei Lin, and Shou-De Lin. “A Dual Augmented Block Min-
imization Framework for Learning with Limited Memory”. In: Neural Information
Processing Systems. 2015.

[103] Hsiang-Fu Yu et al. “Large Linear Classification When Data Cannot Fit in Memory”.
In: ACM Transactions on Knowledge Discovery from Data 5.4 (2012), pp. 1–23.

[104] Jin Yu et al. “A Quasi-Newton Approach to Nonsmooth Convex Optimization Prob-
lems in Machine Learning”. In: Journal of Machine Learning Research 11 (2010),
pp. 1145–1200.

[105] Guo-Xun Yuan, Chia-Hua Ho, and Chih-Jen Lin. “An Improved GLMNET for L1-
regularized Logistic Regression”. In: Journal of Machine Learning Research 13 (2012),
pp. 1999–2030.

[106] Guo-Xun Yuan et al. “A Comparison of Optimization Methods and Software for
Large-scale L1-regularized Linear Classification”. In: Journal of Machine Learning
Research 11 (2010), pp. 3183–3234.

[107] Caoxie Zhang, Honglak Lee, and Kang G. Shin. “Efficient Distributed Linear Classifi-
cation Algorithms via the Alternating Direction Method of Multipliers”. In: Artificial
Intelligence and Statistics Conference. 2012.

[108] Yu Zhang and Dit-Yan Yeung. “A Convex Formulation for Learning Task Relation-
ships in Multi-task Learning”. In: Conference on Uncertainty in Artificial Intelligence.
2010.

[109] Yuchen Zhang, John C Duchi, and Martin J Wainwright. “Communication-Efficient
Algorithms for Statistical Optimization”. In: Journal of Machine Learning Research
14 (2013), pp. 3321–3363.

BIBLIOGRAPHY 89

[110] Yuchen Zhang and Xiao Lin. “Stochastic Primal-Dual Coordinate Method for Regu-
larized Empirical Risk Minimization”. In: International Conference on Machine Learn-
ing. 2015.

[111] Jiayu Zhou, Jianhui Chen, and Jieping Ye. “Clustered multi-task learning via alter-
nating structure optimization”. In: Neural Information Processing Systems. 2011.

[112] Martin A Zinkevich et al. “Parallelized Stochastic Gradient Descent”. In: Neural In-
formation Processing Systems (2010).

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Related Work
	Organization

	CoCoA Framework
	Notation
	Duality
	Assumptions and Problem Cases
	Running Examples
	Data Partitioning
	Method
	CoCoA in the Primal
	CoCoA in the Dual
	Primal vs. Dual
	Interpretation
	Comparison to ADMM

	Applications
	Smooth , Strongly Convex r
	Smooth , Non-strongly Convex r
	Non-smooth , Strongly Convex r
	Local Solvers

	Evaluation
	Details and Setup
	Methods for Comparison

	Comparison to Other Methods
	CoCoA in the Primal
	CoCoA in the Dual

	Properties
	Primal vs. Dual
	Effect of Communication
	Subproblem Parameter

	Theoretical Analysis
	Preliminaries
	Conjugates
	Primal-Dual Relationship
	Primal-Dual Relationship

	Convergence
	Proof Strategy: Relating Subproblem Approximation to Global Progress
	Rates for General Convex gi, L-Lipschitz g*i
	Bounded support modification
	Rates for Strongly Convex gi, Smooth gi*
	Convergence Cases
	Recovering Earlier Work as a Special Case
	Local Subproblems
	Approximation of OA() by the Local Subproblems G'k()
	Proof of Convergence Result for General Convex gi
	Proof of Convergence Result for Strongly Convex gi

	Extension: Federated Learning
	Introduction
	Contributions

	Related Work
	Federated Multi-Task Learning
	Preliminaries
	General Multi-Task Learning Setup
	Mocha: A Framework for Federated Multi-Task Learning
	Federated Update of W
	Practical Considerations

	Convergence Analysis
	Simulations
	Federated Datasets
	Multi-Task Learning for the Federated Setting
	Straggler Avoidance
	Tolerance to Dropped Nodes

	Multi-Task Learning
	Multi-Task Learning Formulations
	Strong Convexity of MTL Regularizers
	Optimizing bold0mu mumu 00 in MTL Formulations

	Convergence Analysis
	Convergence Analysis for Smooth Losses
	Convergence Analysis for Lipschitz Losses: Proof for Theorem 13

	Choosing '
	The Role of Aggregation Parameter

	Simulation Details
	Datasets
	Multi-Task Learning with Highly Skewed Data
	Implementation Details

	Conclusion
	Bibliography

