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ABSTRACT OF THE DISSERTATION

Self-Interference Cancellation in Full-Duplex Radio

by

Yifan Li

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2017

Dr. Yingbo Hua, Chairperson

With increasing demand of mobile wireless communications, the available radio spectrum

becomes ever more crowded and hence efficient spectral usage becomes ever more cru-

cial. The full-duplex technology that allows simultaneous reception and transmission at

the same frequency can double the spectral efficiency and thus has attracted much atten-

tion in the past a few years. To realize a full-duplex radio, the main technical challenge

is the self-interference problem. This dissertation focuses on the principles behind sev-

eral self-interference cancellation (SIC) approaches. Radio frequency (RF) impairments

such as in-phase and quadrature (I/Q) imbalances and phase noises in practical RF mix-

ers and demixers are considered in designing and analyzing SIC algorithms. In particular,

this dissertation investigates deeper into SIC at the RF frontend by further developing a

quadratic-model based method and an affine-model based method. Adaptive algorithms

are developed and shown to yield substantial improvement over prior algorithms.
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Chapter 1

Introduction

Most of the communication applications used in the market now are half-duplex

which means the information transmission works in either different frequency bands (FD),

using different time slots (TD) or other division such as Code division multiple access

(CDMA) used in 3G communication. However, with more and more mobil devices used,

the spectrum becomes very crowed and it is very important to find a more efficient way to

achieve the wireless communication.

One answer to this problem is full-duplex (FD) which has attracted lots of attention

in the past ten years. Full-duplex communication means transmit and receive the signal in

the same time and using the same frequency. If it is realized, the spectrum efficiency of

the data transmission can be doubled theoretically. However, implementing the full-duplex

faces a big challenge: self-interference. Since the full-duplex radio uses the same time slot

and spectrum to transmit and receive data, along with the desired signal, the receive node

will also receive an interference which comes from its own transmit node. The real scattered
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environment will cause multiple reflection channels. Each channel will introduce a random

delay and attenuation to the transmitted signal. Combine together at the receiver and form

the self-interference.

Due to the fact that the signal attenuation increases as a longer transmission

distance it experiences, the self interference is much stronger than the desired signal. Con-

sidering a Wifi system, the typical noise floor is around −90 dBm, a received desired signal

with −70 dBm power level is usually enough to achieve successful transmission with 20

dB signal to noise ratio (SNR). However, for a small cell system, the transmission pow-

er can be up to 20 dbm. Assume the antenna isolation is 30 dB, without implementing

self-interference cancellation the received self-interference can be −10 dBm which is much

stronger than the desired signal. The desired signal is totally buried in the self-interference

and the system can not decode it. Therefore, to achieve full-duplex communication, self-

interference cancellation is needed to reduce the self-interference to the noise floor level

first.

In the recent ten years, researchers have proposed multiple self interference can-

cellation techniques in the literatures, which can be divided into two categories: passive

cancellation and active cancellation.

Among the passive self-interference cancellation literatures, the passive cancella-

tion is achieved by antenna placement in [1–4]. It is proposed in [1] that two transmit

antennas are placed with distance d and d + λ
2 away from the receive antenna where λ is

the wavelength, to create a cancellation signal with same attenuation but opposite phase.

In [2], the author placed 4 antennas as an equilateral triangle, where 3 transmit antennas are
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placed on the vertices and the receive antenna is place on the centroid. [3] proposed a two

level antenna cancellation method. In [4], three different antenna placement configurations

are tested on the actual devices to compare the practical isolation performance.

Apart from the antenna placement, [5–7] discussed how the beamforming weights

can be utilized to selective cancel the self-interference at the receiver side. In [8], dual

polarized antennas are applied to reduce the self-interference. [9, 10] used the direction-

al antennas to exploit the directional diversity and reduce the self-interference level. [11]

proposed a balanced RF front-end circuit based antenna cancellation scheme and [12] pro-

posed a Multi-Reconfigurable Antenna cancellation scheme. [13] is based on antenna subset

selection and null-space projection to achieve the spatial suppression.

The largest amount of passive self-interference cancellation reported in the previous

literatures is 70 dB. However, it is only valid for some particular scenario and assumption.

Also the passive self-interference cancellation is usually accompany with a trade off using

more antennas in the system. So, passive cancellation has its own limitation and it is hard

to reduce the self-interference to noise floor by only using the passive cancellation method.

Therefore, active self-interference cancellation is needed and researchers have come up with

lots of schemes of it.

Based on the resource signal type and the location of the cancellation happens,

common active cancellation methods can be divided into digital cancellation, analog can-

cellation and hybrid cancellation which is shown in Fig. 1.1.Digital cancellation starts from

the baseband signal, using digital signal processing to generate a copy of the self interference

and cancel after the analog-to-digital converter (ADC) at the receiver side. The diagram is
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Figure 1.1: Common active self-interference cancellation methods

show in Fig. 1.2. The main idea of the digital cancellation is using the knowledge of the

input baseband signal and the received interference to estimate the interference channel.

Then based on the estimated channel generate the cancellation sequence.

Multiple ways to estimate the interference channel are proposed. Among which,

the most popular one is the least square (LS) estimation [14–18]. In [14], OFDM signal is

considered and the least square estimation is operated in the frequency domain. In [15,16], a

widely linear model is proposed to handle the impairments introduce by the I/Q imbalance.

The authors state their model can recover the linear relationship. [17, 18] discussed both

linear and nonlinear signal processing. The nonlinear part in the received self-interference

is modeled as higher order terms. Correspondingly, the higher order terms of the baseband

input are used in the channel estimation.
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Figure 1.2: Diagram of digital self-interference cancellation

Besides the LS estimation, many other estimation algorithms are also proposed

to estimate the interference channel. In [19], sparse signal recovery algorithm is used to

do the channel estimation. In [20, 21], the least mean square (LMS) algorithm is applied.

Compared to the LS algorithm, the LMS algorithm has a lower computational complexity.

However, the upper bound of the LMS estimation is limited by the LS estimation. A

recursive least square (RLS) based channel estimation algorithm is introduced in [22] for

the passband signal. While in the latest literature, combined with the analog cancellation,

the author used the maximum-likelihood (ML) channel estimator in [23] and subspace-based

algorithm in [24] to do the channel estimation and handle the remained residual.
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The advantage of digital self-interference cancellation method is that it is easy to

implement and does not require additional hardware. However, due to the large power of

the self interference, the ADC in the receive chain faces the saturation problem and can not

provide a proper quantization. Another problem is, the digital SIC also suffers from the

nonlinearity in the transmit chain such as I/Q imbalance, phase noise, PA nonlinearity and

etc. So as it is shown in [23, 24], the digital cancellation is usually used accompany with

analog self-interference cancellation. The analog cancellation cancels the self-interference in

the RF domain, reduce the power of the received interference to avoid the ADC saturation,

then use the digital cancellation to handle the residual after the analog cancellation and

further reduce it to the noise floor.

Similar to the digital cancellation, the hybrid cancellation shown in Fig. 1.3 cancels

the self-interference after the ADC at the receiver side. The difference is that the hybrid

cancellation uses an auxiliary receive chain to get the digital copy of the transmitted signal

and uses the estimated signal as the inputs in the estimation algorithm. Since the linear

relationship of the system is modeled from the estimation of the transmitted RF signal

to the baseband self-interference. By implementing the hybrid cancellation, the nonlinear

components in the transmit chain can be totally lumped into the transmitted RF signal

and therefore has no impact on the linear relationship in system model.

In the hybrid cancellation literatures, most of the authors used the LS algorithm to

estimate the interference channel [25–29]. In [25–27], the authors considered a full-duplex

system that both self-interference (near-end) signal and the desired (far-end) signal are

existing, the channel response of the near-end and far-end are estimated jointly by using

6



D/A

PA

LNA

TX

BPF

A/D

RX

LPF

RF Channel

BB Cannceller

Mixer RF

BB

Demixer
Demixer

LPF

Σ 

A/D

Figure 1.3: Diagram of hybrid self-interference cancellation

the knowledge of transmitted near-end and far-end signals through the LS estimator. Once

the channel response of the self-interference channel is estimated, a cancellation channel can

be implemented using the FIR filter to reduce the power of the self-interference signal which

is similar as the idea used in the digital cancellation. [28] only considered the self-interference

and analyzed the system model in the frequency domain. [29] extended the previous work

to the MIMO full-duplex system. In [30], a prototype using the hybrid cancellation scheme

is presented and the cancellation performance is evaluated.

Since both digital cancellation and hybrid cancellation work after the ADC in the

receiver chain, the ADC saturation problem is a critical challenge due the large power of
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the self-interference signal. To solve that, the analog cancellation method was proposed

and caused great attention. In the analog cancellation, the self interference is cancelled

before the ADC in the analog domain at the receiver end. In the early stage, researchers

considered to cancel the self-interference using an auxiliary transmit chain [31–34]. With

the same baseband transmitted symbols before being converted by the digital to analog

converter (DAC) at the transmitter side, the auxiliary transmit chain generates a cancella-

tion signal which has the opposite phase of the self-interference signal and cancels it in the

RF domain before the demodulation. However, using an auxiliary transmit chain require

additional hardware cost. The extra antenna in the scheme is only used for self-interference

cancellation rather transmitting data, the design itself is not efficient in wireless communi-

cation perspective. Therefore, in the later of the study, the researchers focused more on the

all analog self-interference cancellation design.

All analog cancellation uses a RF canceller to generate the cancellation signal as

it is shown in Fig. 1.4. A coupler or splitter is used to get a copy of the RF signal. The

RF signal then passes the RF canceller which is formed with delay lines, attenuators and

phase shifter. The purpose of this design is using the RF canceller to mimic the practical

interference channel. Fig. 1.5 shows three architectures of the RF cancellers that has been

proposed. [35, 36] analysed the performance of the RF canceller shown in 1.5(a). In [35],

the author assume the frequency response of the interference channel is known and used the

proposed structure to match the interference channel with variable attenuations and variable

phase shifting. The Gaussian error model is used in [36] to represent the estimation error

of the phase and attenuation. Numerical evaluation is performed to show the effect of the
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Figure 1.4: Diagram of all analog self-interference cancellation

phase and attenuation estimation errors on the cancellation performance. The variable

phase shifters and the attenuators provide more freedom for the tuning algorithm to match

the self-interference channel.

However, the practical RF devices will introduce non ideal components to the

system. Therefore, the author simplified the structure to 1.5(b) in [14, 37–40]. In the new

design of the RF canceller, the variable phase shifters are removed and it only consists

fixed delay and variable attenuators. [14,37] only proposed to use passive attenuations and

delays to setup the cancellation channel and no detailed structure is provided. Also the

presented seif-interference cancellation degrades fast as the bandwidth increase. So it is
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only valided for narrowband signals. In [38, 39], the authors provided a detailed design

of the RF canceller using fixed delays and variable attenuators. An analog cancellation

board is presented in the paper and the author used it to do the experimental test for the

cancellation. The author stated the test results proves their design work for the wideband

signal and can make the full duplex feasible and practical. However, it is not showed in

the paper how the tuning algorithm is designed and how to find the optimal setting of

the RF canceller. The authors extended their work to full-duplex MIMO radio in [40]. A

cascaded cancellation design is proposed to reduce the number of taps (paths of delay and

attenuators) used to achieve MIMO full-duplex. Same as the previous two papers, again

there is no detail introduction of the tuning algorithm used showing how the RF canceller

is tuned in the paper.

In [41], the authors named the structure in Fig. 1.5(b) as the uniform structure

and demonstrated the shortage of the uniform structure is that it is sensitive to the carrier

frequency. To solve this problem, a clustered architecture is proposed and the structure of

the clustered canceller is shown in Fig. 1.5(c). In this design, 4 attenuators are connected

with cascaded 90 degree phase shifters and form a clustered tap. Each tap is connected via

a fixed delay line. In the paper, a detailed comparison of the uniform structure and the

clustered structure was performed and the results showed the performance of the clustered

structure is as good or better than the uniform structure. Also, the clustered is compatible

to different carrier frequencies therefore showing an advantage over the uniform structure.

Using the clustered structure, detailed tuning algorithms are proposed in [42, 43].

In [42], a quadratic model based tuning algorithm is presented. The algorithm used the
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Figure 1.5: Architectures of the RF cancellers.(a), RF canceller consisting of N paths with fix time
delay, variable attenuators and variable phase shifters. (b), RF canceller consisting of N paths with
fix time delay and variable attenuators. (c), RF canceller consisting of taps, each tap is formed with
90 degree phase shifter and 4 attenuators, a fixed time delay T is used to connect different taps.

power of the residual signal to find the optimal setting of the RF canceller. First, pre-

designed training matrix is used to collect the output residual powers with different settings

of the RF canceller. Based on the collected information, the coefficients of the quadratic

model can be estimated and the optimal setting of the RF canceller can be found easily

then. In the paper, a real valued model is also proposed to handle the I/Q imbalance

problem. An affine model based blind tuning algorithm is proposed in [43]. Compared to
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the quadratic model, the affine model uses the whole receive residual sequence to estimate

the coefficients. A PCB board is designed and presented in the paper which implementing

the clustered taps. Also, in the analysing, the practical attenuator is considered. Different

from the ideal ones, the practical attenuator will introduce phase shifting caused by the

attenuation. The phase shift increases as the attenuation decreases in dB and will destroy

the linear relationship in the system. To solve this, the paper used the LS algorithm to

find the optimal solution considering the equivalent complex attenuation of one clustered

tap. Find the optimal setting of the practical attenuator for each tap through brute force

by searching for the combination that matches the complex attenuation best.

Meanwhile others considered to least mean square algorithm to tune the RF can-

celler. [44] demonstrate the feasibility of the LMS tuning algorithm. The author analysed

the system using the uniform tap idea. The algorithm find the optimal weights of the RF

canceller through iterations and the information of the RF input of each tap is request in the

updating algorithm. To collect these information, large number of down-converting chains

are need which becomes the main challenge of this design. In [45, 46], the authors present-

ed the RF canceller demonstration boards to show the validation of their design. These

demonstrate boards are further integrated with digital self-interference cancellation and the

overall self-interference cancellation results for the whole system is shown in [47, 48]. [49]

proposed an adaptive least mean square algorithm, however ideal integrators have to be

implemented with active circuit. In [50], the authors criticized the previous LMS algorithm

for the above two shortages and proposed a passive resistor-capacitor (RC) circuits based

design to reduce the hard ware complexity. The impacts of the practical attenuators on

12



analog cancellation is investigated in [51]. [52] proposed an analog baseband approach and

the performance of channel matching is presented. Table 1.1 summarizes the cancellation

scheme used in each paper.

Category Reference

Passive Cancellation [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]
[19], [35]

Digital Cancellation [14], [15], [16], [17], [18], [20], [21], [22], [23], [24], [38]

Hybrid Cancellation [25], [26], [27], [28], [29], [30]

Analog Cancellation [14], [23], [31], [32], [33], [34], [35], [36], [37], [38], [39]
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50]
[51]

Table 1.1: Cancellation Scheme used in the reference paper

To the perspective of the optimization algorithm used in the papers, it can be

mainly separated into least square (LS) algorithm, least mean square (LMS) algorithm and

recursive least square (RLS) algorithm. LS estimation is an off-line batch algorithm and

uses N known equations to estimate M unknowns and the necessary condition is N ≥ M .

The optimal solution minimizes the sum of the squares of the errors in every single equation.

Therefore, in the self-interference cancellation, a batch version of the input signal sequence

is needed to do the estimation. LS square estimation is robust to instantaneous data and has

a high efficiency in the estimation. However, the LS algorithm is not an adaptive algorithm

so that it is not robust to the time variant component in the system. Also, among the

three algorithms, LS has the highest computational complexity (O(N3)). Both of the LMS

algorithm and the RLS algorithm are adaptive algorithm. Contrast to the LS algorithm

that do instantaneous estimation, the adaptive algorithms require time and iterations to get

converged. The LMS algorithm is popular for its low computational complexity (O(N)).
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However, it is well known that the convergence speed of LMS algorithm is low. Especially

in the full duplex radio, implementing LMS algorithm requires additional down-converting

circuits and integrating circuits. The RLS algorithm has a very fast convergence speed and

it is robust to the time variant components in the full-duplex system. However, the trade

off is that its computational complexity (O(N2)) is higher than the LMS algorithm. Table

1.2 summarizes the optimization algorithm applied in the reference paper.

Category Reference

Least Square [14], [15], [16], [17], [18], [25], [26], [27], [28], [29], [31]

Least Mean Square [20], [21], [44], [45], [46], [47], [48], [49], [50]

Recursive Least Square [22]

Table 1.2: Optimization algorithm used in the reference paper

In many of the work such as [14, 18, 19, 21, 32, 33, 35–38], ideal components are

assumed and the authors proved the validation of their theory by mathematical analysing.

However, in a practical full-duplex system, non-ideal components will introduce nonlinearity

to the system which will harm the channel estimation and self-interference cancellation since

most of the models used in the self-cancellation literatures are linear.

Generally, these non-ideal components includes the phase noise, I/Q imbalance,

power amplifier (PA) nonlinearity, ADC resolution and etc. Among them, the I/Q im-

balance and the phase noise are proved to be the main challenges for the self-interference

cancellation. In [15, 16, 18, 24, 25, 28, 31, 42, 43], the effect of the I/Q imbalance is consid-

ered. Widely linear model and real valued model are proposed in [16] and [42] separately

to handle the I/Q imbalance problem in the full-duplex system. It has been proved that

these two model are equivalent to each other mathematically. Both of them can solve the
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nonlinear problem caused by the I/Q imbalance. The advantage of the real valued model

is that it has a lower computational complexity in the channel estimation.

In other works like [53–59] addressed the impact of phase noise in different per-

spective and regarded it as the bottle neck of the self-interference cancellation. Phase noise

estimation and compensation algorithms are proposed in [60–62] which are analyzed in

both time and frequency domain. During evaluating the cancellation performance of the

self-interference cancellation theories, many authors also take the phase noise into account

and provided more practical simulation results [23,27,28,34,44].

It is worth noting that in the previous, the I/Q imbalance and phase noise are

analyzed separately. Therefore, the estimation and compensation algorithm are designed

with considering only one of them as well. However, since it has been proved that both

of these two non-ideal component will affect the self-interference cancellation performance

heavily, it is important to analyze the situation both of them are existed and re-evaluate

the proposed compensation algorithms.

The effects of other non-ideal component are also considered. In [18, 63], the PA

induced nonlinearity is discussed and it is suppressed by both linear and nonlinear signal

processing. Also, recall that both hybrid and analog cancellation can avoid the impact

of the PA nonlinearity inherently. ADC resolution and quantization limit is evaluated

in [64, 65]. [66] analyzed the impact of thermal noise on a full-duplex system. However,

these non-ideal component are not as critical as the phase noise and I/Q imbalance so that

can be neglected. Table 1.3 shows the nonlinear component considered in the reference

paper.
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Category Reference

Ideal [14], [19], [21], [18], [32], [33], [35], [36], [37], [38]

I/Q Imbalance [15], [16], [18], [24], [25], [28], [31], [42], [43]

Phase Noise [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [23]
[27], [28], [34], [44]

Others [18], [63], [64], [65], [66]

Table 1.3: Nonlinear component considered in the reference paper

We have proposed several novel architectures and algorithms for analog cancel-

lation. A blind tuning algorithm is proposed in [42] where clustered taps are used in the

cancellation channel and quadric model is used to model the relationship of input/output of

the system. The quantization error induced by the RF step attenuators is considered in [43].

In this paper, an affine model is used to model the system. Blind tuning and brute force

searching are applied together to find optimal values for the step attenuators. In my up-

coming paper, an optimal training matrix selection algorithm is developed for the quadratic

model. The importance of considering I/Q imbalance and phase noise simultaneously in

full-duplex system is demonstrated. Also a adaptive blind tuning algorithm which is robust

to both I/Q imbalance and phase noise is proposed in that paper. The following chapters

will show my contributions in details and the rest of this thesis is organized as follow:

In Chapter 2, RF impairments which induce nonlinearity to the full-duplex radio

system will be introduced, the impact of the phase noise and I/Q imbalance is emphasized

and analyzed in detail. The real valued representation is proposed to solve the I/Q imbal-

ance nonlinearity. It is compared with the widely linear representation. The results show

its advantage on computational complexity.

In Chapter 3, a review of the structure and model of the digital self-interference

cancellation and hybrid self-interference cancellation are presented. The least square al-
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gorithm is used to estimate the impulse response of the interference channel. With the

estimated channel response, the cancellation signal is generated using the FIR filter.

In Chapter 4, a quadratic model based analog self-interference cancellation is p-

resented. A novel blind tuning algorithm is proposed which has two procedures, training

and optimization. In the training period, a heuristic training matrix is designed in the

early stage and then the optimal training matrix selection is developed to minimize the

estimation mean square error with least square (LS) estimation and linear minimum mean

square error (LMMSE) estimation.

Chapter 5 will show affine model based analog self-interference cancellation. Prac-

tical RF attenuators are considered in the cancellation channel. The impact of quantization

error induced by the step attenuators is demonstrated through the simulation. A brute

force searching is used to find optimal setting values in dB for the non-ideal RF attenu-

ators. Next, a recursive least square based adaptive blind tuning algorithm is presented

to solve the nonlinearity problem from I/Q imbalance and phase noise. Computer simu-

lations are performed to prove the validation of the proposed theories. The results show

the proposed adaptive algorithm is robust to both I/Q imbalance and phase noise which

outperforms the existing method.

Finally, the conclusion is given in Chapter 6 at the end of this thesis and potential

future work is mentioned.
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Chapter 2

RF Impairments in Full-duplex

Radio System

In the practical full-diplex radio system, signals are distorted by RF impairments.

In most of the self-interference cancellation algorithms, the system is modeled by the linear

mathematical model. Then, the linear part of the system can be handled easily however

the nonlinear part will become a big challenge and affect the cancellation performance. In

this chapter, PA nonlinearity, I/Q imbalance and phase noise will be introduced and the

effects of them will be discussed.

2.1 PA Nonlinearity

In the transmit chain, the power amplifier (PA) drives the antenna to send out RF

signals. It converts a low power RF signal to a higher power signal. Ideally, the output and

the input signal of the power amplifier hold the linear relationship. However, the practical
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PAs present impairments and are generally modeled by AM/AM and AM/PM. For example,

assume the input of the PA is x(t) = a(t)ejφ(t), the output signal can be express as

yPA(t) = AM(a(t))ej(φ(t)+PM(a(t))) (2.1)

AM(a(t)) and PM(a(t)) describe the output amplitude and phase of the PA as a function

of the input signal amplitude separately. Equation (2.1) shows that the AM(a(t)) causes

nonlinear amplitude distortion and PM(a(t)) leads to nonlinear phase shift. In full-duplex

radio analyzing, a widely used PA nonlinearity model is the Rapp Model. The Rapp model

only deals with the AM/AM component and models PM(a(t)) = 0. The AM(a(t)) is

expressed as

AM(a(t)) =
G|x(t)|

[1 + (G|x(t)|
Vsat

)2p]1/2p
(2.2)

where it is recommended to choose p = 3 as the smoothness factor, G denotes the small

signal gain and Vsat is the saturation level.

There are many ways to deal with the PA nonlinearity. One is proposed in [18]

by using linear and nonlinear estimation. Another is using the hybrid self-interference

cancellation and analog self-interference cancellation. In these two methods, the cancellation

starts from the output of the Tx antenna. The distortion from the power amplifier will

merge into the transmit signal which will not affect the accuracy of the future optimization

algorithm. This becomes one of the advantages of the hybrid cancellation and analog

cancellation which will be further discussed later.
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2.2 I/Q Imbalance and Phase Noise

For RF system with known carrier frequency, the signals can be equivalently rep-

resented in the baseband. Fig.2.1 shows an illustration of the self-interference in the dull-

duplex radio using one antenna through the circulator. Compared to the structures shown

in Fig.1.2-1.4, the implementation of the circulator can reduce the number of the antenna

used in the full-duplex radio since it uses the same antenna to transmit and receive signal.

In this section, we present these representations in the context of RF mixer and RF demixer

considering the effects of both I/Q imbalance and phase noise.

Circulator

Antenna

Mixer DemixerOscillator

][, kx BBT ][, ky BBR

][, ky BBT ][, kx BBR

Figure 2.1: An illustration of self-interference in full-duplex radio

2.2.1 I/Q Imbalance and Phase Noise Caused by RF Mixer

At the transmitter side, the transmit chain uses a RF mixer (also called RF mod-

ulator) to convert a baseband signal into RF signal as it shows in Fig.2.2. The baseband

input signal of the RF mixer has two real-valued components and can be represented by a
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Figure 2.2: The RF mixer I/Q imbalance and phase noise signal model

complex signal: xT,BB(t) = xT,I(t) + jxT,Q(t) where xT,I(t) and xT,Q(t) are the real-valued

I and Q components. For a practical RF system, the imperfect RF mixer will introduce

I/Q imbalance and phase noise. Then, the RF signal produced by the RF mixer can be

expressed as

yT,RF (t) =(1 + δT )xT,I(t)cos(2πfct+ φT + θT (t))

− (1− δT )xT,Q(t)sin(2πfct− φT + θT (t))

(2.3)

where fc is the carrier frequency, δT and φT are the amplitude and phase components of

the I/Q imbalance, θT (t) is the phase noise. The baseband equivalent form of yT,RF (t) is

defined as yT,BB(t) that satisfies

yT,RF (t) = Re{yT,BB(t)ej2πfct} (2.4)

which follows that

yT,BB(t) =(1 + δT )xT,I(t)e
jφT+jθT (t) + j(1− δT )xT,Q(t)e−jφT+jθT (t) (2.5)
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which is complex-valued. We see if the I/Q imbalance is zero, then yT,BB(t) = [xT,I(t) +

jxT,Q(t)]ejθT (t) = xT,BB(t)ejθT (t) which shows a linear relationship between yT,BB(t) and

xT,BB(t).

However, if the I/Q imbalance is not zero, the linear dependency between yT,BB(t)

and xT,BB(t) no longer holds. However, we can write (2.5) as

yT,BB(t) = [aTxT,BB(t) + bTx
∗
T,BB(t)]ejθT (t) (2.6)

where aT = 0.5[(1+δT )ejφT +(1−δT )e−jφT ] = cosφT+jδT sinφT and bT = 0.5[(1+δT )ejφT−

(1− δT )e−jφT ] = δT cosφT + j sinφT . Both aT and bT are complex. The expression of (2.6)

shows a linear dependency of yT,BB(t) on xT,BB(t) and x∗T,BB(t) which is proposed in [16]

and they call it widely linear model.

Another method proposed in [42] that can re-generate the linear relationship be-

tween the yT,BB(t) and xT,BB(t) is the real value model. Apply the real value model and

denote yT,BB(t) = [yT,I(t), yT,Q(t)]T , xT,BB(t) = [xT,I(t), xT,Q(t)]T . We can rewrite (2.5)

as

yT,BB(t) = FT (t)CTxT,BB(t) (2.7)

where

FT (t) =

 cos(θT (t)) − sin(θT (t))

sin(θT (t)) cos(θT (t))


and

CT =

 (1 + δT ) cos(φT ) (1− δT ) sin(φT )

(1 + δT ) sin(φT ) (1− δT ) cos(φT )


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Note that aT and bT can be easily expressed as a linear combination of the entries in

CT and versa vise. Therefore, it is revealed that mathematically the real valued model and

widely linear model are equivalent. However, the real value model shows a computational

advantage comparing with the widely linear model which is shown as follow.

Assume the phase noise is zero, using N consecutive samples of the received self-

interference, in complex model we can express it as

yC = XChC + wC (2.8)

where yC and wC represent the self-interference, receive noise separately and both are N×1

complex valued vectors, complex matrix XC ∈ CN×L is a (N × L)-block Toeplitz matrix

of the transmit signal, and hC represents the overall interference channel response and is a

L× 1 complex valued vector.

Rewrite (2.8) into widely linear model, we have

yWL =XCh1 + X∗Ch2 + wWL

=XWLhWL + wWL

(2.9)

where XWL = (XC ,X
∗
C) is a N ×2L complex matrix, hWL = [hT1 ,h

T
2 ]T is a 2L×1 complex

valued vector. A common and robust method used in the channel estimation in full-duplex

is the least square method. So the estimation of hWL is

ĥWL = (XH
WLXWL)−1XH

WLyWL (2.10)
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Rewrite (2.8) into real value model, we have

yR = XRhR + wR (2.11)

where yR and wR are 2N×1 real vectors, XR is a 2N×2L real matrix and the relationship

between XR and XC is

XR =


XR,11 · · · XR,1N

· · · · · · · · ·

XR,L1 · · · XR,LN

 (2.12)

each XR,ij is a 2× 2 matrix composed by xc,ij which is the ith row jth column element in

XC where

XR,ij =

 Re(xc,ij) −Im(xc,ij)

Im(xc,ij) Re(xc,ij)

 (2.13)

hR is a 2L× 1 real vector. The channel estimation of hR is

ĥR = (XT
RXR)−1XT

RyR (2.14)

Compare(2.14) to (2.10), when the dimension of the matrix XC is large, the com-

putational complexity in the channel estimation mainly comes from the matrix inverse com-

putation (O(N3)). Notice that (XH
WLXWL) is a 2L× 2L complex valued matrix, (XH

RXR)

is a 2L × 2L real valued matrix. Although they have the same dimension, the complexity

of doing matrix inverse for a complex matrix is much higher than that for the pure real

matrix.
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Figure 2.3: Matrix inverse computation time for real model and widely linear model

We simulated the computation speed for the matrix inverse to compare the com-

putational complexity of the widely linear model and real valued model. By generating a

random N ×L complex matrix XC , we can get XWL and XR using (2.9), (2.12) and (2.13).

We pick L = 100, 200, · · · , 1000 and counted the corresponding 2L × 2L real and complex

matrices inverse computation time. From Fig.2.3, we can see that the computation time

keeps at a relative low level for the real valued model. However, the time consuming for the

complex matrix inverse increases significantly as the matrix dimension becomes large. With

the same dimension of the matrices, the computation speed of the complex valued matrix is

much slower than the real valued matrix. This difference becomes obvious especially when

the matrix size is large. Therefore, the real value model has a computational advantage of

the widely linear model proposed in [16].
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Figure 2.4: The RF demixer I/Q imbalance and phase noise signal model

2.2.2 I/Q Imbalance and Phase Noise Caused by RF Demixer

At the receiver side. the the receive chain uses a RF demixer (also called RF

demodulator) to convert the RF signal to a baseband signal as shown in Fig.2.4. Let

xR,RF (t) represent the RF input signal of the demixer and yR,BB(t) be the complex baseband

output signal generated by the demixer. We can also write xR,RF (t) = Re{xR,BB(t)ej2πfct}

with xR,BB(t) = xR,I(t) + jxR,Q(t) being the baseband equivalent form of xR,RF (t). at

the demixer, the I channel output signal is achieved by demodulating the input signal by

(1+δR)cos(2πfct+φR+θR(t)) and the Q channel output signal is achieved by demodulating

the input signal by (1 − δR)sin(2πfct − φR + θR(t)). Here, δR and φR are the amplitude

and phase components of the I/Q imbalance in the demixer and θR(t) is the phase noise of

the demixer. Then it follows that

yR,BB(t) =yR,I(t) + jyR,Q(t)

=(1 + δR)Re{xR,BB(t)e−jφR−jθR(t)}

+ j(1− δR)Im{xR,BB(t)ejφR−jθR(t)}

(2.15)
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For a widely linear model, from (2.15) we have

yR,BB(t) = aRe
−jθR(t)xR,BB(t) + bRe

jθR(t)x∗R,BB(t) (2.16)

where aR = 0.5[(1 + δR)e−jφR + (1− δR)ejφR ] and bR = 0.5[(1 + δR)ejφR − (1− δR)e−jφR ].

Here, yR,BB(t) is also a linear function of xR,BB(t) and x∗R,BB(t) with complex coefficients.

For the real valued representation, denote yR,BB(t) = [yR,I(t), yR,Q(t)]T and xR,BB(t) =

[xR,I(t), xR,Q(t)]T . We can rewrite a linear relationship between xR,BB(t) and yR,BB(t) from

(2.15) as

yR,BB(t) = CRFR(t)xR,BB(t) (2.17)

where

FR(t) =

 cos(θR(t)) sin(θR(t))

− sin(θR(t)) cos(θR(t))


and

CR =

 (1 + δR) cos(φR) (1 + δR) sin(φR)

(1− δR) sin(φR) (1− δR) cos(φR)


It worths noticing the different between (2.7) and (2.17). Also the matrices CT , CR, FT (t)

and FR(t) have slice difference due the practical structure and function of the RF mixer

and demixer.
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2.3 Self-Interference Channel with RF Impairments

Now consider the self-interference channel between the RF frontend from the trans-

mitter to the receiver. Recall previous section, yT,BB(t) denotes the baseband equivalent

form of the output of the RF mixer which is also the input of the self-interference channel.

xR,BB(t) is the baseband equivalent form of the input of the RF demixer which is also the

output of the self-interference channel. Given a bandwidth of interest W and a sampling

rate meeting the Nyquist condition (i.e., Ts ≤ 1
W ), the discrete time form of yT,BB(t) and

xR,BB(t) are denoted by yT,BB[n] and xR,BB[n] separately. Then, apply the real model we

have

xR,BB[n] =
L−1∑
l=0

Hi[l]yT,BB[n− l] (2.18)

where

Hi[l] =

 Re{hi[l]} −Im{hi[l]}

Im{hi[l]} Re{hi[l]}

 (2.19)

and hi[l], l = 0, 1, · · · , L − 1 is the impulse response of the self-interference channel. Note

that the interference channel is typically linear and hence the exact linearity holds between

yT,BB[n] and xR,BB[n].

Combining the transmitter and receiver RF chain, in another word, combining

(2.7), (2.17) and (2.18), we can write the overall baseband input-output relationship of the

self-interference channel as follow

yR,BB[n] =

L−1∑
l=0

CRFR[l]Hi[l]FT [n− l]CTxT,BB[n− l] (2.20)
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In (2.20), we can see the sequence yR,BB[n] is still a linear function of the sequence xT,BB[n].

However, this function is time-varying due the phase noise. Also, the practical structure

of the RF mixer and demixer make the effect of I/Q imbalance and phase noise has a

cascaded expression. In previous literatures, when only considering the I/Q imbalance,

the real model and widely linear model are proposed to solve it. While it can be seen in

(2.20) the existence of time variant phase noise will destroy the performance. In the other

case, when only considering the phase noise, the property FT [n]F[n] = I can be utilized for

phase noise estimation and compensation whose detail procedure can be found in Apendix

A. While the cascaded structure will obstruct it in practical. Therefore, the model and

analysis under the assumption of considering only one factor is not precise. So in the rest of

this paper, we will based on the model shown in (2.20). To further simplify the problem, we

use the second order approximation to deal with it. When the phase noise is small, using

the second order approximation for the phase noise, (2.20) can be approximated as

yR,BB[n] =

L−1∑
l=0

Hint[l]xT,BB[n− l] + wR,BB[n] (2.21)

where Hint[l] = CRHi[l]CT for l = 0, 1, · · · , L − 1 is the overall self-interference channel

response and wR,BB[k] is small perturbation due to the phase noise. More specifically,

wR,BB[n] =
∑L−1

l=0 CR∂FR[n]Hi[l]CTxT,BB[n− l]+
∑L−1

l=0 CRHi[l]∂FT [n− l]CTxT,BB[n− l]

where

∂FR[n] =

 0 θR[n]

−θR[n] 0


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∂FT [n] =

 0 −θT [n]

θT [n] 0


After the approximation, we can see the effect of phase noise can be modeled as

small additive perturbation which has zero mean and linear relationship holds between the

input and output.

30



Chapter 3

Interference Channel Estimation

Based Self-Interference

Cancellation

In this section, digital self-interference cancellation and hybrid self-interference

cancellation technologies will be reviewed. In both of these two methods, after the analog

interference signal is converted digital signal by the ADC at the receiver end, the self-

interference cancellation is implemented and works in the digital domain. By estimating

the channel impulse response of the self-interference channel, the finite impulse response

(FIR) filter can be applied to generate the cancellation signal. Then the interference channel

estimation becomes the key point and the general estimation algorithm is shown as below.
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3.1 Digital Self-interference Cancellation

The diagram of the digital self-interference cancellation is shown in Fig.1.2. In [16],

the authors proposed a digital self-interference cancellation algorithm. In this section, we

will review this method based on the new approaching.

Recall (2.21), to estimate the channel coefficients, let us rewrite it as

yR,BB[n] =
L−1∑
l=0

XT,BB[n− l]hint[l] + wR,BB[n] (3.1)

where

XT,BB[n− l] =

 xT,I [n− l] −xT,Q[n− l]

xT,Q[n− l] xT,I [n− l]

 (3.2)

and hint[l] = [Re{hint[l]}, Im{hint[l]}]T . Using N consecutive samples to form the vector

yreal ∈ R2N×1, we then have

yreal = Xrealhreal + wreal (3.3)

where Xreal ∈ R2N×2L is a (2N × 2L)- block Toeplitz matrix defined as

Xreal =



XT,BB[0] XT,BB[−1] · · · XT,BB[−L+ 1]

XT,BB[1] XT,BB[0] · · · XT,BB[−L+ 2]

· · · · · · · · · · · ·

XT,BB[N − 1] XT,BB[N − 2] · · · XT,BB[N − L]


(3.4)
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and hreal = [hint[0]T ,hint[1]T , · · · ,hint[L − 1]T ]T ∈ R2L×1. The least square solution of

hreal is given by

ĥreal = (XT
realXreal)

−1XT
realyreal (3.5)

Note once the self-interference channel is estimated, the cancellation signal can be generated

through digital signal processing. We can apply a Lth order FIR filter and the generated

cancellation signal can be expressed as

ycan = Xrealĥreal (3.6)

In (3.5), it shows that to estimate the interference channel, it requires the knowledge of

Xreal and yreal. yreal is the baseband output of the system which can be measured easily.

If the baseband input signal Xreal is directly used as the source signal, the whole cancella-

tion occurs in the digital domain and it belongs to the digital self-interference cancellation.

However, the performance of this method is heavily limited by the PA nonlinearity. Also

the additive perturbation introduced by the impact of phase noises will cause large esti-

mation error which will consequently further limit the cancellation performance. Nonlinear

estimation methods are used to solve this problem. As another solution, the hybrid self-

interference cancellation is proposed.

3.2 Hybrid Self-interference Cancellation

Hybrid self-interference cancellation uses an auxiliary receive chain to collect the

baseband equivalent x̂T,BB[n] of the output of the transmit node as it is shown in Fig.1.3.
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The linear relationship of the system is assumed from the estimated signal x̂T,BB[n] to the

output interference yreal. Then, replace xT,BB[n] with x̂T,BB[n] in (3.3), we have the new

interference channel model

yreal = X̂realhreal + wreal (3.7)

The impacts of the hybrid cancellation method are twofold. On one hand, it introduces

another receive chain which increases complexity of the system and the cost of hardware.

On the other hand, since the cancellation channel operates from the output of the transmit

chain to the output of the ADC in the receive chain, it can avoid the PA nonlinearity in

the transmit chain. Also, the auxiliary receive chain will not introduce extra nonlinearity

so the linear relationship still holds in (3.7). If we further assume x̂T,BB and yR,BB share

the same phase noise, this method can reduce the level of the perturbation caused by the

phase noise. The least square solution of hreal is given by

ĥreal,h = (X̂T
realX̂real)

−1X̂T
realyreal (3.8)

and the cancellation channel can be expressed as

ycan,h = X̂realĥreal,h (3.9)

In this section, we reviewed the digital self-interference cancellation and hybrid self-interference

cancellation methods. Compared with the digital cancellation, hybrid cancellation can avoid

the PA nonlinearity in the transmit chain. However, since both the cancellations of these

two methods happen after the ADC, they will suffer from the ADC saturation if the input
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self-interference signal is large. In the following sections, we will mainly focus on the ana-

log self-interference cancellation method which the cancellation happens before the ADC

therefore, reduce the input signal power and avoid the risk of saturation.
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Chapter 4

Optimal Training Matrix Selection

for Quadratic Model Based Analog

Self-Interference Cancellation

In the following the two chapters, the quadratic model and affine model used in

the analog self-interference cancellation will be discussed. Analog cancellation uses the RF

canceller to generate the cancellation signal. The RF canceller is controlled by the tunable

attenuator, so the key problem is to find the optimal setting of the attenuators that can

minimize the residual after the cancellation.
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4.1 Quadratic Model Based Analog Self-Interference Cancel-

lation

4.1.1 System Model

Consider a system configuration for quadratic model based analog self-interference

cancellation shown in Fig.4.1. In the figure, H2 represents the interference channel, G rep-

resents the RF canceller formed with clustered taps shown in (1.5(c)), H1 and H3 represent

the transmit and receive chain respectively. x[n] and y[n] are baseband digital waveforms

of the source signal and observation separately. w[n] and v[n] denote the noises from the

transmit chain and receive chain.

1H 3H

2H

G

][nv

][nw

][nx ][nr

Analog

Digital

Figure 4.1: System configuration of quadratic model based analog self-interference cancellation
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Using the real value model, the relationship between the source signal and the

observation vectors can be expressed as

r = yint + ycan + v (4.1)

with

yint = TH3TH2w + TH3TH2TH1x (4.2)

and

ycan = TH3Tgw + TH3TgTH1x (4.3)

where THi , i = 1, 2, 3 are the linear operators corresponding to the channels. g is the

vector of the controllable attenuator settings. Tg is the linear operators representing the

cancellation channel which is a linear function of g.

Furthermore, we can write Tgw = Twg where Tw is a linear function of w.

Applying the same idea, we can write TgTH1x = TH1,xg. Note TH1,x is governed by both

the H1 channel and x, which is not necessarily a linear function of x. Then (4.3) becomes

ycan =TH3Twg + TH3TH1,xg

=Tg

(4.4)

For fixed sequence x, r is random since there are noise in transmit chain and

receive chain. To reduce the effect of the noise, we need collect multiple observations with

the same x and calculate the average power of the observation. Then what we get is
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e =E{‖r‖2}

=E{‖Tg + yint + v‖2}

=E{gTTTTg + 2(yint + v)TTg + yTintyint + 2yTintv + vTv}

(4.5)

where E denotes the expectation and assume v has a zero mean, it can be simplified as

e =gT {TTT}g + 2{yTintT}g + E{yTintyint}+ E{vTv}

=gTAg + bTg + c+ w

=gTbigp + w

(4.6)

where e denotes the power of the residual interference, g = [g1, g2, · · · , gNg ]T is the control-

lable attenuation values, A, b and c are unknowns and need to be estimated, w represents

the perturbation from the noise. gTbig = [(gT⊗gT )ST ,gT , 1] and pT = [vec(A)TSTD,bT , c].

Here, ⊗ denotes the Kronecker product. S represents a selection matrix that Svec(A) se-

lects the lower triangular elements of A, D is a diagonal matrix that doubles the selected

off-diagonal elements of A. The purpose of including S and D is to reduce the dimension

of gbig and p, therefore, reduce the computation complexity in the optimization.

For example, if there is only one clustered tap used in the RF canceller, the

dimension of g is 4× 1, then
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S =



J4,4

J4,3

J4,2

J4,1


(4.7)

where JN,M with M ≤ N is the last M rows of the N ×M identity matrix and

D = diag[1 2 2 2 | 1 2 2 | 1 2 | 1] (4.8)

From (4.6), we see there is a quadratic relationship between the g and residual

power e and we call it quadratic system model. Based on the quadratic model, the algorithm

to find optimal g that minimize the residual power e is as follow. First, we use some training

vectors of g to estimate the A, b and c. Second, we use the estimated A, b and c to find

the optimal g that minimizes the output e.

To estimate the A, b and c, we can estimate p instead. A set of training vectors g

denoted as g1, · · · ,gN are needed in the learning period. Corresponding to each gi, we have

the observation of the output yi and its power ei, i = 1, · · · , N . Define e = [e1, e2, · · · , eN ]T ,

we have

e = Gp + w (4.9)

where

G =


gTbig,1

...

gTbig,N

 (4.10)
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Assume there are Ng attenuators in the system, the dimension of the g is Ng × 1 and p

is Np × 1 where Np =
Ng(Ng+1)

2 + Ng + 1. To have a unique solution p from (4.9), N is

chosen to be N = Ng(Ng + 1)/2 +Ng + 1 to make sure G has full column rank. In [42], one

heuristic choice of G is constructed by the following N training vectors of g:

• g1 = 0.

• For i = 2, 3, · · · , Ng + 1, gi = αeNg ,i−1 where eNg ,i represents the ith column of the

Ng ×Ng identity matrix.

• For i = Ng + 2, Ng + 3, · · · , 2Ng + 1, gi = βeNg ,i−1 with β 6= α.

• For i = 2Ng + 2, 2Ng + 3, · · · , N , gi = αeNg ,k + αeNg ,l where 1 ≤ k < l ≤ Ng.

Although, it is proved this choice is sparse and well conditioned, it is still not the

optimal selection. In the next part, we will discuss the way to figure out the optimal G

choice which has the minimum estimation error of p.

Once we collect all the observations of residual power e, we can estimate p by

p̂ = G+e. With the estimation of p, we can extract A, b and c from the p̂. The optimization

problem becomes

min
g
{gTAg + bTg + c+ w} (4.11)

and the solution is

gopt = −1

2
A+b (4.12)
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4.1.2 Simulation for quadratic model self-interference cancellation

We have simulated the performance of the quadratic model based analog self-

interference cancellation shown in Section 4.1.1. In the simulation, we model the relationship

between the input and output of the interference channel H2 as

ỹint(t) =
I−1∑
i=0

aix̃int(t− τi) (4.13)

where x̃int(t) is the RF input signal and ỹint is the RF output signal. Considering the real

value model, the baseband equivalent of (4.13) is expressed as

yint(t) =

I−1∑
i=0

ai

 cos(2πfcτi) sin(2πfcτi)

− sin(2πfcτi) cos(2πfcτi)

xint(t− τi) (4.14)

The attenuation ai of the multipaths have the form

ai =
εαi

(d+ cτi)2
(4.15)

where a0 = ε/d2,c = 3×108 m/s, d = 0.3 m, 0 ≤ τi ≤ 10 ns (random), 0 ≤ αi ≤ 1 (random)

and ε = 8× 10−4.

For the cancellation channel, we use the clustered taps shown in Fig.1.5(c). The

relationship of the RF input/output of the G channel is

ỹcan(t) =

NT−1∑
n=0

3∑
l=0

gn,lx̃can(t− nT − lη) (4.16)

where x̃can(t) is the RF input of the G channel and ỹcan(t) is the RF output of the G

channel. Then the baseband equivalent is
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ycan(t) =

NT−1∑
n=0

3∑
l=0

gn,lGn,lxcan(t− nT − lη) (4.17)

where

Gn,l =

 cos(2πfc(nT + lη)) sin(2πfc(nT + lη))

− sin(2πfc(nT + lη)) cos(2πfc(nT + lη))

 (4.18)

We choose the center frequency as fc = 2.5 GHz, the delay between two clustered taps as

T = 1
20W , the bandwidth of interest as W = 40 MHz and η = 1

4fc

As the inputs of the interference channel and the cancellation channel share the

same RF input, it means x̃int(t) = x̃can(t). Also the input to H3 channel is the combination

of the outputs of the interference channel and the cancellation channel ỹint(t) + ỹcan(t). In

the blind tuning algorithm, we do not need any direct access to these waveforms.

To simulate the analog channel, we apply a higher sampling rate with the sampling

interval TL = Ts/L with a large L to approximate (4.13) and (4.16) by discrete operations.

Let Ts = 1/W be the sampling rate of the digital parts. Then, the H1 channel is modeled by

a discrete-time channel H1,D with rate 1/Ts, the H3 channel is modeled by a discrete-time

channel H3,D with rate 1/Ts. The RF interference channel and cancelation channel are

modeled by discrete channels with rate 1/TL. Where L is chosen to be L = 500.

H1,D is modeled by an FIR lowpass filter with a double-sided bandwidth W .

Considering the transmit I/Q imbalance the input/ouput relationship of H1,D is

y1[n] =

Mh∑
l=−Mh

H1,D[l]x1[n− l] (4.19)
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with

H1,D[n] =

 hT,r[n] −hT,i[n]

hT,i[n] hT,r[n]


 (1 + δT ) cos(φT ) (1− δT ) sin(φT )

(1 + δT ) sin(φT ) (1− δT ) cos(φT )

 (4.20)

where hT,r[n] = hT,i[n] = wh[n]ch(nTs), ch(t) = sinc(Wt) = sinc(πWt)/πWt and wh[n] =

0.54 + 0.46 cos(2πn/2Mh + 1). We choose Mh = 20.

Similarly, H3,D is also modeled as an FIR lowpass filter and its input/output

relationship is

y3[n] =

Mh∑
l=−Mh

H3,D[l]x3[n− l] (4.21)

with

H3,D[n] =

 (1 + δR) cos(φR) (1 + δR) sin(φR)

(1− δR) sin(φR) (1− δR) cos(φR)


 hR,r[n] −hR,i[n]

hR,i[n] hR,r[n]

 (4.22)

where hR,r[n] = hR,i[n] = wh[n]ch(nTs). The amplitude imbalance and phase imbalance

if the I/Q imbalance are assumed to follow uniform distribution. The range is set to be

U(−0.05, 0.05).

During the training period, the interference channel is assumed to be fixed. The

input is chosen to be x[n] = δ[n]. For one training vector gi, we simulate Nr realizations.

Each realization, we apply a random noise w(mTL) and v[n] and collect the corresponding

output residual r[n]. Then we compute
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ei =
1

Nr

Nr∑
k=1

∑
n

‖r(k,i)[n]‖2 (4.23)

where r(k,i)[n] is the kth realization of r[n] corresponding to g = gi. With the collected ei,

we can determine A, b and c.

With the estimated A, b and c, we compute optimal g using (4.12). With the

optimal solution gopt, we simulate a new realization with another random w(mTL) and v[n]

and collect the output residual r[n]. Then the power (in dB) difference of residual before

cancellation and after cancellation is the self-interference cancellation performance of the

RF canceller. Obviously, the cancellation performance is limited by the level of the noise

in the transmit chain and transmission SNR is denoted as SNRT .

In Fig.4.2, we simulate cancellation performance subject to a large transmission

SNR. In this scenario, it illustrates the effect of the number of clustered tap N . It shows

with more clustered taps used in the RF canceller, the cancellation performance becomes

better. N > 3 will not further improve the performance.

In Fig.4.3, we simulate cancellation performance subject to a typical transmis-

sion SNR. In this case, we want to demonstrate the impact of number of realizations Nr.

When Nr = 1, the existence of transmission noise totally destroys the system and the

self-interference cancellation is almost not working. When we increase the training realiza-

tions, the performance improves. When Nr = 1000, the average amount of self-interference

cancellation is about 40 dB with two clustered taps used in the RF canceller.
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Figure 4.2: CDF of self-interference cancellation performance under SNRT = 100 dB
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Figure 4.3: CDF of self-interference cancellation performance under SNRT = 30 dB with different
number of realization Nr used for training
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4.2 Optimal Training Matrix Selection for Channel Estima-

tion

As it is mentioned in the previous section, to find the optimal g, we need do

the channel estimation p using the training matrix G first. To analyze the relationship

between the estimation error ∆p̂ and G, least square (LS) estimator and linear minimum

mean square error (LMMSE) estimator can be applied.

4.2.1 LS Estimation

Using LS method, the estimation of p can be expressed as

p̂LS = G+e (4.24)

Substitute (4.9) into (4.24), the estimation error becomes

∆p̂LS = G+(Gp + w)− p

= G+w

(4.25)

Define the cost function as

JLS = E[‖∆p̂LS‖2]

= Tr[G+wwHG+H ]

= σ2
w · Tr[(GHG)−1]

(4.26)
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where σ2
w represents the variance of the noise. The target is to find the optimal training

matrix G to minimize the estimation error. Then, the optimization problem becomes

min
G

σ2
w · Tr[(GHG)−1] (4.27)

A general idea to solve (4.27) is the gradient decent method. However, since training matrix

G has its own structure shown in (4.10), the optimal solution from gradient decent may

not be able to guarantee every row of G has the structure gTbig,i = [(gTi ⊗ gTi )ST ,gTi , 1]. To

solve this, we rewrite (4.27) to an equivalent optimization problem

min
gs

σ2
w · Tr[(GHG)−1] (4.28)

where

gs =



g1

g2

...

gN


=



g1,1

...

g1,Ng

g2,1

...

g2,Ng

...

gN,1

...

gN,Ng



(4.29)
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Using the gradient decent, we have

g(k+1)
s = g(k)

s − µ1
∂J

(k)
LS

∂g
(k)
s

(4.30)

µ1 represents the step size. For every iteration, after calculate the updated g
(k+1)
s , the

corresponding training vectors g
(k+1)
1 ,g

(k+1)
2 , · · · ,g(k+1)

N can be extracted. Then the new

g
(k+1)
big,i and G(k+1) can be constructed using the equation (4.10). Finally, the new cost

function J
(k+1)
LS can be calculated and used for the next iteration through the equation

(4.26).

Following the previous step, the specific structure of G is promised and the optimal

gs and corresponding G could be found. In the equation (4.30),
∂J

(k)
LS

∂g
(k)
s

is calculated as

∂JLS = σ2
w · Tr[∂((GHG)−1)]

= σ2
w · Tr[−(GHG)−1∂(GHG)(GHG)−1]

= −σ2
w · Tr[(GHG)−1((∂GH)G + GH(∂G))(GHG)−1]

= −2σ2
w · Tr[(GHG)−1(∂GH)G(GHG)−1]

(4.31)

and according to (4.29)

∂JLS
∂gs

=



∂JLS
∂g1,1

∂JLS
∂g1,2

...

∂JLS
∂gN,Ng


(4.32)
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To get the result of (4.32), we can calculate every term one by one using ∂JLS
∂gi,j

=

−2σ2
w · Tr[(GHG)−1 ∂GH

∂gi,j
G(GHG)−1] and ∂G

∂gi,j
= ∂G|∂gi,j=1,other∂gk,l=0 where

∂G =



(∂gT1 )⊗ gT1 ST + gT1 ⊗ (∂gT1 )ST , ∂gT1 , 0

(∂gT2 )⊗ gT2 ST + gT2 ⊗ (∂gT2 )ST , ∂gT2 , 0

...
...

...

(∂gTN )⊗ gTNST + gTN ⊗ (∂gTN )ST , ∂gTN , 0


(4.33)

and ∂gTi = [∂gi,1, ∂gi,2, · · · , ∂gi,Ng ].

With the steps (4.30)-(4.33), we can continuously do the iteration in (4.30) until

it converges. Then, extract g1, · · · ,gN from gs and we can get the optimal training matrix

G using (4.10).

4.2.2 LMMSE Estimation

Using the LMMSE method, if p has a mean of p̄ and covariance matrix of Rpp,

the estimation of p can be expressed as

p̂LMMSE = p̄ + RpeR
−1
ee (e−Gp̄) (4.34)

where Rpe and Ree represent the covariance matrix correspondingly. Define ∆p = p − p̄

and ∆e = e− ē = e−Gp̄, the estimation error is
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∆p̂LMMSE = p̄ + RpeR
−1
ee (e−Gp̄)− p

= RpeR
−1
ee ∆e−∆p

(4.35)

Since it is easy to show Ree = R∆e∆e and Rpe = R∆p∆e, as in [67], the cost function can

be written as

JLMMSE =E[‖∆p̂LMMSE‖2]

=Tr[R∆p∆p + RpeR
−1
ee R∆e∆eR

−1
ee Rep

−RpeR
−1
ee R∆e∆p −R∆p∆eR

−1
ee Rep]

=Tr[Rpp −RpeR
−1
ee Rep]

=Tr[(R−1
pp +

GHG

σ2
w

)−1]

(4.36)

similar to (4.27)-(4.28), considering the structure constrain, we solve the following opti-

mization problem

min
gs

Tr[(R−1
pp +

GHG

σ2
w

)−1] (4.37)

the solution can be found following the same idea shown in the equation (4.30)-(4.33)

g(k+1)
s = g(k)

s − µ2
∂J

(k)
LMMSE

∂g
(k)
s

(4.38)

where

∂JLMMSE = Tr[∂((R−1
pp +

GHG

σ2
w

)−1)]

= Tr[−(R−1
pp +

GHG

σ2
w

)−1∂(R−1
pp +

GHG

σ2
w

)(R−1
pp +

GHG

σ2
w

)−1]

= − 2

σ2
w

Tr[(R−1
pp +

GHG

σ2
w

)−1(∂GH)G(R−1
pp +

GHG

σ2
w

)−1]

(4.39)
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4.2.3 Estimation Error versus. Cancellation Residual

Once we know the knowledge of p, we know A,b, c. Assume the real true estima-

tion is pT ,AT ,bT , cT . Based on the equation (4.12), the optimal gopt,T that minimizes the

residual power e can be calculated as

gopt,T = −1

2
A−1
T bT (4.40)

and the corresponding minimal residual power is

eopt,T = −1

4
bTTA−1

T bT + cT + w (4.41)

However, since we have noise in the system, we can never get a perfect estimation of p. For

the estimated Â, b̂, ĉ, we have

gopt =− 1

2
Â−1b̂

=− 1

2
(AT + ∆Â)−1(bT + ∆b̂)

∼=−
1

2
(A−1

T −A−1
T ∆ÂA−1

T )(bT + ∆b̂)

=− 1

2
A−1
T bT −

1

2
A−1
T ∆b̂ +

1

2
A−1
T ∆ÂA−1

T bT +
1

2
A−1
T ∆ÂA−1

T ∆b̂

(4.42)

where ∆Â and ∆b̂ represent the estimation error. Denote x = A−1
T bT , y = A−1

T ∆b̂ −

A−1
T ∆ÂA−1

T bT and z = A−1
T ∆ÂA−1

T ∆b̂. Then gopt = −1
2(x + y − z). Apply it to the

equation (4.6), the residual under the optimal training sequence is
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e =gToptATgopt + bTTgopt + cT + w

=
1

4
(x + y − z)TAT (x + y − z)− 1

2
bTT (x + y − z) + cT + w

(4.43)

since xTAT = bTTA−1
T AT = bTT , the first order perturbation term

1

2
xTATy − 1

2
bTTy = 0 (4.44)

so, we consider the second order perturbation and e becomes

e =
1

4
xTATx− 1

2
bTTx + cT + w +

1

4
(−2xTAT z + yTATy) +

1

2
bTT z

=eopt,T +
1

4
(−2xTAT z + yTATy) +

1

2
bTT z

=eopt,T +
1

4
yTATy

=eopt,T +
1

4
(A−1

T ∆b̂−A−1
T ∆ÂA−1

T bT )TAT (A−1
T ∆b̂−A−1

T ∆ÂA−1
T bT )

=eopt,T +
1

4
(∆̂bTA−1

T ∆b̂− 2∆b̂TA−1
T ∆ÂA−1

T bT + bTTA−1
T ∆ÂA−1

T ∆ÂA−1
T bT )

(4.45)

then denote the residual error ∆e which is caused by the estimation error as

∆e =
1

4
(∆b̂TA−1

T ∆b̂− 2∆b̂TA−1
T ∆ÂA−1

T bT + bTTA−1
T ∆ÂA−1

T ∆ÂA−1
T bT ) (4.46)

(4.46) shows the relationship between the estimation error ∆Â and ∆b̂ and the perturbation

of the residual power ∆e. Considering the statistic performance, its expectation is
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E[∆e] =
1

4
(

Ng∑
g=1

Ng∑
f=1

(A−1
T )gfE[∆̂bg∆̂bf ]

− 2

Ng∑
k=1

Ng∑
j=1

Ng∑
i=1

Ng∑
h=1

(A−1
T )kj(A

−1
T )ihbhE[∆̂bk∆Âji]

+

Ng∑
r=1

· · ·
Ng∑
m=1

Ng∑
l=1

br(A
−1
T )rq(A

−1
T )pn(A−1

T )mlblE[∆Âqp∆Ânm])

(4.47)

where E[∆bg∆bf ], E[∆bk∆Âji] and E[∆Âqp∆Ânm] can be found in the covariance matrix

of ∆p̂. For LS case, it is calculated as

E[∆p̂∆p̂T ]LS = σ2
w(GHG)−1 (4.48)

For LMMSE case, it is expressed as

E[∆p̂∆p̂T ]LMMSE = (R−1
pp +

GHG

σ2
w

)−1 (4.49)

4.2.4 Quantization Error

Since the real RF Digital Step Attenuators (DSA) are used in the system, quan-

tization would occur in the both learning and optimization periods.

In the learning period, due to the dynamic range of the attenuator, although the

initial and optimal choices of gs and G are already known, we can not access to that setting

in most cases. Therefore, we can only use the quantized gs,q to get Gq as our training

matrix. Rather than the quantization error, this is the hardware limitation. Due to the
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limitation of the hardware, we can only use a suboptimal choice Gq which has a larger

estimation MSE to do the training instead of using the optimal G.

In the optimization period, once we find the optimal g, we need to quantize it,

then we have

gopt,q = gopt + ∆gq (4.50)

∆gq is the quantization error and gopt,q is the final optimal setting for the cancellation

channel. Therefore, in the equation (4.46), we need to replace gopt by gopt,q, the residual

power e becomes

eq =gTopt,qATgopt,q + bTTgopt,q + cT + w

=
1

4
(x + y − z + 2∆gq)

TAT (x + y − z + 2∆gq)

− 1

2
bTT (x + y − z + 2∆gq) + cT + w

(4.51)

similar to (4.44), the first order perturbation of ∆gq

xTAT∆gq − bTT∆gq = 0 (4.52)

consider the second order perturbation, the equation (4.45) becomes

eq = eopt,T + ∆e+ ∆gTq AT∆gq (4.53)

In (4.53), the residual power eq can separate to three parts. eopt,T represents the idea

minimal residual power mentioned in (4.41), ∆e is the estimation error based residual error
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in (4.46). Denote ∆eq = ∆gTq AT∆gq as the residual error caused by the quantization error.

The expectation of ∆eq is

E[∆eq] =

Ng∑
j=1

Ng∑
i=1

AT,jiE[∆gq,j∆gq,i] (4.54)

Since the quantization error of gopt in dB follows the uniform distribution, ∆gq,dB,i ∼

U(− s
2 ,

s
2) for i = 1, 2, · · · , Ng and s represents the step size the of the DSA.

∂gq,dB,i =
10

ln 10
· 1

gopt,q,i
∂gq,i = h(∂gq,i) (4.55)

Since we know the PDF of ∆gq,dB,i is fdB(∆gq,dB,i) = 1
s
2
−(− s

2
) = 1

s , the PDF of ∆gq,i can

be expressed as

f(∆gq,i) = fdB(h(∆gq,i)) ·
∂h(∆gq,i)

∂(∆gq,i)

=
1

s
· 10

ln 10
· 1

gopt,q,i

(4.56)

Denote D =
s·gopt,q,i ln 10

10 , in the equation (4.54), when j = i

E[∆gq,j∆gq,i] =E[∆g2
q,i]

=

∫ D
2

−D
2

[f(∆gq,i) ·∆g2
q,i]d∆gq,i

=
2

3
(
D

2
)3 10

sgopt,q,i ln 10

=
D2

12

(4.57)
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whenj 6= i, ∆gq,j and ∆gq,i are independent

E[∆gq,j∆gq,i] = (E[∆gq,i])
2 = 0 (4.58)

4.2.5 Simulation for optimal training matrix selection

In this section, simulation results are presented to compared the mean square error

and the residual power error of the initial training matrix and the optimal training matrix.

The initial training matrix G is constructed by the N training vectors of g shown in Section

4.1.1 as the heuristic choice with α = 1 and β = 0.5. We set the noise variance σ2
w = 1,

the covariance matrix Rpp is modeled as Rpp = σ2I and σ2 is chosen to be σ2 = 50.

Using (4.30) and (4.38), after the quantization of the converged gs, we can find the optimal

training matrix G. Then we compared the performance of the initial and optimal choice as

follow.

Fig.4.4 shows the MSE JLS and JLMMSE of the LS and LMMSE estimator with

the initial and optimal training sequence versus the number of the attenuators Ng where

Ng = 1, 2, · · · , 10. From the figure, we see that the MSE increase with the increase of Ng

since the size of the training matrix and the complexity of the system is becoming larger

for both cases. As expected, compared with the initial choice, the optimal one can reduce

the MSE obviously and the difference becomes with the number of attenuators increasing.

Fig.4.5 shows the residual power error of the LS estimator. We choose Ng = 12.

The x label represents 100 different realizations of the random multi-paths interference

channel. For every realization, we compared the expectation of the residual power errors
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∆e for both initial and optimal training matrix. Also we simulated the expectation of

quantization error based residual error ∆gq for the optimal choice. If the quantization error

dominates the residual error, the optimal channel matrix selection is useless because even we

have the estimation error based residual error component, it is negligible compared to the

quantization error part. In the figure, we can see the the quantization error based residual

error is much smaller than the residual error part. We know the training matrix selection

is meaningful. Also, compared to the initial choice, with the optimal training matrix, the

estimation error based residual error level reduces significantly for every realization. This

shows the necessity of optimal training matrix selection.
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Chapter 5

Adaptive Blind Tuning for Affine

Model Based Analog

Self-Interference Cancellation

5.1 Architecture of All-Analog Cancellation Channel

The architecture of the all-analog cancellation channel is crucial for the full-duplex

radio which can determine the self-interference cancellation performance. A well designed

architecture should have a high capacity to match the interference channel.

The impulse response of the RF interference channel can be written as

hint,RF (t) =

I−1∑
i=0

aiδ(t− τi) (5.1)

60



where I is the number of the multipaths, ai the propagating attenuation of the ith path and

τi is the delay of the ith path. denote fc as the carrier frequency and W as the bandwidth,

the baseband equivalent of (5.1) is

hint(t) =
I−1∑
i=0

aie
−j2πfcτisinc(W (t− τi)) (5.2)

An architecture of the RF canceller that can match the above interference channel

properly is shown in Fig.1.5(c). In each branch, same number of 90-degree phase shifters

are used to balance the insertion losses and phase shift of the four paths in each clustered

tap. The impulse response of this RF canceller is

hcan,RF (t) =

NT−1∑
l=0

(P 3
0 gl,0 + P 2

0Pπ/2gl,1 + P0P
2
π/2gl,2 + P 3

π/2gl,3)δ(t− lT ) (5.3)

where P0 is the transfer function of the 0-degree output of the 90-degree phase shifter, Pπ/2

is the transfer function of the 90-degree output of the 90-degree phase shifter. gl,k is the

attenuation of the kth attenuator in the lth clustered tap. Subject to the same carrier

frequency and bandwidth of interest, the baseband equivalent of (5.3) is

hcan(t) =

NT−1∑
l=0

P 3
0Gle

−j2πfclT sinc(W (t− lT )) (5.4)

where Gl = gl,0 − jgl,1 − gl,2 + jgl,3.
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(a) 1 attenuator per tap. G = g0 (b) 2 attenuator per tap. G = g0 − g1

(c) 3 attenuator per tap. G = g0 + e−j2π/3g1 +
ej2π/3g2

(d) 4 attenuator per tap. G = g0 − jg1 − g2 + jg3

Figure 5.1: Impedance coverage of a single clustered tap with different number of attenuators. Each
attenuator has the attenuation range from 0dB to 32dB with 1dB step size. Each attenuator also
has an attenuation-dependent phase

To demonstrate that the design of clustered tap is a good choice, the impedance

of coverage of the tap is shown in 5.1 for different number of attenuators evenly distributed

in phase per tap. It is clear that 5.1(d) covers most of the area and therefore it is the most

desirable choice.
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Figure 5.2: A prototype of clustered tap using four step-attenuators (PE43703), six (could be five)
90-degree splitters (QCN27) and power combiner (WP4U1+)

Fig.5.2 shows a custom fabricated single clustered tap PCB board which is based

on the structure in Fig.1.5(c).

5.2 Blind Tuning Algorithm

In the previous chapter, the power of the residual is regarded as the observation

and the quadratic model is derived. In this chapter, we assume the observation of the

interference is the entire waveforms after the cancellation and we have

r = y + Mg + w

= Xv + w

(5.5)
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where r = [Re{r(1)}, Im{r(1)}, · · · , Re{r(K)}, Im{r(K)}]T is the observed waveforms, the

training vector is g = [gT0 , · · · ,gTNT−1]T with gl = [Re(gl,0), Im(gl,0), · · · , Re(gl,3), Im(gl,3)]T ,

w is the receiver noise. X = [y,M] ∈ R2K×(8NT+1) and v = [1,g]T ∈ R(8NT+1)×1. Both M

and y are treated unknown.

Assume a sequence of Ng training vectors of g, For the ith training vector gi, the

corresponding measurement is subject to the Tx random noise. Therefore, similar to the

idea applied in the quadratic model, we measure multiple realization with the same training

vector and calculate the averaged observation. Then, with either large time of averaging,

we can regard X as time-invariant.

Let R = [r1, · · · , rNg ] and G = [v1, · · · ,vNg ], we have

R = XG (5.6)

If G has a full row rank, the solution of (5.6) is

X = RG+

= RGT (GGT )−1

(5.7)

From the estimated X, we can obtain the estimated M and y. Then the optimal g is

g = −M+y

= −(MTM)−1MTy

(5.8)

Considering the practical RF step attenuator, i.e., PE43703, the practical gains of

the devices have both the attenuation and an attenuation-dependent phase. Assume there
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is only one clustered tap used in the cancellation channel, an example of the training matrix

G is

G =



1 1 1 1 1 1 1 1 1

0 1 0 0 0 0.15 0 0 0

0 0 0 0 0 0.05 0 0 0

0 0 1 0 0 0 0.15 0 0

0 0 0 0 0 0 0.05 0 0

0 0 0 1 0 0 0 0.15 0

0 0 0 0 0 0 0 0.05 0

0 0 0 0 1 0 0 0 0.15

0 0 0 0 0 0 0 0 0.05



(5.9)

where each entry represents a real or imaginary component of a practical complex gain

except of the first row. Value 1 corresponds to the 0 dB attenuation, value 0 corresponds

to the maximum attenuation (32 dB in simulation) and value 0.15 + j0.05 corresponds to

the practical gain of 16 dB attenuation with attenuation-dependent phase. It can be seen

the presented G is full rank and sparse, therefore it is a good choice for training.

However, the optimal solution from (5.8) is not following the phase constrain in

most cases so we can not directly implement the values to the system. One solution for this

problem is using brute force search to find the solution for the following equation

gl,0 − jgl,1 − gl,2 + jgl,3 = ĝl,0 − jĝl,1 − ĝl,2 + jĝl,3 (5.10)
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where left hand side term are from the optimal solution from (5.8), right hand side terms

are the practical complex gains of the step attenuators following the step size and phase

constrains.

(a) SNRT =∞, SNRR =∞, step size=0 dB (b) SNRT = 30 dB, SNRR = 60 dB, step size=0
dB

(c) SNRT = 30 dB, SNRR = 60 dB, step size=0.5
dB

(d) SNRT = 30 dB, SNRR = 60 dB, step size=1
dB

Figure 5.3: CDF of normalized power in dB of residual interference after self-interference cancellation

Fig.5.3 shows the CDF of the cancellation performance in dB for different scenarios.

Fig.5.3(a) is the ideal case and there is no noise in the system and no quantization errors.

Fig.5.3(b) shows the effect of the noise. With noise from the Tx/Rx chains, the cancellation
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is reduced. The more clustered taps used in the cancellation channel, the more sensitive to

the noise it is. Fig.5.3(c) and 5.3(d) show the impact of the step attenuators. When using

the step attenuator, the optimal values require quantization and quantization errors are

induced. We see the step size has a major impact and limits the cancellation performance.

5.3 Receiver Phase Noise Estimator

Considering the receiver phase noise, we can rewrite (5.5) as

rk = FkXvk + wk (5.11)

where Fk = diag[Fk,1,Fk,2, · · · ,Fk,Ne ] and Fk,n =

 cos θk,n sin θk,n

− sin θk,n cos θk,n

. θk,n is the

random phase noise of the nth samples, kth realization. Note that property F−1
k = FT

k

holds for all θk,n.

Our objective is that given rk, k = 1, 2, · · · ,K, obtain an estimate of vopt where

vopt = min
v,‖v‖=1

‖Xv‖2

= min
v,‖v‖=1

vTXTXv

(5.12)

Assuming that wk∀k is white Gaussian, the maximum likelihood estimation (MLE) of X

and other parameters is given by the following:
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arg min
X,θk,n∀k∀n

∑
k

‖rk − FkXvk‖2

= arg min
X,θk,n∀k∀n

∑
k

‖FT
k rk −Xvk‖2

(5.13)

Let Rnew = [FT
1 r1, · · · ,FT

KrK ], the MLE of X is

X̂ =RV+

=RVT (VVT )−1

(5.14)

Notice that Fk is another unknown matrix, to find the estimation of X, we need to estimate

Fk first. The MLE of the angles is given by

min
θk,n∀k∀n

∑
k

‖FT
k rk −EV+vk‖2 (5.15)

Note that V+vk is the kth column of the (symmetric) projection matrix U
.
= V+V

to be denoted by uk. Now let uk = [uk,1, · · · , uk,1]T ∈ RK×1. The above problem becomes

min
θk,n∀k∀n

∑
k

‖FT
k rk −

K∑
j=1

FT
j rjuk,j‖2 (5.16)

or equivalently, for each n,

min
θk,n∀k

∑
k

‖FT
k,nrk,n −

K∑
j=1

FT
j,nrj,nuk,j‖2 (5.17)

where rk =
[
rTk,1, · · · , rTk,N

]T
and rk,n ∈ R2×1. Furthermore, we can write the above

problem as follows:
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min
θk,n∀k

K∑
k=1

‖e−jθk,nck,n −
K∑
l=1

uk,le
−jθl,ncl,n‖2 (5.18)

where ck,n is the complex scalar constructed from rk,n.

Define cn = [c1,n, · · · , cK,n]T and Λn = diag[e−jθ1,n , · · · , e−jθK,n ], we have

min
θk,n∀k

‖Λncn −UΛncn‖2 (5.19)

If U = I, the above cost function is invariant to all angles. In general, the above cost is

invariant to at least one of θ1,n, · · · , θK,n for each n. So, without loss of generality, we can

set θ1,n = 0∀n.

To simplify the notations, we will consider the following problem:

min
θk∀k
‖Λc−UΛc‖2 (5.20)

where c ∈ CK×1 and U ∈ RK×K are given, and Λ = diag[1, e−jθ2 , · · · , e−jθK ] depends on

the unknown angles. (We know that both c and Λ are dependent on n while U is not.)

A Newton’s iterative algorithm to search for the optimal angles that minimize the cost

J = ‖Λc−UΛc‖2 is derived next.

Let θ = [0, θ2, · · · , θK ]T and Λ = Λ(θ). Then, the first order Taylor series expan-

sion of Λ(θ) around θ = θi is

Λ(θ) ≈ Λi − jΛiD∆θi (5.21)
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where Λi = Λ(θi), ∆θi = θ − θi, and Da = diag(a) with the first diagonal element set to

zero. It follows that

J ≈‖Λic− jΛiD∆θic−UΛic + jUΛiD∆θic‖
2

=‖(I−U)Λic− j(I−U)ΛiDc∆θi‖2
(5.22)

Here, we have used D∆θic = Dc∆θi where the first diagonal elements of D∆θi and Dc are

zero.

Note that the (minimum norm) solution to minr ‖a −Br‖2 where r is real but a

and B are complex is given by r = Re+{BHB}Re{BHa}. Also note that (AB)+ = B+A+,

and P+ = P if P is a projection matrix.

Then, it follows that the optimal (minimum norm) solution of ∆θi is given by

∆θi =Re+{DH
c ΛH

i (I−U)ΛiDc}Re{−jDH
c ΛH

i (I−U)Λic}

=Re+{DH
c ΛH

i (I−U)ΛiDc}Im{DH
c ΛH

i (I−U)Λic}
(5.23)

The Newton’s iteration is

θi+1 = θi + ∆θi (5.24)

The above steps show the method to estimate the angle for each phase. A necessary

condition for the angles to be obtained exactly by MLE is K ≥ 2M − 1.

Fig.5.4 proves the validation of the proposed phase estimator. From the figure, we

can see the phase noise estimator provides around 15dB improvement of the self-interference

cancellation. Noth that the simulation is done under the assumption that other RF im-

pairments are also existing which will affect the estimation result. If we only consider the
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Figure 5.4: Improvement of the amount of self-interference cancellation in dB using the phase noise
estimator for affine model blind tuning algorithm.

receiver phase noise and no other impairment, the proposed estimator can estimate the

phase noise correctly and compensate all the phase noise according to our simulation.

5.4 Adaptive Blind Tuning Algorithm

In this section, without loss of the generality, the analog cancellation channel is

assumed to be the structure shown in Fig.5.5. In the RF canceller, two attenuators and

one 90 degree phase shifter forms a tap. NT represents the number of taps used in the

cancellation channel and there is a fixed delay T between tap and tap. So totally, the

number of attenuator is Ng = 2 ∗NT .

Since the canceller works in the RF domain, the exact input RF signal of the

cancellation channel is unknown. So we propose to use the blind tuning to find the optimal

setting of the attenuator based on an affine system model. By tuning the known input of
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Figure 5.5: Structure of RF Canceller

the attenuation g = [g1,2, g1,2, · · · , gNT ,1, gNT ,2]T ∈ RNg×1, we can have the corresponding

output residual r = [r[1]T , r[2]T , · · · , r[Nr]
T ]T ∈ R2Nr×1 where r[n] = [rI [n], rQ[n]]T for

n = 1, 2, · · · , Nr and it can be written as.

r = yint + ycan + wthermal (5.25)

where yint = [yR,BB[1]T ,yR,BB[2]T , · · · ,yR,BB[Nr]
T ]T ∈ R2Nr×1 is the unknown

output of the self-interference channel, ycan = [ycan,BB[1]T ,ycan,BB[2]T , · · · ,ycan,BB[Nr]
T ]T

is the output of the cancellation channel, w represents the thermal noise. For the RF

canceller, a linear relationship holds between the output and input. So considering the

phase noise and I/Q imbalance, similar to (2.21), we have

ycan = TgxT,BB + wcan (5.26)
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where Tg represents the overall cancellation channel response which is a linear function of

g, xT,BB is the input signal which we do not need to know what exact it is, wcan is again the

perturbation introduced by the phase noise. Furthermore, we can rewrite TgxT,BB = Mg

where linear operator M ∈ R2Nr×Ng is governed by the RF canceller structure as well as

the source signal xT,BB. In the training period, we assume the source signal xT,BB is fixed.

For k = 1, 2, · · · ,K different settings of attenuation g, we can rewrite (5.25) as

rk =yint,k + Mgk + wcan,k + wthermal,k

=Xvk + wk

(5.27)

where

X = [yint,M] (5.28)

and

vk =

 1

gk

 (5.29)

wk = wint,k + wcan,k + wthermal,k ∈ R2Nr×1 is unknown zero mean noise which has three

components, perturbation from interference channel due to phase noise, perturbation from

cancellation channel due to phase noise and thermal noise. Then, let R = [r1, · · · , rK ],

V = [v1, · · · ,vK ] and W = [w1, · · · ,wK ]. We have

R = XV + W (5.30)
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If V has a full row rank which means K ≥ Ng + 1, the LS estimation for (5.30) is

X̂ = RV+ = RVT (VVT )−1 (5.31)

where + represents the pseudo inverse of a matrix. For the choice of V , assume Ng = 4, an

example is

V =



1 1 1 1 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(5.32)

for the setting of the attenuator, 1 represents the 0dB attenuation, 0 represents the max-

imum attenuation. From X̂, we can extract ŷint and M̂. Then, the optimal gLS for this

model is obtained by

gLS = −M̂+ŷint = −(M̂TM̂)−1M̂T ŷint (5.33)

We call the above algorithm blind tuning (LS estimator). Notice that, in (5.27)

yint,k is subject to the random phase noise. In the LS estimation, we regard it as time

invariant and lump the perturbations into the noise wk. However, due to the impact of the

phase noise, this noise can be relative large and make the estimation result not promising.

Therefore, we propose a recursive least square (RLS) [68] based adaptive blind tuning

algorithm.
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In the adaptive algorithm, we regard (5.27) as the system model and detailed

structure is as follow:

1. First, we use K = Ng + 1 different setting of g to train the system (an example is

given in (5.32)) and get corresponding residual observations r.

2. With the knowledge of g and r from the training, we can find the estimation of the

coefficient matrix X̂ through (5.29)-(5.31). We regards it as the initial point of the

iteration and denote X(0) = X̂.

3. Once we know X(0), we regard it fixed and estimate g. We can extract y
(0)
int and M(0)

using (5.28) and calculate g(1) = −M(0)+y
(0)
int following (5.33).

4. Next, we regard g(1) fixed and apply the setting of g(1) we can have a new observation

of the residual r(1).

5. With the knowledge of X(0), g(1) and r(1), we update X(0) to X(1) row by row. Denote

X(0) = [x
(0)
1

T
; x

(0)
2

T
; · · · ; x

(0)
2Nr

T
]. For each row, we have ri = xi

Tv. Regard xi
T as the

weight of a system, v as the input and ri as the output residual, we can apply RLS

algorithm to update xi
T with the new input and observation. After updated all the

xi
T for i = 1, · · · 2Nr, we can get the updated matrix X(1).

6. After we get the updated X(1), we go back to the step 3 and repeat the step 3 to step

5 to update X until it is converged (in other word, g is converged).

7. With the converged g, we find the optimal setting of the attenuator which provides

the best self-interference cancellation performance and minimize the output residual

r.
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The detailed procedure presented by the mathematical expression is shown below

as Algorithm 1.

Algorithm 1 RLS-based Algorithm

Input:
The parameters X̂(0); v(1); r(1); forget factor λ;
Accuracy threshold ε; Maximum iteration N .

1: Φ(0)−1
= δ−1I,

2: n = 1,
3: while (∆ > ε && n ≤ N) do

4: k(n) = Φ(n−1)−1
v(n)

λ+v(n)TΦ(n−1)−1
v(n)

,

5: for i = 1, 2, · · · , 2Nr

6: ξ
(n)
i = r

(n)
i − x

(n−1)
i

T
v(n),

7: x
(n)
i = x

(n−1)
i + ξ

(n)
i k(n),

8: end for

9: X̂(n) = [x
(n)
1

T
; x

(n)
2

T
; · · · ; x

(n)
2Nr

T
],

10: Φ(n)−1
= λ−1Φ(n−1)−1 − λ−1k(n)v(n)TΦ(n−1)−1

,

11: extract ŷ
(n)
int and M̂(n) from X̂(n),

12: g(n+1) = −M̂(n)+ŷ
(n)
int ,

13: v(n+1) = [1,g(n+1)T ]T

14: ∆ = ‖v(n+1)−v(n)‖
‖v(n)‖ ,

15: observe r(n+1) based on g(n+1),
16: n = n+ 1.
17: end while
18: return gRLS = g(n)

5.5 Simulation

In this section, simulation results are shown to compare the performance of the

self-interference cancellation. In most of the precious work, the authors use the baseband

discrete time model to model and simulate the full-duplex system. For example, they model

the interference channel as

yi[n] = x[n]⊗ hi[l] (5.34)
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where x[n] is the samples of the input signal, h[l] is the baseband impulse response of the

interference channel, ⊗ denotes the convolution operation. The sampling rate Ts of x[n]

and h[l] satisfies the Nyquist sampling theorem. Assume the interested signal has a double

side bandwidth W , then Ts ≥ 1
W .

However, the practical RF interference channel is continues in time and can be

express as

ỹi(t) =

I−1∑
i=0

aix̃(t− τi) (5.35)

where x̃(t) is the RF input of the interference channel, ỹi(t) is the Rf output of interference

channel. Using the real valued system model, the baseband equivalent of (5.35) is

yi(t) =
I−1∑
i=0

ai

 cos(2πfcτi) sin(2πfcτi)

− sin(2πfcτi) cos(2πfcτi)

x(t− τi) (5.36)

where I = 100 is number of the multipaths, ai is the real valued attenuation factor for each

path and is modeled as a0 = ε
d2

and for i = 1, · · · , I − 1

ai =
εαi

(d+ cτi)2
(5.37)

where c = 3 × 108 m/s is the speed of light; d = 0.3 m represents the distance between

the transmitter and receive antennas; 0 ≤ τi ≤ τmax (uniform random). When τmax = 10

ns it represents the maximum delay of the interference channel is 3 m and τmax = 100 ns

corresponding to 30 m; 0 ≤ αi ≤ 1 (uniform random) and ε = 0.01.

77



For the all analog cancellation channel, we use the structure shown in Fig.5.5. The

relationship between the RF input and output can be expressed as

ỹc(t) =

NT−1∑
n=0

1∑
l=0

gn,lx̃(t− nT − lη) (5.38)

where ỹc(t) is the RF output of the cancellation channel and NT is the number of the taps

used in the cancellation channel. Similarly to (5.36), the real form baseband equivalent of

(5.38) is expressed as

yc(t) =

NT−1∑
n=0

1∑
l=0

gn,lTn,lx(t− nT − lη) (5.39)

where

Tn,l =

 cos(2πfc(nT + lη)) sin(2πfc(nT + lη))

− sin(2πfc(nT + lη)) cos(2πfc(nT + lη))

 (5.40)
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Figure 5.6: Virtual simulation system structure diagram for analog cancellation
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In the simulation, we choose the carrier frequency fc = 2.4 GHz; the bandwidth of

interest W = 40 Mhz; the fixed delay between two taps T is chosen to be a small faction of 1
W

which varies in the simulation depends on the selection of τmax and the equivalent delay of

the 90 degree phase shifter η = 1
4fc

. The baseband sampling rate is choose as fs = 1
Ts

= 2W

and we use index n to represent the discrete baseband signal as x[n] = x(nTs).

Since in the analog channel, the random delay τi is continues in time which is

uniform distributed in the time interval (0− τmax), to make the simulation more accurate,

we use a higher sampling rate fL = 1
TL

= L
Ts

, L = 500 to mimic the continuous analog

cancellation and interference channel. For the higher sampling rate, we use index m to

represent the samples with x[m] = x(mTL). Fig.5.6 shows the diagram of the simulation

for analog cancellation. Once the baseband signal x[n] is generated, we apply a interpolator

with factor of L and add all the impairments in the transmit chain to get the signal x[m]

with higher sampling rate. Then apply x[m] to (5.36) and (5.39) by replacing x(t − τi) to

x[m−mi] where mi = round( τiTL ) and replacing x(t−nT−lη) to x[m−round(nT+lη
TL

)] to get

the received interference yi[m] and cancellation signal yc[m]. Combining interference and

cancellation signals, we can get the residual r[m] with higher sample frequency. Next, passed

by a decimator with factor L, we finally get the residual signal r[n] after the cancellation.

For the hybrid cancellation, the virtual diagram of the simulation procedure is

shown in Fig.5.7. We apply the same structure to simulation the transmit chain and get

x[m]. First we assume there is no cancellation channel, same as the analog cancellation,

we can get the received interference yi[m] using (5.36). Then we simulated the auxiliary

receive chain to get the estimation of the baseband signal x̂[n] therefore we can get X̂ and use
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Figure 5.7: Virtual simulation system structure diagram for hybrid cancellation

(3.8) to estimate impulse response of the interference channel using finite impulse response

filter. In the simulation, we generated one random receive phase noise and introduced it to

both the receiver chain and auxiliary to get yi[m] and x̂[n]. Note the order of the impulse

response of the interference channel can be calculate as L = τmax
Ts

. In the simulation for

hybrid cancellation, the maximum delay of the interference channel τmax is set to be 100

ns, which means the equivalent

In the following simulations, the I/Q imbalance is set to be uniform distribu-

tion with U(−0.05, 0.05) and the phase noise to modeled as a Gaussian distribution with

N (0, 0.05) if it is considered. We followed (2.7) and (2.17) to introduce the I/Q imbalance

and phase noise in the transmitter and receiver chain. In each simulation, we have simulated

1000 random realizations (fixed input signal with random I/Q imbalance and/or random

phase noise) to the statistic of the cancellation performance.

First, we want to demonstrate the impact of the phase noise. In Fig.5.8, we

simulated a system considering I/Q imbalance only and considering both I/Q imbalance
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and phase noise. We tested the performance of the analog blind tuning algorithm for these

two scenarios. It can be seen that only considering the I/Qimbalnce the LS estimator can

provide a good cancellation performance. However, the cancellation performance will reduce

heavily if we also include the phase noise in the full-duplex system. This shows the regular

real model and widely linear based LS estimator can not handel the effect of the phase noise

properly.
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Figure 5.8: CDF of the amount of self-interference cancellation in dB using the blind tuning algo-
rithm.

Next, we demonstrate the impact of the I/Q imbalance. In Fig.5.9, we only con-

sidered the phase noise and ignored the I/Q imbalance first. It can be seen the phase noise

estimator shown in the Appendix A can improve the cancellation performance by 15dB

since it can only compensate the phase noise at the receiver end and the phase noise at the

transmitter side will limit the performance. Furthermore, once the I/Q imbalance is also

considered, the performance of the phase noise estimator will become even worse due to
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the cascaded mathematical relation of the impact of the phase noise and I/Q imbalance.

Combined with the previous simulation result, We know it is necessary and important to

consider the I/Q imbalance and phase noise together when analyzing the full-duplex system.
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Figure 5.9: CDF of the amount of self-interference cancellation in dB using the phase noise estimator.
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Figure 5.10: CDF of the amount of self-interference cancellation in dB using the hybrid cancellation
method.
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In Fig.5.10, we simulated the statistic cancellation performance for the hybrid

cancellation method with different Lth order FIR filter. In the simulation, we considered

both phase noise and I/Q imbalance and picked the choices of L = 5, 10, 20. From the figure,

we can see that with the increasing of the order L of the FIR filter, the baseband canceler

provides a better cancellation performance. When choose L = 10, the hybrid cancellation

method can reduce the self-interference by an average of 45dB. Also, beyond L = 10, the

performance will not improve obviously when further increasing the number of L which

is determined by the maximum delay of the interference channel. Since L = 10 already

reaches the maximum order of the equivalent baseband impulse response of the interference

channel,there is no need to choice a larger L with will introduce redundancy to the system.
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Figure 5.11: CDF of the amount of self-interference cancellation in dB. Both I/Q imbalance and
phase noise are considered. τmax = 10 ns; T = 1

10W .

Finally, we want to show the feasibility of our proposed analog adaptive blind

tuning algorithm on overcoming the impact of both I/Q imbalance and phase noise. In the
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Figure 5.12: An example of the trend of convergence for the adaptive blind tuning algorithm.
τmax = 10 ns; T = 1

10W .

simulation, we considered both I/Q imbalance and phase noise in our system and the level

of which are the same as what is used in the hybrid cancellation simulation. We consider

two scenario of the maximum delay in the interference channel τmax. In Fig.5.11-5.12, we

choose τmax = 10 ns, the fix delay T between the taps in the RF canceller is set to be

T = 1
10W and in the RF canceller we use N = 4 taps. Fig.5.11 shows the statistic results of

the cancellation performance with 1000 random realizations after n times iterations. From

the figure we can see, when n = 0 which means the initial case that achieved by the blind

tuning method, the average cancellation is around 35dB since it is limited by the phase

noise. After implementing the adaptive algorithm, with the increasing of the number of

the iteration n, the cancellation performance becomes better and better. Notice that the

curves representing 400 iterations and 500 iterations almost overlap with each other. This

shows that the cancellation performance becomes statistic stable after 400 times iterations

and provides an average 65dB self-interference cancellation which is still 45dB for the worst
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case. By comparing the curves of n = 0 and n = 400, we see the proposed adaptive blind

tuning algorithm improves the cancellation performance by around 35dB. In Fig.5.12, we

pick an example from the 1000 realizations to demonstrate the trend of the cancellation

performance changing with the n increases. It shows that the proposed adaptive algorithm

converges fast and it is robust to the nonlinear components after the convergence since

in every iteration, we added random phase noise and thermal noise to the system in our

simulation.
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Figure 5.13: CDF of the amount of self-interference cancellation in dB. Both I/Q imbalance and
phase noise are considered. τmax = 100 ns; T = 1

5W .

In Fig.5.13-5.14, we choose τmax = 100 ns, T = 1
5W and N = 4. Under this

assumption, we simulated a exactly same system as the hybrid cancellation and we want

to compare the performance of these two self-interference cancellation methods. From the

figure we can see that when the maximum delay of the interference channel is larger, we can

still achieve a 55dB self-interference cancellation with very few number of taps. Also, after
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Figure 5.14: An example of the trend of convergence for the adaptive blind tuning algorithm.
τmax = 100 ns; T = 1

5W .

200 iterations, the performance does not have much further improvement which means the

converging speed becomes faster.

Compared to the hybrid cancellation method in Fig.5.10 which the average cancel-

lation is around 45dB, the adaptive blind tuning method can provide a better cancellation

performance under the same assumption. Also, recall that the adaptive blind tuning is

an analog cancellation method which works before the ADC. It can effectively reduce the

risk of the ADC saturation problem and has congenital advantage compare to the hy-

brid cancellation. Therefore, our proposed adaptive blind tuning algorithm is a promising

self-interference cancellation method which can handle the I/Q imbalance and phase noise

simultaneously.
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Chapter 6

Conclusions

In this dissertation, a full picture of the theories proposed for the self-interference

cancellation in the full-duplex radio is presented. An insight of the practical RF impairments

and their impacts are given. Especially, we reviewed the impact of the I/Q imbalance and

phase noise for the full-duplex system. We demonstrated the importance of considering

both I/Q imbalance and phase noise in modeling the full-duplex system.

Real valued model is presented to solve the nonlinearity problem induced by the

I/Q imbalance. We compared the proposed model with the widely linear model which is

also proposed for the same purpose. We have demonstrated both of these two methods

are valid and mathematically they are equivalent. However, the real valued model has the

advantage on the computational complexity and therefore is a better choice.

For the self-interference cancellation structure, this dissertation mainly focused

on the analog self-interference cancellation method. Two system models: quadratic model

and affine model are proposed to model the relationship between the output and input
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of the full-duplex system. Blind tuning algorithm which includes training and optimizing

procedures is used to find the optimal setting of the attenuators that minimized the residual

interference after the self-interference cancellation.

To reduce the estimation error in the training period, an optimal training training

matrix selection algorithm is propose. It is shown that with the optimal training matrix, the

estimation error is reduced. Corresponding, the optimal solution found in the optimizing

period is more accurate and therefore the self-interference cancellation performance achieved

is better.

Furthermore, practical RF step attenuators are considered to be used in the cancel-

lation channel. Due to the step size constrain (quantization constrain), the self-interference

cancellation is limited. We ran multiple simulations to demonstrate the impacts of the quan-

tization constrain with different step sizes. A brute force searching method is also presented

to solve the attenuation-dependent phase problem induced by the RF step attenuators.

Last, we provided a RLS based adaptive blind tuning algorithm which is robust to

both the I/Q imbalance and phase noise. Simulation results show the proposed algorithm

can give an average of 65dB self-interference cancellation in the analog domain with both

I/Q imbalance and phase noise considered in the system. Therefore, the proposed adaptive

blind tuning algorithm can obviously reduce the self-interference before it is converted to

the digital signal and solve the ADC saturation problem.
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