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ABSTRACT OF THE THESIS 
 
 
 

Distance-based decay in long-distance phonological processes:  
 

a probabilistic model for Malagasy, Latin, English, and Hungarian 
 
 
 

by 
 
 
 

Jesse Adam Zymet 
 
 
 

Master of Arts in Linguistics 
 

University of California, Los Angeles, 2014 
 

Professor Bruce Hayes (Co-Chair)  
 

Professor Kie Zuraw (Co-Chair) 
 
 
 

 Many—or perhaps all—long-distance assimilatory and dissimilatory phonological 

processes produce lexical or free variation exhibiting a broad generalization: the likelihood of 

process application decreases as the transparent distance between the trigger and the target 

increases (a phenomenon that I call distance-based decay). This thesis provides a unified 

analysis of distance-based decay, drawing from thousands of data reflecting three long-distance 

phonological processes across four languages. I account for the data within the framework of 

Maximum Entropy Harmonic Grammar (Smolensky 1986, Goldwater and Johnson 2003, Hayes 

and Wilson 2008), which allows for an adequate treatment of variation. I argue that distance-

based decay can be captured across the four surveyed languages by an invariant decay 
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function—a simple negative power function—that interacts with two language-specific 

parameters: the weight of the AGREE (for assimilatory cases) or DISAGREE (for dissimilatory 

cases) constraint and the weight of IDENT. My account is therefore an extension of Kimper 2011, 

who posits a scaling factor that scales the weight of markedness to account for the decay effect 

present in vowel harmony in Hungarian. While it is the case that decay rates differ across the 

languages I survey, my analysis accounts for such differences purely with the weights of 

markedness and faithfulness; that is, I show that differences in decay rate can be modeled 

without having to posit language-specific decay functions. 
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Distance-based decay in long-distance phonological processes:  
a probabilistic model for Malagasy, Latin, English, and Hungarian 

 
Jesse Zymet 

University of California, Los Angeles 
 
1  Introduction 
 
 Many assimilatory and dissimilatory phonological processes are classified as long-

distance, taking the following form: 

(1) /AXB/ → [AXB′]  where A is the trigger, X is transparent material,   
     and B and B′ are respective underlying and surface  
     forms of the target 
 
Several—or perhaps all—of these processes produce either lexical or free variation or both. At 

the statistical level, the variation appears to exhibit a broad generalization: the likelihood of 

process application decreases as the length of X increases (a phenomenon that I call distance-

based decay). That is, the grammar regulates the trigger and the target more reliably when they 

are closer together than when they are farther apart.  

 This thesis provides a unified analysis of distance-based decay, drawing from thousands 

of data reflecting three long-distance phonological processes across four languages. I account for 

the data within the framework of Maximum Entropy Harmonic Grammar (Smolensky 1986, 

Goldwater and Johnson 2003, Hayes and Wilson 2008), which allows for an adequate treatment 

of variation. I argue that distance-based decay can be captured across the four surveyed 

languages by an invariant decay function—a simple negative power function—that interacts with 

two language-specific parameters: the weight of the AGREE (for assimilatory cases) or 

DISAGREE (for dissimilatory cases) constraint and the weight of IDENT. My account is therefore 

an extension of Kimper 2011, which posits a scaling factor that scales the weight of markedness 

to account for the decay effect present in vowel harmony in Hungarian. While it is the case that 
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decay rates differ across the languages I survey, my analysis captures such differences purely 

with the weights of markedness and faithfulness; that is, I show that differences in decay rate can 

be modeled without having to posit language-specific decay functions. The decay function takes 

as its argument a measure of transparent distance and returns a value that is then multiplied by 

weight of the AGREE or DISAGREE constraint. 

 The thesis is organized as follows. Section 1.1 gives a brief review of the current 

literature on distance-based decay. Section 2 gives an empirical background for the decay effect. 

Section 3 incorporates the decay function into Maximum Entropy Harmonic Grammar and 

demonstrates how the function models the decay effect in long-distance phonological processes. 

Section 4 determines a satisfactory unit of transparent distance to serve as input to the model and 

finds parameter values that maximize model accuracy. Section 5 concludes. 

 
1.1  Distance-based decay in the literature 
 
 Distance-based decay has been observed in a growing body of literature. Walker and 

Mpiranya 2006 observe a binary distinction in coronal harmony in Kinyarwanda and in retroflex 

harmony in Sanskrit, showing that both processes apply obligatorily in local environments, while 

optionally in nonlocal environments. Martin 2005 shows that syllabic distance—but not 

segmental distance—between the trigger and the target is significant in producing a decay effect 

in sibilant harmony reflected in Navajo compounds; in addition, Martin observes a distinction 

between local and nonlocal application, showing that sibilant harmony applies obligatorily when 

the trigger and the target are in adjacent syllables but optionally when they are separated by one 

or more transparent syllables. Finally, Hayes and Londe 2006 observe a three-way distinction 

based on transparent distance, showing that vowel harmony in Hungarian applies most reliably 

when the harmonizing vowels are in adjacent syllables, less reliably when they are separated by 
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one neutral vowel, and even less reliably when they are separated by two neutral vowels. Taken 

together, these findings suggest that distance-based decay is a general phenomenon emerging 

within data that reflect a variety of different processes and not just one in particular. 

 One way in which phonologists account for distance-based decay is through positing 

distance-based markedness constraints (Hansson 2001, Martin 2005, Hayes and Londe 2006), 

which penalize trigger-target pairs at different distances. Martin 2005, for example, accounts for 

sibilant harmony in Navajo compounds within the framework of Stochastic Optimality Theory 

(Boersma 1997) by positing a constraint that regulates sibilant harmony when the sibilants are in 

adjacent syllables as well as a constraint that regulates sibilant harmony when they are in 

nonadjacent syllables. The local markedness constraint has a ranking value higher than that of 

the nonlocal markedness constraint, thus enforcing the decay effect.  

 Kimper 2011 proposes an alternative to the constraint-family account within the 

framework of Harmonic Grammar (Smolensky and Legendre 2006): posit a single markedness 

constraint that regulates the cooccurrence restriction both locally and nonlocally, and scale down 

the weight of the constraint with increasing distance. In particular, Kimper accounts for the 

decay effect arising in Hungarian vowel harmony through scaling the weight of a SPREAD 

constraint by multiplying it x times over with a constant, ! ∈ (0,1) when there are x transparent 

moras. Effectively, the weight of SPREAD in such case becomes !(SPREAD) ∗ !!, which is then 

compared against the weight of IDENT to yield faithful forms at longer distances. As we will see, 

I opt to account for the decay effect using Kimper’s method of scaling the weight of markedness. 

 We now turn to an exposition of the data surrounding distance-based decay in three long-

distance phonological processes across four languages. 
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2 Empirical background: long-distance phonological processes with  
 distance-based decay 
 
 Distance-based decay is evident in long-distance vowel assimilation and dissimilation 

and long-distance consonant assimilation and dissimilation. This section covers distance-based 

decay as it occurs in three such processes across four languages: vowel dissimilation in 

Malagasy, liquid dissimilation in Latin and English, and vowel harmony in Hungarian. 

 Malagasy, a Western Austronesian language spoken primarily in Madagascar, has a 

vowel inventory composed of four vowels: 

 [-back] [+back] 
[+high] /i/ /u/ 

!"
#

$%
&-high

 -low   
/e/  

[+low] /a/1  
 

Table 1: Malagasy vowel inventory 

Distance-based dissimilation of rounding on the high vowels (hereafter referred to as labial 

dissimilation) can be observed in data from Beaujardière 2004: 

    Passive imperative 
  UR  verb form   Gloss   
 
Faithful items 
(2a)  /bata+u/ [bata-u]   ‘lift’ 
(2b)  /fana+u/ [fana-u]   ‘heat’ 
 
Items undergoing local and nonlocal vowel dissimilation 
(3a)  /babu+u/ [babu-i], *[babu-u]  ‘plunder’ 
(3b)  /tuv+u/ [tuv-i], *[tuv-u]  ‘fulfill’ 
(3c)  /tuda+u/ [tuda-i], *[tuda-u]  ‘prevent’ 
(3d)  /gurabah+u/ [gurabah-i], *[gurabah-u] ‘spluttering’ 
 
Items with opaque front vowels 
(4a)  /turi+u/ [turi-u], *[turi-i]  ‘preach’ 
(4b)  /ure+u/ [ure-u], *[ure-i]  ‘massage’ 

                                                
1 /a/ is in fact taken to be central (Nordhoff et al. 2013). 
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(2a) and (2b) reveal the underlying form of the passive imperative suffix to be -/u/. (3a) shows 

that if the passive imperative suffix attaches to a stem that ends in /u/, then it dissimilates, 

surfacing instead as -[i].2 This can be seen as an effect arising from the O(bligatory) C(ontour) 

P(rinciple) (Goldsmith 1976, McCarthy 1986), which states that adjacent segments bearing 

identical features are prohibited. (3b) through (3d) show that labial dissimilation can apply across 

transparent material, suggesting that OCP can regulate segments even at a distance. /a/ is 

therefore transparent to labial dissimilation, while (4a) and (4b) show that /e/ and /i/ are opaque 

to the process. Labial dissimilation can thus be represented as follows: 

(5)  Labial Dissimilation: 
 
  u � i /u(C0a)0C0+__    
  suffix /u/ becomes -[i] after stem /u/ if nothing but consonant clusters 
  (possibly having zero length) or [a] come in between /u/-segments. 
 
 The rule in (5) is inadequate in that it does not predict the existence of a decay effect 

produced by greater amounts of transparent material. Consider cases where stem-internal /u/ is 

separated from suffix -/u/ by growing numbers of transparent syllables: 

 Transparent    Passive imperative 
 Syllables UR   verb form  Gloss   
 
(6a) 0 syllables /ba.bu.+u/  [ba.bu.-i]  ‘plunder’ 
(6b) 0 syllables /tu.v+u/  [tu.v-i]   ‘fulfill’ 
(6c) 0 syllables /du.r+u/  [du.r-i]   ‘burn’ 
 
(6d) 1 syllable /ru.va.+u/  [ru.va.-u]  ‘palisade’ 
(6e) 1 syllable /un.da.n+u/  [un.da.n-i]  ‘bolster’ 
(6f) 1 syllable /tu.da.+u/  [tu.da.-i]  ‘prevent’ 
 
(6g) 2 syllables /bu.ra.ra.h+u/  [bu.ra.ra.h-u]  ‘scattered’ 
(6h) 2 syllables /ku.ta.ba.+u/  [ku.ta.ba.-u]  ‘disorder’ 
(6i) 2 syllables /gu.ra.ba.h+u/  [gu.ra.ba.h-i]  ‘spluttering’ 
 

                                                
2 As far as I am aware, the passive imperative suffix -/u/ is the only suffix to which labial 
dissimilation applies. 
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As the number of transparent syllables increases, the likelihood of labial dissimilation decreases. 

This generalization is exhibited by a set of forms extracted from Beaujardière 2004, an online 

Malagasy dictionary. The figures are provided below: 

   Vowel dissimilation in Malagasy: /uσn+u/ → [uσn-i]  
Transparent 
syllables (σ) 

Faithful 
forms 

Dissimilated 
forms 

Proportion of 
dissim’d forms 

n = 0             4                989                  0.99 
n = 1         196                201                  0.51 
n = 2           28                    4                  0.13 
n = 3             4                    0                  0.00 

 
Table 2: figures for distance-based decay in labial dissimilation in Malagasy 

 

 
Figure 1: graph of distance-based decay in labial dissimilation in Malagasy 

 
In forms with zero transparent syllables, the trigger and target are either adjacent segmentally or 

separated only by consonants. Local labial dissimilation is nearly categorical with 99.6% of the 

forms undergoing the process. In nonlocal settings where the trigger and target are separated by a 

positive number of transparent syllables (i.e., syllables that have /a/ in the nucleus), labial 

dissimilation displays distance-based decay: application is variable, with rates decreasing as the 

number of transparent syllables increases. Note that these figures do not include forms in which 

the opaque vowel /i/ comes in between the trigger and target. 



 

 7 

 Data extracted from the Perseus Digital Library (http://www.perseus.tufts.edu/hopper/) 

reveal that Latin as well contains a long-distance phonological process—liquid dissimilation—

that regulates the distribution of [l] and [r] in particular contexts: 

  UR   Adjective form Gloss    
 
Faithful items 
(7a)  /kib+aːlis/  [kib-aːlis]  ‘pertaining to food’ 
(7b)  /fanit+aːlis/  [fanit-aːlis]  ‘pertaining to a temple’ 
 
Items undergoing local and nonlocal liquid dissimilation 
(8a)  /sol+aːlis/  [sol-aːris]  ‘pertaining to the sun’ 
(8b)  /wulg+aːlis/  [wulg-aːris]  ‘pertaining to wheat’ 
(8c)  /laːn+aːlis/  [laːn-aːris]  ‘pertaining to wool’ 
(8d)  /lapid+aːlis/  [lapid-aːris]  ‘pertaining to rocks’ 
 
Items with opaque /r/  
(9a)  /litor+aːlis/  [litor-aːlis]  ‘pertaining to the seashore’ 
(9b)  /sepulkr+aːlis / [sepulkr-aːlis]  ‘pertaining to a tomb’ 
 
Latin has an adjectival suffix, -/aːlis/, whose underlying form is apparent from (7a) and (7b). If 

the suffix attaches to a stem ending in /l/, then it dissimilates, surfacing instead as -[aːris], as in 

(8a). 3 (8b) through (8d) show that stem-internal /l/ need not be stem-final in order to trigger 

liquid dissimilation on -/aːlis/. (9a) and (9b) show that /r/ blocks liquid dissimilation.4  

 The following data illustrate how the process is sensitive to increasing distance: 

 Transparent    
 Syllables UR   Adjective form Gloss    
  
(10a) 0 syllables /so.l+aː.lis/  [so.l-aː.ris]  ‘pertaining to the sun’ 
(10b) 0 syllables /mu.l+aː.lis/  [mu.l-aː.ris]  ‘pertaining to mules’ 
(10c) 0 syllables /du.pl+aː.lis/  [du.pl-aː.ris]  ‘pertaining to two’ 
 
 
 

                                                
3 Bennett 2012 notes that only -/aːlis/ undergoes dissimilation, as opposed to other /l/-bearing 
suffixes such as -/ilis/ or -/ulus/ (e.g., /kalk+ulus/ � [kalk-ulus], ‘small stone’). 
4 My corpus has two exceptions to opaque /r/: [palpebr-aːlis] and [lucern-aːlis] can be optionally 
pronounced [palpebr-aːris] and [lucern-aːris] respectively. 
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(10d) 1 syllable  /pa.le.+aː.lis/  [pa.le.-aː.lis]  ‘pertaining to chaff’ 
(10e) 1 syllable /laː.n+aː.lis/  [laː.n-aː.ris]  ‘pertaining to wool’ 
(10f) 1 syllable  /a.le.+aː.lis/  [a.le.-aː.ris]  ‘pertaining to chance’ 
 
(10g) 2 syllables  /lek.tu.+aː.lis/  [lek.tu.-aː.lis]  ‘pertaining to beds’ 
(10h) 2 syllables  /di.lu.wi.+aː.lis/ [di.lu.wi.-aː.lis] ‘pertaining to floods’ 
(10i) 2 syllables  /la.pi.d+aː.lis/  [la.pi.d-aː.ris]  ‘pertaining to stone’ 
 
As is the case with labial dissimilation in Malagasy, separating candidate forms for liquid 

dissimilation based on the number of transparent syllables reveals that the process is subject to 

distance-based decay. The figures are shown below:  

 Liquid dissimilation in Latin: /lσn+aː.lis / → [lσn-aː.ris] 
Transparent 
syllables (σ) 

Faithful 
forms 

Dissimilated 
forms 

Proportion of  
dissim’d forms 

n = 0            0                131                   1.00 
n = 1          20                  49                   0.71 
n = 2          29                  13                   0.31 
n = 3            4                    0                   0.00 

 
Table 3: figures for distance-based decay in liquid dissimilation in Latin 

 
Application rate of liquid dissimilation decreases as number of transparent syllables increases: 

 
 Figure 2: graph of distance-based decay in liquid dissimilation in Latin 

Data extracted from the O(xford) E(nglish) D(ictionary) (www.oed.com) show that English 

displays long-distance consonant dissimilation in words borrowed from Latin: 
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  UR   Adjective form Gloss      
 
Faithful items 
(11a)  /dɪst+&l/  [dɪst-&l]  ‘distal’ 
(11b)  /ejpɪk+&l/  [ejpɪk-&l]  ‘apical’ 
 
Items displaying local liquid dissimilation 
(12a)  /soʊl+&l/  [soʊl-&ɹ]  ‘solar’ 
(12b)  /vil+&l/   [vil-&ɹ]   ‘velar’ 
(12c)  /kɑnd&l+&l/  [kɑnd&l-&ɹ]  ‘condylar’ 
 
Items showing nonlocal liquid dissimilation 
(12d)  /lun+&l/  [lun-&ɹ]  ‘lunar’ 
(12e)  /l&kjun+&l/  [l&kjun-&ɹ]  ‘lacunar’ 
 
Items with opaque /ɹ/ 
(13a)  /flɔɹ+&l/  [flɔɹ-&l]  ‘floral’ 
(13b)  /ælpɛstɹ+&l/  [ælpɛstɹ-&l]  ‘alpestral’ 
 
The underlying form English adjectival suffix, -/&l/, is revealed in (11a) and (11b). As is the case 

in Latin, if the adjectival suffix attaches to a stem ending in /l/, then it undergoes liquid 

dissimilation, surfacing as -[&ɹ], as shown in (12a) through (12c). (12d) and (12e) show that 

liquid dissimilation can apply even when the trigger and target are distant from one another. 

(13a) and (13b) show that /ɹ/ blocks the process.  

 Liquid dissimilation in English is not simply the relic of borrowing words from Latin. 

The OED contained 527 candidate forms, and of these, 125 of them had corresponding Latin 

forms in the Perseus Online Dictionary. Of these 125 forms, twelve of them underwent 

dissimilation in one language but not the other. Six underwent dissimilation in Latin but not in 

English, and six underwent dissimilation in English but not in Latin. 

 The following data show that liquid dissimilation in English is as well subject to distance-

based decay: 
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 Trigger-target    
 distance  UR  Adjective form Gloss     
  
(14a) Same syllable  /soʊl+&l/ [soʊl-&ɹ]  ‘solar’ 
(14b) Same syllable  /kɑnd&l+&l/ [kɑnd&l-&ɹ]  ‘condylar’ 
 
(14c) Adjacent syl.s  /li.g+&l/ [li.g-&l]  ‘legal’ 
(14d) Adjacent syl.s  /plej.n+&l/ [plej.n-&ɹ]  ‘planar’ 
(14e) Adjacent syl.s  /lu.n+&l/ [lu.n-&ɹ]  ‘lunar’ 
 
(14f) 1 transparent syl. /lej.bi.+&l/ [lej.bi.-&l]  ‘labial’ 
(14g) 1 transparent syl. /plu.vi.+&l/ [plu.vi.-&l]  ‘pluvial’ 
(14h) 1 transparent syl. /l&.kju.n+&l/ [l&,kju.n-&ɹ]  ‘lacunar’ 
 
One can observe that the number of transparent syllables is not exactly what divides the data in 

(14a) through (14h) into distinct classes; for example, zero transparent syllables come in between 

the trigger and target in both (14a) and (14c), and yet the two forms are organized into different 

classes. We will nonetheless put this consideration aside, returning to characterizing the unit of 

distance for liquid dissimilation in English later on. The figures surrounding distance-based 

decay of the process are shown below: 

     Liquid dissimilation in English: /lσn+&l/ → [lσn-&ɹ] 
Trigger-target 
distance 

Faithful 
forms 

Dissimilated 
forms 

Proportion of 
dissim’d forms 

Same syllable5           1               303                     0.99 
Adjacent syl.s         60                 39                     0.65 
1 transp. syl.         85                 10                     0.10 
2 transp. syl.s         24                   1                     0.04 
3 transp. syl.s           4                   0                     0.00 

 
Table 4: figures for distance-based decay in liquid dissimilation in English 

                                                
5 The single faithful form that OED lists in which the trigger and the target are in the same 
syllable is [pri.l-&l], ‘prelal’. 
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Figure 3: graph of distance-based decay in liquid dissimilation in English 

 
The table in (14) and the graph in Figure 3 show that the number of transparent syllables has an 

erosive effect on the likelihood of application for liquid dissimilation in English. 

 Hungarian has a system of vowel harmony that displays distance-based decay. The vowel 

inventory is shown below: 

 
!
#

$
&-back

 -round   !
#

$
&-back

 +round   !
#

$
&+back

 +round   

[+high] /i/ and /iː/ /y/ and /yː/ /u/ and /uː/ 

!"
#

$%
&-high

 -low   
/eː/ /ø/ and /øː/ /o/ and /oː/ 

[+low] /ɛ/  /ɔ/ and /aː/ 
 

Table 5: Hungarian vowel inventory 
 
Distance-based backness harmony can be observed on the vowels, as shown by the following 

items: 

  UR   Dative form  Gloss    
 
Faithful items 
(15a)  /kɛrt+nɛk/  [kɛrt-nɛk]  ‘garden’ 
(15b)  /tsiːm+nɛk/  [tsiːm-nɛk]  ‘address’ 
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Items that undergo local and nonlocal vowel harmony 
(16a)  /ɔblɔk+nɛk/  [ɔblɔk-nɔk]  ‘window’ 
(16b)  /kommunizmus+nɛk/ [kommunizmus-nɔk] ‘Communism’ 
(16c)  /ɔpoʃtoli+nɛk/  [ɔpostoli-nɔk]  ‘apostolic’ 
(16d)  /boriːteːk+nɛk/  [boriːteːk-nɔk]  ‘envelope’ 
 
Items with opaque front rounded vowels 
(17a)  /ʃofø:r-nɛk/  [ʃofø:r-nɛk]  ‘chauffeur’ 
(17b)  /ɔlbe:rlø:-nɛk/  [ɔlbe:rlø:-nɛk]  ‘lodger’ 
 
Hungarian has a dative suffix, -/nɛk/, whose underlying form is apparent in (15a) and (15b).6 

If the dative suffix -/nɛk/ attaches to a stem whose final vowel is [+back], then it undergoes 

vowel harmony, surfacing instead as -[nɔk], as in (16a) and (16b). (16c) and (16d) show that 

vowel harmony can apply at a distance, so long as the triggers and targets are separated only by 

consonants or front unrounded vowels. On the other hand, (17a) and (17b) show that intervening 

front round vowels block vowel harmony. 

 Hayes and Londe 2006 show that vowel harmony in Hungarian is subject to a height 

effect: the likelihood of vowel harmony is directly related to the height of the last transparent 

vowel. Hungarian has four front unrounded vowels that contrast for height: /i/, /iː/, /eː/, and /ɛ/. 

Consider the following data fixed to a distance of one transparent vowel: 

  UR   Dative form  Gloss    
 
Items with /i/ and /iː/ 
(18a)  /ɔpoʃtoli+nɛk/   [ɔpostoli-nɔk]  ‘apostolic’ 
  /buli+nɛk /  [buli-nɔk]  ‘party’  
  /grɔfit+nɛk /  [grɔfit-nɔk]  ‘graphite’  
 
(18b)  /ɛkspɔnsiːv+nɛk / [ɛkspɔnsiːv-nɔk] ‘expansionary’ 
  /fɔkiːr+nɛk /  [fɔkiːr-nɔk]  ‘poor’ 
  /maːrtiːr+nɛk /  [maːrtiːr-nɔk]  ‘martyr’ 

                                                
6 Further evidence that the dative suffix takes the underlying form -/nɛk/ comes from 
constructions such as [nɛk-ɛm] ‘me’-DAT (Vago 1976). A few investigators nevertheless 
contend that the dative suffix vowel is underspecified for [back] (see Hayes and Londe 2006 for 
discussion); for the purposes analyzing the decay effect arising in vowel harmony, I simply 
assume -/nɛk/. 
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Items with /eː/ 
(18c)  /fɔseːn+nɛk /   [fɔseːn-nɛk]  ‘charcoal’ 
  /ɔdɔleːk+nɛk/  [ɔdɔleːk-nɔk]  ‘datum’ 
  /gɔlleːr+nɛk/  [gɔlleːr-nɔk]  ‘collar’ 
 
Items with /ɛ/ 
(18d)  /komponɛns+nɛk/ [komponɛns-nɛk] ‘component’ 
  /hɔmburgɛr+nɛk/ [hɔmburgɛr-nɛk] ‘hamburger’ 
  /krɔpɛk+nɛk/  [krɔpɛk-nɔk]7  ‘dude’ 
 
Forms with the transparent vowel is /i/ or /iː/ are likelier to undergo vowel harmony than those 

with /eː/, and those with /eː/ are likelier to undergo vowel harmony than those with /ɛ/ as the 

transparent vowel. 

 Vowel harmony in Hungarian, much like the other processes we have seen, displays 

distance-based decay: 

  Transparent 
  Syllables UR   Dative form  Gloss    
 
(19a)  0 syllables /ɔblɔk+nɛk/  [ɔblɔk-nɔk]  ‘window’ 
(19b)  0 syllables /biroː+nɛk/  [biroː-nɔk]  ‘judge’ 
(19c)  0 syllables /kommunizmus+nɛk/ [kommunizmus-nɔk] ‘Communism’ 
 
(19d)  1 syllable /fɔseːn+nɛk/   [fɔseːn-nɛk]  ‘charcoal’ 
(19e)  1 syllable /ɔpoʃtoli+nɛk/  [ɔpostoli-nɔk]  ‘apostolic’ 
(19f)  1 syllable /maːrtiːr+nɛk/  [maːrtiːr-nɔk]  ‘martyr’ 
 
(19g)  2 syllables /doktrineːr+nɛk/ [doktrineːr-nɛk] ‘doctrinaire’ 
(19h)  2 syllables /kɔlibeːr+nɛk/  [kɔlibeːr-nɛk]  ‘caliber’ 
(19i)  2 syllables /boriːteːk+nɛk/  [boriːteːk-nɔk]  ‘envelope’ 
 
Hayes et al. 2009 make available a corpus—the results of a Google study—of stems that are 

token-weighted for vowel harmony. Associated with each stem in the corpus is the percentage of 

tokens of its dative form that undergo vowel harmony. For example, the stem /krɔpɛk/ ‘dude’ 

takes -[nɔk] 80% of the time and -[nɛk] 20% of the time. 

                                                
7 In fact, /krɔpɛk+nɛk/ surfaces as [krɔpɛk-nɛk] in one out of five instances. 
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 The table shown below tabulates a token-weighted type frequency count of the corpus 

data. Forms such as [ɔblɔk-nɔk] ‘window’-DAT that do not exhibit within-word variation 

contribute 1 to the relevant type count. [krɔpɛk-nɔk] and [krɔpɛk-nɛk], on the other hand, will 

contribute respectively .8 and .2 to the pertinent type counts. The leftmost column divides words 

based on distance and the height of the last transparent vowel. B represents the triggering back 

vowel and T represents a transparent vowel. 

Vowel harmony in Hungarian: /!"
#

$%
&+syl

 +back  σn+nɛk/ → [!"
#

$%
&+syl

 +back  σn-nɔk] 
Type of stem Faithful forms Harmonized forms Proportion of 

harmonized forms 
B 4.32 6284.68 0.99 
Bi 4.40 467.60 0.99 
Biː 1.05 51.95 0.98 
Beː 18.65 101.35 0.84 
Bɛ 103.94 13.06 0.11 
BTi 27.72 9.28 0.25 
BTiː 5.14 2.86 0.36 
BTeː 6.94 5.06 0.42 
BTɛ 20.99 0.00 0.00 
BTTi 2.00 0.00 0.00 
BTTiː 0.00 0.00 N/A 
BTTeː 4.00 0.00 0.00 
BTTɛ 2.00 0.00 0.00 

 
Table 6: figures for distance-based decay in vowel harmony in Hungarian 

 
The four line graphs shown below displays distance-based decay in the number of transparent 

syllables and were generated based on the height of the last vowel: 
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Figure 4: graph of distance-based decay in vowel harmony in Hungarian 
 

As the table and graph show, the number of transparent syllables has an erosive effect on the 

likelihood of application. 

 The curves in Figure 3 and Figure 4 are strikingly similar to sigmoid curves (see Zuraw 

2010 for other instances of sigmoid curves in phonology). As we will see later, the curves of 

distance-based application rates of the surveyed processes can be modeled by sigmoid curves, 

even though Figure 1 and Figure 2 do not look as sigmoid-like as Figure 3 and Figure 4. 

Ultimately, while decay rates across the surveyed languages differ to some extent, all of the 

cases show that the amount of interaction between the trigger and target decreases as the amount 

of transparent distance increases. We now turn to the task of accounting for the decay effect in 

the theory of phonology. 
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3  Rationale behind the account of distance-based decay 
 
 The account of distance-based decay will be grounded in the framework of Maximum 

Entropy Harmonic Grammar (Smolensky 1986, Goldwater and Johnson 2003, Hayes and Wilson 

2008). Maximum Entropy Harmonic Grammar is a variant of Optimality Theory (Prince and 

Smolensky 1993), which specifies that the grammar of any given language is a set of conflicting 

constraints ranked in a strict hierarchy to produce a set of categorical outputs (i.e., surface forms) 

from a set of inputs (i.e., underlying forms). Maximum Entropy Harmonic Grammar departs 

from Optimality Theory in that the former is probabilistic: each output is associated with a 

nonzero probability that is a function of numerical constraint weights—real values associated 

with each constraint that signify the strength of the constraint. 

 Suppose we have n constraints and are considering m surface forms of single underlying 

form. If !! is the weight of constraint k and !!" is the number of times the ith surface form 

violates constraint k, then the harmony !! of the ith surface form is defined as: 

(20a) !! = ! !! ∗ !!"!
!!!  

 
The probability !! of the ith surface form is taken to be the inverse exponent of !! normalized by 

the sum of the inverse exponents of the harmonies of each of the surface forms: 

(20b) !! = !!!!!/ !!!!!
!!!  

 
 To see how Maximum Entropy Harmonic Grammar works specifically for the purposes 

of accounting for long-distance phonological processes, we can consider the general case of 

long-distance dissimilation. Suppose we have an underlying form /s...s/ containing two instances 

of a segment s, as well as the surface forms [s...s] and [s...s′], where s′ is a segment distinct from 

s. Let *s...s be a markedness constraint that is violated by [s...s] once, and let its weight be !! 

(i.e., the weight of markedness). Let IDENT be a faithfulness constraint that is violated by [s...s′] 
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once, and let its weight be !! (i.e., the weight of faithfulness). Dissimilation in Maximum 

Entropy Harmonic Grammar works as follows: 

/s...s/ 
  *s...s 
! = !! 

IDENT 
!!! = !! 

Harmony Predicted Probability 

[s...s] 1  1 ∗ !! = !! !!!!/(!!!! + !!!!) 
[s...s′]  1 1 ∗ !! = !! !!!!/(!!!! + !!!!) 

 
Table 7: tableau representation of dissimilation in Maximum Entropy Harmonic Grammar 

Since each candidate violates exactly one constraint only once, the harmony for each candidate is 

simply the weight of the constraint it violates: [s...s] violates *s...s and thus incurs a harmony of 

!!, while [s...s′] violates IDENT and incurs a harmony of !!. The harmony of [s...s′] is wf and 

the probability of it surfacing—i.e., the probability of dissimilation—is as follows: 

(21) ![!…!!] = !!!!
!!!!!!!!! =

!
!!!!(!!!!!) 

 
The probabilities of [s...s] and [s...s′] sum to 1, and so the probability of the faithful candidate 

surfacing is ![!…!] = 1− !![!…!!]. The expression on the rightmost side of the equation in (21) 

will be useful later for when we model distance-based decay.  

 Hayes and Wilson 2008 provide the Maxent Grammar Tool 

(http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/), a computer program that 

takes as input a set of underlying forms, a set of surface forms for each underlying form, the 

frequencies of the surface forms, a set of constraints, and the violation vectors of each of the 

surface forms given the underlying forms and constraints. It uses the conjugate gradient method 

to find the set of constraint weights that maximize the probability of the dataset8—that is, the 

                                                
8 In fact, the Maxent Grammar Tool finds the constraint weights that maximize the probability of 
the dataset minus a regularization penalty. The penalty is set to trivial values for this study. 
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model-predicted probability that the surface forms take on the frequencies they do given the 

underlying forms and constraints. 

 One approach to accounting for distance-based decay arising in long-distance 

phonological processes is to posit a family of markedness constraints that penalize trigger-target 

pairs at different distances (Hansson 2001). Take distance-based decay as it arises in liquid 

dissimilation in Latin, for example. Leaving aside the fact that the process only applies to the  

-/aːlis/ suffix, we can posit as a preliminary study a constraint-family account for the decay effect 

shown in (22).  

(22) 
 
 *lσ0l:   penalize an output if it contains a pair of [l]s that are in adjacent syllables. 
 
 *lσ1l:   penalize an output if it contains a pair of [l]s that are in syllables that are 
   separated by one transparent syllable. 
 
 *lσ2l:  penalize an output if it contains a pair of [l]s that are in syllables that are 
   separated by two transparent syllables. 
 
 IDENT([lat]): corresponding segments in the input and output match for the value of  
   [lateral]. 
 
The Maxent Grammar Tool, upon taking as input the above constraints as well as the data in 

Table 3 on liquid dissimilation in Latin, returns the following constraint weight values: 

 (23) 
 
 w(*lσ0l) =  21.02 
 w(*lσ1l) =  9.27 
 w(*lσ2l) =  7.57 
 IDENT([lat]) =  8.57 
 
We find that the outputted distance-based markedness weights are decreasing with greater 

numbers of transparent syllables. This can account for the decay effect in liquid dissimilation: 

the decrease in weights is the learner’s response to a decrease in rate of application. 
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 It is in this response that lies the problem with positing a constraint family account for 

distance-based decay. Distance-based decay is a crosslinguistically and crossprocessually general 

phenomenon, its erosive nature represented across the languages and long-distance processes we 

have seen. Under the constraint family account, the learner would thus coincidentally learn 

decreasing weights with increasing transparent distance across all languages that show the effect. 

On the other hand, such approach dismisses this systematicity as coincidental. It does not rule 

out the existence of a learner who acquires distance-based “anti-decay”, for instance, in which 

the weights of the constraints increase with transparent distance, or a learner who acquires a 

language with greatest application at intermediate distances. Yet languages that possess such 

properties are unattested. We therefore reject this approach due to its being too powerful. 

 In my account of distance-based decay, I adopt and extend the proposal put forth by 

Kimper 2011, which scales the weight of markedness to produce the decay effect. Unlike the 

constraint-family account, a scale-based account relieves the learner of the task of acquiring the 

decay effect. Scaling can be achieved by positing a decay function d that takes a measure of 

distance between the trigger and target of a long-distance phonological process and returns a 

nonnegative real number. When the harmony of the form is calculated, the scalar value is then 

multiplied by the weight of the markedness constraint that regulates the long-distance 

cooccurrence restriction.  

 More precisely, let !! be a markedness constraint with weight !! regulating a long-

distance restriction against the cooccurrence of the two (not necessarily distinct) segments a and 

b, and let some nonnegative integer ! ∈ ℤ∗ be the measure of transparent distance between a and 

b in a surface form with a subsequence [a!b], where [!] is itself a subsequence of transparent 

segments. Then define the following: 
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(24) !:ℤ∗ !→ (0,∞): takes a measure of transparent distance x between the trigger and  
    target defined by !! and returns a real value ! ! ∈ (0,∞). 
 
A surface form that contains the subsequence [a!b] violates *a...b ! !  times, while a surface 

form that contains both the subsequences [a!!b] and [a!!b] violates *a...b  

! !! + ! !! !times, and so on.9 I will restrict attention to the case where *a...b is violated 

once, as this is the only case on which I have data. We see from the tableau in (22) that the 

harmony of the faithful candidate is equal to the weight of markedness. Assuming that the only 

two constraints in the language are !! and IDENT, the formula for the harmony of surface form i 

containing [a!b]—which violates !!—is as follows: 

(25) !! = !!! ∗ !(!) 
 
The formula for the harmony for unfaithful candidate satisfying Cm but violating IDENT remains 

the same: the weight of faithfulness.  

 To see an example of how the system works, we consider the set of candidate forms for 

liquid dissimilation in Latin in which the trigger and target are separated by two transparent 

syllables. Suppose we define constraints *l…l and IDENT([lat]) so that w(*l…l) = 10.97 and 

w(IDENT([lat])) = 4.53, and instantiate d(x) to be the negative power function ! ! = 1/(! + 1), 

where x is the number of transparent syllables. Justification for using a decay function like this 

one will be covered in the following section. 

 

 

                                                
9 Just to cover a more complicated case, suppose that a language penalized [a!b] sequences even 
when another instance of a or b occurs in !; for example, [!] = [!!b!!]. Then the subsequence 
[a!b] = [a!!b!!b] incurs a violation of ! !! + ! !!! , where !! is the transparent distance 
between a and the first instance of b, and !!!  is the transparent distance between a and the second 
instance of b. This case does not arise in the data at hand. 
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/…lσ2+alis/ 
(e.g.,  

/lapid+a:lis/) 

*l…l 
w = 10.97 

IDENT([lat]) 
w = 4.53 

Harmony Predicted  
probability 

Observed 
probability 

[…lσ2-a:lis] 
(e.g.,  

[lapid-a:lis]) 

1/3!
≈ !0.33 

violations 

 10.97 ∗ 0.33 
=! 

!! ∗ !(!) 
 

!!!".!"∗!.!!
(!!!".!"∗!.!! + !!!!.!"∗!)

 

≈ !0.70 

0.69 

[…lσ2-a:ris] 
(e.g.,  

[lapid-a:ris]) 

 1 
 

4.53 ∗ 1 
= !! 

!!!.!"∗!
(!!!".!"∗!.!! + !!!!.!"∗!)

 

≈ !0.30 

0.31 

 
Table 8: tableau representation of liquid dissimilation in Latin with a decay function 

The tableau—and, in particular, the score of the faithful form—demonstrates that augmenting the 

grammar through scaling the weight of markedness can produce predicted probabilities that 

accurately match the observed ones. The scaling is achieved by multiplying the number of 

markedness violations by the output of a decay function that takes as input the number of 

transparent syllables. 

 The tableau above shows that our model works well in predicting distance-based 

application rates given particular parameter values (i.e., particular values of the weights of 

markedness and faithfulness) and a particular decay function, a simple power function. In the 

following section, I explain how I determined the parameter values seen in (28) and discuss why 

a power function is desirable for modeling distance-based decay. 

 
4  Modeling distance-based decay 
 
 The task is to find an accurate yet crosslinguistically and crossprocessually robust decay 

function for modeling distance-based decay. What should d(x) look like? With few exceptions, 

the processes examined apply categorically in strictly local environments, and as the amount of 

transparent distance increases, the rate of application tends to zero. Therefore, the effect of 

multiplying the weight of markedness by the decay function should be such that the scaled 

weight of markedness should be high for forms that violate markedness locally and lower for 
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forms that violate markedness at a distance. Moreover, the scaled weight of markedness tends to 

zero with increasing distance. 

 A natural choice for d(x) that has these properties is the negative power function, 

!(!) != !1/!!, where k is a positive real number. For now, we will assume that k is a language-

specific parameter; nonetheless, Section 4.2.2 will argue that a single value of k can be used to 

accurately model the decay effect in the four surveyed languages. For all integer measures of 

units of transparent material !! > !0 we have that that 0! < !! ! < !! ! − 1 , thus producing 

the erosive effect that greater transparent distance will have. Between the values of 1! ≤ !! ≤ !4, 

the decay function would therefore look roughly as follows: 

 
Figure 5: graph of the negative power function !(!) != !1/! 

 
One complication of using a negative power function is that d(0) is undefined, and d(x) tends to 

positive infinity as we approach zero from the right-hand side of the y-axis within the first 

quadrant. I avoid this problem by only multiplying the weight of markedness by d(0.1) in cases 

where I should be multiplying it by d(0). As we will see, we will only need to consider d(0.1) for 
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one case: the case of local liquid dissimilation in English (e.g., forms like [soʊ.l&ɹ]). Otherwise, x 

takes on nonzero values. 

 There are alternative candidate decay functions that could have been used; for example, 

we could use a linear function to model the effect instead of a negative power function. We will 

see later that a linear model does not fit to the data as well as the negative power function. For 

now, however, we put this consideration aside, focusing instead on elucidating properties about 

the input to the decay function as well as its parameters. 

 
4.1  Determining an appropriate measure of distance 
 
 Previously, we discussed distance-based decay arising when the number of transparent 

syllables increases. What makes transparent syllables special? Why not use a finer unit of 

distance such as segments? This section determines a single unit of distance that is significant in 

producing the decay effect in the above languages. This will be the unit of measure x of the 

distance function, d(x). 

 I used R’s lme4 package and the Anova()function to run likelihood ratio tests 

comparing generalized linear models of the data for the four covered languages. For a given 

linear model, the likelihood ratio test compared the full model to models that omit each variable 

in turn, and returned p-values that determined whether the full model was better than each of the 

smaller models. The likelihood ratio test thereby determined whether each of the variables was 

significant in influencing application rate. I then calculated the A(kaike) I(nformation) 

C(riterion) of the model, which calculated overall fit of the model to the data while penalizing 

models with more parameters. In cases where one or more variables were not significant, I 

eliminated the variable with the highest p-value, reran the likelihood ratio test, and recalculated 
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the AIC, which (typically10) yielded a lower value than that of the first model. I iterated this 

process until the remaining variables all had p-values below p = 0.1, and the AIC was lower than 

those of models containing variables that were not significant. For example, the fullest model of 

labial dissimilation in Malagasy—before any variables were eliminated—is shown below: 

Call: 
glm(formula = Dissimilation ~ Syllables + Segments + Labial +  
Coronal + uCount + Interveningei, family = "binomial", data = MyData) 
 
Coefficients: 
              Estimate Std. Error z value  
(Intercept)     4.5751     0.4037  11.334   
Syllables      -3.7277     0.3653 -10.204   
Segments       -0.1677     0.1257  -1.334  
Labial          0.1107     0.2240   0.494  
Velar          -0.3757     0.3402  -1.104  
uCount         -0.2527     0.1676  -1.508  
Interveningei  -4.9616     0.7178  -6.912  
--- 
AIC: 772.05 

 
The model resulting from applying the algorithm mentioned above is shown below: 
 
Call: 
glm(formula = Dissimilation ~ Syllables + Interveningei, family = "binomial", 
data = MyData) 
 
Coefficients: 
              Estimate Std. Error z value  
(Intercept)     4.0396     0.2379  16.983   
Syllables      -3.9778     0.2548 -15.614   
Interveningei  -4.9508     0.7167  -6.908  
--- 
AIC: 769.4 

 
 The primary finding is that the number of transparent syllables, rather than the number of 

transparent segments, is a significant predictor of the likelihood of process application. In 

particular, when one puts both counts into the same model, the model that is yielded by applying 

the algorithm mentioned at the beginning of this section is one in which syllable count is 
                                                
10 Sometimes an “intermediate stage” AIC had a slightly higher value than the AIC of the model 
before it (e.g., in the following derivation, the model with syllable count, segment count, and 
intervening front vowel count had a slightly higher AIC than the model with syllable count, 
segment count, intervening front vowel count, and trigger count). In the following derivation, for 
example, a slight rise in the AIC of an intermediate model is not a cause for concern because the 
final model has a lower AIC its predecessors. 
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preserved and segment count is eliminated. Furthermore, while syllable count and segment count 

are highly correlated in all cases (r = 0.91 for Malagasy, r = 0.94 for Latin, r = 0.95 for English, 

and r = 0.80 for Hungarian), the best model that is yielded from starting with a full model 

containing only syllable count has a lower AIC than the best model that is yielded from starting 

with only segment count (compare 769.40  and 891.81 in Malagasy, 143.44 and 143.53 in 

Latin11, 278.70 and 305.57 in English, and 311.38 and 354.05 in Hungarian). The results of using 

this method are shown in the table below: 

Phonological       
process 

Factors that are significant or nearly 
significant and their coefficients 

Factors that are not 
significant 

Vowel 
dissimilation 
in Malagasy 

- Number of transparent syllables is 
significant in producing the decay 
effect (p < 0.001) 
- Intervening front round vowels block 
application (p < 0.001) 

- Number of transparent 
segments 
- Number of triggers 
- Presence of intervening 
labial or coronal consonants 

Liquid 
dissimilation 
in Latin 

- Number of transparent syllables is 
significant in producing the decay 
effect (p = 0.03) (see footnote 8) 
- If the trigger was in onset-noninitial 
position, application was significantly 
less likely (p < 0.001)  
- Whether the trigger was in coda 
position is nearly significant  
(p = 0.06) in tending to provoke 
application 

- Number of transparent 
segments (see footnote 8) 
- Presence of intervening 
labial or velar consonants 
- Number of triggers 

                                                
11 Latin looks to be a borderline case: the best model according to AIC (142.47) was one with 
both segments (p = 0.03) and syllables (p = 0.07) in it. Crucially, however, this model had 
intervening labials in it, a variable which was not significant according to the ANOVA; as a 
result, I eliminated intervening labials, and in the subsequent model, only syllables were 
significant, but not segments. Segments were then eliminated, yielding the model that was kept 
for the analysis at hand. The model that was kept had an AIC of 143.44. These results make me 
suspicious of the segment-syllable comparison in Latin, and may suggest that we should explore 
using some counting method other than syllables/intervening target positions (see Section 4.2.1 
and Section 5.1) in the future. 
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Vowel 
harmony in 
Hungarian 

- Number of transparent syllables is 
significant in producing the decay 
effect (p < 0.001) 
- Intervening front round vowels block 
application (p < 0.001) 
- Height of the last transparent vowel is 
significantly related to application rate 
(p < 0.001) 
- Number of triggers is nearly 
significant in provoking application (p 
= 0.064) 

- Number of transparent 
segments 
 

Liquid 
dissimilation 
in English 

- Number of transparent syllables is 
significant in producing the decay 
effect (p < 0.001) 
- Intervening /ɹ/ blocks application  
(p < 0.001) 
- If the trigger was in coda position, 
application was significantly less likely 
(p < 0.001) 
- If the trigger was in onset-noninitial 
position, application was significantly 
less likely (p = 0.04) 
- Intervening velar consonants were 
significant in blocking application  
(p = 0.02) 

- Number of transparent 
segments 
- Number of triggers 
- Intervening labial 
consonants 

 
Table 9: factors that are significant/not significant in influencing application rate 

 
None of the full models included interactions between variables. Cser 2010 argues that 

application rate of liquid dissimilation in Latin is negatively influenced by the presence of 

intervening labial and velar consonants; nonetheless, my findings show that they were not 

significant in producing the decay effect. Furthermore, even though the number of triggers was 

significant in predicting the application rate of geminate devoicing in Japanese (Kawahara and 

Sano 2013), the number of triggers was not significant in predicting application rate for each of 

the processes I surveyed (though it was nearly significant in predicting vowel harmony in 

Hungarian). In vowel dissimilation in Malagasy, the number of transparent syllables is 

significant (p < 0.001) in producing the decay effect, while the number of transparent segments 
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is not. Likewise, the number of transparent syllables is significant in liquid dissimilation in Latin 

(p = 0.03) and English (p < 0.001), and vowel harmony in Hungarian (p < 0.001). The trigger’s 

position in the syllable turned out to be significant to rate of application in liquid dissimilation in 

Latin and English. In either case, the trigger being in onset-noninitial position was associated 

with significantly lower application rates. In addition, whether or not trigger position matches 

target position matters to some extent: in Latin, triggers that were in the syllable coda do not 

match the target for position, and as a result are potentially associated with higher application 

rate (p = 0.08); in English, triggers that were in the syllable coda match the target for position, 

and are associated with lower application rate (p < 0.001). It may be the case that candidates for 

long-distance consonant dissimilation display greater-than-chance faithfulness if the trigger and 

target match for syllable position. Nevertheless, since coda position is only nearly significant in 

Latin, and since we only have two cases (i.e., English and Latin), such result is only tentative. 

 Liquid dissimilation in English is an interesting case when it comes to counting 

transparent syllables. Consider syllable count as a measure of distance for a process in which the 

target is in coda position: 

(26a) Categorical liquid dissimilation: (26b)  Variable liquid dissimilation: 
 [soʊ.l&ɹ]     [li.g&l] 
 [rɛ.gj&.l&ɹ]     [loʊ.k&l] 
 [æl.vi.j&.l&ɹ]     [lu.n&ɹ] 
 [vɛn.tɹɪk.j&.l&ɹ]    [lʌm.b&ɹ] 
 
In (26a), liquid dissimilation applies to the words categorically: the trigger and target are in the 

same syllable, and thus there are zero transparent syllables separating the two. In (26b), 

application is variable (applying to roughly only four out of ten words, shown in Table 4 and 

Figure 3): the trigger and target are in adjacent syllables and the trigger is in onset position. 

Strikingly, however, zero transparent syllables separate the trigger from the target. Transparent 
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syllable count is inadequate as a predictor of the decay effect because the same count of 

distance—zero transparent syllables—classifies two groups of data that behave differently from 

one another. 

 More broadly, the comparison between (26a) and (26b) demonstrates that transparent 

syllable count is an inadequate notion of distance when we are accounting for processes in which 

the trigger can be in onset position while the target is in coda position. We could simply posit 

that the decay function takes different units of measurement depending on whether or not a 

process enables the configurations seen in the above examples, but then we would have to 

explain why learners of different long-distance processes could have different ways of 

distinguishing classes of surface forms based on transparent distance.  

 Consider these four data points across the four processes we have seen: 

Malagasy     English 
 
Vowel dissimilation with   Liquid dissimilation with 
trigger and target in the   trigger in onset and target in coda 
nuclei of adjacent syllables:   of the same syllable: 
CATEGORICAL APPLICATION  CATEGORICAL APPLICATION 
 
(27a)  /ba.bu.+u/ → [ba.bu.-i]  (27b)  /soʊ.l+&l/ � [soʊ.l-%ɹ] 
 
Latin      English   
 
Liquid dissimilation with   Liquid dissimilation with 
trigger and target in    trigger in onset and target in coda 
nuclei of adjacent syllables:   of adjacent syllables: 
CATEGORICAL APPLICATION  OPTIONAL APPLICATION 
 
(27c)  /so.l+aː.lis/ � [so.l-aː.ris]  (27d) /loʊ.k+&l/ � [loʊ.k-&l] 
      (27e)  /lu.n+&l/ � [lu.n-%ɹ] 
 
As seen in (27a) and (27b), the number of transparent segments is different between data that 

reflect local vowel dissimilation and local liquid dissimilation even though both process are 

categorical. This is undesirable, since we do not want multiple distinct counts of distance to 
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predict categoricality across processes. The number of intervening moras (Kimper 2011), rimes, 

or syllable boundaries is inadequate for the same reason: such units yield differing counts 

between data that reflect local vowel dissimilation (as in (27a)) and local liquid dissimilation (as 

in (27c)). Reiterating, the number of intervening syllables is the same between the subsets of the 

data that reflect local liquid dissimilation and nonlocal liquid dissimilation in English, as the 

contrast between (27a) and the pair (27b) and (27c) reveal. This is undesirable, since we want the 

distance count to distinguish classes of data that reflect categorical application from optional 

application. 

 In light of these facts, two options stand out. The first option is to alter slightly the way 

we count syllables. Instead of measuring distance simply by the number of transparent syllables, 

we can define distance as follows: 

(28)  The distance between the trigger and target is 0 if the they are in the same syllable, 1 if 
 they are in adjacent syllables, 2 in cases with one transparent syllable, 3 in cases with 
 two transparent syllables, and so on.  
 
Notice that this is different than simply counting transparent syllables, because it distinguishes 

between cases in which the trigger and target are in the same syllable from those in which the 

trigger and target are in adjacent syllables. Hereafter, we will call the metric in (28) syllabic 

distance. Defining distance in this way means that forms that violate liquid dissimilation in 

English locally (e.g., /soʊ.l-&l/ > [soʊ.l-&ɹ]) incur a violation of d(0), while the forms that violate 

the long-distance processes most locally in the other languages (e.g., /ba.bu.-u/ > [ba.bu.-i] in 

Malagasy) get a count of d(1). As we will see later, the effect that defining distance in this way 

will have is that the weight of markedness will be lower than that of faithfulness for liquid 

dissimilation in English alone, but not for the rest of the cases. 
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 A second option would be to take seriously the fact that the units that arise commonly in 

phonology fail to provide a consistent count of transparent distance in the data in (32a-e), and 

our only recourse is to posit a new way of counting transparent distance. I propose a new such 

unit: intervening target positions.  

(29) Let the target of the process be in syllable position P, where P is one of onset, nucleus, or 
 coda. Then define the distance between the trigger and target to be the number of 
 positions P that come in between trigger and target, plus one.12  
 
Hereafter, we will call this metric position distance. The data in (26a) and (26b), reproduced 

below as (30a) and (30b), on liquid dissimilation in English are thus accounted for as follows: 

(30a)  Categorical liquid dissimilation: (30b)  Variable liquid dissimilation: 
 [(soʊ).(l&ɹ)]     [(li_).(g&l)] 
 [(rɛ).(gj&).(l&ɹ)]    [(loʊ_).(k&l)] 
 [(æl).(vi).(j&).(l&ɹ)]    [(lu_).(n&ɹ)] 
 [(vɛn).(tɹɪk).(j&).(l&ɹ)]    [(lʌm).(b&ɹ)] 
  
 Position distance: 1    Position distance: 2 
 
As the target is in the coda position, we are counting the number of intervening coda positions. 

Note that a coda position need not be filled in order for it to be counted, as we see in (30b). The 

number of intervening target positions in each of the data in (30a) is zero, so the distance is one. 

Furthermore, the number of intervening target positions in each of the data in (30b) is one, so the 

distance is two. For Malagasy, the distance count works as follows: 

(31a) (ba).(bu).(u)   Intervening target positions (nuclei): 0 Position distance = 1 
(31b)  (ru).(va).(u)   Intervening target positions (nuclei): 1 Position distance = 2 
(31c)  (ku).(ta).(ba).(u) Intervening target positions (nuclei): 2 Position distance = 3 
 

                                                
12 We note the “plus one” here because the trigger and target are never in the same target 
position, and so we never have a case where the distance is 0 by this definition. The metric 
provided in (33) (i.e., syllabic distance) can take on a value of 0, since the trigger and target pairs 
can be in the same syllable.  
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Notice here that the target is in the nucleus position, and so we count intervening nucleus 

positions. As all syllables have nuclei, the number of intervening target positions is always equal 

to the number of transparent syllables. For Latin, the distance count works as follows: 

(32a) (so).(laː).(ris)  Intervening target positions (onsets): 0 Position distance = 1 
(32b)  (la).(naː).(ris)  Intervening target positions (onsets): 1 Position distance = 2 
(32c)  (lek).( t u).(   aː).(lis) Intervening target positions (onsets): 2 Position distance = 3 
 
In the examples above, we also find the number of intervening targets is equal to the number of 

transparent syllables. Notice that the number of intervening target positions is equal to the 

number of intervening syllables in processes in which the target is in nucleus or onset position. 

In other words, syllabic distance and position distance are always the same when the target is in 

nucleus or onset position. This is demonstrated in the table below: 

For a long-distance phonological process /AXB/ → [AXB′] 
Target 
position 

Surface form structure Number of 
intervening  
target positions 

Number of  
transparent 
syllables 

Onset [(AVC0).(C0VC0)n.(B′VC0)] n n 
Onset [(C0VA).(C0VC0)n.(B′VC0)] n n 
Nucleus [(C0AC0).(C0VC0)n.(C0B′C0)] n n 
Coda [AVB′] 0 0 
Coda [(AVC0).(C0VC0)n.(C0VB′)] n + 1 n 
Coda [(C0VA).(C0VC0)n.(C0VB′)] n n 

 
Table 10: comparing syllabic distance versus position distance  

over different types of surface forms 
 
The only case where we must make a distinction between the number of intervening target 

positions and the number of transparent syllables is when we are accounting for forms in which 

the trigger is in the onset positions and the target in the coda position, as is the case in liquid 

dissimilation in English. Furthermore, one should note that, while the position distance metric in 

(29) and the syllabic distance metric in (28) are highly correlated as variables for liquid 

dissimilation in English (the correlation value was 0.96), the best model with only position 
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distance had an AIC of 278.70 while the best model with syllabic distance had an AIC of 296.60, 

suggesting that position distance is the counting mechanism we should adopt. 

 Furthermore, as we will find out in the following section, it is beneficial to adopt 

intervening target positions as our unit count. In addition to finding optimal parameter values and 

comparing decay functions of different shapes, the following section will compare models that 

use syllabic distance against ones that use position distance. We will see that position distance 

yields models that better fit the data at hand. 

 
4.2 Determining the parameter values of the decay function 
 
 Three parameters for the decay function need to be found: the weight of markedness !!, 

the weight of faithfulness !!, and the decay parameter k. Section 4.2.1 finds optimal language-

specific values for the three parameters. Section 4.2.2 shows that distance-based decay can be 

modeled accurately across the four languages with a single value for the decay parameter k. 

 
4.2.1  Decay functions with language-specific values for k 
 
 In the beginning of section 4, we came to reject an approach which accounts for distance-

based decay with a distance-based constraint family, instead opting for an account that utilizes a 

single markedness constraint that is scaled by the decay function d(x). Nevertheless, as we will 

see, the weights of heuristic distance-based constraints suggests that d(x) is inverse-exponential 

shape. 

 Recall the distance-based constraints that we had posited to account for liquid 

dissimilation in Latin. Based on our new definition of distance, we restate them as follows: 
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(33) 
 
MaxEnt input:         MaxEnt output: 
 
*DISAGREE[lat]-DIST(1):  penalize adjacent [l]-segments.  w = 21.02 
 
*DISAGREE[lat]-DIST(2): penalize pairs of [l]-segments that are  w = 9.27 
    one transparent syllable away from  
    each other. 
 
*DISAGREE[lat]-DIST(3): penalize pairs of [l]-segments that are  w = 7.57 
    two transparent syllables away from     
    each other. 
 
IDENT([lat]):   corresponding segments in the input   w = 8.57 
    and output match for the value of  
    [lateral]. 
 
The values of the weights for the distance-based weights decrease in a roughly inverse-

exponential fashion with distance, starting high and tending to zero: 

 
Figure 6: inverse-exponential decrease in the weight of markedness  

in liquid dissimilation in Latin 
 

We see that the difference in weight between *DISAGREE[lat]-DIST(1) and  

*DISAGREE[lat]-DIST(2) is greater than that between *DISAGREE[lat]-DIST(2) and 

*DISAGREE[lat]-DIST(3). Notice that the graph above resembles that of a negative power 
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function, and in particular, the graph of ! ! = !21/!, where x is position distance (which, 

again, is equal to the number of transparent syllables plus one in this case). 

 The weights outputted by corresponding heuristic grammars for the four languages 

covered in Section 2 are shown in the table below. Average error is defined here as the absolute 

difference between observed and predicted probabilities averaged over the violation profiles in 

each language. 

Vowel dissimilation in Malagasy: 
/uσn+u/ → [uσn-i] 

Liquid dissimilation in Latin:  
/lσn+aːlis/ → [lσn-aːris] 

w(*DISAGREE[rd]-DIST(1)): 14.08 w(*DISAGREE[lat]-DIST(1)): 21.02 
w(*DISAGREE[rd]-DIST(2)): 8.59 w(*DISAGREE[lat]-DIST(2)): 9.27 
w(*DISAGREE[rd]-DIST(3)): 6.62 w(*DISAGREE[lat]-DIST(3)): 7.57 
IDENT([rd]): 8.57 IDENT([lat]): 8.37 
Average error: 0.00 Average error: 0.00 
Vowel harmony in Hungarian: 
/!# $

&+syl
 +back  σn+nɛk/ → [!# $

&+syl
 +back  σn-nɔk] 

Liquid dissimilation in English: 
/lσn+&l/ → [lσn-&ɹ] 

w(*AGREE[bk]-DIST(1)): 21.11 w(*DISAGREE[lat]-DIST(0)): 14.16 
w(*AGREE[bk]-DIST(2)): 11.75 w(*DISAGREE[lat]-DIST(1)): 8.14 
w(*AGREE[bk]-DIST(3)): 7.21 w(*DISAGREE[lat]-DIST(2)): 6.36 
w(*[ ]+syl

 +back  ... i[ ]+syl
 -back  ) 6.06 w(*DISAGREE[lat]-DIST(3)): 5.37 

w(*[ ]+syl
 +back  ... i:[ ]+syl

 -back  ) 6.02 IDENT([lat]): 8.46 

w(*[ ]+syl
 +back  ... e:[ ]+syl

 -back  )  4.06 Average error: 0.00 

w(*[ ]+syl
 +back  ... ɛ [ ]+syl

 -back  ) 0  

IDENT([bk]): 13.83 
Average error: 0.07 

 
Table 11: distance-based decay modeling results using distance-based markedness constraints 

 
The language corpora for these languages display a paucity of forms on distances greater than 

two transparent syllables, and so I only provided weights for constraints up to three units of 

distance. Since English has forms with zero units of distance, the data suffice to motivate a 

fourth constraint.  
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 The distance-based constraints for Hungarian are controlled for vowel height: they are the 

returned weights of a grammar that included the distance-based constraints shown in Table 11 as 

well as the height-based constraints *[ ]+syl
 +back  ... i[ ]+syl

 -back  , *[ ]+syl
 +back  ... i:[ ]+syl

 -back  ,  

*[ ]+syl
 +back  ... e:[ ]+syl

 -back  , and *[ ]+syl
 +back  ... ɛ[ ]+syl

 -back  , which regulated decreasing transparency with 

decreasing height of the rightmost transparent vowel. The average error was minimal for each of 

the heuristic grammars with the exception of Hungarian. The higher error value is due to the BTi 

forms and the BTe: forms. For the BTe: forms, the lexicon displays a 42% rate of application, 

while the model predicts only a 10% rate of application. As Hayes and Londe 2006 note, there 

are very few data on this kind of violation profile. Furthermore, the investigators showed that 

Hungarian speakers applied vowel harmony far less to BTe: forms when they were given a wug 

test. The lexicon shows that BTi forms harmonize 25% of the time, but the distance-based 

weights predict that they harmonize 35% of the time; this discrepancy is not something I can 

currently explain. 

 As Figure 6 reveals, the heuristic distance-based markedness constraints for liquid 

dissimilation in Latin display inverse-exponential decay: the difference between the weight in 

distance constraint 1 and distance constraint 2 is greater than that between distance constraint 2 

and distance constraint 3. 
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Figure 7: inverse-exponential decrease in the weight of markedness across the four languages 
 
The graphs shown above reveal that the weight of markedness appears to decrease inverse-

exponentially with greater transparent distance across all four languages. As we will see further 

in section 4.3., these plots suggest that a negative power function gives a better fit to the data 

than a linear function does in scaling the weight of markedness. 

 Recall that we want to find good values for three parameters: the weight of markedness  

!!, the weight of faithfulness !! and the decay parameter k of the decay function 

!(!) != !1/!!. To do this, I used Microsoft Excel’s Solver, which has nonlinear curve-fitting 

capabilities (see below). The expression that we are finding optimal parameter values for is the 

formula for the probability of process application, posed as a function of distance:13 

 
 
 

                                                
13 Note that the expression in (41) is slightly more complicated in the case of vowel harmony in 
Hungarian since our model of it includes constraints that regulate the height effect. 
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(34) 
 

! ! ! = 1
1 + !!(!!∗! ! !!!) = !

1
1 + !!(

!!
!! !!!)

 

 
The probability of faithfulness is simply 1 - P(d(x)). Note that the formula in (34) is the same as 

the formula in (21), except that now the weight of markedness !! is multiplied by d(x), thus 

scaling its value to grow smaller with increasing distance. The function shown above is crucially 

shaped like an asymmetrical sigmoid curve, mimicking roughly the data distributions seen in 

Section 2. Its sigmoidal shape is shown in the figure below: 

 
Figure 8: graph of P(d(x)) with !!, !!, and k set to 9, 5, and 1 respectively 

 

We will see later that a more typical sigmoid curve such as! !
!!!!(!!∗!!!!) (where !! is 

negative) does a poorer job fitting the data. 

 To optimize the model, I calculated the natural logarithm of each of the probabilities 

predicted by the model, and multiplied the result by the frequency count of the type of surface 
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form (e.g., surface forms containing an [lσ2l] subsequence in Latin). I then summed the resulting 

values over all of the violation profiles, yielding a negative number with a large absolute value 

(hereafter called the log likelihood). Microsoft Excel’s Solver then determines the values of !!, 

!!, and k that minimize the absolute value of the log likelihood using Newton’s Method. Doing 

this determines the parameter values that maximize the model-predicted probability of the 

observed forms and minimize the probabilities of the unobserved forms. Della Pietra, Della 

Pietra, and Lafferty 1997 show that the surface defined by the probabilities of sets of surface 

forms is convex over the space of constraint weights. In other words, the space is such that an 

iterative descent algorithm would not get stuck in a local optimum.  

 The Solver requires the user to input reasonable starting estimations of the model 

parameters !!, !!, and k. I used as an estimate the weight of the most local heuristic, distance-

based constraint, as well as the weight of the heuristic faithfulness constraint, and an arbitrary 

decay parameter value, k = 1. The Solver in turn outputted the following: 
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Vowel dissimilation in Malagasy Liquid dissimilation in Latin 
!!: 12.12 !!: 16.72 
!!: 6.61 !!: 0.40 
k : 0.9   k : 3.2 
Average error: 0.000 Average error: 0.000 

Vowel harmony in Hungarian Liquid dissimilation in English 
using syllabic distance 

!!: 44.36 !!: 17.89 
!!: 37.08 !!: 18.19 
k : 0.3 k : 0.1 
Average error: 0.057 Average error: 0.003 

 Liquid dissimilation in English 
using position distance 

!!: 9.39 
!!: 3.73 
k : 1.4 
Average error: 0.004 

 
Table 12: distance-based decay modeling results using a negative power function  

with language-specific !!, !!, and k 
 

Provided that the model is free to fit k to each language, we find based on the table above that 

there is little to no distinction in fit between using syllabic distance (defined in (28)) and using 

position distance (defined in (29)) as a metric. Again, error here is defined as the absolute 

difference between the observed probabilities and the predicted probabilities averaged over the 

violation profiles of each of the languages. Since the position of the trigger within the syllable 

was significant in affecting application rates in Latin and English, I decided only to model the 

forms in either language in which the trigger was in onset-initial position (since there were few 

data on forms with the trigger in onset-noninitial or coda position). Note that the model for 

Hungarian also contains the height-based constraints posited in Table 11, whose weights were 

allowed to vary freely as the Solver fit the model to the data. For the case of local liquid 

dissimilation in English, the weight of markedness was multiplied by d(0.1). Observe that the 

scale yields just as good a fit as the distance-based constraint family does. 
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 Recall that Kimper 2011 scales the weight of a spread constraint for vowel harmony in 

Hungarian by multiplying it by a constant in the interval (0, 1) x times over, where x is 

transparent distance. Kimper’s method is effectively the same as scaling the weight of 

markedness by the decay function!!(!) != !1/!!, where x is transparent distance and k is a 

positive real-valued parameter. Using such a decay function yields the following results: 

Vowel dissimilation in Malagasy Liquid dissimilation in Latin 
!!: 23.82 !!: 138.29 
!!: 3.05 !!: 0.07 
k : 2.7 k : 10.0 
Average error: 0.000 Average error: 0.000 

Vowel harmony in Hungarian Liquid dissimilation in English 
using syllabic distance 

!!: 33.59 !!: 9.28 
!!: 11.03 !!: 2.31 
k : 1.8 k : 4.6 
Average error: 0.056 Average error: 0.011 

 Liquid dissimilation in English 
using position distance 

!!: 12.75 
!!: 4.39 
k : 4.6 
Average error: 0.020 

 
Table 13: distance-based decay modeling results using !(!) != !1/!!  

with language-specific !!, !!, and k 
 
A comparison between Table 12 and Table 13 reveals that !(!) != !1/!!fits the data either 

equally or even better than !(!) != !1/!!, regardless of whether we adopt syllabic distance or 

position distance as our distance metric. While there is not a great deal of distinction between the 

accuracy of the two models, I will continue to use the negative power function as the decay 

function for the rest of the analysis. 

 This section shows that having a rather unconstrained model—one with three language-

specific parameters—yields good fit to the data at large. We now turn to the next section, which 



 

 41 

demonstrates that we can constrain the model by reducing the number of parameters while still 

maintaining great accuracy. 

 
4.2.2  Decay functions with universal settings for k  
 
 While the model with three language-specific parameters—the weight of markedness, the 

weight of faithfulness, and the decay parameter k—model the decay effect across the four 

languages with great accuracy, one wonders if a model with fewer language-specific parameters 

can also provide accurate predictions. Within the Maximum Entropy Harmonic Grammar, the 

weight of markedness and the weight of faithfulness are acquired by the learner based on the 

forms that they are exposed to, and are thus expected to be language specific. On the other hand, 

why should k be assumed language-specific? Thus far, we have not said anything about whether 

the learner needs to acquire a particular decay function (i.e., a particular value for k) depending 

on the forms they are exposed to. As we had seen in the previous section, distance-specific 

weights of markedness decrease with distance in inverse-exponential fashion across the four 

surveyed languages. We therefore posited a decay function—a negative power function—to 

capture the four language patterns. Beyond this, decay rates differed to some degree on a 

language-by-language basis, in that the best-fit values for k differed across languages. In spite of 

this, could we account for differences in decay rate using only the weight of markedness and 

faithfulness? In other words, while letting constraint weights vary freely, can we fix the value of 

k across the four languages—yielding a universal decay function—and still adequately model the 

data in each of them?  

 To answer this question, I ran several optimizing trials using the Solver. For each 

language, I fixed the value of k and set the Solver to minimize the absolute value of the log 

likelihood only by varying the weight of markedness and the weight of faithfulness. The trials 
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led to the formation of k-basins, shown below in Figure 9 and 10. The y-axis is the absolute 

difference between observed and predicted probabilities averaged over violation profiles. 

 Suppose we used position distance as our distance metric. The resulting k-basins are 

shown below: 

 
 

Figure 9: k-basins with position distance 
 
For fixed values of k between 0.2 and 8 and in increments of 0.1, the Solver determined the 

weights that minimize the absolute value of the log likelihood.14 I plotted the fixed value of k of 

a particular trial against the averaged error, or the absolute difference between observed and 

predicted probabilities averaged over the number of violation profiles in the language. The k-

basins created for the four languages show that for liquid dissimilation in Latin and vowel 

harmony in Hungarian, a wide range of values for k lead to relatively minimal error. (Once 

again, note that the error for Hungarian is higher due to the BTi and BTe: forms). On the other 

                                                
14 For values of k at or below 0.2., the Solver was unable to converge upon finite values for the 
weights. 
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hand, vowel dissimilation in Malagasy and liquid dissimilation in English are more delicate: few 

values of k lie at the bottom of the two basins. This restricts the set of possible values for k that 

we can draw from that are satisfactory for modeling the data across the four languages. 

Nevertheless, the graph suggests that there exist values for k such that, if the function were to 

take on such value, it would predict the probabilities of the observed data reasonably well. Such 

k resides around k = 1.1.  

 I set the Solver to find the single value of k that minimizes the sum of the absolute values 

of the log likelihoods for all of the languages, letting constraint weights vary. The results were as 

follows: 

Vowel dissimilation in Malagasy Liquid dissimilation in Latin 
!!: 10.24 !!: 9.00 
!!: 4.66 !!: 2.63 
k : 1.1 k : 1.1 
Average error: 0.010 Average error: 0.015 

Vowel harmony in Hungarian Liquid dissimilation in English 
!!: 27.04 !!: 10.90 
!!: 19.76 !!: 5.28 
k : 1.1 k : 1.1 
Average error: 0.057 Average error: 0.006 

 
Table 14: distance-based decay modeling results using a negative power function, position 

distance, and a universal setting of k to k = 1.1 
 
As the table shows, we can fix a single value of k at k = 1.1 at fairly little cost: each of the 

models is still able to predict observed data quite accurately (see next section for a plot). 

 Now suppose that we used syllabic distance as the distance metric. The resulting k-basins 

are shown below: 
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Figure 10: k-basins with syllabic distance 
 
The k-basin for liquid dissimilation in English migrated to the left, with the bottom of the basin 

hovering around k = 0.1. This, presumably, is due to the fact syllabic distance treats local 

application of liquid dissimilation in English differently than it does local application of the other 

three processes: while local violations of markedness constraints incur a violation of d(0.1) in 

liquid dissimilation in English, local violations incur a violation of d(1) in the other languages. 

There is a striking decrease in accuracy in fitting the data from English as k takes on larger 

values, and as a result, constraining the model so as to fix k crosslinguistically yields overall 

decrease in modeling accuracy across languages: 
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Vowel dissimilation in Malagasy Liquid dissimilation in Latin 
!!: 26.71 !!: 18.23 
!!: 21.39 !!: 13.01 
k : 0.3 k : 0.3 
Average error: 0.020 Average error: 0.033 

Vowel harmony in Hungarian Liquid dissimilation in English 
!!: 46.84 !!: 6.12 
!!: 39.56 !!: 6.54 
k : 0.3 k : 0.3 
Average error: 0.056 Average error: 0.020 

  
Table 15: distance-based decay modeling results using a negative power function, position 

distance, and a universal setting of k to k = 1.1 
 

The Solver determined k = 0.3 to be the best crosslinguistically-fit k. The decrease in accuracy of 

using syllabic distance with fixed k is thus observable from comparing average error in Table 15 

with average error in Table 14: 

Vowel dissimilation in Malagasy Liquid dissimilation in Latin 
Average error using  
position distance: 

0.010 Average error using  
position distance: 

0.015 

Average error using  
syllabic distance: 

0.020 Average error using  
syllabic distance: 

0.033 

Vowel harmony in Hungarian Liquid dissimilation in English 
Average error using  
position distance: 

0.074 Average error using  
position distance: 

0.006 

Average error using  
syllabic distance: 

0.074 Average error using  
syllabic distance: 

0.020 

 
Table 16: comparing of models with position distance against those with syllabic distance 

 
In each of the cases except for vowel harmony in Hungarian, the average error that results from 

using syllabic distance is at least double that which results from using position distance. I 

therefore take position distance to be the superior unit of input to the decay function d(x). 

 Summing up, we find thus far that using !(!) != !1/!!.!, where x is position distance, 

leads to an accurate model of the decay effect across the four surveyed languages. Since the best 

fixed k is strikingly close to 1, using !(!) = !1/! still yields an overall good fit to the data: 
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Vowel dissimilation in Malagasy Liquid dissimilation in Latin 
!!: 11.06 !!: 9.29 
!!: 5.51 !!: 3.15 
k : 1.0 k : 1.0 
Average error: 0.005 Error: 0.017 

Vowel harmony in Hungarian Liquid dissimilation in English 
!!: 27.25 !!: 10.78 
!!: 19.97 !!: 5.57 
k : 1.0 k : 1.0 
Error: 0.057 Error: 0.016 

 
Table 17: distance-based decay modeling results using a negative power function, 

 position distance, and a universal setting of k to k = 1 
 
This shows that simply dividing the weight of markedness by the determined count of 

transparent distance produces a fairly accurate representation of distance-based decay.  

4.3  Comparing performance of the inverse exponential function to a linear function  
 
 McPherson and Hayes (submitted) observe that the rate of vowel harmony in Tommo So 

decreases with morphological distance—that is, harmony is less likely to apply to a verbal suffix 

that attaches farther from the stem than one that attaches closer to it. McPherson and Hayes scale 

the weight of markedness using a linear function in order to derive the morphological decay 

effect. Let us consider a model of application rate based on transparent distance when it is 

augmented with a simple linear function; i.e., suppose the decay function for distance-based 

decay is taken to be !(!) != !!: 

(35) 
 

! ! ! = !! 1
1 + !!(!!∗!!!!) 

 
Notice that this function lacks a third parameter, k. Instead, properties of the linear function are 

absorbed by constraint weights: the intercept of the linear function is absorbed by the weight of 

faithfulness, while its slope (presumably negative) is absorbed by the weight of markedness. The 
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model thus has two parameters. How does a model that lacks k entirely fare against one that has 

crosslinguistically-fixed k? 

 We can replicate the optimizing process by setting the Solver to find the values of the 

weight of markedness and faithfulness that minimize the absolute value of the log likelihood of 

the dataset. The results are shown in the table below: 

Vowel dissimilation in Malagasy Liquid dissimilation in Latin 
!!: 4.75 !!: 2.18 
!!: 9.60 !!: 6.27 
Average error: 0.045 Average error: 0.058 

Vowel harmony in Hungarian Liquid dissimilation in English 
!!: 4.54 !!: 3.09 
!!: 11.83 !!: 6.63 
Average error: 0.057 Average error: 0.088 

 
Table 18: distance-based decay modeling results using a linear function and position distance 

 
The table above shows that replacing the negative power function for a linear one—thus getting 

rid of k entirely—yields too simple of a model. The linear function does a poor job predicted 

observed probabilities in vowel dissimilation in Malagasy and liquid dissimilation in Latin and 

English, especially relative to the negative power function. (I do not know why it does well with 

vowel harmony Hungarian. Perhaps it is because the model also contains the height-based 

constraints for Hungarian, allowing the Solver more freedom to fit the data.) The table shows 

that abandoning the negative power function for a linear one results in a striking decrease in 

accuracy. The decrease in accuracy is as well revealed in the following plots, with one model of 

application rate containing the negative power function and the other containing the linear 

function: 
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Figure 11: plots that compare models using the linear function  
against those using the negative power function where k is set to k = 1.1 

 
The plots show that the model using negative power function performs better than the model 

using the linear function for all the covered processes except vowel harmony in Hungarian, and 

in such case the two models perform roughly equally. Note that Hungarian was broken up into 

two plots: one with transparent vowel heights /i/ and /i:/ and another with transparent vowel 

heights /e:/ and /ɛ/. For the first of these plots, the graphs of the height-based models with the 
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negative power function overlap entirely, as do the graphs of the height-based models with the 

linear function. 

 Finally, we can use the AIC to determine whether or not the increase in fit upon adopting 

a negative power function is worth having the extra parameter, the decay constant k. The sum of 

log likelihoods that result from fitting the linear model to each of languages is -52.4 + (-321.5) + 

(-116.5) + (-201.6) = -692.0. Since linear model has two language-specific parameters (namely, 

the weight of markedness and the weight of faithfulness) to cover the four processes as well as 

the four weights to capture the height effect in Hungarian, the AIC measure for the linear model 

is thus 2(2*4+4) – 2(-692.0) = 1408.0. Furthermore, the sum of log likelihoods that result from 

fitting the negative power function to each of languages is -48.8 + (-313.4) + (-102.2) + (-201.5) 

= -665.9. The negative power function has an additional parameter (i.e., the invariant decay 

constant k), and so its AIC measure is 2(2*4+4+1) – 2(-665.9) = 1357.8. Comparing AICs for the 

two models, we find that the AIC for the negative power function is lower than that of the linear 

model. Based on these results, I reject the linear function as an adequate model of distance-based 

decay, and conclude that the effect is best accounted for using a negative power function. Why a 

linear model suffices as an account of morphological distance in vowel harmony in Tommo So, 

but not of transparent distance in the various processes surveyed here, is a question that I leave to 

further research.  

 
5  Conclusions and future directions 
 
 Toward the beginning of this thesis, we surveyed three different long-distance 

phonological processes in four languages, and found that each of them displays distance-based 

decay. We opted not to posit distance-based constraint families, since it is too powerful, and 

dismisses as coincidental the learner’s bias for learning high markedness weights for local 
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constraints and successively lower markedness weights with greater distance. Instead, we follow 

Kimper 2011 in positing a scaling factor that scales the weight of markedness with increasing 

transparent distance. 

 Likelihood ratio tests over generalized linear models of the data revealed that the number 

of transparent syllables, rather than the number of transparent segments, is significant in 

producing the decay effect for the surveyed processes. Furthermore, heuristic distance-based 

constraints reveal that the weight of markedness decreases in inverse-exponential fashion. In 

turn, we posited for our scaling factor a decay function d(x)—a negative power function—taking 

the form !(!) != !1/!!, where x is position distance and k is a positive real-valued parameter. 

 Explorations with model fitting show that the decay parameter k need not be language-

specific; in fact, fixing k at roughly k = 1.1 yields a model that is able to accurately predict 

observed probabilities in all the surveyed languages. Since decay rates differ across languages, 

the ability of models with fixed k to accurately predict crosslinguistic data suggests that decay 

rate differences need not be attributed to language-specific decay parameters, but rather to 

language-specific differences between the weight of markedness and the weight of faithfulness. 

Nevertheless, k is necessary to ensure good fit between model predictions and the observed data: 

opting to replace the negative power function with the simple linear function !(!) != !! comes 

at the price of strikingly reduced accuracy in model predictions. 

 
5.1  On the unit of distance: retroflex assimilation in Sanskrit 
 
 In Sanskrit, long-distance retroflex harmony can be observed. Shown below are data on 

how the nominal/adjectiveal suffix -/ana/ is affected by the process:  
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  UR   Nominal/adjectival form          Gloss    
 
Faithful items 
(52a)  /naj+ana/  [naj-ana]   ‘leading’ 
(52b)  /devajadʒ+ana/ [devajadʒ-ana]   ‘worshipping of gods’  
 
Items that display retroflex assimilation 
(53a)  /rakʂ+ana /  [rakʂ-aɳa]   ‘protection’ 
(53b)  /kr̩p+ana /  [kr̩p-aɳa]   ‘inclined to grieve’ 
(53c)  /akram+ana /  [akram-aɳa]   ‘attack’ 
(53d)  /kʂaj+ana/  [kʂaj-aɳa]   ‘annihilating’ 
 
Items with opaque segments 
(54a)  /ceʂʈ+ana/  [ceʂʈ-ana]   ‘stirring’ 
(54b)  /roc+ana/  [roc-ana]   ‘shining’ 
 
The triggers of retroflex assimilation are /ʂ/ and /r/ (the latter of which can be consonantal or 

syllabic, as comparing (53a) and (53b) shows), and the only target is /n/. /n/ can retroflect into 

[ɳ] if it occurs after a trigger. Schein and Steriade 1986 claim there are a variety of opaque 

intervening segments, including dentals, retroflexes, and palatal consonants. Finally, the process 

can apply over suffix boundaries to a variety of suffixes, as well as across root boundaries within 

compounds. 

 Data from the Digital Corpus of Sanskrit (http://kjc-fs-cluster.kjc.uni-heidelberg.de/dcs/) 

show that retroflex assimilation in Sanskrit displays distance-based decay, the figures for which 

are shown below: 

 Retroflex assimilation in Sanskrit: /{ʂ,r}σn+ana/ → [{ʂ,r}σn-aɳa] 
Transparent 
syllables n 

Faithful 
forms 

Harmonized 
forms 

% of harmon’d 
forms 

n = 0            1                    905 0.99 
n = 1          19                    422 0.96 
n = 2          54                      35 0.39 
n = 3          12                        4 0.25 

 
Table 19: figures for distance-based decay in retroflex assimilation in Sanskrit  

based on transparent syllables 
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Figure 12: graph of distance-based decay in retroflex assimilation in Sanskrit  

based on transparent syllables 
 
 As it turns out, retroflex assimilation is special in that the number of transparent syllables 

is not significant in producing the decay effect when compared against the number of transparent 

segments. When I ran likelihood ratio tests over generalized linear models of the data (i.e., the 

full model and models omitting each variable), I found that if I included both syllable count and 

segment count in the model, the model that was yielded from applying the algorithm discussed at 

the beginning of Section 4.1 was one in which segment count was preserved and syllable count 

was eliminated. Furthermore, the best model that was yielded from starting with a full model 

containing only syllable count had an AIC of 611.32, whereas the best model that was yielded 

from starting with only segment count had an AIC of 590.96. 

 Figures for application rate as a function of segment count are shown below: 
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Retroflex assimilation in Sanskrit: /{ʂ,r}φn+ana/ → [{ʂ,r}φn-aɳa] 
Transparent 
segments n 

Faithful 
forms 

Harmonized 
forms 

% of harmon’d 
forms 

n = 1            2                    903                           0.99 
n = 2            2                      78                           0.97 
n = 3          16                    308                           0.95 
n = 4            9                      41                           0.82 
n = 5          35                      29                           0.45 
n = 6          18                        2                           0.10 
n = 7          10                        1                           0.09 
n = 8            3                        0                           0.00 

 
Table 20: figures for distance-based decay in retroflex assimilation in Sanskrit 

based on transparent segments 
 

 
Figure 13: graph of distance-based decay in retroflex assimilation in Sanskrit  

based on transparent segments 
 

Figure 13 shows that application rate of retroflex harmony in Sanskrit decreases roughly 

sigmoidally as a function of the number of transparent segments.   

 In addition, triggers in coda position were significantly associated with lower application 

(p = 0.02), but triggers in onset-noninitial position were not significant in influencing application 

rate. With the exception of triggers and palatal nasals, I found that intervening dentals, 

retroflexes, and palatal consonants were significant in blocking application (all p < 0.001). 

 It is intriguing that the number of transparent segments, but not transparent syllables, is 

significant to producing the decay effect in retroflex assimilation, while the number transparent 
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syllables is significant in all the other processes surveyed in this work. One might speculate that 

it is related to retroflex assimilation in Sanskrit being post-lexical. The three processes covered 

in the previous sections are non-post-lexical: they apply only over suffix boundaries and target 

particular suffixes. Sanskrit, on the other hand, can apply over word boundaries, and does not 

apply to a particular suffix in the exclusion of others. It could be that the learner phonologizes 

phonetic distance into phonological distance—a discrete count, the number of transparent 

syllables—when the long-distance process is non-post-lexical in nature, and is sensitive to 

structure. In post-lexical long-distance phonological processes, phonetic distance is not 

phonologized as the result of a lack of sensitivity to morphological environment. 
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