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Abstract

Objective.—High frequency oscillations (HFOs) recorded by intracranial electrodes have 

generated excitement for their potential to help localize epileptic tissue for surgical resection. 

However, the number of HFOs per minute (i.e. the HFO “rate”) is not stable over the duration 

of intracranial recordings; for example, the rate of HFOs increases during periods of slow-wave 

sleep. Moreover, HFOs that are predictive of epileptic tissue may occur in oscillatory patterns due 

to phase coupling with lower frequencies. Therefore, we sought to further characterize between-

seizure (i.e. “interictal”) HFO dynamics both within and outside the seizure onset zone (SOZ).

Approach.—Using long-term intracranial EEG (mean duration 10.3 hours) from 16 patients, we 

automatically detected HFOs using a new algorithm. We then fit a hierarchical Negative Binomial 

model to the HFO counts. To account for differences in HFO dynamics and rates between sleep 

and wakefulness, we also fit a mixture model to the same data that included the ability to switch 

between two discrete brain states that were automatically determined during the fitting process. 

The ability to predict the SOZ by model parameters describing HFO dynamics (i.e. clumping 

coefficients and coefficients of variation) was assessed using receiver operating characteristic 

curves.

Main results.—Parameters that described HFO dynamics were predictive of SOZ. In fact, 

these parameters were found to be more consistently predictive than HFO rate. Using concurrent 

scalp EEG in two patients, we show that the model-found brain states corresponded to (1) 

non-REM sleep and (2) awake and rapid eye movement sleep. However the brain state most likely 
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corresponding to slow-wave sleep in the second model improved SOZ prediction compared to the 

first model for only some patients.

Significance.—This work suggests that delineation of seizure onset zone with interictal data can 

be improved by the inclusion of time-varying HFO dynamics.

Keywords

Epilepsy; surgery; Hierarchical Bayesian methods; epileptogenic zone; high-frequency oscillations 
(HFOs); ripple; localization; intracranial EEG

1. Novelty & Significance

The rate of high frequency oscillations (HFOs), measured as number per minute, is a 

biomarker of the seizure onset zone (SOZ) in epilepsy patients. However, the rate changes 

over time and HFO occurrence can be phase-coupled to slow oscillations. Here we show, 

through novel application of negative binomial models to HFO count data, that HFO 

temporal dynamics are a biomarker of the SOZ and are superior to HFO rate. Specifically, 

more random occurrence of HFOs predicted SOZ, as opposed to events clustered in time. 

This suggests that consideration of HFO temporal dynamics can improve SOZ localization 

for epilepsy surgery.

2. Introduction

Epilepsy is prevalent across the globe. For example, 1.2% of the population of the United 

States in 2015 were reported to have epilepsy (Zack and Kobau, 2017). Of this multitude, 

about 30% to 40% have seizures that cannot be controlled by antiseizure medication (Kwan 

and Brodie, 2000; Engel, 2018). In such cases of drug-resistant epilepsy, seizures can greatly 

decrease the patient’s quality of life. However, surgical interventions such as resection 

of seizure-generating tissue and implantation of responsive neurostimulators (RNS) are 

procedures that can greatly reduce or eradicate the occurrence of seizures (Engel, 2018). 

The goal of epilepsy surgery is to identify and treat the epileptogenic zone (EZ), typically 

defined as the minimum amount of tissue that must be surgically removed or stimulated 

to achieve a seizure free outcome (Rosenow and Lüders, 2001; Kovac et al., 2017). 

However, the EZ is a theoretical construct, and no biomarkers exist that can accurately 

and consistently identify the EZ (Ryvlin et al., 2014). One method to approximate the EZ is 

to use intracranial electroencephalography (iEEG) to localize the seizure onset zone (SOZ) 

(Kovac et al., 2017), and the SOZ is then used in conjunction with other imaging and test 

results to select brain tissue for treatment (e.g. Tomás et al., 2019). While surgery often 

results in a reduction of seizures, many patients will not be seizure free, indicating that there 

is a need for more accurate methods of identifying the EZ (Noachtar and Borggraefe, 2009). 

Such improvements would allow more patients to benefit from this procedure, with fewer 

side effects from the surgery and better outcomes (especially those with epilepsy outside of 

the temporal lobe with normal MRIs; Cohen-Gadol et al., 2006; Noe et al., 2013).

High frequency oscillations (HFOs) have shown promise as a novel marker of the EZ. 

Specifically, increased incidence (i.e. increased “rate” per minute) of transitory HFOs 
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(Bragin et al., 1999, 2002) is thought to be indicative of the EZ (Jacobs et al., 2008, 2010; 

Frauscher et al., 2017). HFOs are “transitory,” as they are defined as temporally isolated 

events that last less than 200 ms with 3 or more cycles (i.e. 6 positive and negative local 

peaks in the waveform; Staba et al., 2002; Jacobs et al., 2008; Charupanit and Lopour, 

2017). HFOs are often subcategorized as ripple band (80 – 250 Hz) and fast ripple band (250 

– 500 Hz) events, and unsupervised analysis of high frequency data has produced evidence 

for these two HFO subtypes (see Blanco et al., 2010). These waveforms are thought to be 

generated by synchronous population firing and/or synchronous postsynaptic activity in the 

brain, although there is an abundance of possible neural mechanisms and cortical circuits 

that could generate HFOs (Köhling and Staley, 2011; Staba and Bragin, 2011; Jefferys et al., 

2012).

Research has further sought to differentiate pathological HFOs, occurring in the EZ, from 

physiological HFOs, which can occur across the brain due to normal neural processes. The 

difficulty in differentiating pathological HFOs from normal brain activity has been a barrier 

to the use of HFOs in modern clinical practice (Jacobs et al., 2018; Fedele et al., 2019). For 

example, even though high rates of HFOs are typically thought to be indicative of the SOZ, 

baseline rates of HFOs outside the SOZ vary across different regions of the cortex (Guragain 

et al., 2018; Frauscher et al., 2018). Pathological and physiological HFOs are also affected 

by the sleep state of the patient, and HFO rates during slow wave sleep (i.e. non-rapid 

eye movement; NREM sleep) are thought to be more differentiating of pathological versus 

physiological brain activity (Dümpelmann et al., 2015; von Ellenrieder et al., 2016, 2017). 

Fast ripples are generally more localized to SOZ than ripples (although see Jacobs et al., 

2018; King-Stephens, 2019), but they occur less frequently and may not be recorded in 

all patients (Köhling and Staley, 2011; Roehri et al., 2018). Roehri et al. (2018) show that 

HFOs are not more predictive of SOZ than pathological epileptiform discharges, although 

the co-occurrence of both is most predictive. Gliske et al. (2018) found that ripples during 

NREM sleep are only predictive of SOZ in some patients, and that HFO sources were highly 

variable over time. This led Gliske et al. (2018) to make the argument that long recordings 

over multiple days must be performed in order to accurately measure interictal, ripple-band 

HFO dynamics.

Analyses of phase-amplitude coupling in iEEG suggest that the temporal dynamics 

of HFOs and the precise timing of their occurrence may be an important marker of 

epileptogenic tissue. Coupling of ripple-band HFOs to slow waves has been observed 

during preictal and seizure periods (Weiss et al., 2013; Ibrahim et al., 2014; Guirgis et 

al., 2015). Moreover, pathological, interictal HFOs may be modulated by high amplitude, 

low frequency background activity, especially during sleep (Kerber et al., 2014; Frauscher 

et al., 2015; von Ellenrieder et al., 2016; Song et al., 2017; Motoi et al., 2018). However, 

this characteristic of high frequency activity remains relatively unexplored compared to the 

simple counting of HFOs per minute.

In this study, we show that the temporal dynamics of HFOs, beyond the changing of HFO 

rate with sleep stage, are predictive of SOZ. In particular, the more Poisson-like the HFO 

generator, the more likely that tissue is to be in the SOZ as judged by area under the curves 

(AUCs) of receiver operating characteristic curves (ROCs). Tissue that generates HFOs 
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occurring close together in time with long intermediate periods (e.g. temporal “clumping” of 

HFOs) is less likely to be part of the SOZ. We found this to be true in general across many 

hours of iEEG in 16 patients as well as in empirically-found brain states that are reflective of 

NREM sleep in those patients.

3. Materials & Methods

3.1. Ethics statement

Approval for this study was obtained from the Institutional Review Board of the University 

of California, Irvine.

3.2. Patients and iEEG recordings

Patients who had intractable epilepsy and were candidates for resective surgery had 

intracranial electrodes implanted at the University of California Irvine Medical Center to 

aid SOZ localization. We analyzed iEEG data from patients (N = 16, 8 female, 36 ± 15 years 

of age, see Table 1) who were implanted with either subdural electrocorticography (ECoG) 

grids or strips, depth macroelectrodes and/or stereotactic EEG (SEEG). The electrode types 

and locations were chosen by the clinicians for diagnostic and surgical evaluation.

Long-term iEEG was recorded for all patients with high sample rates (minimum 2000 

Hz, maximum 5000 Hz) in order to capture HFOs in the ripple band with high accuracy. 

Note that standard clinical sampling rates of 500 Hz and below may not be sufficient to 

capture ripples due to aliasing of digital signals. It is recommended that a sample rate of 

at least 250 ∗ 2.5 = 625 Hz be used to capture ripple-band HFOs; the 2.5 multiplier is 

Engineer’s Nyquist given by Bendat and Piersol (2011). SOZ channels were identified by 

board-certified epileptologists as those with time courses indicative of seizure onset before 

propagation to other channels during any seizure captured via iEEG.

Channels were localized via coregistration of pre- and post-implantation magnetic resonance 

imaging (MRI) and/or post-implantation computed tomography (CT) as described by Stolk 

et al. (2017); Zheng et al. (2017); Helfrich et al. (2018); Stevenson et al. (2018). Each 

intracranial channel was classified as out-of-brain, within white matter, or within grey 

matter. If the location was on the boundary of the grey and white matter, it was labeled as 

white matter. If the location was near the edge of the brain, it was labeled as being outside 

the brain. We did not disaggregate by grey matter regions (hippocampus, amygdala, insular 

regions, neocortical regions, etc.), although other studies have described differing HFO rates 

between these regions (Blanco et al., 2011; Wang et al., 2017; Frauscher et al., 2018). 

Whenever possible, a channel within each strip or grid that was located within white matter 

was used as a reference. If no such information existed or was unclear from the localization, 

the channels were referenced to the average of all the channels on the grid or depth strip. 

The importance of coregistration was assessed with 6 of the 16 patients in which localization 

information was unavailable, and so we used data from all available iEEG electrodes. That 

is, we tested the robustness of our procedure to the absence of localization information that 

could have been used to exclude electrodes not placed in neural tissue or placed in white 

matter.
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In two patients, scalp EEG, heart rate (electrocardiography; EKG), and eye movements 

(electrooculography, EOG) were concurrently recorded in order to extract sleep stage 

information over time in offline analysis. The data were then sleep staged using the software 

from Greer and Saletin (2011). Thirty-second epochs of data were classified as NREM slow 

wave sleep, REM, wakefulness, or artifact. This sleep staging was then compared to HFO 

model-found brain states, discussed later.

3.3. Automatic detection of high frequency oscillations during long-term recordings

Automatic detection of HFOs is now widely used, and the results of automatic detectors are 

comparable to that of visual detection (e.g. see Jacobs et al., 2018; Remakanthakurup Sindhu 

et al., 2020). We detected HFOs automatically in each channel of iEEG over the duration 

of each patient’s recording using the HFO detection software developed by Charupanit 

and Lopour (2017). This algorithm finds oscillations that are significantly larger than the 

amplitude noise floor in the 80 to 250 Hz frequency band. By iteratively generating a 

Poisson distribution of oscillation (”peak”) amplitudes, the detector can identify events 

with at least 4 consecutive high amplitude oscillations that exist in the tail of the rectified 

amplitude distribution (i.e. 8 rectified peaks). Specifically, we defined the threshold as 

peak amplitudes above the 95.8% percentile (i.e. α = 0.042, which was recommended by 

Charupanit and Lopour (2017)). Note that the estimation of the noise floor is adaptive and 

will change for each channel. We also allowed the noise floor to change every 5 minutes 

within each channel to account for non-stationarities, such as changes in state of vigilance 

and sleep stage.

To ensure that HFO rates were not affected by the occurrence of seizures, we analyzed only 

interictal HFOs that occurred at least 1 hour away from clinically-identified seizures. The 

resulting dataset had at least 4 hours of iEEG per patient, with a maximum of 25 hours 

for one patient, and a mean and standard deviation of 10 ± 5 hours across N = 16 patients 

(see Table 1). The original iEEG records contained overnight data. However our stipulations 

that the HFO counts used in analysis should both be consecutive and be at least 1 hour 

away from clinically-identified seizures resulted in diverse start times and coverage of these 

records. An example of the changing rate of HFOs from two channels within one patient is 

given in Figure 1.

3.4. Removing artifactual HFOs

We extended the Charupanit and Lopour (2017) algorithm by subsequently identifying and 

then removing detected HFOs that were likely artifact. This extension closely followed the 

“qHFO” algorithm of Gliske et al. (2016). That is, we sought to remove detected HFOs 

that (1) occurred in all channels simultaneously since the sources of these HFOs were 

likely spatially-broad electrical artifacts rather than localized neural generators, and (2) were 

falsely identified due to DC-shift artifacts that appeared as HFOs after bandpass filtering. 

Thus we first extracted HFOs using the algorithm by Charupanit and Lopour (2017), as 

discussed previously. We then calculated the common average across channels and reran 

the Charupanit and Lopour (2017) algorithm on this common average to identify cases of 

likely electrical artifacts. Then we found DC shifts in each channel by band passing the 

data from 850 to 990 Hz, calculating the line length of each 100 ms segment of data, and 
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marking segments as DC shifts if they exceeded a threshold of 4 standard deviations above 

the mean line length over the previous 5 seconds (again calculated in 100 ms segments). 

HFO occurrences for each iEEG channel that overlapped in time with either artifactual 

HFOs found in the common average or DC shifts detected in that channel were removed 

from further analysis.

3.5. Assuming Negative Binomial processes

It has previously been shown that pathological, interictal HFOs can be modulated by high 

amplitude, low frequency background activity during sleep (Kerber et al., 2014; Frauscher 

et al., 2015; von Ellenrieder et al., 2016; Motoi et al., 2018). Therefore the typical model 

for count data, a Poisson process in which the variance must equal the mean rate over 

time (Cook, 2009), may not accurately describe HFO count data in general. While we did 

not directly measure phase-amplitude coupling of HFOs to slow rhythms, we estimated 

the variance of the HFOs over time within fitted models. “Overdispersion” occurs when 

there is greater variability in the data (e.g. HFO count data) than is expected by a Poisson 

process. Overdispersion can be due to the “clumping” of HFOs in close temporal proximity 

to one another, such that there are bursts of HFOs occurring in time followed by relatively 

quiet periods without many HFOs (see bottom plot of Figure 2). Thus we might expect 

overdispersion to be predictive of SOZ based on the previous literature. We estimated 

parameters in hierarchical models that provide inference as to whether HFOs occur in 

patterns in which they are “clumped” together.

A Negative Binomial process is a description of count data that can account for 

overdispersion (Cook, 2009) and can be viewed as a relaxation of a restriction that 

HFO counts must follow a strictly Poisson process. In order to characterize the temporal 

dynamics of HFOs, we fit the data to Negative Binomial models of count data per second. 

That is, we automatically counted the number of HFOs from our qHFO algorithm for 

each iEEG electrode and each patient per second. These counts per second were then 

assumed to be generated from a Negative Binomial process whose parameters could change 

every 5 minutes. We chose a 5-minute window in order to measure changes with high 

time resolution over multiple hours while also keeping enough observations to accurately 

estimate parameters of the Negative Binomial distribution of count data. This resulted in 60 

∗ 5 = 300 HFO count observations to estimate parameters of the Negative Binomial process 

per 5 minutes.

The Negative Binomial distribution has two common parameterizations. In the 

parameterization we used in this study, the Negative Binomial distribution gives a number 

of “failures” (e.g. number of HFOs within a given second) before η “successes” where θ is 

the probability of a success (e.g. the probability that no HFOs occur) (Plummer, 2003; Cook, 

2009). Note that η is not restricted to integers. To aid SOZ prediction, we transformed the 

two parameters of the Negative Binomial distribution θ and η to create three parameters: 

(1) the rate of HFOs per second λ, (2) a “clumping coefficient” (CC, ζ), defined as the 

inverse of η, and (3) the coefficient of variation (CV, γ), defined as the ratio of the standard 

deviation of counts over the rate of HFOs. Note that as η goes to positive infinity, the 

clumping coefficient ζ goes to zero and the Negative Binomial distribution approaches a 
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Poisson distribution (Cook, 2009). The top plot of Figure 2 shows an example of a small 

clumping coefficient. Large clumping coefficients ζ indicate that HFOs are more likely to 

occur immediately following other HFOs (see bottom plot of Figure 2). CV much greater 

than 1 (γ >> 1) also indicate temporal clumping of HFOs, i.e. a CV greater than one 

indicates that the variance is greater than the mean rate. CV much less than 1 (γ << 1) 

indicate oscillatory dynamics, i.e. a CV less than one indicates a low variance relative to the 

mean rate. A CV near 1 (in addition to a clumping coefficient near zero, ζ ≈ 0) indicates that 

the process is more Poisson-like. The HFO rate, CC, and CV were included in the model to 

gauge the predictive ability of each parameter to inform the location of the SOZ.

To illustrate the concept of clumping, we simulated Negative Binomial processes. 

Specifically, we simulated three different clumping coefficients, ζ = 0.01, ζ = 1, and ζ 
= 10, with an HFO rate parameter of λ = .1 per second over a 60 minute period. Note that as 

the clumping coefficient approaches zero, ζ → 0, the number of “successes” approaches 

positive infinity, η→∞, and the Negative Binomial process with rate θ approaches a 

Poisson process with rate θ. Thus ζ = 0.01 approximates a Poisson process. In the 

simulation, we disregarded the shape and duration of the HFOs themselves and instead 

simulated the number of HFOs per second per electrode. The simulation results are shown in 

Figure 2.

3.6 Hierarchical Negative Binomial models

To automatically obtain HFO dynamics across channels within each patient, we fit models 

to the HFO count data using Bayesian methods with JAGS (Just Another Gibbs Sampler). 

JAGS can easily sample from complex models using Markov Chain Monte Carlo (MCMC) 

(Plummer, 2003) via the pyjags Python package (Miasko, 2017). Specifically, we fit 

models of HFO counts per second t which contained parameters of HFO dynamics and 

hierarchical parameters. We then derived estimates of HFO rates λ, clumping coefficients 

ζ, and coefficients of variation γ. Hierarchical parameters were included in the model 

to encourage stable parameter estimates across the 5-minute windows w, as we expected 

iEEG channels to have somewhat consistent temporal dynamics. Hierarchical distributions 

of HFO parameters allow parameters to “shrink” towards the mean HFO parameters, which 

improves estimation of these parameters in the presence of outliers (Gelman et al., 2013; 

Boehm et al., 2018). We experimented with different hierarchical models with Poisson 

and Negative Binomial base-likelihoods describing HFO counts per second t without 

assessing SOZ prediction. Many models’ parameters would not converge to stable posterior 

distributions, either due to an excess of hierarchical parameters which caused the models to 

be unidentifiable or due to a complexity in the parameter space that the splice sampling in 

JAGS has difficulty sampling. We present parameter fitting results and SOZ prediction from 

two hierarchical Negative Binomial models in this paper, first without (Model 1) and then 

with (Model 2) an undetermined mixture of distributions over time. We also present results 

from a mixture model of Poisson distributions (Model 3) in the Supplementary Materials.

In Model 1, we assumed that the HFO dynamics were described by a Negative Binomial 

distribution and that these dynamics could change per 5-minute window. We also included 

hierarchical distributions such that the HFO rate λ, measured in 5-minute windows w, was 
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described by a normal distribution with a mean HFO rate parameter μ(λ) with some standard 

deviation σ(λ) for each iEEG channel e. Similarly, the clumping coefficient ζ was described 

by a normal distribution with mean clumping coefficient μ(ζ) with some standard deviation 

σ(ζ) across the 5-minute windows for each iEEG channel e. The coefficient of variation γ 
was derived from the ratio of the standard deviation to the mean of the Negative Binomial 

distribution, and it was not described by a hierarchical distribution of parameters.

Model 1 was fit to the HFO count data of each patient separately and is given 

by the following likelihood distribution, parameter relationship equations, hierarchical 

distributions, and prior distributions:

(HFO count)te ∼ NegBinomial θwe, ηwe (1)

θwe = ηwe / ηwe + λwe (2)

ηwe = 1/ζwe (3)

γwe = 1/ ηwe 1 − θwe (4)

λwe ∼ Normal μ(λ)e, σ(λ)e
2 ∈ (0, ∞) (5)

ζwe ∼ Normal μ(ζ)e, σ(ζ)e
2 ∈ (0, ∞) (6)

μ(λ)e ∼ Normal 1, .52
(7)

σ(λ)e ∼ Gamma(1, 1) (8)

μ(ζ)e ∼ Normal 10, 52
(9)

σ(ζ)e ∼ Exponential (0.25) (10)

3.7. Assuming mixtures of Negative Binomial distributions

Based on previous research (Dümpelmann et al., 2015; von Ellenrieder et al., 2016, 2017), 

we assumed that HFO rates would be a function of the state of vigilance and sleep stage. 

This could be seen when the HFO rates were plotted over time, as increased rates correlated 

with increased delta (1–4 Hz) power, which is generally indicative of slow-wave sleep (see 

Figure 1). We also suspected that HFO rates might change based on the cognitive brain state 
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of the patient. For these two reasons we allowed another hierarchical model, Model 2, to 

automatically identify the states inherent in the data.

Mathematically, in Model 2 we assumed that HFO counts per second for each channel 

were distributed from a mixture model of Negative Binomials. That is, we assumed that 

each channel contained multiple distributions of HFO counts (one distribution per state k), 

with the representative state changing over time. We enforced the restriction that a change 

in state caused the distributions from all channels to change at the same time. Thus, we 

assumed that the brain’s state of vigilance or sleep changed each channel’s HFO dynamics 

simultaneously, although the parameter values for each channel could change in different 

ways. We initially constrained the number of possible brain states k to 2–4 per channel, 

switching at most every five minute window w during the recordings. After initial model 

fitting experiments, discussed above, we constrained the number of Negative Binomial 

mixtures to be two per channel.

Model 2 was given by the following equations:

(HFO count )te ∼ NegBinomial θke, ηke (11)

θke = ηke/ ηke + λke (12)

ζke = 1/ηke (13)

γke = 1/ ηke 1 − θke (14)

μk ∼ Normal 1, .52
(15)

σk ∼ Gamma(1, 1) (16)

λke ∼ Normal μk, σk
2 ∈ (0, ∞) (17)

ηke ∼ Uniform(0, 50) (18)

kw ∼ Categorical (π) (19)

π ∼ Diricℎlet(1, 1) (20)
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3.8. Solving model convergence issues

Each model was fit using Markov Chain Monte Carlo in JAGS with six chains of 5,200 

samples each. This was performed in parallel with 200 burn-in samples and a thinning 

parameter of 10. This procedure resulted in (5,200 − 200)/10 = 500 posterior samples 

from each chain for each parameter. We kept all posterior samples from each chain 

to assess posterior distributions from Model 1. We confirmed that this model fitting 

procedure produced useful parameter estimates in simulation (see Supplementary Methods 

on simulated Negative Binomial processes).

However, the Markov chains resulting from Model 2 suggested that this model may not 

easily converge to posterior distributions, depending upon the initial conditions and given 

HFO count data. Obtaining model convergence is often difficult with mixture-modeling in 

general, and it was not easily solved when assuming a certain number of brain states in 

our modeling work presented here. For those patients whose data did not converge when 

assuming two brain states, two-state models were enforced by removing non-converging 

Markov Chains in order to achieve convergence across all kept chains. Out of the 6 Markov 

Chains for each model, a chain was removed if (1) its time course over samples did not 

converge to a one-peaked posterior distribution, and (2) if the chain did not converge to the 

remaining majority of other chains (if applicable). We also calculated the Gelman-Rubin 

statistic, R, for each parameter; this compares the estimated between-chain and within-chain 

variances (Gelman and Rubin, 1992). Six patients’ data had Model 2 converge in all six 

chains, five patients’ data had Model 2 converge in five of six chains, one patient’s data 

had Model 2 converge in half the chains, three patient’s data had Model 2 converge in 

two chains, and one patient’s data had Model 2 “converge” with one chain. The posterior 

samples from each chain of 500 samples were combined to form one posterior sample 

between 500 and 3,000 samples for each parameter in each model. Note that removing 

chains is an unorthodox method in Bayesian analysis, and does not strictly guarantee model 
convergence. However, this procedure enabled better prediction of the SOZ than Model 1 in 

some patients, especially when using the clumping coefficient and coefficient of variation as 

shown in Figures 4 and 5. However the non-convergence results may imply that a two-state 

model is not sufficient to describe all HFO dynamics.

3.9. Classification of SOZ and non-SOZ channels

We used estimates of the HFO rate parameter, the clumping coefficient (CC), and the 

coefficient of variation (CV) obtained from the posterior distributions of Model 1 to classify 

channels as SOZ or non-SOZ. Specifically, we took the average across time windows w of 

the posterior medians of λ, ζ, and γ to generate estimates for each iEEG channel e with 

each patient’s data. Note that we used the mean of median posteriors from Model 1 as the 

estimates for rate and the CC instead of the hierarchical mean parameters of HFO rate μ(λ)e 

and CC μ(ζ)e, and we confirmed that the mean of median posteriors were reflective of true 

mean HFO rates and CCs in simulation (see Supplementary Figure 1). In contrast, all HFO 

parameters from Model 2 were estimated by the medians of posterior distributions for each 

brain state k. After finding parameter estimates the brain states were sorted by the average 

amount of standardized mean delta (1–4 Hz) power across all iEEG channels and 5-minute 

windows used in the model, and we will refer to them as brain state A (brain state with 
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higher mean delta power) and brain state B (brain state with lower mean delta power), see 

Figure 7.

We built Receiver Operating Characteristic (ROC) curves by varying the cutoff values for 

classification. ROC curves show the trade-off between true positives (channels identified 

as SOZ by clinicians that are also labeled as candidate SOZ channels by the cutoff value) 

versus false positives. Clinicians and researchers may find ROC curves useful because of 

the possible trade-offs between resecting or not-resecting some identified SOZ tissue. These 

ROC curves show the overall accuracy of our prediction over a continuum of possible 

cutoff values. One ROC curve was created for each patient and each HFO parameter. 

The Area Under the Curve (AUC) was also calculated for each patient and parameter by 

integrating the ROC curves. AUCs were viewed as an overall measure of predictability of 

each parameter for each patient. We evaluated AUC values for each parameter within in each 

patient by (1) deeming AUC > 0.60 as “predictive” and (2) comparing performance of ROC 

curves based on real SOZ and non-SOZ labels to ROC curves based on randomly shuffled 

labels. That is, we randomly shuffled SOZ and non-SOZ labels of each channel used in 

the modeling without replacement 1000 times and calculated 1000 fake AUCs values. We 

then ordered the fake AUCs from smallest to largest for each parameter and patient and 

found the 950th value (95% of the reshuffled samples) to use as an AUC cutoff. If the 

AUC was larger than this AUC cutoff, the AUC was deemed “strongly predictive”. We also 

built Precision-Recall curves (Davis and Goadrich, 2006) that are shown and explained in 

the Supplementary Materials. However, Precision-Recall curves cannot easily be compared 

across patients due to different baseline ratios of SOZ to non-SOZ channels (see Table 1).

4. Data and code availability

Automatically identified HFO counts, standardized delta (1–4 Hz) power, channel 

localizations, and samples from posterior distributions for Models 1–3 are available upon 

request and at https://doi.org/10.6084/m9.figshare.12385613. MATLAB, Python, and JAGS 

data extraction and analysis code are available at https://osf.io/3ephr/ and in the following 

repository https://github.com/mdnunez/sozhfo (as of June 2020 with a major update in 

August 2021).

5. Results

5.1. Small clumping coefficients are predictive of SOZ

The data and modeling show that small clumping coefficients (CC) are predictive of SOZ, 

as judged by evaluating parameter estimates of CC from both models. We will refer to 

clumping coefficients estimated by Model 1 as “CC1”, the clumping coefficients estimated 

by Model 2 in brain state A as “CC2A”, and the clumping coefficients estimated by Model 

2 in brain state B as “CC2B”. The mean and standard deviation of the CC1 AUCs across 

patients were 0.81 ± 0.18, while the same statistics derived from CC2A and CC2B were 0.82 

± 0.14 and 0.75 ± 0.21 respectively. The data of 14 of 16 patients yielded CC1 and CC2A 

that we deemed predictive of SOZ (AUC > 0.60), while the data of 12 patients yielded 

CC2B that were deemed predictive. The ROC curves and distribution of AUCs for the CC 
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parameter are shown in Figure 3. All summary ROC evaluation statistics are given in Table 

2.

Importantly, the prediction of SOZ by the clumping coefficient does not clearly depend upon 

localization of grey matter channels using CT and MRI scans (and exclusion of all other 

channels from the analysis). For instance, small CC2A were predictive of SOZ (AUC > 

0.60) in all 6 patients for which we did not exclude channels that were outside the brain.

By combining all channels across all patients, we can also obtain information about the 

general predictability of SOZ using these parameters. The number of channels used in the 

models varied by patient (minimum of 41, maximum of 172, and a mean and standard 

deviation of 87 ± 39 channels across N = 16 patients, see Table 1), and the number of SOZ 

channels also varied by patient (minimum of 1, maximum of 14, and a mean and standard 

deviation of 7 ± 4). However, combining channels across patients (total channel count of 

1391) provides estimates of the cutoff values for these parameters that could be used to 

identify SOZ channels during interictal periods. The aggregate ROC curves for the clumping 

coefficients estimated using Model 1 and Model 2 are shown in Figure 4. Across all N = 

16 patients, when CC2A less than or equal to 1 (ζ ≤ 1) were treated as indicative of the 

SOZ, the FPR was only 0.31 across all channels, with a corresponding TPR of 0.86. Note 

that CC1≤ 1 estimates would result in a FPR of 0.22 and a TPR of 0.70. A TPR of 1 was 

achieved by treating all CC2A less than or equal to 2.34 (ζ ≤ 2.34) as indicative of the SOZ, 

although this resulted in a FPR of 0.62. The CC2B were not as informative of SOZ.

5.2. Coefficients of variation less consistently predict SOZ

The ability of the coefficient of variation (CV) to predict SOZ was similar, but slightly less 

consistent, than the clumping coefficients. We will refer to CV estimated by Model 1 as 

“CV1”, the CV estimated by Model 2 in brain state A as “CV2A”, and the CV estimated 

by Model 2 in brain state B as “CV2B”. The ROC curves and distribution of AUCs for the 

CV parameter are shown in Figure 5. The mean and standard deviation of the CV1 AUCs 

across patients were 0.79 ± 0.19, while the same statistics derived from CV2A and CV2B 

were 0.77 ± 0.24 and 0.73 ± 0.20 respectively. ROC evaluation statistics based on prediction 

by CV are shown in Table 2.

5.3. Prediction of SOZ using HFO rate is not consistent across patients

In some patients, the HFO rate could be used to identify the SOZ channels in different states 

with success rates similar to the CC and CV parameters. However, large HFO rates were 

not predictive of SOZ in some patients. We will refer to HFO rates estimated by Model 1 

as “HR1”, the HFO rates estimated by Model 2 in brain state A as “HR2A”, and the HFO 

rates estimated by Model 2 in brain state B as “HR2B”. The ROC curves and distribution 

of AUCs for the HFO rates parameter are shown in Figure 6. The mean and standard 

deviation of the HR1, HR2A, and HR2B AUCs across patients were 0.67 ± 0.26, 0.70 ± 0.30 

and 0.63±0.25 respectively. ROC evaluation statistics based on prediction by HFO rate are 

shown in Table 2.
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5.4. Model-derived brain states correspond to sleep and wakefulness

The Negative Binomial mixture model (Model 2) automatically separated windows of time 

into two brain states based on the HFO dynamics in all channels. Brain state labels were thus 

influenced by the HFO dynamics from all channels simultaneously. We found that the brain 

state labels of converged Markov chains tracked known sleep/wake dynamics.

In two patients whose data were sleep staged manually using concurrent scalp EEG, the 

two HFO model-derived brain states blindly separated slow wave sleep (i.e. NREM sleep 

stages 1, 2 and 3) from all other states (REM and wakefulness) as shown in the lower two 

panels of Figure 7. In Patient 15, the congruence between the visually sleep staged data 

and the HFO model-derived brain states from Model 2 was 89.2%, with NREM sleep being 

correctly identified by the model 90.6% of the time and the other states being correctly 

identified 83.3% of the time. In Patient 16, the congruence between the sleep staged data and 

the model-derived brain states was 91.7%, with all states being correctly identified 91.7% of 

the time by the model.

We did not have concurrent EEG, EKG, and EOG in the other patients to evaluate 

the correspondence between sleep stages and model-derived brain states. However, we 

could evaluate how well standardized delta power (1–4 Hz), averaged across electrodes, 

corresponded to the two model-derived brain states, as a proxy for sleep staged data. In half 

of the patients (8/16), we found found that delta power was significantly different in the 

two states (p < .001) using both ANOVA and Kruskal-Wallis tests using cutoff α = .001 

(see last column of Table 1). An additional patient had a significant Kruskal-Wallis test 

(p = .006) using cutoff α = .01, with a small ANOVA p-value (p = .011). And one more 

patient had a significant Kruskal-Wallis test (p = .025) using a cutoff of α = .05. Of the 

six patients without any indication of significant differences in delta power between the two 

model-derived brain states, four did not have localization information to enable exclusion 

of electrodes outside the brain prior to the standardized mean delta calculation. Only two 

of 10 patients for whom we included localization information did not show evidence for 

model-derived brain states consistent with changes in delta power. Note that we explored 

removing delta power outliers across channels (with various cutoffs of 1, 2, 3, and 4 standard 

deviations above the mean power across electrodes in each 5-minute time window) in a 

post-hoc analysis. While this did switch the brain state labels for four patients’ brain states 

(patients 3, 6, 7, and 11), the delta power in these patients still did not clearly differentiate 

between the two states (see the second panel of Figure 7 for an example).

As previously mentioned, we labeled brain state A as the brain state that contained the 

largest mean delta (1–4 Hz) power. However, we have reason to suspect that in at least one 

patient this automatic labeling failed and placed the majority of NREM sleep in brain state 

B. For instance, the HFO count data used in the models from Patient 11 was derived from 

9 hours of neural recordings starting at approximately 22:45 at night, suggesting that the 

majority of the HFO count data should be from NREM periods. However, the largest delta 

power was contained in the brain state that occurred infrequently (see second panel of Figure 

7). Note that this patient did have a significant Kruskal-Wallis test (p = .025) using a cutoff 

of α = .05, suggesting a difference in delta power between the two states. However this 

mislabeling might explain why Patient 11’s HFO parameters during brain state B were more 
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predictive than brain state A, with the largest difference seen in the AUCs based on the CC 

(see Figure 3).

5.5. Assuming two brain states improved SOZ prediction for some patients

We found that assuming two brain states in hierarchical Negative Binomial mixture-models 

improved SOZ prediction in some patients by isolating NREM sleep automatically. This can 

been seen when comparing the SOZ prediction using parameters of Model 1 to Model 2 

after fitting these models to data from each patient. For instance, the clumping coefficients 

(CC) of Patients 5 and 7 from brain state A in Model 2 result in higher AUC values than the 

CC of Model 1 (see Figure 3). This supports prior findings that NREM sleep should be used 

for not only calculating pathological HFO rates (Dümpelmann et al., 2015; von Ellenrieder 

et al., 2016, 2017), but also for calculating pathological clumping coefficients.

However for patients overall, there was not a clear benefit of using Model 2 over Model 1 

because the data across patients was generally predictive of SOZ. We compared the values 

of FPR at which the TPR was 1, and we did not find evidence for a mean difference 

derived from CC1 versus CC2A (p = .337, BF = 0.39, two-sided paired samples t-test) 

nor CV1 versus CV2A (p = .993, BF = 0.26). However, we did find some evidence for a 

mean difference in the FPRs derived from CC1 versus CC2B (p = .017, BF = 3.55) and 

CV1 versus CV2B (p = .004, BF = 10.80). Similarly, we did not find evidence for a mean 

difference in AUCs derived from CC1 versus CC2A (p = .724, BF = 0.27) nor CV1 versus 

CV2A (p = .822, BF = 0.26), while we did find evidence for a mean difference AUCs 

derived from CC1 versus CC2B (p = .006, BF = 8.73) and CV1 versus CV2B (p = .010, 

BF = 5.45). We observed no significant mean differences between the SOZ prediction results 

using HFO rate based on Model 1 versus brain state A in Model 2 nor Model 1 versus brain 

state B in Model 2.

A similarity of prediction between the two brain states in Model 2 could be explained by 

consistent relative differences between channels. For example, although it is known that the 

rate of HFOs increases during NREM sleep (von Ellenrieder et al., 2017), the classification 

accuracy based on the two brain states could be similar if the relative rates between channels 

remain the same. To test this, we first compared the means of the three derived parameters 

across the two brain states in Model 2, collapsed across patients and channels, and we found 

that they were all significantly different. The CC had a mean and standard deviation of 

3.48 ± 7.62 in brain state A and 5.24 ± 8.85 in brain state B collapsed across patients and 

channels (p < .001, BF ≈ 1.337∗1012, two-sided paired samples t-test). The CV had a mean 

and standard deviation of 2.58±2.70 in brain state A and 2.97±1.63 in brain state B collapsed 

across patients and channels (p < .001, BF ≈ 6.583 ∗ 106, two-sided paired samples t-test). 

Note that the mean CC and CV values are quite larger than the smaller predictive values 

(see Figure 4) because SOZ channels made up only a small percentage of total channels 

in our study. The HFO rates had a mean and standard deviation of 0.59±0.56 per second 

in brain state A and 0.47 ± 0.54 per second in brain state B, collapsed across patients 

and channels (p < .001, BF ≈ 4.903 ∗ 108, two-sided paired samples t-test). Then, to test 

whether the model-derived brain states captured independent information about HFOs, we 

calculated the Pearson correlation between the two brain states for the model-derived values 
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of CC, CV, and HFO rates. The mean correlation coefficients of these measures indicated 

that HFO dynamics were similar across the two brain states in most patients, although there 

was a large range of correlation values. The Pearson correlations between brain states for all 

patients were as follows: ρζ = 0.50 ± 0.25 (mean ± standard deviation) for CC, ργ = 0.69 ± 

0.24 for CV, and ρλ = 0.63 ± 0.28 for HFO rates.

6. Discussion

6.1. HFO clumping is a more reliable predictor than HFO rate

HFOs that occur with less clumping behavior (i.e. HFO occurrences that more closely 

follow a Poisson process) are more consistently predictive of SOZ than a high rate of 

HFOs. The clumping coefficient (CC) and coefficient of variation (CV) were measured 

using hierarchical Negative Binomial models. Small CC and small CV were predictive of 

SOZ in most patients. In a second model, we found two CC and CV per iEEG channel using 

a model of two brain states obtained from a mixture of Negative Binomial distributions of 

HFO counts. CC were found to be more predictive of SOZ in the brain state corresponding 

to large delta power, likely corresponding to NREM sleep in at least half of the patients. 

Although CC based on all the interictal data using Model 1 were also predictive of SOZ. 

High HFO rates were also informative of the SOZ, but were less consistently predictive 

across patients than CC and CV. Our results also suggest that if HFO CC, CV, and rates from 

a single brain state are to be used in prediction of the SOZ, they should be assessed during 

NREM sleep. This supports previous findings in the field (Dümpelmann et al., 2015; von 

Ellenrieder et al., 2016, 2017).

6.2. Towards automatic classification of SOZ with interictal HFOs

Originally, we hypothesized that using mixture-modeling to automatically identify periods 

of NREM sleep would produce better prediction of SOZs. However, we did not find 

evidence that mixture-modeling greatly improved SOZ prediction, compared to Model 1, 

over all patients. While there were other differences between these two models, the benefit 

of mixture-modeling for clinical evaluation is not clear, compared to calculating parameters 

such as the clumping coefficient (CC) using all available data. These findings could be 

conflated if some patients had either only periods of wakefulness data or NREM sleep in the 

interictal subsets of data used in the modeling. This could be one reason why the delta power 

(1–4 Hz) of only half of the patients was significantly different between the two brain states. 

Qualitatively, all patients had periods of increased delta power (see Supplementary Figures 2 

and 3). However, relative delta power could only be compared to ground truth expert sleep 

staging in Patients 16 and 17. Other recent studies have used quantitative methods to sleep 

stage iEEG data and compared the results to expert sleep staging in all subjects (Reed et al., 

2017; Kremen et al., 2019).

On the other hand, in some studies it may be desirable to identify periods of NREM sleep. 

In these patients, fitting mixture models is an effective way of obtaining information about 

HFO dynamics without the need for concurrent EEG and manual sleep staging. Using 

the techniques presented here, there was no need to sleep stage the data (such as in von 

Ellenrieder et al., 2017) because the Negative Binomial (and Poisson, see Supplementals) 
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mixture models automatically identified changes in HFO dynamics over time. Approximate 

sleep stages were automatically obtained as a result of the distribution demixing. Our 

method of performing SOZ classification with HFO mixture modeling discussed in this 

paper should be compared to (1) differentiating NREM from REM and awake prior to HFO 

rate analysis, (2) analyzing HFO dynamics coincident with high delta (1–4 Hz) power as 

a proxy for NREM sleep, and (3) using automatic iEEG sleep-staging (Reed et al., 2017; 

Kremen et al., 2019).

The similarity of HFO rates in REM sleep compared to HFO rates during wakefulness has 

previously been shown (Staba et al., 2004). In two patients, we found that the dynamics 

of HFOs during REM and wakefulness are often similar within each channel. And in at 

least half the patients, this model-derived brain state B, the brain state with the smaller 

delta power (1–4 Hz), likely reflects REM and wakefulness because there was a significant 

difference in delta power between the two states. And we confirmed that model-derived 

brain state A did reflect NREM sleep in two of these patients whose data was sleep staged. It 

is also possible that the mixture modeling captures interictal HFO dynamics independent of 
sleep stage that are predictive of SOZ. However, this possibility should be explored further 

in other datasets.

6.3. Limitations of this study

Differences across patients and channels (such as differences in electrode size and locations, 

differences in brain shape and volume conduction, differences in disease state, etc.) may 

all play a role in the potential of HFOs to predict pathological tissue. In our data, most 

electrodes were placed in the temporal or frontal lobes based on the expected locus of 

epilepsy and other surgical considerations, and thus our approach may need to be validated 

using data from other cortical locations. In addition, we did not show that the SOZ could 

be predicted in Patient 14 using any parameter (e.g. see Figure 3). This patient had only 

one channel identified as SOZ by clinicians, making it difficult to evaluate the prediction 

of SOZ and possibly led to these near-chance outcomes. However the methods presented in 

this paper were promising for the limited number of patients and brain regions explored in 

this study. The importance of validating the predictive nature of these methods in additional 

patients is obvious and cannot be overstated.

Note also that only 4 of the 16 patients were completely seizure-free after surgery, denoted 

by Engel Outcomes IA in Table 1 (Engel, 1993). This is consistent with the general notion 

that treatment of the seizure onset zone is often insufficient to prevent the occurrence of 

seizures. Moreover, in some patients, the SOZ could not be completely removed during 

surgery. Therefore future studies should include a more detailed analysis of electrodes 

within the resected volume in order to make a quantitative comparison to surgical outcome. 

This is a more valuable test of clinical utility, as it evaluates the ability of the quantitative 

method to identify the epileptogenic zone, rather than the seizure onset zone (for which 

standard clinical criteria already exist).

The choice of automatic detection algorithm and detection parameters will also have a 

significant impact on the results. We chose a simple algorithm, due to the large amount of 

data to be analyzed, but implementation of a more complex algorithm with post-processing 
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steps to reject false positive detections based on the time-frequency decomposition may 

improve the specificity of the detection and classification of SOZ channels. For example, if 

the HFOs occur in a regular, oscillatory pattern, the temporal dynamics may appear more 

random or clumped with the addition of false positives due to artifacts. The use of a more 

specific detector may also enable the application of these methods to scalp EEG (Zelmann et 

al., 2014; von Ellenrieder et al., 2014; Kobayashi et al., 2015; Gotman, 2018; McCrimmon 

et al., 2021), as false positive detections due to muscle artifacts would be a source of noise 

when assessing HFO dynamics on the scalp (Nunez et al., 2016; Bernardo et al., 2018).

In our analysis, we treated all detected events equally, without attempting to separate 

pathological and physiological HFOs (e.g. see Liu et al., 2018). It is possible that these 

two types of HFOs have similar rates, but different temporal dynamics, in which case 

our proposed method could help distinguish between them. However, here we could only 

classify events as being inside and outside the SOZ, which would include both physiological 

HFOs and artifacts. Therefore, this question must be more explicitly studied with cognitive 

paradigms to elicit physiological HFOs, or the analysis could focus on the fast ripple 

frequency band (250–500 Hz), which is hypothesized to contain only pathological HFOs.

There may also be differences in pathological HFO dynamics between intracranial depth 

electrodes and cortical surface electrodes. These two types of sensors record from different 

amounts of cortical depth and volume, and intrinsic differences in neural behavior between 

different spatial scales could exist (Nunez et al., 2019). We might even expect differences 

in neural behavior between iEEG electrodes of different diameters at similar locations 

within the same patient, due to these reasons (Nunez et al., 2019). Lastly, we would expect 

some depth iEEG electrodes to be contaminated by noise, as the most lateral channels are 

sometimes outside the brain. There have been conflicting reports on the effect of electrode 

size on the ability to measure HFOs (Worrell et al., 2008; Chaˆtillon et al., 2013); in this 

study, we collapsed across all types of intracranial electrodes.

Finally, our results contrast with previous results, such as work by Sumsky and Santaniello 

(2018), who found that bursting patterns of HFOs are more likely to be present in the SOZ. 

Both studies assumed that 1-second windows of HFO counts were described by particular 

count processes. However other modeling assumptions do differ between the two studies, 

which could lead to contrasting results. We used Negative Binomial models to parameterize 

the count process, while Sumsky and Santaniello (2018) used a non-stationary Point Process 

Model. We also built full ROC curves for SOZ classification, which were not used in the 

previous work. We therefore found it difficult to directly compare the classification results 

of both works. Further study is needed to understand differences in model predictions tested 

against large amounts of data.

6.4. Future improvements to algorithmic implementation

Faster methods of fitting Poisson and Negative Binomial mixture models are necessary for 

these methods to be applied in a clinical setting. In this study, we wished to fit hierarchical 

models in order to understand the relationship between channels and patients. However, in 

future studies, simple algorithms to fit mixture models of Negative Binomial distributions 

and other distributions, such as presented by (Nagode, 2015), may be sufficient.

Nunez et al. Page 17

J Neural Eng. Author manuscript; available in PMC 2023 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Some models presented here did not converge as judged by the Gelman-Rubin statistic, R, 

although the median posterior parameters were still informative for SOZ classification. This 

seemed to be due to the non-convergence of specific HFO rates and oscillatory dynamics for 

subsets of channels in some patients. This could be caused by artifacts being introduced 

into the HFO rates by the automatic detection process or due to actual physiological 

or pathological deviations from that channel’s rate in that brain state. It could be that 

the adaptive noise floor, which changed every 5 minutes within each channel using our 

automatic HFO detector (Charupanit and Lopour, 2017), injected artifactual HFO dynamics 

into the models. It is possible that fitting an HFO detector and Poisson / Negative Binomial 

hierarchical models concurrently would alleviate this convergence issue.

Model convergence is usually a bare minimum for hierarchical Bayesian model building. 

However, because the outcome of this study was SOZ classification and the non-converged 

models were still able to classify SOZ and non-SOZ, the results are still clinically relevant. 

Models that allow “noise” in the HFO dynamics to occur with some limited frequency 

could alleviate this issue. This could facilitate model convergence and may even yield better 

classification of the SOZ. In pilot analyses, we were unable to fit mixture models with 

three or four brain states in JAGS with sufficient convergence of chains. Thus, the resulting 

posterior distributions of HFO parameters were difficult to interpret. We are unsure if the 

data would be better described by a model with more brain states. Future work should seek 

to expand the number of brain states while allowing for artifactual HFO dynamics.

More complex hierarchical Bayesian models can be fit that provide further inference about 

the HFO dynamics and SOZ prediction. In particular, hierarchical Bayesian models that 

predict SOZ directly (instead of that prediction being derived from the posterior distributions 

of parameters) would be useful to assess the uncertainty in prediction. Also, it would be 

desirable to have a single hierarchical Bayesian model that includes all patients’ data, 

to understand commonalities across all patients and how SOZ prediction varies with 

individual differences in disease state. However, the computational load of this model would 

be particularly high with the multiple hours of HFO count data, and certain “big data” 

management schemes would have to be deployed. Future work should also seek to combine 

both HFO dynamics (CCs and CVs) and HFO rates for SOZ prediction within hierarchical 

Bayesian models, especially because some patients’ SOZ were better predicted by HFO 

rates (compare Figures 3, 5, and 6). This may suggest that complementary information for 

SOZ prediction is provided by HFO dynamics and HFO rates. Such hierarchical Bayesian 

models should be compared to similar endeavors to combine features for SOZ prediction 

during interictal periods using machine learning and artificial intelligence techniques 

(Varatharajah et al., 2018; Cimbalnik et al., 2019; Weiss et al., 2019). Finally, including 

other possibly predictive data such as delta (1–4 Hz) power, sleep stage, patient information, 

etc. directly into these hierarchical models could improve SOZ prediction. We felt as though 

many of these models were outside the scope of this paper, and each new model developed 

must be rigorously tested and tuned. Thus, we view this paper as the first step into a possible 

use of hierarchical Bayesian techniques in the prediction of SOZ with interictal iEEG data, 

and we look forward to further work on the topic.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Modulation of HFO rate over 24 hours in one example patient. HFOs were automatically 

detected using the algorithm by Charupanit and Lopour (2017). Automated HFO counts per 

minute are shown from an iEEG channel in the left parahippocampal cortex (blue line) and 

an iEEG channel in the medial temporal gyrus (green line), with HFO counts per minute 

denoted by the right y-axis. These counts are overlayed on a grey-scale color map of low 

frequency band power (1–20 Hz) from the same left parahippocampal iEEG channel during 

the same 24 hour time period. Darker shading indicates higher power in the frequency 

band denoted by the left y-axis. HFO counts (blue and green lines) are modulated by the 

sleep-wake cycle (von Ellenrieder et al., 2017), as evidenced by their correlation with delta 

(1–4 Hz) frequency power (grey-scale color map). HFOs are typically analyzed during 

slow-wave sleep. However, with the method presented here, the data does not need to be 

visually sleep staged prior to classification of SOZ and non-SOZ channels.
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Figure 2: 
Top: Simulated instantaneous HFO rates (per second) from a Negative Binomial process 

with a small clumping coefficient (ζ = 0.01, near a Poisson process) over a 60 minute 

period. Electrodes that contained Negative Binomial processes with small clumping 

coefficients were found to be predictive of SOZ. Middle: Simulated instantaneous HFO 

rates from a Negative Binomial Process with some clumping (ζ = 1). Bottom: Simulated 

instantaneous HFO rates from a Negative Binomial Process with significant clumping (ζ = 

10). All simulations had a HFO rate of λ = .1 per second.
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Figure 3: 
SOZ prediction based on the clumping coefficients (CC) estimated by Model 1 (Top) and 

Model 2 (Bottom). (Left) ROC curves when using small values of the CC to identify SOZ 

channels. ROC curves for individual patients (N = 16) are displayed using fine lines, and the 

average is shown in bold. The bold dashed line indicates an ROC at chance prediction. Data 

points on the top of these two plots indicate the false positive rate (FPR) for which the true 

positive rate (TPR) is 1, with patient labels to compare across plots. From Model 2, the brain 

state with the most delta (1–4 Hz) power in each patient was labeled State A (green lines), 
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while the other model-found brain state was labeled State B (blue lines). (Right) Distribution 

of AUC values based on CC for each patient. The exact AUC values are denoted as 

hexagons or stars on the x-axis, while the shaded distributions are a density approximation 

from N = 16 values. Hexagons denote patients where the analysis was performed exclusively 

on grey matter channels, while stars denote patients for which all channels were included. 

Each point is labeled with the corresponding patient number, and the y-values are sorted by 

AUC; however, the y-values have no other meaning. The bold dashed lines indicate an AUC 

of 0.5.
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Figure 4: 
The aggregate ROC curves for all included channels (total channel count of 1391) across all 

patients (N = 16) when using small values of the HFO clumping coefficient (CC) estimates 

to identify SOZ channels. A few representative cutoff CC values are shown in the text boxes, 

such that values smaller than the CCs in text boxes generated the indicated points on the 

ROC curves across all included patients. (Left) Aggregate ROC curve generated from CC 

estimates using Model 1 (CC1). (Right) Aggregate ROC curve generated from CC estimates 

using Model 2. The brain state with the most delta (1–4 Hz) power in each patient was 

labeled brain state A while the other model-found brain state was labeled brain state B. The 

green curve was generated from all CCs for each channel from all patients’ model-found 

brain states A (CC2A). The blue curve was generated from all CCs for each channel from all 

patients’ model-found brain states B (CC2B). The bold dashed lines indicate an AUC of 0.5.
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Figure 5: 
SOZ prediction based on the coefficients of variation (CV) estimated by Model 1 (Top) and 

Model 2 (Bottom). (Left) ROC curves when using small values of the CV to identify SOZ 

channels. (Right) Distribution of AUC values based on CV for each patient. Readers are 

referred to the caption of Figure 3 for a detailed description of the plot elements.
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Figure 6: 
SOZ prediction based on the HFO rate estimated by Model 1 (Top) and Model 2 (Bottom). 

(Left) ROC curves when using large values of the HFO rate to identify SOZ channels. 

(Right) Distribution of AUC values based on HFO rate for each patient. Readers are referred 

to the caption of Figure 3 for a detailed description of the plot elements.
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Figure 7: 
Model-derived brain states correspond to sleep and wakefulness. Representative examples 

are shown from Patients 1, 11, 15, and 16 with brain states A (dark green dots) and B (dark 

blue dots) obtained automatically every 5 minutes from Model 2. The labels of states A 

and B were assigned using the mean slow-wave delta power (1–4 Hz; standardized mean 

across channels), with brain state A containing higher delta power. Black lines represent the 

standardized mean delta power across channels. In patients 15 and 16, who had concurrent 

iEEG and scalp EEG, the HFO model-derived brain states differentiated slow wave sleep 

(i.e. NREM sleep stages 1, 2 and 3; denoted by light green dots in the upper portion of the 

bottom two subplots) from all other states (REM sleep and wakefulness; denoted by light 

blue dots in the lower portion of the bottom two subplots). This determination was made 

based on a comparison to expert sleep staging.
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Table 1:

Clinical information for each patient including: age, gender (G), epilepsy diagnosis, surgery performed, Engel 

outcome (Engel, 1993), electrode types (Elec), number of SOZ channels used in model fitting (SOZ), number 

of non-SOZ channels used in model fitting (nSOZ), consecutive interictal hours of iEEG used in the model 

fitting, and the start time of the consecutive hours used in the model fitting in 24-hour format.

Patient Age G Diagnosis Surgery Engel Elec SOZ nSOZ Hours Start

1 50 M RTLE RTLo IB D 4 41 13
21:15

+

2 23 F LTLE LTLo IIIA D 4 44 25
15:40

+

3 34 M RTLE, BTLS RTLo IA D 3 41 15 18:05

4 21 M
RTLE, A

1
RTLo

2 IIB M 13 110 16
16:23

$

5 * 21 F RFLE RNS ? S 9 111 12
16:51

+

6 * 28 F
RFLE, CD

1 RFLe, PRFLo ? M 4 92 5 17:08

7 * 28 M LTLE LTLo IIIA D 13 113 9 09:53

8 * 44 M
RFLE, CD

1 RFLo IA S 5 123 12 17:19

9 57 F LTLE LTLo IA D 5 62 9
00:28

+

10 34 M BTLE RNS IIA D 14 40 4
15:10

+

11 69 F RTLE RTLo IIIA D 2 39 9
22:45

#

12 * 18 M
LTLE, A

1 LTLo IIA M 11 161 7 14:43

13 22 F LTLE RNS IIIA D 2 75 5 05:03

14 53 F LTLE LTLo IA D 1 69 4
20:44

+

15 50 F BTLE RNS IIIA D 11 49 10
22:38

+

16 * 27 M BTLE, RTLS RNS IVB D 11 109 10
20:38

+

*
denotes patients for whom all channels were used to fit data to the mixture models, while we included only grey matter localized channels for 

the other patients. Abbreviations: P = partial, L = left, R = right, B = bilateral, F = frontal, T = temporal, L = lobe, E = epilepsy, S = sclerosis, 
CD = cortical dysplasia, A = reactive astrocytosis and cell loss, Lo = lobectomy, Le = lesionectomy, RNS = implanted responsive neurostimulator. 
Patients 5 and 6 had unknown Engel Outcomes. The electrode types were: D = depth including SEEG, S = subdural electrocorticography (ECoG) 
grids or strips, M = a mix of both types.

1
Confirmed using surgical pathology in these patients.

2
This patient also had hypothalamic hamartoma ablation performed.

+
These patients had delta power that was significantly different with p < .001 between the two states in Model 2 using a Kruskal-Wallis test.

$ and #
indicate the same significance information when using cutoffs α = .01 and α = .05 respectively.
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Table 2:

Evaluation of ROCs of SOZ prediction by each estimated parameter. The following prediction metrics are 

shown across the N = 16 patients: Means and standard deviations of the Area Under the Curves (AUC), 

number of patients with AUC > 0.60 (Pred.), number of patients with AUC larger than the cutoff generated 

from randomly shuffled labels (Strong Pred.), number of patients with false positive rates less than 0.60 for 

true positive rates equal to 1 (FPR< 0.60), and number of patients with false positive rates less than 0.20 

for true positive rates equal to 1 (FPR< 0.20). CC denotes prediction metrics by Clumping Coefficients. 

CV denotes prediction metrics by Coefficients of Variation. HR denotes prediction metrics by HFO Rate. 1 

denotes prediction metrics estimated from parameters of Model 1. 2A denotes prediction metrics estimated 

from parameters of State A of Model 2. 2B denotes prediction metrics estimated from parameters of State B of 

Model 2.

Parameter AUC Pred. Strong Pred. FPR< 0.60 FPR< 0.20

CC1 0.81 ± 0.18 14 12 12 6

CC2A 0.82 ± 0.14 14 13 14 6

CC2B 0.75 ± 0.21 12 9 10 4

CV1 0.79 ± 0.19 12 10 12 8

CV2A 0.77 ± 0.24 11 10 13 7

CV2B 0.73 ± 0.20 11 8 12 4

HR1 0.67 ± 0.26 9 9 11 5

HR2A 0.70 ± 0.30 10 9 11 6

HR2B 0.63 ± 0.25 8 7 10 3
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