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Phylogenetic trait-based analyses of ecological networks

NICOLE E. RAFFERTY
1

AND ANTHONY R. IVES

Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706 USA

Abstract. Ecological networks of two interacting guilds of species, such as flowering
plants and pollinators, are common in nature, and studying their structure can yield insights
into their resilience to environmental disturbances. Here we develop analytical methods for
exploring the strengths of interactions within bipartite networks consisting of two guilds of
phylogenetically related species. We then apply these methods to investigate the resilience of a
plant–pollinator community to anticipated climate change. The methods allow the statistical
assessment of, for example, whether closely related pollinators are more likely to visit plants
with similar relative frequencies, and whether closely related pollinators tend to visit closely
related plants. The methods can also incorporate trait information, allowing us to identify
which plant traits are likely responsible for attracting different pollinators. These questions are
important for our study of 14 prairie plants and their 22 insect pollinators. Over the last 70
years, six of the plants have advanced their flowering, while eight have not. When we
experimentally forced earlier flowering times, five of the six advanced-flowering species
experienced higher pollinator visitation rates, whereas only one of the eight other species had
more visits; this network thus appears resilient to climate change, because those species with
advanced flowering have ample pollinators earlier in the season. Using the methods developed
here, we show that advanced-flowering plants did not have a distinct pollinator community
from the other eight species. Furthermore, pollinator phylogeny did not explain pollinator
community composition; closely related pollinators were not more likely to visit the same
plant species. However, differences among pollinator communities visiting different plants
were explained by plant height, floral color, and symmetry. As a result, closely related plants
attracted similar numbers of pollinators. By parsing out characteristics that explain why plants
share pollinators, we can identify plant species that likely share a common fate in a changing
climate.

Key words: climate change; interaction network; linear mixed models; phenology; phylogenetic signal;
plant–pollinator interactions.

INTRODUCTION

Currently, there is much concern that climate change-

induced phenological shifts could disrupt ecological

interactions, such as those between plants and pollina-

tors (Hegland et al. 2009). Many plants are flowering

earlier in response to warmer temperatures (Bradley et

al. 1999, Fitter and Fitter 2002, Miller-Rushing and

Primack 2008), and some pollinators have also exhibited

shifts in the timing of life-history events (Roy and

Sparks 2000, Stefanescu et al. 2003, Gordo and Sanz

2005). There is a growing number of empirical examples

of temporal mismatches between plants and pollinators

(Wall et al. 2003, Kudo et al. 2004, Doi et al. 2008,

McKinney et al. 2012), and simulations and models of

phenological shifts (Memmott et al. 2007, Gilman et al.

2012) also point to the potential for disrupted interac-

tions under climate change. A central concern is that

temporal mismatches between plants and pollinators

become sufficiently extreme that coextinction occurs

(reviewed by Hegland et al. [2009] and Kiers et al.

[2010]).

To date, the primary tools used to analyze plant–

pollinator interactions have included ordination meth-

ods (e.g., principal components analyses), measures of

community similarity, and, more recently, tools from

network analysis. These techniques have been used to

explore how pollinator communities vary across time

(Alarcón et al. 2008, Petanidou et al. 2008), space (Yates

et al. 2007, Davis et al. 2008, Kaiser-Bunbury et al.

2009), and plant species (Bosch et al. 1997, Wilson et al.

2004, Morales and Aizen 2006, Kimball 2008, Lázaro et

al. 2008, Winfree et al. 2008, Ollerton et al. 2009). Some

studies have linked variation in pollinator community

composition with explanatory factors (Bosch et al. 1997,

Potts et al. 2003, Morales and Aizen 2006, Lázaro et al.

2008), but only a few have incorporated phylogenetic

relationships among plants or pollinators (Rezende et al.

2007, Vázquez et al. 2009). The inclusion of phylogeny is

important because it not only reveals important drivers

of community patterns but also removes potentially
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spurious associations that arise from phylogenetic

nonindependence (Felsenstein 1985, Garland et al.

1992).

Here, we develop methods for analyzing bipartite

ecological networks, incorporating information on the

phylogenies of the two guilds and species traits that

could affect the interactions between guilds. Our

approach uses linear mixed models (LLM; Gelman

and Hill 2007, Bolker et al. 2009) that are tailored for

phylogenetic analyses. These phylogenetic linear mixed

models (PLMMs) treat the strengths of pairwise

interactions (e.g., visitations of a pollinator species to

a plant species) as the dependent variable, and

incorporate phylogenies as anticipated covariances

among these interactions. Because PLMMs are model

based, parameter estimation and statistical inference

(hypothesis tests, confidence intervals, etc.) can be

performed using maximum likelihood. Thus, PLMMs

give a statistically robust approach for analyzing

bipartite networks.

We use PLMMs to explore a community of pollina-

tors of prairie wildflowers, specifically addressing the

potential vulnerability of this community to climate-

driven shifts in phenology. The data come from an

experiment designed to assess the potential for pheno-

logical mismatches between pollinators and the plants

(Rafferty and Ives 2011). Of the 14 perennial plant

species, six have exhibited earlier flowering over the last

70 years (‘‘advanced-flowering species’’), whereas the

remaining eight have not (Fig. 1). We experimentally

manipulated flowering onset in greenhouses and then

placed plants in the field before natural flowering would

have begun. We found that, of the six advanced-

flowering species, five experienced more pollinator visits

when experimentally forced to flower even earlier,

whereas of the eight historically unchanged plants, only

one experienced greater pollinator visits to earlier

flowers. Therefore, although there is a risk of pheno-

logical mismatches for those six advanced-flowering

species, this risk was not realized for five of the species

because their pollinators were common even earlier in

the season (Rafferty and Ives 2011). We use PLMMs to

ask whether differences in the pollinator species visiting

different plants can explain the apparent resilience of the

six advanced-flowering plants to mismatches. Do these

six species have a distinct subcommunity of pollinators

FIG. 1. Data for the number of visits to different plant species by different pollinator taxa. The phylogeny of the pollinators is
given on the left, and the phylogeny of the plants is given along the top. Plant species are as follows: PD, Phlox divaricata; AQC,
Aquilegia canadensis; GM, Geranium maculatum; ANC, Anemone canadensis; TO, Tradescantia ohiensis; ASC, Astragalus
canadensis; AT, Asclepias tuberosa; AI, Asclepias incarnata; MF,Monarda fistulosa; VS, Verbena stricta; DC, Dalea candida; DP, D.
purpurea; VV, Veronicastrum virginicum; and MP, M. punctata. Underlined species are those that are flowering significantly earlier.
Superscripts indicate the order of flowering onset by week; species that share numbers begin flowering in the same week.
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that are available early in the season? And are these

pollinators phylogenetically related to each other? We

also ask whether phylogenetically related plants, or

plants sharing the same traits, are more likely to have

the same pollinator communities; this will identify

subsets of plants that, by sharing the same pollinators,

will likely share the same fate if climate change were to

affect pollinator phenology.

METHODS

We begin by constructing a simulation model of

plant–pollinator community assembly that incorporates

phylogenetic and plant trait information; although we

describe the model in terms of plants and pollinators, it

would equally apply to any bipartite community. We use

the simulations both to show how ecological processes

can generate patterns in community assembly and to

provide data to test the PLMM methods. We then

present the PLMMs and apply them to the simulated

data. The first PLMM with plant traits mirrors the

simulation model, whereas the second PLMM includes

only phylogenetic associations; these associations are

generated by the plant traits in the simulation model,

but no information on plant traits is available for

statistical fitting. Therefore, fitting the simulated data

with the second PLMM tests the ability of the model to

detect emergent phylogenetic patterns from underlying

trait-based processes. Finally, we apply the methods to

the real plant–pollinator data.

Simulation model

The simulation model is based on the experimental

data with n¼ 22 pollinator and m¼ 14 plant species with

phylogenies given in Fig. 1. It has the form of a

regression of interaction strengths on plant trait values

y ¼ apol þ bpolxplt þ e: ð1Þ

Here, y is a measure of the strength of interaction

between pollinator (pol) and plant (plt) species, such as

the log number of pollinator visits to a plant. We assume

that each plant has a trait value xplt, and that closely

related plant species can be more likely to have the same

values; specifically, we assume the variance of xplt is

given by an m-dimensional Gaussian random variable

with mean 0 and covariance matrix r2
KImþr2

LVm, where

Im is the m 3 m identity matrix, and Vm is a covariance

matrix that contains phylogenetic correlations among

species. The terms r2
K and r2

L scale variances so that

when r2
L¼ 0, there is no phylogenetic correlation among

values of xplt, while when r2
K ¼ 0 the covariances are all

phylogenetic. To derive a form for Vm, we assume that,

when r2
K ¼ 0, xplt evolves according to a Brownian-

motion model of evolution, so the theoretical covariance

in values of xplt between two plants is proportional to

their shared branch length on the phylogenetic tree

(Martins and Hansen 1997); specifically, the element vjk
of the matrix Vm is proportional to the height of the

most recent node shared by taxa j and k.

Similar to xplt, there is both independent and

phylogenetic variation in the mean abundances of

pollinators, with the intercept apol having a Gaussian

distribution with covariance matrix r2
AInþ r2

BVn. If r2
B

¼ 0, all variation among pollinators is independent,

whereas when r2
A ¼ 0, all variation is phylogenetic. We

assume that the phylogenetic covariance matrix for the n

pollinators, Vn, is generated by Brownian motion

evolution up the pollinator phylogenetic tree. We also

assume that the slope of response of pollinators to

variation in plant trait values, bpol, varies among

pollinators; bpol has a Gaussian distribution with mean

b and covariance matrix r2
CInþr2

DVn. Thus, pollinators

may respond differently to the plant trait, and these

differences may show phylogenetic signal. Finally,

residual (uncorrelated) variation in y is given by e,

which is assumed to be an independent Gaussian

random variable with mean 0 and variance r2
e .

In addition to simulations of y as a continuous

variable, we also simulated the case in which only the

presence/absence of interactions between plants and

pollinators are known. We simulated these binary data

by generating values of y using Eq. 1, computing the

inverse logit of y, l ¼ ey/(1 þ ey), and then selecting 1

with probability l and 0 otherwise.

PLMM with plant traits

The PLMM we used to test for an effect of plant traits

on the strengths of interactions between plants and

pollinators is

Yi ¼ apol½i� þ Bpol½i�xplt½i� þ ei

Bpol½i� ¼ bþ Cpol½i� þ Dpol½i�

C ; Gaussianð0;r2
CInÞ

D ; Gaussianð0;r2
DVnÞ

e ; Gaussianð0;r2
eInmÞ: ð2Þ

This is similar in structure to the simulation model. The

value Yi gives the interaction strength between a plant

and a pollinator species for observation i in the data set,

so i takes values from 1 to nm. The trait values for plant

species are given in the independent variable xplt[i], which

is written using the function plt[i] that gives the identity

of the plant species corresponding to observation i in the

data set (Gelman and Hill 2007:251–252). Pollinators

are assumed to have intercepts apol[i] that are estimated

as separate values for each species (‘‘fixed effects’’ in the

lexicon of mixed models); therefore, there are n

estimated values summarized by apol[i], where pol[i]

maps the appropriate pollinator species onto the datum

October 2013 2323PHYLOGENETIC ANALYSES OF NETWORKS



i. The slopes Bpol[i] that give the pollinator-specific

responses to plant trait xplt[i] is a Gaussian random

variable (‘‘random effect’’) with species-wide mean b and

covariance matrix r2
CIn þ r2

DVn. As in the simulation

model, we assume that Vn is the n3 n covariance matrix

corresponding to the pollinator phylogeny under the

assumption of Brownian motion evolution. Finally,

residual variation is given by ei, which is assumed to

be an independent Gaussian random variable with mean

0 and variance r2
e .

PLMM for phylogenetic associations

We built a second PLMM to investigate patterns

reflecting the phylogenetic relationships among pollina-

tors and the phylogenetic relationships among plants.

This PLMM does not include plant traits, although it

identifies the existence of patterns that could be driven

by unknown traits

Yi ¼ aþ apol½i� þ bpol½i� þ ci þ dplt½i� þ fplt½i� þ gi þ hi þ ei

a ; Gaussianð0;r2
aInÞ

b ; Gaussianð0;r2
bVnÞ

c ; Gaussian
�

0; kronðIm;r
2
cVnÞ

�

d ; Gaussianð0;r2
dImÞ

f ; Gaussianð0;r2
f VmÞ

g ; Gaussian
�

0; kronðr2
gVm; InÞ

�

h ; Gaussian
�

0; kronðr2
hVm;VnÞ

�

e ; Gaussianð0;r2
eInmÞ: ð3Þ

The constant a gives the global mean strength of

interactions. The following three random variables

apol[i], bpol[i], and ci incorporate variation among

pollinator species; the three random variables dplt[i],

fplt[i], and gi incorporate variation among plant species;

hi contains interactions between the phylogenies of

pollinators and plants; and ei gives the residual

variation. In more detail, the n values of apol[i] give

differences among pollinators in overall interaction

strengths and are assumed to be drawn independently

from a Gaussian distribution with mean 0 and variance

r2
a . The n values of bpol[i] are similar, except they are

assumed to be drawn from a multivariate Gaussian

distribution with covariance matrix r2
bVn reflecting the

pollinator phylogeny. Incorporating both random and

phylogenetic variation among pollinators gives a way to

assess the strength of phylogenetic signal in the data; the

correlation between pollinators j and k is (r2
bvjk)/(r

2
a þ

r2
b), so the greater the value of r2

b relative to r2
a , the

larger the phylogenetic covariances among species. The

term ci assesses whether phylogenetically related polli-

nators are more likely to visit the same plant species.

The covariance matrix for ci is constructed using the

Kronecker product, kron(Im,r2
cVn). This sets the co-

variance between pollinators j and k to r2
cvjk for visits to

the same plant species, but to 0 otherwise. Because

variation in the mean value of Y among pollinators is

already incorporated into apol[i] and bpol[i], ci includes

only that covariance between pollinators visiting the

same plant that cannot be attributed to similarities in

their visitation frequencies. The random terms for plant

species, dplt[i], fplt[i] and gi, are defined in the same way as

those for pollinators. The term hi depends on the

phylogenies of both pollinators and plants given

through the matrix kron(r2
hVm, Vn). If vjk is the jkth

element of Vn, and uqr is the qrth element of Vm, then hi
incorporates the correlation between pollinator j on

plant q and pollinator k on plant r as the product vjkuqr;

this ‘‘coevolutionary’’ model of species interactions is the

same as that used by Ives and Godfray (2006).

From Eq. 3, a statistical test for phylogenetic

differences in mean visitation frequencies among polli-

nators is whether r2
b . 0, and a test for whether

phylogenetically related pollinators are likely to visit the

same plant is whether r2
c . 0. Similarly, a test for

phylogenetically related plant species attracting greater

abundances of pollinators is whether r2
f . 0, and a test

for phylogenetically related plants attracting similar

abundances of a given pollinator is whether r2
g . 0.

Finally, a test of whether the visitation frequency of

pollinators depends simultaneously on the pollinator

and plant phylogenies is whether r2
h . 0. Eq. 3 could be

modified in numerous ways. For example, if we were not

interested in the plant phylogeny and wanted to factor

out differences among plants in order to focus on the

pollinators, we could replace the constant a with a

categorical variable aplt[i] for plants (i.e., a set of m

constants, one for each plant) and then remove the terms

dplt[i], fplt[i], gi, and hi. Ives and Helmus (2011) present

additional model structures for presence/absence data

that could be modified for continuous-valued data as

analyzed here.

We fit the PLMMs (Eqs. 2 and 3) to both simulated

and real data using restricted maximum likelihood

(REML). Estimation can be performed using software

such as the lme function in the nlme package of the R

programming language. We performed the analysis in

Matlab (MathWorks 2005) (Supplement). Statistical

NICOLE E. RAFFERTY AND ANTHONY R. IVES2324 Ecology, Vol. 94, No. 10



significance of the variance estimates r2 was determined

with a likelihood ratio test. Because estimates of r2 are

constrained to be nonnegative, the ratio of likelihoods

between models with and without r2 is a 50:50 mix of v2
0

and v2
1 distributions (Self and Liang 1987, Stram and

Lee 1994); thus, the P values given by the constrained

likelihood ratio test are one-half the values that would

be calculated from a standard likelihood ratio test using

v2
1.

Data set

We analyzed data from an experiment on prairie

flowers in which potted plants from 14 species were

forced to flower in a greenhouse and placed in the field;

pollinator visits to plants were then observed (see Plate

1). The analyses here focus on the pollinator commu-

nities, resolving these communities to a finer taxonomic

level than done in the previous analysis that focused on

visitation rates aggregated among pollinators (Rafferty

and Ives 2011).

Data on pollinator visitation rates were collected in a

restored tallgrass prairie at the University of Wisconsin

Arboretum in Madison, Wisconsin, USA (43.048 N,

89.438 W). Observations were conducted for 51 days

from 15 April to 6 August 2009. Individual experimental

plants were observed continuously for 10 minutes

typically at least twice per day, 08:30 to 17:00, for 3

days per week. A pollinator was defined as an insect that

contacted the anthers, stigma, and/or nectar of a flower.

Potential pollinators that could not be identified in the

field were given a morphospecies code and, when

possible, captured for identification. Voucher specimens

were deposited in the Insect Research Collection of the

Department of Entomology, University of Wisconsin,

(Madison, Wisconsin, USA).

A total of 61 species and morphospecies were

observed. We refined the data set by excluding species

for which eight or fewer individuals were observed,

known florivores/pollen-feeding beetles (Popillia japo-

nica and weevils), and nonflying insects (ants). We

aggregated some species (e.g., species in the genus

Bombus) due to their ecological similarity and the

difficulty of distinguishing them during field observa-

tions. Thus, the pollinator taxa represent a mix of

species and aggregations of species (Appendix A). For

each plant species, we combined the pollinator records

over the 2–7 weeks (depending on species) they were in

the field, giving a 22 pollinator by 14 plant table of

visitation frequencies of pollinators (Fig. 1). These data

do not represent the communities of pollinators visiting

plants over the entirety of their flowering periods but

instead just several weeks as flowering commences.

Phylogenies for the plant and pollinator taxa were

compiled from primarily molecular data in the literature

(Appendix B).

In comparing the communities of pollinators among

plants, we were interested in the relative visitation

frequencies of pollinators rather than the absolute

numbers of visits. For example, if one plant was visited

by 1, 10, and 100 individuals of pollinators A, B, and C,
and a second plant was visited by 10, 100, and 1000

individuals from the same pollinator taxa, then the
analysis should show that the communities have the

same visitation-weighted composition of pollinator taxa.
Taking the log10 of visitation frequencies for both
communities, the values for pollinators A, B, and C in

the first are 0, 1 and 2, and in the second they are 1, 2
and 3. Therefore, the differences between log10 visitation

frequencies of pollinators are the same in both
communities, and the data can be analyzed using a

linear model. Throughout the analyses, before log-
transforming the data we replaced zeros with 0.01,

0.001, or 0.0001 as required to normalize the residuals.
To test for normality, we computed Cholesky residuals

that orthogonize the residuals through the fitted
covariance matrix (Houseman et al. 2004); the covari-

ances among Cholesky residuals are zero. We then
applied a Jarque-Bera normality test (Jarque and Bera

1987) that assesses a distribution by its skewness and
kurtosis.

We investigated eight plant traits to determine which
could generate differences among the pollinators visiting

different plant species (Appendix C). Two traits
involved phenology: (1) phenological shift (whether
plants are flowering significantly earlier) and (2) date

of first bloom (mean week of flowering onset; Fig. 1).
We also analyzed six morphological traits: (3) plant

height, (4) flower color, (5) floral symmetry (whether
flowers are actinomorphic), (6) floral display size (mean

number of flowers or inflorescences per plant), (7) nectar
volume, and (8) nectar concealment (whether flowers

have concealed nectar). We measured these traits
directly from the experimental plants. To facilitate

comparisons among the effects of plant traits, we
standardized values for each trait to have mean 0 and

variance 1.
We also tested whether phylogenetically related plants

share similar trait values. For continuously valued
variables, we used RegressionV2.m (Lavin et al. 2008)

and report the value of the estimated parameter d, which
equals 0 if there is no phylogenetic signal and 1 if the

strength of phylogenetic signal equals that under a
Brownian motion model of evolution. For binary traits

(phenological shift, floral symmetry, and nectar con-
cealment) we used PLogReg.m (Ives and Garland 2010)
and report exp(a), which equals 0 if there is no

phylogenetic signal.

RESULTS

Simulations

We simulated three cases using the model in Eq. 1: (1)

pollinators show random variation in visitation frequen-
cy (r2

A ¼ 1, r2
B ¼ 0), and all pollinators respond in the

same way to plant trait x (b ¼ 1, r2
C ¼ r2

D ¼ 0); (2)
pollinators show phylogenetic variation in visitation

frequency (r2
A ¼ 0, r2

B ¼ 1), and pollinator response to x
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shows random variation (b¼ 0, r2
C ¼ 1, r2

D ¼ 0); and (3)

pollinators show phylogenetic variation in visitation

frequency (r2
A ¼ 0, r2

B ¼ 1), and pollinator response to x
shows phylogenetic variation (b¼ 0, r2

C ¼ 0, r2
D ¼ 1). In

all cases, trait x varied phylogenetically among plants

(r2
K ¼ 0, r2

L ¼ 1), and there was unexplained variation
(r2

e ¼ 0.5). Presence/absence data were simulated for the

same cases, but all nonzero values of r2
A, r2

B, and r2
D

were decreased from 1 to 0.25 to reduce the extreme

values of y, and r2
e was set to zero.

The first PLMM (Eq. 2) should identify whether the

22 simulated pollinators differed in their responses to a

plant trait x, and if so, whether phylogenetically related

pollinators responded in a similar way. For simulated
case 1 with no variation in response among pollinators,

the estimates of r2
C and r2

D were 0 or close to 0 (Fig. 2).

At a significance level of a ¼ 0.05, the constrained
likelihood ratio test rejected the null hypothesesH0 :r2

C¼
0 in 3.1% of the data sets, and H0 :r2

D ¼ 0 in 1.1%; these

imply that the test is not giving false positives, although

suggesting less than optimal power. For case 2 with
random variation among pollinators, estimates of r2

C

were generally greater than 0 while estimates of r2
D were

near 0. The null hypotheses H0 :r2
C ¼ 0 was rejected in

88% of the data sets, and H0 :r2
D ¼ 0 in 4.4%,

demonstrating an appropriate rate of false positives

for the a level. Finally, for case 3 with phylogenetic
variation among pollinators, estimates of r2

C were near 0

while estimates of r2
D were generally greater than 0, and

H0 :r2
C ¼ 0 and H0 :r2

D ¼ 0 were rejected in 10.9% and
68% of the data sets; thus, there was a falsely high

rejection rate for non-phylogenetic variation in pollina-

tion response to plant trait values, in contrast to the

correct rejection rate for phylogenetic variation. Overall,
the PLMM was able to identify the existence and type of

variation among pollinators in their response to a plant

trait.

We repeated this exercise for simulated presence/
absence data (Fig. 3). Although the PLMM assumes

Gaussian variation, it nonetheless performed similarly

on presence/absence data as it did on continuous data.
For case 1 (r2

C ¼r2
D ¼ 0), the null hypothesis H0 :r2

D ¼ 0

was rejected in 1.4% of the data sets, suggesting loss of

power. For case 2 (r2
C . 0, r2

D ¼ 0), the null hypothesis

H0 :r2
D ¼ 0 was rejected in 6.6% of the data sets; this

raises the risk of false positives, which was not found for

the continuous simulated data, although this false

positive rate is not very high. The good performance

FIG. 2. Estimates of random (r2
C) and phylogenetic (r2

D) variation among pollinators in their responses to plant trait x from
1000 simulations using Eq. 1. Open bars give all estimates of the variances, and black bars give those estimates that are statistically
significantly greater than zero in a constrained likelihood ratio test with a ¼ 0.05. In cases 1 and 2, the fractions of simulations
giving estimates of r2

D that are nominally significant are 0.011 and 0.044, respectively. Simulation cases 1, 2, and 3 are described in
Results: Simulations.

NICOLE E. RAFFERTY AND ANTHONY R. IVES2326 Ecology, Vol. 94, No. 10



of the PLMM presumably reflects the size of the data set

(308 points), since the sum of residuals will be

approximately Gaussian (Judge et al. 1985: chapter 20).

The second PLMM (Eq. 3) was designed to identify

phylogenetic patterns in the interactions between polli-

nators and plants without using information on plant

traits (Fig. 4). We did not assess whether the estimates

of the variances were significantly greater than zero,

because the simulation model differed substantially from

the fitted statistical model. For case 1, estimates from

most simulations indicated random variation in the

visitation frequency of pollinators (r2
a) and phylogenetic

variation among plants in the numbers of pollinators

they attracted (r2
f ). This is consistent with the underly-

ing assumptions used in the simulations: that visitation

frequency among pollinators varied randomly, that

plants exhibited phylogenetic variation in trait x, and

that pollinators responded to trait x in the same way.

These assumptions generate phylogenetic variation

among plants in the numbers of pollinators attracted

that were detected by the second PLMM even though

this model used no information about plant traits. For

case 2, the PLMM identified phylogenetic variation in

visitation frequency among pollinators (r2
b), and indi-

cated that phylogenetically related plants were more

likely to attract the same pollinator species (r2
g). This is

consistent with the simulation assumptions in which

pollinators had phylogenetic variation in visitation

frequency, plants had phylogenetic variation in trait x,

and pollinators had random variation in their response

to trait x. Because phylogenetically related plants had

similar trait values, they were more likely to attract the

same pollinator species. The analysis of case 3 differed

from case 2 by indicating that phylogenetically related

plants that attracted one pollinator species were more

likely to attract a related pollinator species (r2
h);

specifically, if plant species q attracted pollinator j, then

a phylogenetically related plant species r was more likely

to attract pollinator k if it was related to pollinator j.

This occurred because in the simulations phylogeneti-

cally related pollinators showed similar responses to

plant trait x, in contrast to case 2 in which pollinators

showed random differences in their responses to x. For

case 3, however, some of the estimates of r2
g were

positive, and many estimates of r2
h were near 0. Because

r2
g and r2

h both depend on the phylogeny of plants and

differ only in the inclusion of the pollinator phylogeny

FIG. 3. Estimates of random (r2
C) and phylogenetic (r2

D) variation among pollinators in their responses to plant trait x from
1000 simulations using Eq. 1 in which data were transformed to presence/absence of interactions. Open bars give all estimates of the
variances, and black bars give those estimates that are statistically significantly greater than zero in a constrained likelihood ratio
test with a¼ 0.05. In cases 1 and 2, the fractions of simulations giving estimates of r2

D that are nominally significant are 0.014 and
0.066, respectively. Simulation cases 1, 2, and 3 are described in Results: Simulations.
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FIG. 4. Estimates of variance components of the second phylogenetic linear mixed model (PLMM; Eq. 3) for 1000 simulations
using Eq. 1. Simulation cases 1, 2, and 3 are described in Results: Simulations, and definitions of the variance components are given
in Table 2.
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(r2
h), there is limited statistical power to separate these

two components of the model.

Data

We first analyzed the effects of plant phenology traits

(phenological shift and current date of first bloom) on

pollinator composition using the first PLMM (Eq. 2).

The log visitation frequencies of pollinators attracted to

advanced-flowering plant species were lower than those

attracted to species with unchanged flowering (B1 ¼
�0.46), although there was no significant variation

among pollinator taxa in response to this trait (Table

1). Therefore, communities of pollinators visiting

advanced-flowering plants were not distinct from those

visiting plants that are not flowering earlier. More

pollinators visited plants that bloomed later in the

season (B1 ¼ 1.32), and the estimate of r2
C ¼ 0.52 (P ¼

0.047) indicates variation among pollinators in response

to this trait (Table 1). Note that even though the

phylogenetic signal was not found in either analysis (r2
D

¼ 0), the simulations showed the potential ability of the

PLMM to identify phylogenetic signal when it was

present (Fig. 2).

To investigate other, non-phenological plant traits

that might generate differences in the pollinators they

attract, we performed a multiple regression PLMM (Eq.

2) using all eight plant traits (Table 1). We initially

included the pollinator phylogeny, but because the

estimate of the variance was always 0 (r2
D ¼ 0), it was

omitted. For six traits, the estimates of random

variation among pollinator taxa (r2
C) were greater than

0, indicating differences in the composition of the

pollinator communities visiting different plant species,

although only plant height, flower color, and floral

symmetry showed statistically significant variation

among pollinators. Furthermore, seven of the eight

traits showed nonzero estimates of phylogenetic signal

among plants, although only flower symmetry was

statistically significant (P , 0.031, Table 1).

We used the second PLMM (Eq. 3) to investigate the

pattern of interactions between pollinators and plants

without regard to plant traits. Although pollinators

differed greatly in log visitation frequency (r2
a ¼ 3.59, P

, 0.001, Table 2), this variation did not have a

phylogenetic component (r2
b ¼ 0). Furthermore, a given

plant species was not more likely to be visited by

phylogenetically related pollinators after accounting for

differences in mean visitation frequencies (r2
c ¼ 0.04, P

. 0.5). We also failed to detect significant pollinator

phylogenetic signal in conjunction with the plant

phylogeny (r2
h ¼ 0.35, P . 0.12). Nonetheless, pollina-

tors were affected by plant phylogeny; closely related

plants were likely to have similar visitation frequencies

regardless of species (r2
f ¼ 2.42, P , 0.001). Further-

more, if a given pollinator taxon was attracted to a given

plant species, the nonsignificant estimate of r2
g¼ 0.20 (P

. 0.5) indicates that the same pollinator is not more

likely be attracted to a closely related plant.

Can variation among pollinator taxa in their respons-

es to plant traits (Table 1) explain the effect of plant

phylogeny on the pollinators they attract (Table 2)? To

investigate this, we simulated data using Eq. 2 param-

eterized from the real data and then fit the simulated

data using Eq. 3; this procedure is similar to that used

for the simulation model (Eq. 1). For fitting the PLMM

(Eq. 3), we assumed that there was no effect of

pollinator phylogeny (r2
c ¼ r2

h ¼ 0). From 1000

simulations, the mean phylogenetic variation in overall

plant attractiveness r2
f was 2.15, close to 2.42 observed

in the data. In none of the simulations was the estimate

TABLE 1. Pollinator community composition as it depends on plant traits (Eq. 2).

Effects r2
C P r2

D P Phylo. signal

Univariate analyses

Phenological shift 0.35� .0.5 0 NS
Date of first bloom 0.52� 0.047 0 NS

Multivariate analysis§

Plant height 0.36 0.002 0.2 (0, 1.9)
Flower color 0.31 0.009 0
Floral symmetry 0.24 0.046 0.45 (0.02, 4.1)
Floral display size 0.18 0.22 0.82 (0, 3.7)
Date of first bloom 0.18 0.12 1.37 (0, 5.42)
Nectar concealment 0.02 0.46 1.97 (0, 3.12)
Nectar volume 0 NS 0.35 (0, 0.95)
Phenological shift 0 NS 0.31 (0, 1.4)

Notes: Univariate analyses were performed for phenological shift and for date of first bloom;
parameters r2

C and r2
D measure variation among pollinator taxa in their responses to the predictor

variables that is not or is, respectively, related to the pollinator phylogeny. For the multivariate
analysis, all residual variation in pollinator responses to plant traits was assumed to be non-
phylogenetic (r2

D ¼ 0), and ‘‘Phylo. signal’’ gives estimates of the phylogenetic signal for each trait
among plant species with 95% confidence intervals. NS, not significant.

� Jarque-Bera Normality test, P¼ 0.07.
� J-B test, P¼ 0.23.
§ J-B test, P¼ 0.13.
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of r2
f ¼ 0, showing a very strong effect of plant traits in

explaining why closely related plants had similar

visitation frequencies. Finally, the phylogenetic varia-

tion in plant attractiveness to a given pollinator r2
g was

1.13; this value differed from the estimate from the real

data (r2
g ¼ 0.20), although the latter was within the 66%

inclusion interval of the simulated estimate.

DISCUSSION

For the bipartite ecological network of 14 perennial

plants and 22 pollinator taxa analyzed here, we found

that, as a group, the six plant species that are flowering

earlier did not have a pollinator community distinct

from that of the eight plant species with unchanged

flowering times. Yet six plant traits, plant height, flower

color, floral symmetry, floral display size, date of first

bloom, and nectar concealment, were associated with

different pollinator communities, with the former three

statistically significant. Furthermore, all of these traits

except color were distributed among plants in a way that

reflected the plant phylogeny. Closely related pollinators

were neither more likely to visit plants with similar

frequencies nor to visit the same plant species. Con-

versely, there was a strong signal through the plant

phylogeny in that closely related plants were similarly

attractive to the pollinator community as a whole, and

closely related species were more likely to attract the

same pollinator taxa, although the latter was not

statistically significant. Finally, analysis of the six plant

traits showed that together they explain the similar

attractiveness of related plants to the overall pollinator

community (Table 2).

These results should be interpreted in the context of

the simulations we performed to test the PLMM

methods. Although no effects of the pollinator phylog-

eny were found in any of the analyses of the data, the

simulations showed that phylogenetic patterns in the

distribution of pollinators could be detected in the

analyses either including (Eq. 2, Fig. 2) or excluding

(Eq. 3, Fig. 4) plant trait information. Therefore, the

methods are sufficiently powerful that they should have

picked up a moderate or strong pollinator phylogenetic

signal. The simulations also showed, however, limited

power to detect complex phylogenetic interactions; co-

phylogenetic patterns involving both plants and polli-

nators, r2
h, were detected in only 30% of the simulations

(case 3, Fig. 4). Given the relatively small numbers of

species and the statistical challenges of detecting

phylogenetic signal (Blomberg et al. 2003), this is not

surprising.

In our data set, 59% of the entries were zeros.

Nonetheless, the distribution of Cholesky residuals did

not show strong deviation from normality (Tables 1 and

2). Furthermore, application of the first PLMM (Eq. 2)

to simulated presence/absence data showed the robust-

ness of the approach to even violently nonnormally

distributed data (Fig. 3). Given the size of the data set

(308 points), this is not surprising. For example, it is well

known in standard regression that the least squares

estimators of both coefficients and variances asymptot-

ically approach the ‘‘correct’’ (efficient) estimators for

nonnormal data (Judge et al. 1985:824). Similarly for

LLMs, applying the mis-specified normal likelihood

function to nonnormal data leads to estimates that

asymptotically converge to their true values (McCulloch

et al. 2008:285). For large data sets, even those that are

clearly nonnormal, LLMs will often be sufficient to

correctly identify statistically significant parameters.

TABLE 2. Test for the existence of phylogenetic patterns in log visitation frequencies of pollinators distributed among plant
species, and ability of trait differences among plants to drive community patterns in plant–pollinator interactions (Eq. 3).

Variance component

Data�
Simulation

Estimate v2 P Mean
66%

inclusion
95%

inclusion

r2
a , random variation among pollinator visitation frequencies 3.59 101.2 ,0.001 3.76 (3.2, 4.3) (2.7, 4.9)

r2
b, phylogenetic variation among pollinator visitation
frequencies

0 0 NS

r2
c , phylogenetic variation in pollinator attraction to a given
plant

0.04 0.02 .0.5 0.47 (0, 0.8) (0, 1.4)

r2
d, random variation in plant attractiveness 0 0 NS

r2
f , phylogenetic variation in plant attractiveness 2.42 77.0 ,0.001 2.15 (1.4, 2.9) (0.8, 3.7)

r2
g, phylogenetic variation in plant attractiveness to a given
pollinator

0.20 0.04 .0.5 1.13 (0.18, 2.0) (0, 2.9)

r2
h, co-phylogenetic pollinator-plant variation 0.35 0.69 0.12 0.20 (0, 0.49) (0, 1.3)

r2
e , residual variation 5.13 � � � � � � 4.71 (4.0, 5.4) (3.4, 6.1)

Notes: Statistical significance of the variance components was tested with constrained likelihood ratio tests. To test for the ability
of plant traits to explain phylogenetic patterns, 1000 data sets were simulated using Eq. 2 that had been fitted to the real data (Table
1). Each simulation data set was then fit using Eq. 3 that incorporates plant phylogeny but not trait values, with terms involving
the pollinator phylogeny excluded (r2

b¼r2
c ¼r2

h¼0). The mean values of the estimates from the 1000 simulation data sets are given
along with the 66% and 95% inclusion intervals. NS, not significant.

� Jarque-Bera Normality test, P ¼ 0.30. Empty cells for simulation indicate that no data were possible (estimate ¼ 0); ellipses
indicate no data.
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Our results have implications for conservation of our

focal plant species with future climate change. We found

that the communities of pollinators visiting advanced

plant species did not differ systematically from the

communities visiting unchanged species. This suggests

that several pollinator taxa buffer the advanced plant

species against reductions in pollinator visits when they

are forced to flower even earlier. The lack of a single, key

pollinator of advanced plant species may increase the

resilience of the plant–pollinator network to climate

change.

Our results further suggest that basic information on

plant traits could be useful in predicting which plants in

a community are likely to suffer pollination deficits as a

result of phenological shifts. Plant height, flower color,

and floral symmetry statistically significantly affected

the pollinator community. Foraging height preferences

have been documented among various pollinator taxa

(Peakall and Handel 1993, Dafni and Potts 2004, Hoehn

et al. 2008); in our system, taller plants received visits

from a greater number of pollinators. Likewise, flower

color has been found to be important in explaining

pollinator community composition (Morales and Aizen

2006, Lázaro et al. 2008). In our network, white, purple,

or blue flowers attracted a greater abundance of

pollinators than did yellow, red, orange, or pink flowers,

even though colors as we scored them are not necessarily

those that pollinators discriminate (Arnold et al. 2010).

Even in the absence of information on plant traits,

phylogenies can be used to infer interaction patterns. We

detected strong signal through the plant phylogeny:

closely related plants were similarly attractive to the

pollinator community as a whole. Thus, if the number of

pollinators a plant attracts is predictive of its suscepti-

bility to pollination deficits, then phylogenies could be

used to identify plants that are likely to show similar

responses.

In a study similar to ours, Vázquez et al. (2009)

showed that the number of pollinators visiting different

plants depended strongly on the phylogeny of the plants

but only weakly on the phylogeny of the pollinators, as

have we. The method they used (from Ives and Godfray

2006) is similar in concept but different in statistical

approach from that presented here, relying on an

Ornstein-Uhlenbeck model of evolution rather than

the LMM framework. The LMM structure is more

flexible and, as illustrated here, can be extended to ask

what plant traits may be responsible for related plants

having similar pollinator communities (Eq. 2, Table 1).

Both approaches can incorporate phylogenetic informa-

tion from both pollinators and plants, differentiating

them from other phylogenetic methods that have been

used to assess plant–pollinator interactions. For exam-

ple, Rezende et al. (2007) showed that plant phylogeny

predicted the number of pollinators that visited a given

plant species, and that pollinator phylogeny predicted

PLATE 1. Bumble bees (Bombus) visiting swamp milkweed (Asclepias incarnata) in the University of Wisconsin Arboretum
(Madison, Wisconsin, USA). Photo credit: N. E. Rafferty.
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the number of plants a given pollinator visited. In this

case, the number of pollinators with which a plant

interacted was treated as a plant trait, and the number of

plants with which a pollinator interacted was treated as

a pollinator trait; thus, the analyses of plants and

pollinators were separate. In our case, the response

variable is the interaction strength between each pair of

plants and pollinators, which can be used to ask

questions about the overall pattern of the interaction

network.

The statistical methods we have deployed allowed us

to ask how important phylogenetic signal is in structur-

ing the plant–pollinator interactions in our data set and

to explore the role of phenological and other plant traits

in shaping pollinator communities. Our data set does

not capture the entire spectrum of plants with which

pollinators interacted, and our study plants were

observed for only a few weeks around the onset of

flowering. Nevertheless, our goal was to identify the

potential for phenological mismatches; these may be

most likely to occur at the onset of flowering due to the

absence of pollinators. The general structure of the

PLMM can be used to address a broad range of

questions incorporating phylogenetic relationships

among species in bipartite interaction networks. Thus,

the methods illustrated here help to address the need for

more flexible phylogenetic statistical approaches.
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