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Spamscatter: Characterizing Internet Scam Hosting Infrastructure

David S. Anderson, Chris Fleizach, Stefan Savage and Geoffrey M. Voelker
Department of Computer Science and Engineering

University of California, San Diego

Abstract

Few Internet security issues have attained the universal public recognition or contempt of unsolicited

bulk email – SPAM. The engine that drives this enormous activity is not spam itself – which is simply

a means to an end – but the various money-making “scams” (legal or illegal) that extract value from

Internet users. In this paper, we focus on the Internet infrastructure used to host and support such scams.

Unlike mail-relays or bots, scam infrastructure is directly implicated in the spam profit cycle and thus

considerably rarer and more valuable. Our goal is to measure and analyze this scam infrastructure to

better understand the dynamics and business pressures exerted on spammers. To identify scam infras-

tructure, we employ an opportunistic technique called spamscatter. The underlying principal is that each

scam is, by necessity, identified in the link structure of associated spams. To this end, we have built a

system that mines email, identifies URLs in real time and follows such links to their eventual destination

server. We further identify individual scams by clustering scam servers whose rendered Web pages are

graphically similar using a technique called image shingling. Using the spamscatter technique on a large

real-time spam feed (roughly 150,000 per day) we identify and analyze over 2,000 distinct scams hosted

across more than 7,000 distinct servers.

1 Introduction

Few Internet security issues have attained the universal public recognition or contempt of unsolicited bulk

email – SPAM. In 2006, industry estimates suggest that such messages comprise over 80% over all Internet

email with a total volume up to 85 billion per day [16, 18]. The scale of these numbers underscore the

prodigious delivery infrastructures developed by “spammers” and in turn motivate the more than $1B spent

annually on anti-spam technology. However, the engine that drives this arms race is not spam itself – which

is simply a means to an end – but the various money-making “scams” (legal or illegal) that extract value

from Internet users.

In this paper, we focus on the Internet infrastructure used to host and support such scams. In particular,

we analyze spam-advertised Web servers that offer merchandise and services (e.g., pharmaceuticals, luxury

watches, mortgages) or use malicious means to defraud users (e.g., phishing, spyware, trojans). Unlike

mail-relays or bots, scam infrastructure is directly implicated in the spam profit cycle and thus considerably

rarer and more valuable. For example, a given spam campaign may use thousands of mail relay agents to

deliver its millions of messages, but only use a single server to handle requests from recipients who respond.

Consequently, the availability of scam infrastructure is critical to spam profitability – a single takedown of

a scam server or a spammer redirect can curtail the earning potential of an entire spam campaign.

The goal of this paper is to characterize scam infrastructure and use this data to better understand the

dynamics and business pressures exerted on spammers. To identify scam infrastructure, we employ an

opportunistic technique called spamscatter. The underlying principal is that each scam is, by necessity,

identified in the link structure of associated spams. To this end, we have built a system that mines email,
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identifies URLs in real time and follows such links to their eventual destination server (including any redi-

rection mechanisms put in place). We further identify individual scams by clustering scam servers whose

rendered Web pages are graphically similar using a technique called image shingling. Finally, we actively

probe the scam servers on an ongoing basis to characterize dynamic behaviors like availability and lifetime.

Using the spamscatter technique on a large real-time spam feed (roughly 150,000 per day) we have iden-

tified over 2,000 distinct scams hosted across more than 7,000 distinct servers. Further, we characterize

the availability of infrastructure implicated in these scams and the relationship with business-related factors

such as scam “type,”, location and blacklist inclusion.

The remainder of this paper is structured as follows. Section 2 reviews related measurement studies

similar in topic or technique. In Section 3 we outline the structure and lifecycle of Internet scams, and

describe in detail one of the more extensive scams from our trace as a concrete example. Section 4 describes

our measurement methodology, including our probing system, image shingling algorithm, and spam feed. In

Section 5, we analyze a wide range of characteristics of Internet scam infrastructure based upon the scams

we identify in our spam feed. Finally, Section 6 summarizes our findings and concludes.

2 Related Work

Spamscatter is an opportunistic network measurement technique [5], taking advantage of spurious traffic

— in this case spam — to gain insight into “hidden” aspects of the Internet — in this case scam hosting

infrastructure. As with other opportunistic measurement techniques, such as backscatter to measure Internet

denial-of-service activity [21], network telescopes and Internet sinks [31] to measure Internet worm out-

breaks [20, 22], and spam to measure spam relays [27], spamscatter provides a mechanism for studying

global Internet behavior from a single or small number of vantage points.

We are certainly not the first to use spam for opportunistic measurement. Perhaps the work most closely

related to ours is Ramachandran and Feamster’s recent study using spam to characterize the network be-

havior of the spam relays that sent it [27]. Using extensive spam feeds, they categorized the network and

geographic location, lifetime, platform, and network evasion techniques of spam relay infrastructure. They

also evaluated the effectiveness of using network-level properties of spam relays, such as IP blacklists and

suspect BGP announcements, to filter spam. When appropriate in our analyses, we compare and contrast

characteristics of spam relays and scam hosts; some scam hosts also serve as spam relays, for example. In

general, however, due to the different requirements of the two underground services, they exhibit different

characteristics; scam hosts, for example, have longer lifetimes and are more concentrated in the U.S.

Both community and commercial services consume URLs extracted from spam. Various community

services mine spam to specifically identify and track phishing sites, either by examining spam from their

own feeds or collecting spam email and URLs submitted by the community [1, 6, 23, 25]. Commercial Web

security and filtering services, such as Websense and Brightcloud, track and analyze Web sites to categorize

content and to identify phishing sites and sites hosting other potentially malicious content such as spyware

and keylogging. Sites advertised in spam provide an important data source for such services. We monitor

such sites as well, but our goal is to both track and characterize the site infrastructure of all scams advertised

via spam, not just phishing and other malicious sites.

Botnets can play a role in the scam host infrastructure, either by hosting the spam relays generating the

spam we see or by hosting the scam servers. A number of recent efforts have developed techniques for

measuring botnet structure, behavior, and prevalence. Cook et al. [9] test the feasibility of using honeypots

to capture bots, and propose a combination of passive host and network monitoring to detect botnets. Bächer

et al. [24] use honeynets to capture bots, infiltrate their command and control channel, and monitor botnet

activity. Rajab et al. [26] combine a number of measurement techniques, including malware collection, IRC

command and control tracking, and DNS cache probing. The last two approaches have provided substantial
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Figure 1: Structure and components of a typical Inter-

net scam.

Figure 2: Screenshots, hostnames, and IP ad-

dresses of different hosts for the “Download-

able Software” scam. The highlighted regions

show portions of the page that change on each

access due to product rotation. Image shingling

is resilient to such changes and identifies these

screenshots as equivalent pages.

insight into botnet activity by tracking hundreds of botnets over periods of months. Ramachandran and

Feamster [27] provide strong evidence that botnets are commonly used as platforms for spam relays; our

results suggest botnets are not as common for scam hosting.

We developed an image shingling algorithm to determine the equivalance of screenshots of rendered Web

pages. Previous efforts have developed techniques to determine the equivalence of transformed images as

well. For instance, the SpoofGuard anti-phishing Web browser plugin compares images on Web pages with

a database of corporate logos [7] to identify Web site spoofing. SpoofGuard compares images using robust

image hashing, an approach employing signal processing techniques to create a compressed representation

of an image [30]. Robust image hashing works well against a number of different image transformations,

such as cropping, scaling, and filtering. However, unlike image shingling, image hashing is not intended

to compare images where substantial regions have completely different content; image hashing refinements

improve robustness (e.g., [19, 28]), but do not fundamentally extend the original set of transforms.

3 The life and times of an Internet scam

In this section we outline the structure and lifecycle of Internet scams, and describe in detail one of the more

extensive scams from our trace as a concrete example. This particular scam advertises “Downloadable Soft-

ware,” such as office productivity tools (Microsoft, Adobe, etc.) and popular games, although, in general,

the scams we observed were diverse in what they offered (Section 5.1).

Figure 1 depicts the life of a spam-driven Internet scam. First, a spam campaign launches a vast number

of unsolicited spam messages to email addresses around the world; a large spam campaign can exceed 1

billion messages [12]. In turn the content in these messages commonly advertises a scam — merchandise

and services available through the Web — by embedding URLs to scam Web servers in the spam; in our
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data, roughly 30% of spam contains such URLs (Section 5.1).1 These spam campaigns can be comparatively

brief, with more than half lasting less than 12 hours in our data (Section 5.4). For our example software scam,

over 5,000 spam emails were used to advertise it over the entire weeklong period.

Knowing or unsuspecting users click on URLs in spam to access content from the Web servers hosting

the scams. While sometimes the embedded URL directly specifies the scam server, more commonly it indi-

cates an intermediate Web server that subsequently redirects traffic (using HTTP or Javascript) on towards

the scam server. Redirection serves multiple purposes. When spammer and scammer are distinct, it provides

a simple means for tagging requests with the spammer’s affiliate identifier (used by third-party merchants

to compensate independent “advertisers”) and laundering the spam-based origin before the request reaches

the merchant (this provides plausible deniability for the merchant and protects the spammer from potential

conflicts over the merchant’s advertising policy). If spammer and scammer are the same, a layer of redirec-

tion servers are still useful for avoiding URL-based blacklists and providing deployment flexibility for scam

servers. In our traces, most scams use at least one level of redirection.

On the back end, scams may use multiple servers to host scams, both in terms of multiple virtual hosts

(e.g., different domain names served by the same Web server) and multiple physical hosts identified by

IP address (Section 5.2). However, for the scams in our spam feed, the use of multiple virtual hosts is

infrequent (16% of scams) and multiple physical hosts is rare (6%); our example software scam is one of

the more extensive scams, using 99 virtual hosts on three physical hosts.

Finally, different Web servers (physical or virtual), and even different accesses to a scam using the same

URL, can result in slightly different downloaded content for the same scam. Intentional randomness for

evasion, rotating advertisements, featured product rotation, etc. add another form of aliasing. Figure 2 shows

example screenshots among different hosts for the software scam. To overcome these aliasing issues, we

use screenshots of Web pages as a basis for identifying all hosts participating in a given scam (Section 4.2).

Curiously, a machine hosting one scam may be shared with other scams, as when scammers run multiple

scams at once or the hosts are third-party infrastructure used by multiple scammers. Sharing is common,

with 38% of scams being hosted on a machine with at least one other scam (Section 5.3). One of the

machines hosting the software scam, for example, also hosted a pharmaceutical scam called “Toronto Phar-

macy” (which happened to be hosted on a server in Guangzhou, China).

The lifetimes of scams are much longer than spam campaigns, with 50% of scams active for at least a

week (Section 5.4). Furthermore, scam hosts have high availability during their lifetime (most above 99%)

and appear to have good network connectivity (Section 5.5); the lifetime of the software scam ran for the

entire probing period and was available 97% of the time. Finally, scam hosts tend to be geographically

concentrated in the United States; over 57% of scam hosts from our data mapped to the U.S. (Section 5.6.2).

Such geographic concentration contrasts sharply with the location of spam relay hosts; for comparison, only

14% of spam relays used to send the spam to our feed are located in the U.S. Figure 3 shows the geographic

locations of the spam relays and scam hosts for the software scam. The three scam hosts were located in

China and Russia, whereas the 85 spam relays were located around the world in 30 countries.

The lifetimes, high availability, and good network connectivity, as well as the geographic diversity of

spam relays compared with scam hosts, all reflect the fundamentally different requirements and circum-

stances between the two underground services. Spam relays require no interaction with users, need only

be available to send mail, but must be great enough in number to mitigate the effects of per-host blacklists.

Consequently, spam relays are well suited to “commodity” botnet infrastructure [27]; one recent industry

estimate suggests that over 80% of spam is in fact relayed by bots [13]. By contrast, scam hosts are naturally

more centralized (due to hosting a payment infrastructure), require interactive response time to their target

1An example of spam that does not contain links would be “pump-and-dump” stock spam intended to manipulate penny stock

prices [3]. The recent growth of image-based stock spam has dramatically reduced the fraction of spam using embedded URLs,

shrinking from 85% in 2005 to 55% in 2006. [12]
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Figure 3: Geographic locations of the spam relays and scam server hosts for the “Downloadable Software”

scam. The three scam servers are located in China and Russia and shown with dark grey points. The 85

spam relays are located around the world in more than 30 different countries, and are shown in white.

customers, and may – in fact – be hosting legal commerce. Thus, scam hosts are much more likely to have

high-quality hosting infrastructure stable over long periods.

4 Methodology

This section describes our measurement methodology. We first describe our data collection framework for

probing scam hosts and spam relays, and then detail our image shingling algorithm for identifying equivalent

scams. Finally, we describe the spam feed we use as our data source and discuss the inherent limitations of

using a single viewpoint.

4.1 Data collection framework

We built a data collection tool, called the spamscatter prober, that takes as input a feed of spam emails,

extracts the sender and URLs from the spam messages, and probes those hosts to collect various kinds of

information (Figure 1). For spam senders, the prober performs a ping, traceroute, and DNS-based blacklist

lookup (DNSBL) once upon receipt of each spam email. The prober performs more extensive operations

for the scam hosts. As with spam senders, it first performs a ping, traceroute, and DNSBL lookup on scam

hosts. In addition, it downloads and stores the full source of the Web page specified by URLs extracted from

the spam. It also renders an image of the downloaded page in a canonical browser configuration using KDE

and the KHTML layout engine [15], and stores a screenshot of the browser window. For scam hosts, the

prober repeats these operations periodically for a fixed length of time. For the trace in this paper, we probed
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each host and captured a screenshot while visiting each URL every three hours. Starting from when the first

spam email introduces a new URL into the data set, we probe the scam host serving that URL for a week

independently of whether the probes fail or succeed.

As we mentioned earlier, many spam URLs simply point to sites that forward the request onto another

server. There are many possible reasons for the forwarding behavior, such as tracking users, redirecting

users through third-party affiliates or tracking systems, or consolidating the many URLs used in spam (os-

tensibly to avoid spam filters) to just one. Occasionally, we also noticed forwarding that does not end, either

indicating a misconfiguration, programming error, or a deliberate attempt to avoid spidering.

The prober accommodates a variety of link forwarding practices. While some links direct the client

immediately to the appropriate Web server, others execute a series of forwarding requests, including HTTP

302 server redirects and JavaScript-based redirects in page script. To follow these, the prober processes

received page content to extract simple META refresh tags and JavaScript redirect statements. It then tracks

every intermediate page between the initial link and the final content page, and marks whether a page is the

end of the line for each link. Properly handling forwarding is necessary for accurate scam monitoring. Over

68% of scams used some kind of forwarding, with an average of 1.2 forwards per URL.

4.2 Image shingling

Many of our analyses compare content downloaded from scam servers to determine if the scams are equiva-

lent. For example, scam hosts may serve multiple independent scams simultaneously, and we cannot assume

that URLs that lead to the same host are part of the same scam. Similarly, scams are hosted on multiple vir-

tual servers as well as distributed across multiple machines. As a result, we need to be able to compare

content from scam servers on different hosts to determine whether they are part of the same scam. Finally,

even for content downloaded from the same URL over time, we need to determine whether the content

fundamentally changes (e.g., the server has stopped hosting the scam but returns valid HTTP responses to

requests, or it has transitioned to hosting a different scam altogether).

Various kinds of aliasing make determining scam equivalence across multiple hosts, and over time, a

challenging problem. One possibility is to compare spam messages within a window of time to identify

spams for the same scam. But the randomness and churn that spammers introduce to defeat spam filters

makes it extremely difficult to use textual information in the spam message to identify spam messages for

the same scam (e.g., spam filters continue to struggle with spam message equivalence). Another possibility

is to compare the URLs themselves. Unfortunately, scammers have many incentives not to use the same

URL across spams, and as a result each spam message for a scam might use a distinct URL for accessing

a scam server. For instance, scammers may embed unique tracking identifiers in the query part of URLs,

use URLs that contain domain names to different virtual servers, or simply randomize URLs to defeat URL

blacklisting.

A third option is to compare the HTML content downloaded from the URLs in the spam for equivalence.

The problem of comparing Web pages is a fundamental operation for any effort that identifies similar content

across sites, and has been studied extensively already. For instance, text shingling techniques were developed

to efficiently measure the similarity of Web pages, and to scale page comparison to the entire Web [4, 29].

For our data, we could use text shingling to compare the HTML source between scam sites, but in practice

the downloaded HTML provides insufficient textual information for reliably identifying a scam. Indeed,

many scams contained little textual content at all, and instead used images entirely to display content on the

Web page. Also, many scams used frames, iframes, and JavaScript to display content, making it difficult to

capture the full page context using a text-based Web crawler.

Finally, a fourth option is to render screenshots of the content downloaded from scam sites, and to

compare the screenshots for equivalence. Screenshots are an attractive basis for comparison because they

sidestep the aforementioned problems with comparing HTML source. However, comparing screenshots is

6



not without its own difficulties. Even for the same scam accessed by the same URL over time — much less

across different scam servers — scam sites may intentionally introduce random perturbations of the page

to prevent simple image comparison, display rotating advertisements in various parts of a page, or rotate

images of featured products across accesses. Figure 2 presents an example of screenshots from different

sites for the same scam that show variation between images due to product rotation.

Considering the options, we selected screenshots as the basis for determining spam equivalence. To

overcome the problems described earlier, we developed an image-clustering algorithm, called image shin-

gling, based on the notion of shingling from the text similarity literature. Text shingling decomposes a

document into many segments, usually consisting of a small number of characters. Various techniques have

been developed [11] to increase the efficiency and reduce the space complexity of this process. Next, these

hashed “shingles” are sorted so that hashes for documents containing similar shingles are close together. The

ordering allows all the documents that share an identical shingle to be found quickly. Finally, documents are

clustered according to the percentage of shared shingles between them. The power of the algorithm is that

it can essentially perform O(N2) comparisons in O(N lg N) time.

Our image shingling algorithm performs a similar process applied to the image domain. The algorithm

first divides each image into fixed size chunks in memory; in our experiments, we found that an image chunk

size of 40x40 pixels was an effective tradeoff between granularity and shingling performance. We then hash

each chunk to create an image shingle, and store the shingle on a global list together with a link to the image

(we use the MD4 hash to create shingles due to its relative speed compared with other hashing algorithms).

After sorting the list of shingles, we create a hash table, indexed by shingle, to track the number of times two

images shared a similar shingle. Scanning through the table, we create clusters of images by finding image

pairs that share at least a threshold of similar images. Experimenting manually with a range of thresholds,

we found that a threshold of 70% shared shingles seemed to minimize false negatives and false positives for

determining scam page equivalence. We have developed a highly optimized version of this basic algorithm

that, in practice, completes a all-pairs comparison in roughly linear time. In practice, image shingling is

highly effective at clustering like scams, while neatly side-stepping the adversarial obfuscations in spam

messages, URLs, and page contents.

4.3 Spam feed and limitations

The source of spam determines the scams we can measure using this methodology. For this study, we have

been able to take advantage of a substantial spam feed: all messages sent to any email address at a well-

known four-letter top-level domain. This domain receives over 150,000 spam messages every day. We can

assume that any email sent to addresses in this domain is spam because no active users use addresses on the

mail server for the domain. Examining the “From” and “To” addresses of spam from this feed, we found

that spammers generated “To” email addresses using a variety of methods, including harvested addresses

found in text on Web pages, universal typical addresses at sites, as well as name-based dictionary address

lists. Over 93% of “From” addresses were used only once, suggesting the use of random source addresses

to defeat address-based spam blacklists.

We analyze Internet scam hosting infrastructure using spam from only a single, albeit highly active,

spam feed. As with other techniques that use a single network viewpoint to study global Internet behavior,

undoubtedly this single viewpoint introduces bias [2, 8]. For example, the domain that provides our spam

feed has no actual users who read the email. Any email address harvesting process that evaluates the quality

of email addresses, such as correlating spam email targets with accesses on scam sites, would be able to

determine that sending spam to these addresses yields no returns.

While measuring the true bias of our data is impossible, we can anecdotally gauge the coverage of scams

from our spam feed by comparing them with scams identified from an entirely different spam source. As a

comparison source, we used the spam posted to the Usenet group news.admin.net-abuse.sightings, a forum
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Characteristic Summary Result

Trace period 11/28/06 – 12/11/06

Spam messages 1,087,711

Spam w/ URLs 319,700 (30% of all spam)

Unique URLs 36,390 (11% of all spam URLs)

Unique IP addresses 7,029 (19% of unique URLs)

Unique scams 2,334 (6% of unique URLs)

Table 1: Summary of spamscatter trace.

Scam category % of scams

Uncategorized 29.57%

Information Technology 16.67%

Dynamic Content 11.52%

Business and Economy 6.23%

Shopping 4.30%

Financial Data and Services 3.61%

Illegal or Questionable 2.15%

Adult 1.80%

Message Boards and Clubs 1.80%

Web Hosting 1.63%

Table 2: Top ten scam categories.

for administrators to contribute spam [23]. Over a single 3-day period, January 26–28th, 2007, we collected

spam from both sources. We captured 6,977 spam emails from the newsgroup and 113,216 spam emails

from our feed. The newsgroup relies on user contributions and is moderated, and hence is a reliable source

of spam. However, it is also a much smaller source of spam than our feed.

Next we used image shingling to distill the spam from both sources into distinct scams, 205 from the

newsgroup and 1,687 from our feed. Comparing the scams, we found 25 that were in both sets, i.e., 12%

of the newsgroup scams were captured in our feed as well. Of the 30 most-prominent scams identified

from both feeds (in terms of the number of virtual hosts and IP addresses), ten come from the newsgroup

feed. These same ten, furthermore, were also in our feed. Our goal was not to achieve global coverage of

all Internet scams, and, not surprisingly, we have not. The key question is how representative our sample

is; without knowing the full set of scams (a very challenging measurement task), we cannot gauge the

representativeness of the scams we find. Characterizing a large sample, however, still provides substantial

insight into the infrastructure used to host scams. And it is further encouraging that many of the most

extensive scams in the newsgroup feed are also found in ours. Moving forward, we plan to incorporate other

sources of spam to expand our feed and further reduce uncertainty.

5 Analysis

We analyze Internet scam infrastructure using scams identified from a large one-week trace of spam mes-

sages. We start by summarizing the characteristics of our trace and the scams we identify. We then evaluate

to what extent scams use multiple hosts as distributed infrastructure; using multiple hosts can help scams

be more resilient to defenses. Next we examine how hosts are shared across scams as an indication of in-

frastructure reuse. We then characterize the lifetime and availability of scams. Scammers have an incentive

to use host infrastructure that provides longer lifetimes and higher availability; at the same time, network

and system administrators may actively filter or take down scams, particularly malicious ones. Lastly, we

examine the network and geographic locations of scams; again, scammers can benefit from using stable

hosts that provide high availability and good network connectivity.

Furthermore, since spam relay hosts are an integral aspect of Internet scams, where appropriate in our

analyses, we compare and contrast characteristics of spam relays and scam hosts
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per scam.

Scam category # of domains # of IPs

Watches 3029 3

Pharmacy 695 4

Watches 110 3

Pharmacy 106 1

Software 99 3

Male Enhancement 94 2

Phishing 91 14

Viagra 90 1

Watches 81 1

Software 80 45

Figure 5: The ten largest virtual-hosted scams and

the number of IP addresses hosting the scams.

5.1 Summary results

We collected the spam from our feed for a one-week period from November 28, 2006 to December 11,

2006. For every URL extracted from spam messages, we probed the host specified by the URL for a full

week (independent of whether the host responded or not) starting from the moment we received the spam.

As a result, the prober monitored some hosts for a week beyond the receipt of the last spam email. Table 1

summarizes the resulting spamscatter trace. Starting with over 1 million spam messages, we extracted

36,390 unique URLs. Using image shingling, we identified 2,334 scams hosted on 7,029 machines. Spam

is very redundant in advertising scams: on average, 100 spam messages with embedded URLs lead to only

seven unique scams.

What kinds of scams do we observe in our trace? We use a commercial Web content filtering product to

determine the prevalence of different kinds of scams. For every URL in our trace, we use the Web content

filter to categorize the page downloaded from the URL. We then assign that category to the scams referenced

by the URL.

Table 2 shows the ten most-prevalent scam categories. Note that we were not able to categorize all of the

scams. We did not obtain access to the Web content filter until a few weeks after taking our traces, and 30%

of the scams had URLs that timed out in DNS by that time (“Uncategorized” in the table). Further, 12%

of the scams did not categorize due to the presence of dynamic content. The remaining 58% of scams fell

into over 60 categories. Of these the most prevalent scam category was “Information Technology”, which,

examining the screenshots of the scam sites, include click affiliates, survey and free merchandise offers and

some merchandise for sale (e.g., hair loss, software). Just over 2% of the scams were labeled as malicious

sites (e.g., containing malware).

5.2 Distributed infrastructure

We start by evaluating to what extent scams use multiple hosts as distributed infrastructure. Scams might use

multiple hosts for fault-tolerance, for resilience in anticipation of administrative takedown or blacklisting,

for geographic distribution, or even for load balancing. Also, reports of large-scale botnets are increasingly

common, and botnets could provide a large-scale infrastructure for hosting scams; do we see evidence of

botnets being used as a scalable platform for scam hosting?

We count multiple scam hosting from two perspectives, the number of virtual hosts used by a scam

and the number of unique IP addresses used by those virtual hosts. Overall, the scams from our trace are

typically hosted on a single IP address with one domain name. Of the 2,334 scams, 2,195 (94%) were
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hosted on a single IP address and 1,960 (84%) were hosted on a single domain name. Only a small fraction

of scams use multiple hosting. Figure 4 shows the tails of the distributions of the number of virtual hosts

and IP addresses used by the scams in our trace, and Table 5 lists the top ten scams with the largest number

of domains and IP addresses. Roughly 10% of the scams use three or more virtual domains, and 1% use

15 or more. The top scams use hundreds of virtual domains, with one scam using over 3,000. Of the 6%

of scams hosted on multiple IP addresses, only a few used more than ten, with one scam using 45. The

relatively prevalent use of virtual hosts suggests that scammers are likely concerned about URL blacklisting

and use distinct virtual hosts in URLs sent in different spam messages to defeat such blacklists.

The scams in our trace do not use hosting infrastructure distributed across the network extensively. Most

scams are hosted on a single IP address, providing a potentially convenient single point for network-based

interdiction either via IP blacklisting or network filtering. Assuming that scammers adapt to defenses to

remain effective, such filtering does not appear to be applied extensively. Scam serving workloads are

apparently low enough that a single host can satisfy offered load sufficiently to reap the benefits of the scam.

Finally, if scams do use botnets as hosting infrastructure, then they are not used to scale a single scam. A

scammer could potentially use different bots each for one scam, but our methodology would not identify

this case.

Those few scams hosted on multiple IP addresses, however, are highly distributed. Scams with multiple

IP addresses were most commonly distributed outside of the same /24 prefix. Of the 139 distributed scams,

all the hosts in 86% of the scams were located entirely on distinct /24 networks. Moreover, 64% of the dis-

tributed scams had host IP addresses that were all in entirely different ASes. As an example, one distributed

scam was a phishing attack targeting a bank. The phishing Web pages were identical across 14 hosts, all in

different /24 networks. The attack employed 91 distinct domain names. The domain names followed the

same naming convention using a handful of common keywords followed by a set of numbers, suggesting

the hosts were all involved in the distributed attack. The fully distributed nature of these scams suggests that

scammers were concerned about resilience.

5.3 Shared infrastructure

While we found that most scams are hosted on a single machine, a further question is whether these indi-

vidual machines in turn host multiple scams, thereby sharing infrastructure across them? For each hosting

IP address in our trace, we counted the number of unique scams hosted on that IP address at any time in

the trace. Figure 6 shows these results as a logscale histogram. Shared infrastructure is rather prevalent:

although 1,450 scams, roughly 62%, were hosted on their own machines, the remaining 38% of scams were

hosted on machines hosting at least one other scam. Ten servers hosted ten or more scams, and the top

three machines hosted 22, 18, and 15 different scams. This sharing of infrastructure suggests that scammers

frequently either run multiple different scams on hosts that they control, or that hosting machines are made

available (sold, rented, bartered) to multiple scammers.

We further examined these shared servers to determine if they host different scams sequentially (ala

QVC) or if, in fact, servers are used concurrently for different scams. For each pair of scams hosted on the

same IP address, we compared their active times and durations with each other. When they overlapped, we

calculated the duration of overlap. We found that scams sharing hosts shared them at the same time: 96%

of all pairs of scams overlapped with each other when they remained active. Figure 7 shows the distribution

of time for which scams overlapped. Over 50% of pairs of scams overlapped for at least 125 hours. Further

calculating the ratio of time that scams sharing hosts were active, we found that overlapped scams did not

necessarily start and end at the same time: only 10% of scam pairs fully overlapped each other.
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Figure 7: Overlap time for scam pairs on a server.

Host type Classification % of hosts recognized

Spam relay Open proxy 72.27%

Spam host 5.86%

Scam host Open proxy 2.06%

Spam host 14.86%

Table 3: Blacklist classification of spam relays and scam hosts.

5.3.1 Sharing between scam hosts and spam relays

More broadly, how often do the same machines serve as both spam relays as well as scam hosting? Hosts

used for both spam and scams suggest, for instance, that either the spammer and the scammer are the same

party, or that a third party controls the infrastructure and makes it available for use by different clients.

We can only estimate the extent to which hosts play both roles, but we estimate it in two ways. First, we

determine the IP addresses of all of the hosts that send spam into our feed. We then compare those addresses

with the IP addresses of the scam hosts. Based upon this comparison, we find only a small amount of overlap

(9.7%) between the scam hosts and spam relays in our trace.

Scam hosts could, of course, serve as spam relays that do not happen to send spam to our feed. For a

more global perspective, we identify whether the spam and scam hosts we observe in our trace are blacklisted

on well-known Internet blacklists. When the prober sees an IP address for the first time (either from a host

sending spam or from a scam host), it performs a blacklist query on that IP address using the DNSBLLookup

Perl module [17].

Table 3 shows the percentage of spam relays and scam hosts that were blacklisted. This perspective

identifies a larger percentage (17%) of scam hosts as also sending spam than just comparing within our

spam feed, but the percentage is still small overall. The blacklists are quite effective, though, at classifying

the hosts that send spam to our feed: 78% of those hosts are blacklisted. The query identifies most of the

spam hosts as open spam relays, whereas most blacklisted scam hosts are identified as just sending spam

directly. These results suggest that when scam hosts are also used to send spam, they are rarely used as an

open spam service.
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Figure 9: Scam lifetime distributions for malicious

and shopping scams.

5.4 Lifetime

Next we examine how long scams remain active and, in the next section, how stable they are while active.

Scammers have an incentive to use hosting infrastructure that provides longer lifetimes and higher availabil-

ity to increase their rate of return. On the other hand, for example, numerous community and commercial

services provide feeds and products to help network administrators identify, filter or take down some scam

sites, particularly phishing scams [1, 6, 23, 25].

We define the lifetime of a scam as the time between the first and last successful timestamp for a probe

operation during the two-week measurement period, independent of whether any probes failed in between

(we look at the effect of failed probe attempts on availability below). We use two types of probes to examine

scam host lifetime from different perspectives (Section 4). We use periodic ping probes to measure host

network lifetime, and we use periodic HTTP requests to measure scam server lifetime. Recall that we probe

all hosts for a week after they appear in our spam feed — and no longer — to remove any bias towards hosts

that appear early in the measurement study. For comparison, we also calculate the lifetimes of entire scams.

For scams that use multiple hosts, their lifetime starts when the first host appears in our trace and ends with

the lifetime of the last host to respond. As a result, scam lifetimes can exceed a week.

How long are scams active? Figure 8 shows the distributions of scam lifetime based upon these probes

for the scams in our trace. For ping probes, we show the distribution of just those scam hosts that responded

to pings (67% of all scam hosts). Scam hosts had long network lifetimes. Over 50% of hosts responded

to pings for nearly the entire week that we probed them, and fewer than 10% of hosts responded to pings

for less than 80 hours. Given how close the distributions are, scam Web servers had only slightly shorter

lifetimes overall. These results suggest that scam hosts are taken down soon after scam servers.

Comparing the distribution of scam lifetimes to the others, we see that scams benefit from using multiple

hosts. The 50% of scams whose lifetimes exceed a week indicate that the lifetimes of the individual scam

hosts do not entirely overlap each other. Indeed, individual hosts for some scams appeared throughout the

week of our measurement study, and the overall scam lifetime approached the two weeks.

5.4.1 Lifetime by category

A substantial amount of community and commercial effort goes into identifying malicious sites, such as

phishing scams, and placing such sites on blacklists of URLs or DNS/IP addresses. Thus, we would expect

that that hosting infrastructure for clearly malicious scams would be more transient than for other scams. To
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Figure 10: The duration of a spam campaign.

test this hypothesis, we used the categorization of scams to create a group of malicious scams that include the

“Illegal or Questionable” and “Phishing” categories labeled by the Web content filter (32 scams). For com-

parison, we also broke out another group of more innocuous shopping scams that include the “Shopping”,

“Information Technology”, and “Auction” categories (701 scams).

We examined the lifetimes and prevalence on blacklists of these scams. Figure 9 shows the lifetime

distributions of the malicious and shopping groups of scams, and includes the distribution of all scams from

Figure 8 for reference. The malicious scams have a noticeably shorter lifetime than the entire population,

and the shopping scams have a slightly longer lifetime. Over 40% of the malicious scams persist for less

than 120 hours, whereas the lifetime for the same percentage of shopping scams was 180 hours and the

median for all scams was 155 hours. These results are consistent with malicious scam sites being identified

and taken down faster than other scam sites, although we cannot verify the causality.

As further evidence, we also examined the prevalence of malicious scams on the DNS blacklists we

use in Section 5.3.1, and compare it to the blacklisting prevalence of all scams and the shopping scams.

Over 28% of the malicious scams were blacklisted, roughly twice as often as the shopping scams (12%

blacklisted) and all scams (15%). Again, these results are consistent with the lifetimes of malicious scams

— being blacklisted twice as frequently could directly result in shorter scam lifetimes.

5.4.2 Spam campaign lifetime

A related aspect to scam lifetime are the “spam campaigns” used to advertise scams and attract clients. We

captured 319,700 spam emails with links in our trace, resulting in 2,334 scams; on average, then, each scam

was advertised by 137 spam emails. We use these repeated spam emails to determine the lifetime of spam

campaigns for a scam by measuring the time between the first and last spam email messages advertising that

scam. Figure 10 shows the distribution of the spam campaign lifetimes. Compared to the lifetime of scam

sites, most spam campaigns are relatively short. Over 50% of the campaigns last less than 12 hours, over

90% last less than 48 hours, and 99% last less than three days. Roughly speaking, the lifecycle of a typical

scam starts with a short spam campaign lasting half of a day while the scam site remains up for at least a

week.

The relative lifetimes of spam campaigns and scam hosts again reflect the different needs of the two

services. Compared with scam hosts, spam relays need to be active for much shorter periods of time to

accomplish their goals. Spammers need only a window of time to distribute spam globally; once sent, spam

relays are no longer needed for that particular scam. Scam hosts, in contrast, need to be responsive and
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Figure 11: IP addresses, binned by /24 prefix, for spam sending relays and scam host servers.

available for longer periods of time to net potential clients. Put another way, spam is blanket advertising that

requires no interaction with users to deliver, whereas scam hosting is a service that fundamentally depends

upon user interaction to be successful. In contrast, scam hosts benefit more from stable infrastructure that

remains useful and available for much longer periods of time.

5.5 Stability

A profitable scam requires stable infrastructure to serve potential customers at any time, and for as long

as the scam is active. To gauge the stability of scam hosting infrastructure, we probed each scam host

periodically for a week to measure its availability. When downloading pages from the hosts, we also used

p0f to fingerprint host operating systems and link connectivity.

We computed scam availability as the number of successful Web page downloads divided by the total

number of download attempts within the overall lifetime of the scam; if a scam lasted for only three days, we

computed availability only during those days. Scams had excellent availability: over 90% of scams had an

availability of 99% or higher. Of the remaining, most had availabilities of 98% or higher. As fingerprinted

by p0f, more scams ran on Unix or server appliances (43%) than Windows systems (30%), and all of them

had reported good link connectivity. These results indicate that scam hosting is quite reliable within the

lifetime of a scam.

5.6 Scam location

We next examine both the network and geographic locations of scam hosts. For comparison, we also exam-

ine the locations of the spam relays that sent the spam in our trace. Comparing them highlights the extent to

which the different requirements of the two services reflect where around the world and in the network they

are found.

5.6.1 Network location

The network locations of spam relays and scam hosts are more consistent. Figure 11 shows the cumulative

distribution of IP addresses for spam relays and scam hosts in our trace. Consistent with a similar analysis

of spam relays in [27], the distributions are highly non-uniform. The IP addresses of most spam relays and
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Scam host country % of all servers

United States 57.40%

China 7.23%

Canada 3.70%

Great Britain 3.07%

France 3.06%

Germany 2.52%

Russia 1.80%

South Korea 1.77%

Japan 1.60%

Taiwan 1.53%

Other 16.32%

Table 4: Countries of scam hosts.

Spam relay country % of all relays

United States 14.50%

France 7.06%

Spain 6.75%

China 6.65%

Poland 5.68%

India 5.42%

Germany 5.00%

South Korea 4.67%

Italy 4.44%

Brazil 3.86%

Other 30.97%

Table 5: Countries of spam relays.

scam hosts fall into the two same ranges, 58.* to 91.* and 200.* to 222.*. However, within those two address

ranges hosts for the two services have different concentrations. The majority of spam relays (over 60%) fall

into the first address range and are distributed somewhat evenly except for a gap between 70.* and 80.*.

Roughly half of the scam hosts also fall into the first address range, but most of those fall into the 64.* to

72.* subrange and relatively few in the second half of the range. Similarly, scam relays are more uniformly

distributed within the second address range as well.

5.6.2 Geographic location

How do these variations in network address concentrations map into geographic locations? The effectiveness

of scams could relate to (at least perceived) geographic location. As one example, online pharmaceutical

vendors utilized hosting servers inside the United States to imply to their customers that they were providing

a lawful service [14].

Using Digital Element’s NetAcuity tool [10], we mapped the IP addresses of scam hosts to latitude

and longitude coordinates. Using these coordinates, we then identified the country in which the host was

geographically located. Table 4 shows the top ten countries containing scam hosts in our trace. Interestingly,

the NetAcuity service reported that nearly 60% of the scam hosts are located in the United States. Overall,

14% were located in Western Europe and 13% in Asia. For comparison, Table 5 shows the top ten countries

containing spam relays. The geographic distributions for spam relays are quite different than scam hosts.

Only 14% of spam relays are located in the United States, whereas 28% are located in Western Europe and

16% in Asia.

The strong bias of locating scam hosts in the United States suggests that geographic location is more

important to scammers than spammers. There are a number of possible reasons for this bias. One is the

issue of perceived enhanced credibility by scammers mentioned above. Another relates to the difference in

requirements for the two types of services. As discussed in Section 5.4.2, spam relays can take advantage

of hosts with much shorter lifetimes than scam hosts. As a result, spam relays are perhaps more naturally

suited to being hosted on compromised machines such as botnets; the compromised machine need only be

under control of the spammer long enough to launch the spam campaign. Scam hosts benefit more from

stability, and hosts and networks within the United States can provide this stability.
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6 Conclusion

This paper does not study spam itself, nor the infrastructure used to deliver spam, but rather focuses on the

scam infrastructure that is nourished by spam. We demonstrate the spamscatter technique for identifying

scam infrastructure and how to use approximate image comparison to cluster servers according to individual

scams – side-stepping the extensive content and networking camouflaging used by spammers.

From a week-long trace of a large real-time spam feed (roughly 150,000 per day), we used the spam-

scatter technique to identify and analyze over 2,000 distinct scams hosted across more than 7,000 distinct

servers. We found that, although large numbers of hosts are used to advertise Internet scams using spam

campaigns, individual scams themselves are typically hosted on only one machine. Further, individual ma-

chines are commonly used to host multiple scams, and occasionally serve as spam relays as well. The

lifecycle of a typical scam starts with a short spam campaign lasting half of a day while the scam site re-

mains up for at least a week. The relative lifetimes of spam campaigns and scam hosts reflect the different

requirements of the two underground services. Spam is blanket advertising that requires no interaction with

users to deliver, whereas scam hosting is a service that fundamentally depends upon user interaction to be

successful. Finally, mapping the geographic locations of scam hosts, we find that they have a strong bias to

being located in the United States. The strong bias suggests that geographic location is more important to

scammers than spammers, perhaps due to the stability of hosts and networks within the U.S.
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