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ABSTRACT OF THE DISSERTATION

Prove Once, Run E�ciently Anywhere:

Tools for Lock-free Concurrent Algorithms

by

John Ma�hew Bender

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Jens Palsberg, Chair

�e multi-core revolution has pushed programmers and algorithm designers to build algorithms

that leverage concurrency. �is notoriously di�cult task is further complicated by the existence

of weak architecture and language memory models. �e presence of many such memory models

has traditionally forced correctness proofs for lock-free concurrent algorithms to be performed

on a per-model basis, resulting in a signi�cant duplication of e�ort. We demonstrate that the

correctness of lock-free concurrent algorithms can be proved once for implementations that can

be compiled to run correctly and e�ciently on all mainstream memory models.
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CHAPTER 1

Introduction

�e multi-core revolution has increased the need for shared-memory concurrent programming,

algorithms, and languages. In response, programmers target multiple cores to speed up execu-

tion, algorithm designers develop concurrent libraries, and language designers make these tasks

as easy as possible. Despite much progress, achieving general correctness results remains a chal-

lenge, because, in addition to reasoning about the nondeterminism of concurrent programs, a

programmer must also reason in the context of a memory model.

Intuitively, a memory model is an interface that presents an idealized computer architecture,

amenable to reasoning about correctness. A proof of correctness assumes a memory model, and

then tool support enforces that memory model on a real architecture. �is separation of concerns,

proof from implementation, can simplify the proofs and make them more general, decreasing

duplication of e�ort.

For example, the work of [35] assumes that the memory model is Sequential Consistency and

proves the correctness of many algorithms. �en a tool made to support Sequential Consistency

can enforce correctness on many architectures by, for example, inserting fences [4]. Similarly,

Java algorithms rely on volatile variable annotations that the Java virtual machine enforces using

fences [50]. Independently, many algorithms have been proven correct for the C/C++ memory

models [81] that are enforced by compilers such as GCC and Clang.

However, this separation of concerns can also negatively impact performance. For exam-

ple, many of the proofs in Herlihy and Shavit’s book remain valid for memory models that are

“weaker” than Sequential Consistency. �e reason is that each of those proofs relies on a few

assumptions, particular to the algorithm, that are implied by Sequential Consistency. �e same is

true of the relatively weak release-acquire fragment of C++ for certain algorithms [19]. Enforcing

1



these stronger assumptions is unnecessary and this translates into extra synchronization which

hurts performance.

All this leads us to ask: can we get performance, generality, and correctness? Indeed, we will

demonstrate that the correctness of lock-free concurrent algorithms can be proved once for im-

plementations that can be compiled to run correctly and e�ciently on all mainstream memory

models. Speci�cally, we will describe the tools and techniques we have developed toward that

end; including a compiler, the �rst memory model for Java’s Access Modes [52, 51, 41], and a

mechanized logic. In the spirit of Java’s slogan “write once, run anywhere” and in recognition of

our model of Java’s Access Modes which forms the basis for our veri�cation e�orts, we say that

algorithm designers can now “prove once, run e�ciently anywhere.”

�e key to our approach is the use of speci�ed orders. �e idea is that the correctness of lock-

free concurrent algorithms frequently turns on the ordered execution of a few critical instructions

regardless of the target architecture or language.

To begin, we will show how one can arrive at the idea of speci�ed orders naturally from an

understanding of the relationship between sequential consistency and weaker memory models.

First, we will describe sequential consistency informally. �en we will make the de�nition more

precise so that we can accurately describe what is “weakened” in a weak memory model. �en we

will see that speci�ed orders arise from a desire to recover some of the ordering guarantees made

by sequential consistency while bene�ting from the performance of weaker memory models.

�roughout we will use simple example programs to illustrate key ideas. Finally, we will conclude

with an outline for how we will use speci�ed orders to get fast, general, and correct algorithms

in the rest of this work.

1.1 Sequential Consistency

Sequential consistency (SC) is the model that most programmers think of when they are reason-

ing about concurrent programs that access shared memory [48]. Conceptually, under SC, the

processor chooses a thread from a set of threads de�ned by the running program. �e processor

then executes the next, unexecuted instruction from the chosen thread; here we are primarily
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concerned with memory access instructions. �e e�ect of each such memory access is recorded

in main memory before choosing the next thread and memory access to execute. Finally, reads

can look at main memory for a given location and produce the current value.

[x] := 1
[y] := 1

r1 := [y] 
r2 := [x] 

Figure 1.1: Message Passing

To see how reasoning proceeds under SC, consider the

program in Figure 1.1. �is program represents a standard

message passing idiom in concurrent programming. �e

program performs two writes, [x] := 1 and [y] := 1, to

the locations x and y, concurrently with two reads, [y]

and [x], of the same locations into the registers r1 and r2. �e idea is, when the read of y in the

second thread sees the value 1 it’s a signal that some work has completed before the write to y

in the �rst thread. In this case the “work” is the write of 1 to x. As an example, this technique is

commonly used when constructing locks, where the write to y would be an unlock signaling that

the lock of y is available to be acquired. �en, any process that acquires the lock can be assured

that the work done in the critical section before the unlock has been wri�en to memory.

We can phrase the desired behavior for this program as a question and use our understanding

of sequential consistency to formulate an answer. �e question is, if the read of y sees the value

1, then will the read of x see the completed write to x and the value 1? If we know that the read

of y saw 1 we know that the write to y was executed. Intuitively, that means the write to x must

have been executed since it comes before the write to y. From this we can conclude that the read

of x sees the value 1 wri�en by the write to x.

We can make this kind of reasoning more concrete by formalizing SC as three guarantees.

�ese guarantees take the form of relationships between memory accesses in program executions.

1. �ere exists a total order over all executed memory accesses. Intuitively, the total order

represents the order in which memory accesses are executed as the processor chooses a

thread and an access.

2. �e total order must be consistent with the order of instructions as de�ned in the program

(program order). �is represents the fact that the “next” instruction is determined by the

sequence of the accesses in the chosen thread.
3



3. When a read is paired with a write to the same location (reads-from), the write must be the

latest for that location in the total order. �is represents the ability of a read to inspect the

current state of global memory to �nd the latest value wri�en to a given location.

rf
a: W(x,1)

b: W(y,1)

c: R(y,1)

d: R(x,?)

po po

Figure 1.2: MP Graph

Now we can ask questions about programs and use the

formal de�nitions to provide precise answers. Consider

the example execution in Figure 1.2 for the message pass-

ing program. Here, we represent an execution as a graph.

Memory accesses are labeled nodes with a type of oper-

ation, a memory location, and a value. For example, the

write to x of the value 1 labeled a appears as a: W(x, 1). �e relationships between accesses

are labeled edges. Program order is represented as po
−−−→ and reads-from is represented as rf

−−−→ .

Any accesses not related by program order are assume to be in di�erent threads.

Now the question is, for executions where the message has been passed, b rf
−−−→ c, will d see

the work performed by a? In the graph we can see that a po
−−−→ b rf

−−−→ c po
−−−→ d. Since the total

order for execution guaranteed by SC must be consistent with these edges by guarantees 2 and 3,

we know that a is executed before d in the total order. �us, a is the latest write to x and d must

see a and read the value 1 by guarantee 3.

1.2 Sequential Inconsistency

Much to the consternation of programmers [46] and researchers [62, 58], mainstream processors

and languages do not have SC semantics. In the interest of improving performance they provide

only a small subset of the relationships guaranteed by SC. For example, ARM processors may

execute accesses to di�erent locations out of program order.

To see the e�ect this has, we return to the message passing example in Figure 1.2. Under a

weak memory model, like ARM, the order in which memory accesses are executed is not guar-

anteed to be consistent with program order. In particular we are no longer guaranteed that the

edges a po
−−−→ b and c po

−−−→ d will a�ect the order in which the related accesses are executed. So,
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even though the message may be received, b rf
−−−→ c, we can’t conclude that d will see the value 1

as wri�en by a. For example, the access a could be executed a�er b on ARM processors. Similarly,

d could be executed before c.

1.3 Speci�ed Orders

We can see in the message passing example that there are two ordering relationships guaranteed

by SC that are required to ensure the correct behavior, namely the program order relationships

a po
−−−→ b and c po

−−−→ d. Importantly, these are the only relationships that are required and we

call these relationships speci�ed orders. Other guarantees made by SC that are unrelated to the

correctness of a given algorithm can be sacri�ced in the name of performance.

rf
a: W(x,1)

b: W(y,1)

c: R(y,1)

d: R(x,?)

po po

b: W(z,1)

po

Figure 1.3: MP Extra Access

Consider the extension to the message passing ex-

ample in Figure 1.3. �e speci�ed orders now appear

in blue along side the program order edges they are in-

tended to recover. Further, there is now another write,

e, to di�erent variable z in the �rst thread. Recall that

our only concern in message passing is that memory ac-

cesses before the write to y in the program are completed

before memory accesses a�er the read of y in the pro-

gram, speci�cally the write to x and the read of x respectively.

�e desired behavior does not depend on the write to z executing in any particular order and

it can freely be reordered before the other accesses in the �rst thread. �at is, the guarantee

that e executes a�er a and b provided by SC is unnecessary. �is allows us to bene�t from any

performance increase we might see by reordering those accesses and our algorithm will continue

behave correctly 1.

1When the message passed is an unlock for the variable this freedom to reorder accesses like the write to z is
known as roach motel reordering [77]. �e idea is that any access outside a critical region in the program can be
reordered to execute inside the critical section without issue.
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1.4 In �eory and in Practice

Speci�ed orders are an intuitive response to the lack of guarantees provided by modern hardware

and compilers. However, we will demonstrate that they can be more than an idealized form of

synchronization. Indeed, we will show that they enable us to construct single algorithm that can

be compiled to fast, practical code for many architectures.

In Section 2 we demonstrate the practicality of speci�ed orders. We will show that speci�ed

orders can be compiled to e�ciently synchronized code for the x86 and ARMv7 architectures. In

Section 3 we build a formal model for Java’s Access Modes [52, 51] and demonstrate that the core

of the model admits more weak memory model behaviors than any other mainstream memory

model. We will also show why this makes it an ideal target for general reasoning. In Section

4 we build on our formal model of Java’s Access Modes and detail a logic we have constructed

that we use in mechanized correctness proofs of lock-free algorithms with speci�ed orders. We

demonstrate the capabilities of the logic with proofs for a ring bu�er as found in the Linux kernel

[38] and Dekker’s mutual exclusion algorithm. Finally, in Section 5 we place this work in the

broader context of research for veri�cation under weak memory models.
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CHAPTER 2

Fast Code from Speci�ed Orders

While speci�ed orders are a natural extension to formal relational models of weak memory, they

are more than just a theoretical concern. Here, we will demonstrate that speci�ed orders are

practical and result in fast code. Speci�cally, we will show that memory fences can be inserted

intelligently to enforce speci�ed orders for many processor architectures and the resulting code

is competitive with hand wri�en equivalents.

In Section 2.1 we will give an overview of the challenges inherent in inserting fences to enforce

speci�ed orders. In Section 2.2 we will detail our algorithm for inserting fences. In Section 2.3

we will provide implementation details for our fence insertion tool, Parry, which implements the

algorithm. In Section 2.4 we demonstrate that our approach results in code that is as fast as code

wri�en by experts.

2.1 Fence Insertion

To enforce the correct ordering of memory accesses architectures provide memory fence instruc-

tions. �ese instructions guarantee that some subset of the supported memory operations will

take place before and a�er the fence during execution. For example, on ARM processors, the dmb

st fence guarantees that all stores before the fence in program order will complete before the

fence is �nished executing, thereby ordering those stores with instructions a�er the fence. In the

case of the message passing example in Figure 1.2 we can insert a dmb st fence between a and b

to ensure that the store to x completes before the store to y.

�e problem of enforcing speci�ed orders becomes more complicated when considering porta-

bility between architectures. For the message passing example, the speci�ed orders require no
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...
#ifndef TL2_EAGER
#  ifdef TL2_OPTIM_HASHLOG
for (wr = logs; wr != end; wr++)
#  endif
{
  // write the deferred stores
  WriteBackForward(wr);
}
#endif

// make stores visible before unlock
MEMBARSTST();

// release locks and increment version
DropLocks(Self, wv);

// ensure loads are from global writes
MEMBARSTLD();

return 1;
...

Figure 2.1: STAMP TL2 TxCommit Procedure

fences on x86. On ARM processors the speci�ed order in the �rst thread can be enforced by either

a dsb, dmb, or a dmb st. Similarly the speci�ed order in the second thread can be enforced by

either a dsb, dmb, or a dmb ld. �ese choices have an impact on the performance of the algorithm

during execution. We call these choices fence selection. Additionally we consider the placement

or insertion of fences. For the message passing example the placement is straightforward but this

is not always the case.

2.1.1 TL2 Commit

We will illustrate the complexity of fence insertion by examining the commit procedure of the TL2

transactional memory algorithm which we will reference throughout this section.

Intuitively, a transactional memory [34, 79] is a concurrent object that encapsulates and man-

ages accesses to an array of memory locations. �e TM interface has four highly concurrent

methods, namely init, read, write, and commit, that a typical user program calls a large number

of times.
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When TL2 is managing a transaction, stores made inside the transaction do not go to main

memory. Instead TL2 records the stores in a “write-set”. When the transaction ends, the algorithm

a�empts to acquire locks for each address, commit the write-set to main memory, and release the

acquired locks.

For TL2’s commit to function properly the “real” stores made to each memory address from

the write-set must be seen to take place before the release of the corresponding locks. Otherwise,

an external observer may see an address in the write-set as unlocked before the actual store from

the write-set makes it to main memory.

Similarly, the release of the lock for each address must be seen to take place before any load

a�er the commit is �nished. �is ensures that loads performed in the same thread as the trans-

action will see the same values in memory from the write-set and locks as any external observer.

Figure 2.1 shows the source code for these orders from the TL2 commit procedure, TxCommit,

as it appears in implementation included with the STAMP benchmark suite [24]. �e WriteBackForward

procedure contains the store instruction that moves values from the write-set to main memory

and the DropLocks procedure contains the store instruction that releases the locks.

We record the speci�ed orders from WriteBackForward(wr) to DropLocks(Self, wv) and

from DropLocks(Self, wv) to all later loads (...) as blue arrows. To enforce these orders, the

TL2 designers have placed memory fence macros between the relevant operations. An imple-

menter who is porting TL2 to di�erent architectures can de�ne each macro to be an architecture

appropriate memory fence to enforce the correct behavior. �e drawback of such a fence-centric

approach is that for a programmer who wishes to understand the TM algorithm and perhaps to

port it to a di�erent architecture, a fence placement says li�le about why the designers chose it

and placed it at a particular program point. Fences are best viewed as an implementation mech-

anism for a higher level of abstraction.

Fence Insertion. Inserting fences requires knowledge of the control �ow paths between the

ordered instructions, as well as the other instructions on those paths.

Without knowing the control �ow information it is possible to miss paths and allow exe-

cutions in which the instructions may be seen to pass each other. On the other hand, a naive
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x86 ARMv7 IA64

W(x) 7→ R(x) W(x) 7→ R(x) W(x) 7→ R(x)

W(x) 7→ W(y) W(x) 7→ W(x) W(x) 7→ W(x)

R(x) 7→ R(y) R(x) 7→ R(x) R(x) 7→ R(x)

R(x) 7→ W(y) R(x) 7→ W(x) R(x) 7→ W(x)

∗ 7→ mfence ∗ 7→ dmb ∗ 7→ mfence

mfence 7→ ∗ dmb 7→ ∗ mfence 7→ ∗

W(x) 7→ dmb st W(x) 7→ sfence

dmb st 7→ ∗ sfence 7→ W(x)

R(x) 7→ lfence

lfence 7→ R(x)

Figure 2.2: Architecture De�nitions

approach to fence placement that avoids missing paths by inserting a fence directly a�er the �rst

instruction in the order can be expensive. For example, if the �rst fence macro is placed directly

a�er the call to WriteBackForward it can result in an expensive loop over the fence when the

TL2 OPTIM HASHLOG �ag is set at compile-time.

Without knowing the other instructions in the control �ow paths, one might place a new

fence where another already exists, or where properties of the memory models makes fences

unnecessary in the presence of other instructions.

For example, consider the �rst order in TxCommit. �e x86 memory model already enforces

many orders. Looking at the orders enforced by the x86 architecture de�nition in Figure 2.2, we

can see W(x) 7→ W(y) suggests that two stores to any address will not move past each other. We

use this to prove that the instructions in the �rst order of TxCommit, W(addr) → W(lock), will not

move past each other:

p, x86 ` W(addr) → W(lock)
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p, x86 ` W(lock) → W(tmp)

p, x86 ` W(tmp) → R(tmp) p, x86 ` R(tmp) → R(x)

p, x86 ` W(tmp) → R(x)

p, x86 ` W(lock) → R(x)

Figure 2.3: Derivation of W(lock) → R(x) in TxCommit

�at is, if x86 prevents stores from moving past each other and the order we want to enforce

involves two stores, then we can conclude that the order is enforced. �is means we can safely

de�ne the �rst macro in the example as a no-op on x86. Note that our architecture rules for x86

do not include non-temporal hinted store instructions like movnti and movntdq.

In contrast, this order is not enforced by ARMv7. Since stores can be seen to move past other

stores when the addresses are di�erent on ARMv7 we do not include this rule in the architecture

de�nition. Instead the rule relating stores requires that the addresses be the same.

�e second order in TxCommit, W(lock) → R(x), represents a more complex example of how

intervening instructions can a�ect order enforcement. When TxCommit is compiled with Clang,

the compiler generates a store and a load to the same temporary address a�er the lock release in

DropLocks but before the end of the procedure as illustrated in both graphs in Figure 2.4. We can

use these instructions and the properties of x86 to prove the transitive order in Figure 2.3 where

tmp represents the temporary memory location. We conclude that the store to lock can never

be seen to move past the �nal load in TxCommit and also any subsequent load. We de�ne the

notation, rules and memory model properties more completely in the next section.

Selecting Fences. Selecting the correct fence requires knowledge of how the compiler will

treat the source code and knowledge of the fences available for each architecture. For TxCommit

on ARMv7 the second macro can be de�ned correctly using many di�erent fence con�gurations

according to the ARM documentation [6], e.g. dsb, dmb, or a quali�ed dmb st. Both the litmus

test documentation [32] and the assembler reference [6] are complicated texts in accordance with

the complexity of the ARMv7 memory model. Determining the best fence is a nontrivial task.
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Figure 2.4: Fence Insertion for a Modi�ed Control Flow Graph

2.1.2 Our Approach

We decompose fence insertion into two sub-problems. First we eliminate any orders that are

provably enforced by existing instructions and the properties of the target architecture. For the

remaining orders we modify the program with new instructions that enforce the remaining or-

ders.

We address both sub-problems by considering control �ow graphs with a restricted set of

instructions. Each node is labeled with the instruction, the address that it operates on, and the

line number that it was generated from in the source code. Every path between two instructions in

the control �ow graph represents a possible execution involving those instructions. We construct

these graphs using the intermediate representation and control �ow graph for a given procedures

as generated by the LLVM compiler [49].

In Figure 2.4a we have a control �ow sub-graph for the second order in TxCommit, constructed

from LLVM’s output when compiling the procedure. It contains all of the paths and a subset of
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the instructions (elided with dashed arrows) that appear between the store, W(lock), to release the

locks in DropLocks and the end of the TxCommit procedure. Note that the store to release the

locks appears in a cycle that comes from the body of the DropLocks procedure though it does

not appear in the code in Figure 2.1. Also the name of the variable containing the lock address

has been renamed to lock for clarity.

Order Elimination. We eliminate an order by proving that the order is enforced for every

path between the ordered instructions. Proofs for orders correspond with paths in the graph

through a second set of architecture edges. If two instructions exist in a control �ow path and the

architecture guarantees that they will never move past each other, we add an architecture edge.

Returning to our example, recall that on x86 we can eliminate the second order in TxCommit

because the compiler generates a load and store to a temporary variable. In Figure 2.4a, we add

architecture edges (not pictured) between two nodes pairs. We add the �rst edge between the

nodes labeled with W(lock):1413 and W(tmp):1679 because stores cannot move past stores. We

add the second edge between the nodes labeled with W(tmp):1679 and R(tmp):1679 because

stores can not move past loads from the same address. �ese edges correspond with a transitive

order derivation for every path between the store to lock and the load to tmp. As a result we can

eliminate the order.

In contrast, on ARMv7, we cannot add the �rst architecture edge between the store to lock and

the store to tmp because stores are permi�ed to move past other stores for di�erent addresses.

In that case, since we can’t eliminate the order with the original graph, we must alter the graph

so that we can prove the order is enforced.

Fence Insertion. We model the problem of �nding these graph alterations as minimum

multi-commodity cut [18] (herea�er multi-cut). Intuitively, multi-cut �nds a minimum set of

edges such that, when they are removed, no paths exist between the sources and sinks for all

commodities. If we de�ne the sources and sinks for commodities using the paired instructions in

orders and then “split” the edges in the resulting cut with a fence, we will have transitive orders

for all paths and all orders.

�e altered control �ow graph in Figure 2.4b shows the results of fence insertion on ARMv7
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for TxCommit. �e algorithm selects a single edge from the original graph to split with a fence,

represented here as fstore. �is alteration ensures that all paths from the store to the load are

provably enforced.

Note also that the cut should happen outside the loop-cycle in the control �ow graph. �is

prevents an unnecessary performance penalty when placing the fence. �is is handled directly

by the minimum cut algorithm. Since the cut is determined based on the sum of the capacities of

the edges in the cut, we can use larger capacities to discourage the selection of edges that occur

in loops. �is ensures a fence will only be placed in a loop when all paths for an order are in a

loop. Modeling fence insertion as multi-cut accounts for the full generality of control �ow graphs

including odd control �ow con�gurations and order overlap.

Fence Selection. Finally, we select appropriate fences for each placement by de�ning a par-

tial order over fences based on their capabilities. For example on ARMv7 a dmb fence can enforce

strictly more orders than dmb st since the la�er only waits for stores. In the case of Figure 2.4

either fence will work but we prefer the “weaker” dmb st represented here as the abstract fence

type fstore. We do this under the assumption that it is less costly during execution which is

supported by the ARMv7 documentation [32].

2.1.3 Orders, Not Fences

�e memory fence is a blunt instrument that relates possibly hundreds of instructions across

many execution paths and blurs its original purpose. Instead we supply a scalpel in the form of

speci�ed orders, which are more speci�c about the desired behavior of the program. Speci�ed

orders at the source level enable authors to reason more easily about their algorithm, while a

compiler can do the work to insert fences that enforce the orders.

2.2 �e Fence Insertion Algorithm

Our algorithm for fence insertion takes three inputs: a control-�ow graph G, architecture rules

A, and speci�ed orders O. �e output is a transformed graph Insert(G, A,O) with fences that
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enforce the speci�ed orders. In Section 2.2.1, we de�ne a basic version of Insert and prove it

correct. �e basic version relies on the simplifying assumption that the only fence available is

fany. We will assume that fany enforces that all instructions prior to the fence happen before all

instructions a�er the fence. In Section 2.2.2, we describe brie�y how to generalize Insert to work

with multiple fences.

2.2.1 �e Core Algorithm

We proceed as follows. First we de�ne the basic concepts of graphs, architecture rules, and spec-

i�ed orders, along with some helper notation. �en we de�ne a correctness criterion of the form

G, A |= O, which says that the combination of G and A enforces all the speci�ed orders O. �is

brings us to de�nition of our algorithm Insert whose goal is to produce an output graph G that

satis�es G, A |= O. Finally, we give an example and then prove the correctness of Insert.

Graphs. A control-�ow graph G = (V, E, `) consists of a set V of nodes, a set E ⊆ (V × V)

of directed edges, and a labeling function `. Intuitively, a node is a program point, the label of a

node is the instruction at that program point, and an edge is potential control �ow between two

program points. We use i, j to range over V . �e function ` maps each element of V to a label,

which is an element of

{ W(a), R(a), fany }

where a is an address, W represents a store, R represents a load, and fany is a fence. We use l to

range over labels. Notice that our control-�ow graphs focus entirely on loads, stores, and fences.

�is is is in contrast to the conventional notion of a control-�ow graph that represents every

instruction in a program. One can abstract such a conventional graph into one of our graphs by,

intuitively, omi�ing the nodes of no interest to our approach.

For a graph G with i1, i2 among its nodes, we use paths(G, i1, i2) to denote the set of paths

in G from i1 to i2. A path from i1 to i2 is itself a graph in which 1) each node has one outgoing

edge, except i2 which has no outgoing edges, and 2) all nodes on the path are reachable from i1 by

following zero, one, or more edges. Our notion of path is usually known as a simple path because

it allows no loops. Still, we will use the terminology “path” for simplicity. We will use p to range
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over paths.

Architecture rules. A set of architecture rules speci�es a memory model. Intuitively, the

fewer the rules, the weaker the memory model. �e idea is that even if a control-�ow graph has

an edge from i1 to i2, the execution of i1 and i2 may happen in either order or overlap, unless

speci�c architecture rules enforce an order of execution. A set A of architecture rules consists of

rules of the form L 7→ R, where L, R are rule components that range over

{ ∗, W(x), R(x), fany }

and where x is a variable that ranges over addresses. Intuitively, ∗ is a wildcard. A rule L 7→ R

expresses that if we have a graph (V, E, `) with two nodes i1 and i2 such that i1 can reach i2, and

such that we can instantiate L 7→ R to (`(i1), `(i2)), then we can conclude that i1 must happen

before i2. We will de�ne the notion of instantiation below.

For example, the rules (∗ 7→ fany), (fany 7→ ∗) express, intuitively, that fany is a fence.

Speci�cally, the �rst rule says that all instructions that can reach the fence will happen before

the fence, while the second rule says all instructions that can be reached from the fence will

happen a�er the fence. �e combined e�ect of those two rules is that all instructions prior to the

fence happen before all instructions a�er the fence. In this section we de�ne Insert in a way that

relies on that A contains those two rules.

As another example, the rule W(x) 7→ W(y) expresses, intuitively, that all store instructions

must happen in the order in which they are reached in the control-�ow graph.

As a third example, the rule W(x) 7→ R(x) expresses, intuitively, that if a store instruction to a

particular address can reach a load instruction from that same address in the control-�ow graph,

then the store instruction must happen before the load instruction.

We will now de�ne a notion of instantiating an architecture rule to a pair of labels. Speci�cally,

if (L 7→ R) is an architecture rule and (l1, l2) is a pair of labels, then we write (L 7→ R)B (l1, l2) to

denote that (L 7→ R) instantiates to (l1, l2).

�e de�nition of instatiation will ensure that for rules such as (W(x) 7→ R(x)), the two occur-

rences of x must be replaced with the same address. Our technical device to make that happen

is that of a substitution. We use σ to range over substitutions that map variables of the form
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x to addresses. For our use, each substitution has either a domain of either zero, one, or two

elements, depending on whether a rule mentions zero, one or two variables. �e de�nition of

(L 7→ R) B (l1, l2) uses the relation I to distribute the use of a substitution to each of L and R.

Now we are ready to present the detailed de�nition of instantiation.

We say that a rule (L 7→ R) instantiates to a pair of labels (l1, l2) if we can derive (L 7→

R) B (l1, l2) with the following rules:

(L, σ) I l1 (R, σ) I l2
(L 7→ R) B (l1, l2)

(∗, σ) I l

(W(x), σ) I W(σ(x))

(R(x), σ) I R(σ(x))

(fany, σ) I fany

�e �rst rule says that we can instantiate (L 7→ R) to (l1, l2) if we can �nd a substitution σ such

that L guided by σ instantiates to l1 (wri�en ((L, σ) I l1)), and R guided by σ instantiates to l2

(wri�en ((R, σ) I l2)). �e other four rules de�ne the cases where a rule component, guided by

a substitution, instantiates to a label. Speci�cally, ∗ instantiates to any label, W(x) instantiates to

W(σ(x)), R(x) instantiates to R(σ(x)), and fany instantiates to fany.

Speci�ed Orders. For a graph G = (V, E, `), the speci�ed orders is a set O ⊆ (V × V).

Correctness criterion. We will now de�ne a correctness criterion G, A |= O. Intuitively,

G, A |= O says that the combination of G and A enforces all the speci�ed orders O. �e goal of

our approach is to produce an output graph G that sati�es G, A |= O.

We de�ne the correctness criterion in two steps. First we de�ne a judgment p, A ` i1 → i2.

For a path p = (V, E, `), architecture rules A, and nodes i1, i2 on p, we de�ne that p, A ` i1 → i2
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holds if it can be derived by these rules:

p, A ` i1 → i2 (where i1 can reach i2 in p ∧

(L 7→ R) ∈ A ∧

(L 7→ R) B (`(i1), `(i2)) )

p, A ` i1 → j p, A ` j → i2
p, A ` i1 → i2

�e �rst rule instantiates an architecture rule in A, and the second rule is transitivity.

Now we are ready to de�ne the overall correctness criterion. For a graph G = (V, E, `),

architecture rules A, and speci�ed orders O ⊆ (V × V), de�ne:

G, A |= O ⇐⇒

∀(i1, i2) ∈ O : ∀p ∈ paths(G, i1, i2) : p, A ` i1 → i2

Notice that the de�nition considers all paths between i1 and i2. �is ensures that the speci�ed

order will be enforced, irrespective of the control �ow.

Algorithmoverview. Our algorithm Insert composes three functions Elim, Cut, and Refine.

Intuitively, Insert proceeds in three steps:

1. Elim determines a subset of the speci�ed orders that are enforced by the architecture.

2. Cut determines where to insert fences that will enforce the rest of the speci�ed orders.

3. Refine inserts the fences.

We now describe Elim, Cut, Refine, and Insert. A�er those descriptions, we will give an exam-

ple.

�e Elim function. Our approach uses a function Elim that determines a subset of the

speci�ed orders for which we need no fences. We rely on the fact that Elim satis�es the following

property:

Elim(G, A,O) ⊆ O and G, A |= Elim(G, A,O). (2.1)
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Programmers can implement Elim(G, A,O) in many ways, including the trivial approach that al-

ways returns the empty set. Our implementation, as a default, uses a straightforward exponential-

time algorithm that for each (i1, i2) ∈ O enumerates all p ∈ paths(G, i1, i2), and for each such p

uses brute-force to determine whether p, A ` i1 → i2. �e result is that Elim(G, A,O) returns a

maximal subset of O. �e maximal size helps us insert few fences.

In addition we have implemented a linear time approximation algorithm which works by

�nding enough nodes i with the property, {(i1, i), (i, i2)}, A ` i1 → i2 such that, when every i is

removed paths(G, i1, i2) = ∅.

In either case, we need no modi�cations to G to enforce the orders in Elim(G, A,O) so now

let us focus on where to insert fences to enforce the orders in O \ Elim(G, A,O).

�e Cut function. Our approach uses a function Cut that determineswhere to insert fences.

We rely on that Cut satis�es the following property:

Cut(G,O) is a multi-cut for G,O. (2.2)

�e multi-cut speci�es where to insert fences. Let us recall the standard notion of a multi-cut [18]:

given a graph G = (V, E, `) and a set O ⊆ (V × V), a multi-cut for G,O is a set K , where K ⊆ E ,

such that ∀i1, i2 ∈ O : paths((V, E \ K, `), i1, i2) = ∅. Programmers can implement Cut(G,O)

in many ways, such as the trivial approach that always returns E , an approximation algorithm

[14], and an integer linear program [14]. We experimented with those and chose an ILP with a

polynomial number of constraints in the size of the graph [14]. We use SAGE [73] and the default

solver GLPK [30] to solve the ILP, which returns a multi-cut of minimal size, which in turn helps

us insert few fences. Given G,O and an integer n, the problem to decide whether there exists a

multi-cut for G,O with at most n elements is NP-complete for |O | > 2 [18]. Now let us consider

how to use a multi-cut to insert fences.

�e Refine function. Our approach uses a function Refine that inserts fences. We will

give the de�nition of Refine in detail and later we will prove that the de�nition satis�es four

lemmas. For a graph G = (V, E, `) and a cut-set K , where K ⊆ E , the function Refine(G,K)

creates a set WK of additional nodes (fences!), and replaces each ( j1, j2) ∈ K with two new edges
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W(a)u

fanyv’W(b) v

W(a)u

R(b)w

Figure 2.5: An example graph and its re�nement.

that, intuitively, insert a fence between j1 and j2. �e new nodes form a set WK :

WK ::= {v j1, j2 | ( j1, j2) ∈ K}

where each v j1, j2 is a fresh node. �e output graph is:

Refine(G,K) = (V ∪WK, (E \ K) ∪ EK, `K)

EK = {( j1, v j1, j2), (v j1, j2, j2) | v j1, j2 ∈ WK}

`K = ` ∪ {(v j1, j2, fany) | ( j1, j2) ∈ K}

Notice that Refine(G, ∅) = G.

�e Insert function. We can now de�ne Insert:

Insert(G, A,O) = Refine(G, Cut(G,O \ Elim(G, A,O)))

�e de�nition calls three functions as outlined above: �rst Elim, then Cut, and �nally Refine.

Both Elim and Cut run in worst-case exponential time, while set di�erence and Refine run in

polynomial time, so we conclude that Insert runs in worst-case exponential time.

Example. Consider the graph G = (V, E, `), which is illustrated in Figure 2.5 (le� graph). We

have
V = {u, v,w} `(u) = W(a)

E = {(u, v), (u,w)} `(v) = W(b)

`(w) = R(b)

where a, b are distinct addresses. Consider also the set of architecture rules:

A = {(∗ 7→ fany), (fany 7→ ∗),

(W(x) 7→ W(y)), (W(x) 7→ R(x))}
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Consider �nally the speci�ed orders

O = {(u, v), (u,w)}

A run of Insert(G, A,O) will proceed as follows.

�e �rst step is to call Elim(G, A,O). �is call to Elimwill �nd that G, A |= {(u, v)} because we

have a single-edge path from u to v, and a rule (W(x) 7→ W(y)) ∈ A that instantiates to (`(u), `(v)),

which is equal to (W(a), W(b)). �us, if p is the single-edge path from u to v, we can derive p, A `

u → v. �e call to Elim will also �nd that G, A 6 |= {(u,w)} because we have no rule in A that

for the single-edge path p′ from u to w enables us to derive p′, A ` u → w. Note here that

the rule (W(x) 7→ R(x)) ∈ A requires the two instructions (store and load) work with the same

address, while the two labels W(a) and W(b) operate on distinct addresses. In summary, we have

Elim(G, A,O) = {(u, v)}. We can calculate O \ {(u, v)} = {(u,w)}.

�e second step is to call Cut(G,O \ Elim(G, A,O) = Cut(G,O \ {(u, v)} = Cut(G, {(u,w)}).

In this case we have Cut(G, {(u,w)}) = {(u,w)}. �e reason is that the one path from u to w has

a single edge so we must have that edge in the multi-cut.

�e third step is to call

Insert(G, A,O) = Refine(G, Cut(G,O \ Elim(G, A,O)))

= Refine(G, {(u,w)})

�e result is illustrated in Figure 2.5 (right graph). Compared to G, the graph Insert(G, A,O)

has an additional node v′, no edge {(u,w)}, but instead two edges (u, v′) and (v′,w). We have

`(v′) = fany, that is, the new node is a fence. We can instantiate the rule (∗ 7→ fany) ∈ A to

(W(a), fany), and we can instantiate the rule (fany 7→ ∗) ∈ A to (fany, R(b)). So for the path p′′

with the two edges (u, v′) and (v′,w), we have that we can derive p′′, A |= (u,w).

In summary, the example has two speci�ed orders, and one of them is enforced by the archi-

tecture without insertion of any fences, while for the other, we inserted a single fence.

�eorem 1. If {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A, then Insert(G, A,O), A |= O.

We prove �eorem 1 in Appendix B.
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2.2.2 Multiple Kinds of Fences

Let us now relax the assumption that the only fence available is fany. For example, Figure 2.2

gives rules for the two fences on ARMv7, namely the weaker fence dmb st and the stronger

fence dmb. When multiple fences are available, the Refine function can choose as weak a fence

as possible. �e idea is that a weaker fence executes faster than a stronger fence, which is true for

the architectures we have considered. Intuitively, we let Refine choose the weakest fence that

enforces the relevant declared executions orders.

We will explain how to make the choice in two steps. First let us consider a simple case, which

happens to be the one we encountered exclusively in our experiments. For an edge ( j1, j2) in a cut

set K , suppose we have a single element (i1, i2) ∈ O \ Elim(G, A,O) for which ( j1, j2) is on a path

from i1 to i2. We must chose a fence that is strong enough to enforce the order (i1, i2). Speci�cally,

we need a fence f such that A contains the rules (L 7→ f ) and ( f 7→ R) such that

(L 7→ f ) B (i1, f ) ∧ ( f 7→ R) B ( f , i2)

We will choose as weak a fence as possible. For the archictectures we have considered, we can

always �nd a fence that is the weakest among all those that satisfy the above requirement.

Now let us consider the general case. For an edge ( j1, j2) in a cut set K , suppose we have

multiple elements (i1, i2) ∈ O \ Elim(G, A,O) for which ( j1, j2) is on a path from i1 to i2. Here we

want the least expensive fence that will enforce all of the involved orders. For each such (i1, i2)

we chose a fence f(i1,i2) as described above. Now we need a fence that is at least as strong as those

fences f(i1,i2). Again, for the archictectures we have considered, we can always �nd a weakest

fence that is at least as strong as each f(i1,i2).

Optimality. �e optimality of our approach to fence selection depends on the assumption

that any two fences will always execute more slowly than any single fence. Consider the case of

an architecture like IA64 in Figure 2.2 and some procedure where we have a load-load order and

a store-store order overlapping on a single simple path. Individually the orders can be enforced

with an lfence and an sfence but the optimal multi-cut will include an edge shared by both

orders. �en to satisfy both orders with a single fence we must select an mfence.
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2.3 Implementation

We have implemented our approach in a tool called Parry [11] that takes as input a concurrent

algorithm wri�en in C/C++, declared execution orders, and a memory model, and as output pro-

duces C/C++ with fences. Parry uses Python to orchestrate the three major tasks in fence inser-

tion: control-�ow graph generation, order elimination, and fence insertion. We will now explain

some details of Parry, particularly a few points that go beyond the fence insertion algorithm that

we described in Section 2.2.

Graph Generation Parry is based on LLVM. First Parry compiles the input source code to

LLVM’s static-single-assignment (SSA) intermediate representation (IR) along with debugging

information. �en Parry generates a control-�ow graph of the target procedure using LLVM’s

opt tool. Next, Parry simpli�es the control-�ow graph by replacing each standard block with a

path of instructions. We manipulate the resulting graphs with the graph-tool library [23].

We construct a graph in which the only nodes are for load, store, call, and cmpxchg instruc-

tions. Note that compared to the algorithm in Section 2.2, we add call instructions to safely ac-

count for methods which do not get inlined, and we add the cmpxchg instructions because they are

frequently used by authors to enforce orders. Indeed, the cmpxchg instruction provides compare-

and-swap semantics at the LLVM IR level and can act as a full memory fence (like mfence on x86

or dmb on ARMv7) [72].

Compiler Assumptions Parry uses Clang to translate C/C++ into LLVM’s intermediate rep-

resentation and we assume that this translation preserves some key aspects of the code that are

of interest to Parry.

We assume that the semantics of a line of C/C++ used to specify an order will be preserved

in the intermediate representation generated by Clang. For example, if the programmer expects

a store to a certain memory address at a line in the code then we assume that Clang will gener-

ate a store to that address for that line. We safely account for the possibility of more than one

instruction per line matching the event types of an order by including all matching instructions
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during the analysis.

We also assume that our fence placements will remain valid a�er a compiler optimizes the

C/C++ code that Parry outputs. �at is, we require that the ordered instructions will not be

moved past the fences by the compiler. To that end we ensure that all inline assembly instructions

inserted by Parry are marked as volatile operations.

Architecture Rules As detailed in Section 2.2 we have created a set of rules for each archi-

tecture that describe the which instructions won’t “move” during execution. �ese rules are

necessary for order elimination.

We have included three architectures in Figure 2.2, x86, ARMv7 and IA64. �e last is for

clarity and comparison since our evaluation does not include benchmarks for IA64.

We compiled these rules based on our interpretation of the processor documentation available

for each architecture. �ey are intended to be an over-approximation of the actual architecture

behavior. During order elimination they are used to establish preexisting orders without consid-

eration for other types of instructions aside from stores, loads, and fences.

Not included in Figure 2.2 are instructions that exist in the LLVM IR, like cmpxchg, which

result in hardware instructions with fence-like semantics. We do account for LLVM’s cmpxchg

as detailed in Section 2.4.7.

Edge Elimination Parry has an initial step that takes place before the main algorithm in Sec-

tion 2.2: edge elimination. �e idea is to eliminate all edges that are irrelevant to the fence

insertion problem. We keep an edge only if for at least one declared execution order, the edge is

on a path from the source to the sink of the order and the instructions on that path don’t enforce

the order. A�er edge elimination, we can implement order elimination for an order (i1, i2) simply

by checking whether the set of paths from i1 to i2 is empty.

Address Equality In some cases, an architecture rule uses a variable twice, such as the rule

(W(x) → R(x)). Our tool only instantiates the rule in case x can be replaced with a variable in

LLVM’s internal static-single-assignment form. �e SSA form guarantees that the value of that
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variable is the same at both program points. For example, in Figure 2.4, tmp is a variable, so we

can instantiate (W(x) → R(x)) to (W(tmp), R(tmp)).

Fence Insertion Since our analysis is static and we want to minimize the execution of fence

instructions, we avoid placing fences in loops unless absolutely necessary. Parry achieves this by

�nding cycles in the control �ow graph. �en it assigns an edge weight to the cycle edges that is

one more than twice the incoming edge weight as illustrated earlier in Figure 2.4. �is ensures

that even if many orders from outside the loop overlap inside the loop the linear program will

prefer edges outside the loop. �is heuristic has value if a loop is executed more than once.

Alternate Fence Placements In many cases there are multiple fence placements that are

equivalent according to the multi-cut model. �at is, there may be edges with weights on simi-

lar paths resulting in the same objective function value from the multi-cut linear program. Our

implementation selects the edge closest to the source. Our tool is also able to select alternate

cuts where necessary and we discuss our experimental evaluation of equivalent alternative fence

placements in Section 2.4.7.

2.4 Experimental Results

We have evaluated Parry with four classic concurrent algorithms (Dekker, Lamport, Parker, and

Peterson) and three transactional memory algorithms (TL2 [24], TL2 Eager, and TLRW [25]). We

downloaded implementations of the classic algorithms from the Musketeer project [4]), TL2 and

TL2 Eager are from the STAMP project [64], and TLRW from the Rochester So�ware Transac-

tional Memory library [61]. TL2 Eager is a variant of TL2. �e TLRW implementation is named

ByteEager. �e three TM algorithms have procedures that are signi�cantly more complex than

those of the classic algorithms. For example, TL2 has nearly 400 nodes and more than 250 lines

of code in one procedure.

We evaluate all of the algorithms on the x86 and ARMv7 architectures. We chose to work

with ARMv7 due to its increasing relevance in all types of computing and its particularly weak
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memory model, compared to x86.

2.4.1 Declaration of Execution Orders

We declared execution orders for each of the seven algorithms to benchmark our approach against

the author supplied memory fences. We also removed existing fences from the algorithms.

Classic Algorithms Figure 2.6 shows the orders for the four classic algorithms. We got the

orders for Dekker from Lesani’s dissertation [54] and the orders for Peterson are similar. We got

the single order for Parker from a blog post by Dave Dice. Dice wrote that the Parker imple-

mentation in the Java Virtual Machine was found to have a bug due to store bu�ering [26]. We

de�ned an order according to the description of the bug to ensure that the store to the shared

variable counter is �ushed. We de�ned the orders for Lamport based on an analysis that we

detail in an appendix (TODO which appendix).

TL2 and TL2 Eager Figure 2.10 shows the orders for TL2 and TL2 Eager which we got from

Lesani’s dissertation [54]. �e source code for both algorithms can be found at [22].

RSTM ByteEager Figure 2.13 shows the orders for ByteEager. �e source code for RSTM By-

teEager algorithm can be found at [66]. �e orders stem from the work on TLRW by Dice et. al

[25]. �ey give a detailed account of critical orders which we use here.

During the process of de�ning orders for each algorithm we also had to �nd and remove

existing fences to prevent duplication. On closer inspection of the code for the store-store order in

the rollback procedure of ByteEager we were unable to �nd any mechanism that might enforce

the order.

We contacted the original authors to verify our �ndings. It became clear that they had built the

algorithm for architectures where the order was automatically enforced, namely TSO, and they

agreed a fence was necessary. We placed a dmb st fence a�er the source of the order to establish

a baseline for comparison, noting that an order de�nition would have made our communication

unnecessary.
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x86 ARM7

Dekker 8 W,R
−−→ 9 8:mfence 8:dmb st

13 W,R
−−→ 9 13:mfence 13:dmb st

25 W,R
−−→ 26 25:mfence 25:dmb st

30 W,R
−−→ 26 30:mfence 30:dmb st

Lamport 8 W,R
−−→ 9 8:mfence 8:dmb st

14 W,R
−−→ 15 14:mfence 14:dmb st

31 W,R
−−→ 32 31:mfence 31:dmb st

37 W,R
−−→ 38 37:mfence 37:dmb st

Parker 44 W,∗
−−→ 46 44:mfence 44:dmb st

Peterson 5 W,R
−−→ 7 5:mfence 5:dmb st

14 W,R
−−→ 16 14:mfence 14:dmb st

Figure 2.6: Orders and fences for four classic algorithms

Di�culty �e only algorithm without orders already de�ned in some form was Lamport’s mu-

tex. Every other algorithm had research, implementation notes, or existing fences from which

orders could be derived. We think this means execution order de�nition is already implicitly

taking place during algorithm design but the information is lost as fence placements during im-

plementation.

Further, in the case of ByteEager’s rollback procedure, we believe that the speed with which

the ByteEager authors were able to diagnose the issue suggests that authors and designers will

have relatively li�le di�culty in de�ning execution orders during algorithm design.
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TL2 LOC Nodes

TxLoad 75 171

TxStore 121 236

TxCommit 277 398

ByteEager LOC Nodes

read ro 30 64

read rw 32 73

write ro 31 93

write rw 36 122

rollback 25 93

Figure 2.7: Algorithm Procedure Size

2.4.2 Parry’s Execution Time

Figures 2.8 and 2.9 show the wall clock time that Parry’s top-level run procedure takes to insert

fences for the TL2 and ByteEager TM algorithms. Figure 2.8 shows results where the exponential

order elimination algorithm was used and Figure 2.9 shows results for the linear order elimina-

tion algorithm. Notably, the elimination results from the exponential time and linear time order

elimination algorithms are identical for all of the evaluated code.

�e times were recorded from each stage of Parry’s execution, averaged across 100 runs on

an Intel Core i5 at 2.4 Ghz with 6GB of RAM with a fully updated version of Ubuntu 14.04 Server.

We include only the TM algorithms here because they are the most complex examples in our

evaluation. �e size of each procedure for both algorithms in lines of code and control �ow graph

notes is included in Figure 2.7. �e lines of code are recorded without account for inlining except

in the case of TL2:TxCommit where the majority of the instructions are inlined from a procedure

call. �e largest case is TL2:TxCommit procedure where the control-�ow graph has 398 nodes.

We have not included TL2 Eager since the size and times were similar to those of regular TL2.
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�e control-�ow graph generation and order elimination account for the majority of the ex-

ecution time. In the cases where the linear order elimination algorithm is used the graph gener-

ation dominates the other parts of our approach. �e long execution times for graph generation

are caused by a large amount of string manipulation and scanning while working with the LLVM

IR in Python. �e fence insertion which uses GLPK to run our integer linear program takes li�le

time.

When executing on TL2 for x86 no time is spent on the ILP and a small amount on order

elimination. Parry can forgo running the linear program entirely because all of the orders are

eliminated. �e order elimination only requires a small amount of time because it is immediate

for orders where the source and sink instructions exist in an architecture enforced relationship.

2.4.3 Experiments with the Four Classic Algorithms

For the four classic algorithms, Parry inserted the fences shown in Figure 2.6. Notice that each

order led to one fence. In each case, the fence is correctly placed and is the best fence possible.

We note that Lamport’s mutex has two “loops” due to jumps to the start of the algorithm; Parry

places a fence directly a�er the �rst branch, which is a good choice.

2.4.4 Transactional Memory Algorithms

For the three TM algorithms, Parry inserted the fences shown in Figure 2.10 and Figure 2.13. We

have an opportunity to compare those fences with a baseline. �e original authors of the transac-

tional memory algorithms inserted fences or fence macros for particular architectures, which we

assume are correct for the intended architectures. From those fence placements, the literature,

and in some cases consultation with the original authors, we constructed a baseline for each of

x86 and ARMv7. E�ectively, we acted as an implementer who selects fences; for example, for TL2

we de�ned an existing fence macro called MEMBARSTLD as mfence on x86. Similarly, ByteEager

uses a memory fence macro WBR and the implicit memory barrier de�ned by the semantics of the

sync * compiler built-ins [1]. One goal of our experiments is to evaluate whether our order

de�nitions and Parry can match the baseline. In the following subsections, we will give a detailed
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comparison of both the fence placements and of the resulting performance of the TM algorithms

on standard benchmarks.

2.4.5 Impact of Order Elimination

Figure 2.10 shows that for TL2 on x86, Parry eliminated all 7 orders and inserted no fences at

all, while on ARMv7, Parry eliminated no orders. Additionally, Figure 2.10 shows that for TL2

Eager on x86, Parry eliminated all 4 orders and inserted no fences at all, while on ARMv7, Parry

eliminated one order. Finally, Figure 2.13 shows that for ByteEager on x86, Parry eliminated one

order, while on ARMv7, Parry eliminated no orders.

Now let us compare with the baseline. We ask: (1) are there cases where order elimination

is necessary to approximate the fence placements from a knowledgeable implementor and (2)

can we avoid adding fences altogether using information from the compiler? Our comparison

suggests the answer is yes in both cases, as we will detail now.

Order elimination prevents the addition of extra fences where the architecture directly en-

forces an order and an implementer will never insert a fence. For example, load-load orders are

automatically enforced on x86. In such cases we can establish a derivation by instantiating an

architecture axiom directly and then eliminate the corresponding order. �ere are also situations

like the write procedure for ByteEager where accounting for the cmpxchg instruction prevents

the insertion of an additional fence.

Additionally, we have exhibited two instances where fences would likely be inserted by an

implementer but which actually require no fence. If TL2 is compiled with the TL2 EAGER �ag,

one fence in TxCommit can be eliminated on architectures like ARMv7 since the source of the

order will not appear in the control �ow graph. If TL2 is compiled by Clang on x86, another

fence can be eliminated in TxCommit due to generated instructions which allow for a transitive

order derivation. In these cases a detailed accounting of the control �ow graph is important in

determining whether an order is already enforced.
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2.4.6 Performance Benchmarks

We compare the performance of Parry’s output with the baseline using six of the benchmarks

from the STAMP benchmark suite v0.9.10 [64] which is designed for testing transactional memory

algorithms. We ran the x86 benchmarks on an Intel Core i5 at 2.4 Ghz with 6GB of RAM with a

fully updated version of Ubuntu 14.04 Server. �e ARMv7 benchmarks were run on an Exynos 5

Dual at 1.7Ghz with 2GB of RAM with the same operating system.

We compiled the results of each benchmark by taking the arithmetic mean of each over 100

runs and then recording the percentage di�erence between the baseline version and the Parry

version.

Importantly everything was compiled with Clang version 3.3. �is is the same version used

in Parry to generate IR, control �ow graphs. Using the same version of Clang to generate the

control �ow graphs and to compile the algorithms ensures that the assertions we make about the

graphs remain valid for the �nal compiled output.

2.4.7 TL2 and TL2 Eager Measurements

Figure 2.10 shows the fences inserted by Parry alongside the fences placed in the baseline. We

associate them by the orders we de�ned for TL2. For example the last two orders for TL2 corre-

spond with the orders from our running example, TxCommit. All of the orders were accounted for

by fence macros. �is is not surprising given that the authors would have a deep understanding

of the algorithm’s behavior under weak memory models.

�e orders are de�ned using line numbers which can be referenced in the code which accom-

panies our project [11]. We have included annotations for the instruction types that should be

ordered when they appear in the intermediate representation. For example the order between

lines 760 and 1413 in TxCommit is a store-store order between the store of a value in the write-set

and a store to release the lock for the write-set’s address. In this case the line numbers appear

to be abnormally distant from one another but, due to procedure inlining, they both appear in

the control �ow graph for TxCommit. We have also included a mapping from the orders in our

running example to the line number orders in Figure 2.11.
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Figure 2.8: Parry Execution Times, Full Order Elimination

Figure 2.9: Parry Execution Times, Linear Elimination

32



TL2 x86 ARM7

TxLoad baseline ours baseline ours

2078 R,R
−−→ 2080 — — 2078:dmb 2078:dmb

2080 R,R
−−→ 2082 — — 2080:dmb 2080:dmb

TxStore baseline ours baseline ours

1886 R,R
−−→ 1923 — — 1920:dmb 1886:dmb

TxCommit baseline ours baseline ours

1555 W,W
−−→ 1625 — — 1555: ldrex/strex 1555:ldrex/strex

1596 W,W
−−→ 1625 — — 1596: ldrex/strex 1596:ldrex/strex

760 W,W
−−→ 1413 — — 1669:dmb st 1669:dmb st

1413 W,R
−−→ 1679 1679:mfence — 1679:dmb st 1416:dmb st

TL2 Eager x86 ARM7

TxLoad baseline ours baseline ours

1991 R,R
−−→ 1993 — — 2078:dmb 2078:dmb

1993 R,R
−−→ 1995 — — 2080:dmb 2080:dmb

TxCommit baseline ours baseline ours

760 W,W
−−→ 1413 — — 1669:dmb st —

1413 W,R
−−→ 1679 1679:mfence — 1679:dmb st 1679:dmb st

Figure 2.10: Orders and fences for TL2 and TL2 Eager

lines orders

TxCommit 760 W,W
−−→ 1413 W(addr) → W(lock)

1413 W,R
−−→ 1679 W(lock) → R(x)

Figure 2.11: TL2 Lines to Orders
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TL2 x86 �e load-load orders in TxLoad and TxStore and the store-store orders in TxCommit

should be de�ned without a fence by an implementer since those instructions can never be seen

to move past one another. Parry makes the same determination. As noted earlier we were able

to eliminate the �nal store-load order in TxCommit entirely due to Clang’s IR output and the

transitive order as derived in Figure 2.3. It’s unlikely that an implementer would have enough

information to make the same determination without the help of our tool.

TL2 ARMv7 For both orders in TxLoad, the order in TxStore, and for the last two orders in

TxCommit, Parry inserted the same fence as the authors. Parry also matched the authors for the

�rst two orders in TxCommit. �ey begin with cmpxchg instructions which compile to a paired

ldrex/strex on ARMv7 and require no additional fence.

Note, that the result for the last order in TxCommit and the only order in TxStore are at

di�erent line numbers. Both orders have a path with many edges of the same capacity that can

all serve to separate the source from the sink in a minimal cut. �e algorithm simply chooses the

edge closest to the source in this case. Also, the line number where Parry placed the fence for the

second order of TxCommit is seemingly before the source of the order. �is is due to procedure

inlining.

TL2 Eager �e eager version of TL2 requires fewer execution orders than the full TL2. �e

orders in TxLoad correspond with the same orders for the full TL2. Otherwise, the di�erence

is the �rst order in TxCommit. As we can see in the example code from Section 2.1, when the

algorithm is compiled as eager the source of the �rst order is removed from the control �ow graph

by the �rst ifndef in Figure 2.1. �is makes the order unnecessary since it does not appear in

that procedure’s control �ow graph.

Performance Let us consider the performance of the TL2 algorithm; the results for TL2 Eager

are similar and we omit them here. �e performance results in Figure 2.12 for TL2 follow intu-

ition quite closely. In the case of x86 we saw a small improvement since we were able to eliminate

a fence in TxCommit. �e improvement is small because TxCommit is called infrequently when
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Figure 2.12: TL2 Performance Benchmarks

compared with TxLoad and TxStore which are the most heavily used procedures in any transac-

tional memory algorithm. Similarly, the results for ARMv7 for the baseline and Parry are nearly

identical since the number and placement of fences are nearly identical.

Alternate Fence Placements To test whether di�erent fence placements that are considered

equivalent by the multi-cut model might produce real performance di�erences we considered �ve

alternate fence placements for the TL2 algorithm on ARMv7. We chose this benchmark because

TL2 on ARMv7 has the largest number of alternate placements. �is is due to the large control

�ow graphs for the procedures of TL2 and the weaker memory model of ARMv7.

Our results showed that, for every alternate placement, for all six of the STAMP performance

benchmark results, the di�erence between the default fence placement provided by Parry and the

alternate was within ±4%. Further only three benchmarks of a total thirty showed greater than

a 3% change and two showed greater than 2% change. �is suggests that choosing the default is

reasonable where performance is concerned.

2.4.8 RSTM ByteEager Measurements

�e table in Figure 2.13 contains the fence placements for the RSTM ByteEager implementation

along with the memory fences already present in the implementation. Again we note that all

orders except the last in rollback are accounted for in the implementation of the algorithm. We

believe this is due to the author’s intimate knowledge of the intended behavior and the detailed

account of the fence placements for TLRW in [25].
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ByteEager x86 ARM7

read ro baseline ours baseline ours

125 W,R
−−→ 128 125:xchg 125:mfence 125:ldrex/strex 125:dmb st

read rw baseline ours baseline ours

163 W,R
−−→ 165 163:xchg 163:mfence 163:ldrex/strex 163:dmb st

write ro baseline ours baseline ours

186 W,R
−−→ 196 186:xchg 186:xchg 186:ldrex/strex 186:ldrex/strex

write rw baseline ours baseline ours

228 W,R
−−→ 238 228:xchg 228:xchg 228:ldrex/strex 228:ldrex/strex

rollback baseline ours baseline ours

261 W,W
−−→ 265 — — 266:dmb st 266:dmb st

Figure 2.13: Orders and fences for RSTM ByteEager

void set_read_byte(uint32_t id) {

#if defined(BASELINE)

__sync_lock_test_and_set(&r[id], 1u)

#else

// NOTE: no WBR macro

r[id] = 1;

#endif

}

Figure 2.14: RSTM
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x86 �e placements here are noteworthy due to the xchg instructions present in the base-

line version of read ro, read rw, write ro, and write rw. �e source for the orders in the

read ro and read rw procedures are calls to another procedure which is not inlined and which

uses the sync lock test and set compiler built-in. When targeting x86 this built-in

compiles to the xchg instruction which includes an implicit lock pre�x. �is prevents other

stores and loads from moving past the xchg [17, p. 160]. As a result it can do the same job as

the mfence that Parry inserts. For our benchmarks we compared the version using the compiler

built-in and a modi�ed version which relies on Parry to insert the proper fence as illustrated in

Figure �. �is accurately re�ects how an author might rely on an order de�nition to enforce the

correct behavior without the compiler built-in. It also mirrors the de�nition for SPARC in the

original source (not depicted in Figure �) which is identical to the version we use to test Parry,

except that it includes an explicit WBR fence macro.

For write ro and write rw the author’s implementation uses the

sync bool compare and swap built-in at the source of the orders. �is built-in translates

to a cmpxchg LLVM IR instruction with a sequential consistency ordering quali�er which in turn

compiles to the xchg instruction. Parry accounts for the cmpxchg by treating it as a fence per

the LLVM documentation [72], and consequently it does not add an additional fence to these

procedures.

ARMv7 �e placements are the same for read ro and read rw as they are for x86 but here

the compiler built-in results in a paired ldrex/strex. Since we have implemented our own simple

read, Parry again inserts a quali�ed dmb st. As with x86, when considering the write ro and

write rw procedures Parry accounts for the cmpxchg instruction and does not add an additional

fence.

In the rollback procedure a store-store order is required to preserve the expected TLRW

behavior when aborting a transaction. We were unable to �nd anything that would enforce a

store-store order in the original implementation. As discussed we contacted the original authors

and determined that they did not consider store-store orders when building the algorithm. We

placed an appropriate fence for the baseline which Parry matched.
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Figure 2.15: RSTM ByteEager Performance Benchmarks

Performance On x86 we expected to see similar results for both Parry and the baseline across

benchmarks but in some cases Parry’s compiled output was almost 1.5 times slower. Upon further

inspection the overhead is due to the modi�cations we made in Figure �. Both the mfence and

xchg instructions can act as an appropriate memory fence for the orders in read ro and read rw

and they have similar execution costs to the best of our knowledge. �ey di�er, in that xchg

also handles the store to memory where our modi�cations perform the store using a separate

instruction.

To test this, we removed the mfence from the version which relies on a store and fence. �e

benchmark results with just a store instruction were comparable to the original using the xchg.

�is suggests that, in these benchmarks, the xchg is only marginally more expensive than the

store. In future work we could address this by using the xchg to enforce orders by replacing the

store entirely.

On ARMv7 we see a smaller di�erence though clearly the same issue exists here: the store

and the dmb st fence are more expensive than the paired ldrex/strex.

For both architectures the fence inserted by Parry is only subtly di�erent from the code gener-

ated by the compiler built-in but the performance impact is signi�cant. We believe this highlights

the importance of �nding optimal placements and fences types wherever possible.

2.5 Summary

We have demonstrated that speci�ed orders have a practical implementation using fence insertion

that results in fast code. �us, we can proceed with the task of making reasoning general knowing

that when we are done our proofs will result in practical and fast code.
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CHAPTER 3

General Reasoning with Speci�ed Orders

Here we will describe how a well chosen memory model can enable general reasoning about lock-

free concurrent programs. In particular, we will discuss how the choice of Java’s Access Modes

with the addition of speci�ed orders supports general reasoning about such programs. �en we

will detail our model of Java’s Access Modes in full, discuss our work to validate it, relate it to

other models empirically, and give an initial metatheory for the model.

3.1 Relating Memory Models

A memory model de�nes the set of possible executions for a program at the memory access level.

When there are more “behaviors” allowed by the model then more executions are allowed. Recall

the message passing example execution graph from Figure 1.2 in Section 1.1. If we assume the

read, b rf
−−−→ c, then under SC there is only one possible execution, namely the total order a, b, c,

d. By contrast, on ARM processors the additional behavior of reordering of instructions means

there are many more possibilities including the one allowed by SC. In general a weaker memory

model admits more behaviors, like access reordering, and therefore more executions. Conversely,

a stronger memory model makes more “guarantees” to the programmer and thus admits fewer

behaviors and fewer executions.

In Figure 3.1 we have a Hasse diagram [12] of memory models related by the executions they

admit. When there is a directed edge between models, the source model admits a superset of the

executions of the target model. For example, at the top, x86 admits strictly more executions than

SC. As we will discuss later, some of the edges are labeled with the guarantees that the target

model provides (i.e. forbidden behaviors in the target).
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Hardware

Language

JAM-

C11

ARMv7

x86

SC

Power

JAM

+acyc(po U rf)

+release seq.
+release-cons.
+total co

+W-W
+R-W
+R-R

+MCA

+W-R
+MCA

ARMv8

+total co

+W-R

Figure 3.1: Memory Models

Recall that sound reasoning about programs

must account for all possible executions. �en,

ignoring for now 1 the costs of reasoning about

a larger set of executions, choosing a memory

model further down in the diagram means that

demonstrating some property of a program for

that model immediately gives the same property

for any model above it in the diagram. �us, for

the purposes of general reasoning, we are inter-

ested in �nding a greatest lower bound in this

diagram. If we can perform reasoning for such a

model then we can carry that reason up the latice

to any stronger memory model by implication.

We have pinpointed such a bound in the form

of a model of Java’s new Access Modes [52, 51, 41], herea�er “the JAM”, which are similar in spirit

to C11’s memory orders [15]. �e reasons for selecting the JAM are twofold. First, the JAM is

designed to be very weak to admit as many compiler optimizations as possible while restricting

the particularly pernicious behavior known as causal cycles which we will discuss in Section 3.3.1.

�is restriction is the reason that the JAM is related directly to so few of the memory models in

the diagram. By removing the admonition against causal cycles we de�ne the JAM- which admits

more executions than any model in the diagram. Second, language memory models are weaker

than hardware memory models by necessity because their programs must eventually run on said

hardware and advanced compiler optimizations can introduce new behaviors (and therefore more

executions). �is manifests as the JAM- and C11 appearing lower in the diagram than all of the

hardware models.

At this point the reader may wonder, how do speci�ed orders play a roll in facilitating general

reasoning? To answer this question, note that speci�ed orders act as a very targeted reduction of

1We will address the di�culty of formal reasoning for such a model in Section 4.
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the set of possible behaviors for a particular program. Speci�cally, they rule out executions where

the two related memory accesses execute in violation of the speci�ed ordering. Most importantly,

speci�ed orders eliminate fewer behaviors than their implementation as fences and this makes

them ideal for general reasoning.

For example, placing a dmb st fence between accesses a and b to enforce the speci�ed order

in the extended message passing example of Figure 1.3 Section 1.1 results in the ordering of all

stores before the fence with all instructions a�er the fence. In particular it orders a and e which

is unnecessary for correctness.

More generally, this guarantees that a program with speci�ed orders will admit a superset

of the executions for the same program on the same model with the inserted fences. Since the

JAM- admits strictly more executions than the other models in the diagram regardless of speci�ed

orders it must admit more executions with speci�ed orders than the compiled output with fences.

Taken together this means that reasoning performed for the JAM- with speci�ed orders is sound

for any of the stronger memory models in our diagram.

3.2 We’re JAMing

Developers can make use of the JAM, through the VarHandle API included in the JDK version

9. �ere are four access modes: plain, opaque, release-acquire, and volatile. Regular reads and

writes of shared variables are considered plain mode, and the VarHandle API allows reads and

writes to be annotated with one of the other three modes. �e speci�ed intent of the JAM is that

each mode provides progressively more guarantees about the behavior of its accesses and admits

fewer possible executions at the expense of some performance.

plain v opaque v release-aquire v volatile

Plain mode gives virtually no guarantees and the compiler is allowed free reign in optimizing

such memory accesses which results many new weak memory behaviors. On the other hand

volatile mode provides SC semantics when it is used for all accesses, but requires a memory barrier
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for each access which can make execution slow 2. �ese modes are inspired by the memory orders

of C11 [15] but there are signi�cant di�erences in behavior that we detail in Section 3.3.

In Section 3.4 we present an axiomatic model that includes all of the access mode, fences,

and atomic reads-writes of the JAM which we have constructed using the cat language. cat

allows us to leverage the Herd tool [5] to give de�nitive answers to questions about example

programs, called litmus tests. Litmus tests are designed to highlight speci�c behaviors in memory

models. Herd enumerates all possible executions for a litmus test and determines which are

allowed according to the model. �en, if at least one execution is allowed, the behavior illustrated

by the litmust test is allowed by the model.

In Section 3.5 we use Herd with more than 80 litmus tests drawn from prior research to help

validate our model by comparing it to ARMv8, C11 and x86. Our goal for these comparisons is to

show that there are no unexpected di�erences in behavior and to further de�ne the relationships

between the compared models. For example, the conventional wisdom is that language memory

models will exhibit more behaviors than architecture memory models due to aggressive compiler

optimizations. �us, Java’s access modes should permit more behaviors than ARMv8. If that is

not the case then it should be due to a deliberate design decision and not a bug in the de�nitions.

For all 80 litmus tests our model behaves according to our expectations and the documented

design of the access modes.

In Section 3.6 we give an alternate instatiation of our model in Coq and we prove three key

theorems: absence of causal cycles when all reads are “release” reads, sequentially consistent

semantics under proper synchronization (DRF), and a guarantee that each stronger mode admits

fewer executions [85]. �ese theorems further validate the de�nitions of our model, give more

evidence that the model is complete with respect to the documentation, and clearly demonstrate

that the semantics is suitable for formal reasoning.

Finally, the partial order on same-location writes in the JAM speci�cation represents a signif-

icant departure from the conventions of existing memory models. In Section 3.7 We show that

the impact of switching to a partial order is “unobservable” in any example program executed

2�is property, of progressively greater guarantees, is called monotonicity and we prove it as a theorem for our
model in Section 3.6
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r2 := [y]
[x] := r2

r1 := [x]
[y] := r1

(a) Out of �in-air

c: R(y,n)a: R(x,n)

b: W(y,n) d: W(x,n)
rf

popo

(b) Causal Cycle

r2 := [y]
[x] := 1

r1 := [x]
[y] := 1

(c) Load-bu�ering

Figure 3.2: Causal Cycles

using our model and thereby show that the JAM can adopt a total order on writes to the same

location. �e simplicity of our model shines through in our proof, which makes it clear that our

reasoning is not applicable to the more complex axiomatic models of RC11 and ARMv8.

3.3 Distinguishing Features of the JAM

While the JAM was inspired by the access modes of C11, it makes several departures from C11 and

other memory models that are worthy of consideration and a challenge for formalization. First,

it contains a broad and simple de�nition of causal cycles for the purposes of ruling out so called

thin-air reads [9]. Second, it sheds legacy features like the release sequences and consume-reads

of C11. Finally it includes a non-total ordering on writes to a particular memory address, which

is called the coherence order. Here we will discuss how each of these di�erences will impact any

formalization e�ort for the JAM.

3.3.1 Acyclic Causality

In Figure 3.2a we have a classic example program which can exhibit a so called “thin-air” read

under su�ciently weak memory models. �e question is, at the end of execution can x = y = 42?

Intuitively, assuming both x and y are initialized to 0, this program can’t generate 42 “out of thin-

air”, but many axiomatic models do not exclude such executions from the set of all candidate

executions.

Observe that, in any execution that allows x = y, there must be a cycle in the program order

and reads-from relations, as illustrated in Figure 3.2b. �e JAM explicitly forbids such cycles, but

at the cost of forbidding some behaviors which may be bene�cial for performance.
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For example, consider the classic load-bu�ering (LB) litmus test in Figure 3.2c, where the

question is, can r1 = r2 = 1? If performance was the sole concern in the design of the JAM this

behavior would be allowed because the reads can be reordered with the writes with the aim of

improving performance. Unfortunately, this example also exhibits the same cycle in the program

order and reads-from, so it is forbidden by the JAM.

�e problem of di�erentiating these kinds of examples has been studied at great length by

memory model researchers. Another approach is to forbid cycles in rf and a subset of program

order based on a notion of dependency. Sadly, this too has very subtle issues, as outlined by [9].

�e original, formal Java Memory Model [60] a�empted to address the issue of causal cycles in

its full generality. More recently the Promising semantics of [43] introduced a novel “promise”

mechanism to model compiler optimizations for this purpose.

In all of these cases the complexity of the resulting models makes them hard to understand

and hard to test. Instead, the JAM speci�cation adopts a simple solution by forbidding cycles in

the program order and reads-from. While this does forbid the behavior of the second example at

the cost of some performance [68], it gives us yet another opportunity to build a simpler model.

Where the diagram of Figure 3.1 is concerned, this approach to forbidding causal cycles places

the JAM in a position where it is incomparable to many other memory models in terms of the

executions it allows. �is is the motivation for JAM-. As we will see in the comparisons of

Section 3.5, if we remove the acyclic causality requirement from the JAM the resulting model,

JAM-, admits strictly more executions than the other models in the diagram. �e mechanism by

which the JAM forbids causal cycles, acyc(po ∪ rf), which we discuss in 3.4, appears as an added

guarantee when moving from the JAM- to the JAM up the diagram.

3.3.2 Letting Go of Release Sequences

Release sequences and consume-reads can be seen as specialized variants of the release-acquire

memory order in C11 and release-acquire mode in the JAM. �e idea is that, in certain cases, it’s

possible to get the same guarantees as a release-write and acquire-read pair, like the one Figure

3.3a, with less synchronization. �e result is faster execution in some contexts.
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rf
a: W(x,1)

b: WRA(y,1)

c: RRA(y,1)

d: R(x,1)

po po

(a) Message Passing, Fixed

rf

a: W(x,1)

b: WRA(y,1) c: RRA(y,2)

d: R(x,1)

po po

b’:W(y,2)

po

(b) Release-sequence

rf
a: W(x,1)

b: WRA(y,x)

c: RCO(y,x)

d: R(x,1)

po po

(c) Consume-read

Figure 3.3: Release sequences and Consume-reads

Release sequences can be used when a write that is a�er a release-write is read by an acquire-

read. Consider the message passing variant in 3.3b where b is followed by another distinct write

to y, b’. If c reads from b’ then the release sequences of C11 would guarantee that d would see

a through the orderings depicted with gray edges. �en d will read the value 1, just as it would

if c read from b. Without the guarantees of release sequences, b’ must also be a release-write to

get the desired outcome.

Consume-reads are used with a release-write when the memory accesses which must be or-

dered a�er the consume-read are data dependent on the value of the read. Consider the message

passing variant in 3.3c where c is annotated with CO and reads a pointer that determines the

memory address that d reads from. Some architectures enforce the ordering of c and d in the

presence of such data dependencies without the extra synchronization that would result from

making c an acquire-read. �is can speed up execution in those se�ings.

�e JAM does not include the guarantees of release sequences or any way to annotate a read

as a consume-read. �is is a design choice in favor of simplicity in the model and it gives us the

opportunity to build a more readable and more easily testable model.

Additionally, this means that the JAM admits behaviors that C11 explicitly forbids. In the

case of release sequences, the JAM does not guarantee that reads from writes a�er a release

will result in synchronization. In the case of consume reads there is simply no way to use data

dependencies to forbid reorderings. �is is one reason that the JAM- appears bellow C11 in the

diagram of Figure 3.1. Both features appear as added guarantees in the label for the edge from
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JAM- to C11.

3.3.3 Partial Coherence Order

�e JAM speci�cation makes no provision for a total ordering of writes to a given memory loca-

tion which is a standard feature in other memory models. �e consequences of this design choice

manifest in subtle ways.

For example, the standard de�nition of atomicity for read-writes relies on a total coherence

order. Borrowing the de�nition from [85], for a read-write, RW, the write it reads-from, W1, and

the coherence order, co
−−−→, we have:

W1
rf
−−−→ RW =⇒ ¬∃ W2, W1

co
−−−→ W2

co
−−−→ RW

Taken together with a total coherence order this means that the atomic pairs of writes and read-
writes are always totally ordered. Since the JAM makes no such guarantees regarding normal

writes there are ambiguities like the one in Figure 3.4. �ere, the write-read-write pairs are not

ordered across threads since there is no global relationship between writes.

co co

c: W(x,2)

co0 co0

? rfrf
a: W(x,1)

b: RW(x,1,3)

init: W(x,0)

d: RW(x,2,4)

Figure 3.4: Concurrent Read-writes

As a consequence, our model must include ex-

tra contraints for read-writes while being careful not

to over-constrain normal writes which would other-

wise be concurrent. We detail our approach in Sec-

tion 3.4.5.

�e lack of a total coherence order is the �nal

di�erentiating feature between the JAM- and C11 in our diagram of memory models. Similar to

release sequences and the release-consume memory order it appears as an additional guarantee

when moving from the JAM- to C11 in Figure 3.1.

Separately, our drive for simplicity in the de�nitions of the model has yielded a key insight

where the coherence order is concerned. While we have remained faithful to the documentation

and personal communications with the authors in modeling a partial coherence order, we will

show that the e�ects of that choice are not observable under our model. Speci�cally, we show

that it is impossible to construct a litmus test that behaves di�erently in the presence or absence
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of a total coherence order.

3.4 Axiomatic Model

�e JAM has six components: plain mode, opaque mode, release-acquire mode, volatile mode,

fences, and atomic read-writes. Each of the modes, from plain to volatile, provides strictly more

guarantees than the previous mode.

To model the JAM we have constructed an axiomatic semantics. �e de�nitions of our model

act as a predicate over candidate executions which include memory events, e.g. reads and writes,

and relations over those events, e.g. reads-from and program order, in the style of [5].

Our de�nitions focus on two key concepts. �e �rst is an acyclicity requirement for the

coherence order. Aside from the restriction of causal cycles, this is the only mechanism by which

executions are forbidden. �us, every unwanted execution must exhibit a cycle in the coherence

order. �e second is an intuitive notion of visibility, which represents when one memory access

has “seen” the e�ects of another memory access. �e behavior of the three modes and fences are

modeled as small extensions to this relationship.

In each of the following subsections we detail the extensions to our model for each component.

�e full model can be viewed in Appendix C.

3.4.1 Plain & Opaque Mode

In the JAM documentation, plain mode accesses are given virtually no guarantees when they

occur in di�erent threads without correct synchronization. Opaque mode, on the other hand,

does provide some cross thread guarantees which form the basis for the rest of the memory

model. �ere are some subtleties involved in the documented relationship between plain and

opaque mode accesses so we will address them together. First, the main properties that opaque

mode accesses guarantee are:

Bitwise Atomicity Reads will see the value of only one write. Opaque mode guarantees that

reads will not see mixed bits from di�erent writes.
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Write Availability Writes can be read by later reads. �e intent is to avoid a situation (e.g.

in a spin-loop) where repeated reads never see a write in another thread because they

are optimized by the compiler to execute only one time. When an optimization like this

happens, the availability of the write for the read depends on when the read is executed

[16].

Acyclic Causality A read should not in�uence its own value. As described in Section 3.3.1, this

forbids counter-intuitive behavior like thin-air reads.

Coherence �e order of writes should respect visibility and should agree with the way that

reads observe their order. For example, one guarantee (of four we will de�ne later) is that

a read should be paired with the last write that it knows about and not an earlier one.

Our model of opaque mode focuses on acyclic causality and coherence. In keeping with other

axiomatic models built for Herd [74, 47, 3], our model pairs each read with a single write and

there is no accounting for optimizing reads out of loops as Herd does not support them.

Plain Coherence. �e JAM documentation does not include a coherence guarantee for plain

mode accesses. �is follows the approach in the C11 documentation but it departs from formal

models for C11.

rf

a: W(x,1)

b: RW(y,0,1)

c: RW(y,1,0)

d: W(x,2)

po po
co?

Figure 3.5: Message Passing Coherence

To see why plain mode accesses should be in-

cluded in the coherence ordering guarantees, note

that plain mode accesses are safe to use within a crit-

ical section guarded by a lock according to the doc-

umentation. �e idea is that code which is properly

synchronized with locks will have single threaded semantics for the duration of the critical sec-

tion. �us, the model shouldn’t require accesses to be annotated with anything stronger than

plain mode.

�en, consider the message passing variant in Figure 3.5. Here, the purpose of this pa�ern

is to signal the end of the critical section through atomic read-writes that unlock, b, and lock,

c, the variable y. For any lock to work correctly, the accesses which are program order before
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let vo = rf+ | po-loc

let wwco(rel) = rel & ˜id

& loc & (W * W)

let coww = wwco(vo)

let cowr = wwco(vo;invrf)

let corw = wwco(vo;po-loc)

let corr = wwco(rf;po-loc;invrf)

let coinit = wwco((IW * W))

let cofw = wwco((W * FW))

let co = coww | cowr | corw

| corr | cofw | coinit

acyclic co

let opq = O | RA | V

acyclic (po | rf) & opq

Figure 3.6: Opaque Mode

the unlock, a po
−−−→ b, must be visible to accesses a�er the lock, c po

−−−→ d (for now we leave the

mechanism that enforces these orderings unspeci�ed). In particular the e�ects of the write a

should be visibile to the write d, a co?
−−−→ d.

However, even if the unlock and lock enforce program order of the plain writes, and thereby

show that a is visible to d, we would not be able to derive a co
−−−→ d because the coherence rules

do not apply to plain accesses. �is stands in contrast to formal models of C11 [47] where the

coherence order and happens-before relations apply to plain accesses. As a result, our model

extends the coherence order guarantees to plain mode accesses and only the extra guarantee of

acyclic causality is le� to opaque mode.

Herd Model. Figure 3.6 details our axiomatic model of the JAM’s plain and opaque modes

as de�ned in the cat modeling language. cat includes the following built in operations: |, &,

;, +, ˜ are relational union, intersection, composition, transitive closure, and complement. New

constructs are de�ned with let. Filters, like wwco, are de�ned on relations using let F(R) = . . .

and applied with F(R). Finally, models can include checks like acyclic for relations.

Herd provides several built-in, ambient sets and relations for models de�ned in cat. IW, W, FW,

R, O, RA, V are the sets of initial writes for each location, plain mode writes, the �nal plain mode

writes to each location, plain mode reads, opaque accesses, release-acquire accesses, and volatile

accesses. po, po-loc, rf, and invf represent the program order, program order per-location,
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reads-from, and inverted reads-from relations. loc relates memory accesses to the same location

and id is the identity relation. Note, that we do not use Herd’s built-in coherence relation but

rather de�ne our own without a total ordering.

We de�ne visibility order, vo, using two properties, po-loc and rf+. In the �rst case, given

two memory accesses to the same location in the same thread the second should see the e�ects

of the �rst. In the second case, the sequence of one or more reads guarantees that the �nal

read is executing in a context where the e�ects of the write are visible. �is de�nition for vo

guarantees only the most basic forms of ordering which is important given the inclusion of plain

mode accesses.

�en, to satisfy the coherence requirement we �rst ensure that the coherence order includes

only distinct writes to the same location, wwco, and adopt the four behaviors originally identi�ed

for C11 by [8]:

coww Two such writes ordered by visibility are similarly coherence ordered.

cowr A read chooses the last write it has seen.

corw A write that follows a read of the same location in program order is coherence ordered a�er

the write paired with the read.

corr Program ordered reads to the same location order their writes in the same way.

We also order the initialization write before all writes of the same location, coinit, and we

order all writes before the �nal write of the same location, cofw. In the rest of the paper these

relationships will be distinguished as co0 for clarity but they are treated the same as any other

co edge by the model.

�ese six rules make up the de�nition of the coherence order, co, until we discuss read-writes.

�en, the primary mechanism by which the model forbids executions is through requiring the

coherence order to be acyclic, acyclic co. In Figure 3.7, we give examples of how each coherence

rule forbids an execution by showing a cycle in the coherence order. In every example, the �nal

write of 1 is assumed to be coherence order a�er all other writes, co0.
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a: W(x, 1)

b: W(x, 2)

co0co vo

(a) WW

rf
vo

co

co0a: W(x,2) b: W(x,1)

c: R(x,2)

(b) WR

rf

po
co

co0

a: W(x,1) b: R(x,1)

c: W(x,2)

(c) RW

rf

rf
po

d: W(x, 2)
co0

co

a: W(x, 1) b: R(x, 1)

c: R(x, 2)

(d) RR

Figure 3.7: Coherence

In Figure 3.7a, if the write, a, is visible write, b, to the same location then a is not the last

write. In Figure 3.7b, if the read c has seen the last write b then it should not be able to read an

older write a. In Figure 3.7c, if we can follow the read of a to b to a later write, c, then a can’t

be the last write. In Figure 3.7d, given two reads in program order, b and c, if b has seen the last

write then c should not be able to read an older write.

Finally, we must forbid causal cycles for opaque mode access. We de�ne opq to be any opaque

or stronger access since any guarantee provided by opaque should apply to stronger access modes.

�en, we forbid cycles in the union of program order and reads-from, quali�ed for opaque mode

accesses: acyclic (po | rf) & opq.

As we will see in the following sections, these base de�nitions allow us to model nearly every

other component by extending vo. �e lone exception is atomic read-writes, for which we extend

the coherence order directly.

3.4.2 Fences

�e JAM supports �ve types of fences: release, acquire, load-load, store-store, and full. Programs

o�en include fences to enforce the order of memory access e�ects before and a�er the fence. We

update vo by extending visibility to rfso+ and abstracting over these fence types with speci�ed

orders.
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with to from linearisations(M\IW, cofw | rf | into)

let spushto = to+ & (domain(spush) * domain(spush))

let rfso = rf | svo | spush | spushto;spush

let vo = rfso+ | po-loc

Note that trace order, to, is a total ordering of all memory accesses (except for initial writes) as

constructed by Herd’s built-in linearisations function. Trace order respects cofw, rf, and all

intra-thread orderings, into, induced by speci�ed visibility orders, push orders and later release-

acquire memory accesses and volatile memory accesses.

Speci�ed Visibility Orders. To see how speci�ed visibility orders create intra-thread visi-

bility between accesses, recall the event graph for the message passing example from Section 1.1,

reproduced here in in Figure 3.8.

By specifying that a svo
−−−−→ b and c svo

−−−−→ d we can show that d could not have read 0 from

the initial write to x. First, we assume that the initial write to x is coherence order before a,

init co0−−−→ a. �en, assume that d has read from the initialization, R(x, 0). We will show a

contradiction. In the graph we have that, a svo
−−−−→ b rf

−−−→ c svo
−−−−→ d. By the de�nition of rfso

we have the three edges that combine to show a vo
−−−→ d. �en, by cowr (Fig. 3.7b) we have that

a co
−−−→ init which is a cycle in co and a contradiction.

Speci�ed Push Orders. Speci�ed push orders create visibility relationships in two ways.

�e �rst is an intra-thread visibility ordering between the two push ordered instructions like

svo. �is appears as the spush in the de�nition of rfso.

�e second, is a cross-thread ordering that emulates the standard total ordering of two full

fences. Given two push orders, the head of the �rst will be visible to tail of the second, or vice-

versa based on the current ordering of the heads in to. �e ordering of the heads is recorded as

spushtowhich we connect with the additional visibility ordering of one tail using, spushto;spush.

To see how push orders emulate full fences, consider the store-bu�ering litmus test in Figure

3.9. �e question is, can both reads take their values from the initialization?

First, we assume the gray edge between the two fence instructions, fence −→ fence, which

represents one side of the total ordering provided by full fences. �en, we assume that d reads
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from the initial write to x and show a contradiction. Since fences also provide the intra-thread

orderings a −→ fence and fence −→ d, we can see that a is ordered before d. �en by cowr it

must be that a co
−−−→ init, which creates a cycle with init co0−−−→ a and a contradiction. On the

other side of the ordering between fences a similar argument applies if b reads from initial write

to y. �us, b and c could not have read from the initial writes to x and y in the same execution.

rf svo

init: W(x, 0)

co0co rf

svo

a: W(x, 1)O

b: WR(y, 1)

c: RA(y, 1)

d: R(x, 0)O

Figure 3.8: Speci�ed Visibility

init: W(x, 0)

co0co rf

  Ofence    Ofence  

a: W(x, 1)

b: R(y, 0)

c: W(y, 1)

d: R(x, 0)

Figure 3.9: Fences, One side

init: W(x, 0)

co0co rf

vo
spushspush

toa: W(x, 1)

b: R(y, 0)

c: W(y, 1)

d: R(x, 0)

Figure 3.10: Push order, One side

Push orders are more direct but capture the same

ordering. In Figure 3.10 both write-read pairs are

push ordered.

First we assume one side of the total trace order

between the two writes, a to
−−−→ c. Again, we assume

that d reads from the initial write to x and show a

contradiction. By spushto;spush, we have a vo
−−−→ d

which means that d has seen a and the same reason-

ing with cowr that we used with the fences applies.

Note that including spushto in vo in the place

of spushto;spush would give the desired visibility

between the heads and tails of two orders by transi-

tivity, but it would also give an ordering to the heads

of the push orders which does not otherwise exist.

3.4.3 Release-Acquire Mode

We can now make small extensions to incorporate

other access modes into our model. First, we de�ne

release-acquire mode following the standard set by other models like C11 [15] and ARMv8 [74].

let rel = W & (RA | V)

let acq = R & (RA | V)

let ra = po;[rel] | [acq];po | rfso

let vo = ra+ | po-loc
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We de�ne release writes, rel, to be any write marked as release or volatile. We de�ne acquire

reads, acq to be any read marked as acquire or volatile. Again, any guarantee provided by release-

acquire mode should hold for volatile mode.

We update the vo de�nition from opaque mode with fences by extending what was previously

rfso+ to be ra. We add edges from memory accesses for any location to a release write that is

later in program order, po;[rel]. We also add edges from an acquire read to program order later

opaque memory accesses for any location, [acq];po. Note that the documentation makes clear

that plain accesses should be ordered by release writes and acquire reads so long as the types are

bitwise atomic.

rf ra

init: W(x, 0)

co0co rf

ra po po

a: W(x, 1)OO

b: WRA(y, 1)

c: RRA(y, 1)

d: R(x, 0)OO

Figure 3.11: Release-Acquire MP

To see, how the release-aquire extension to

opaque mode works, consider the message passing

example from the Section 1.1. Note that, we use

superscript RA for release writes, WRA, and acquire

reads, RRA. Later we will use V for volatile accesses.

�en, if we adopt a release write for b and an acquire

read for c we can show that, a vo
−−−→ d, and the rea-

soning is the same as for speci�ed visibility orders

in Section 3.4.2.

We note that our de�nitions suggest that, if all reads were release reads, we could derive a

visibility relationship between a read and itself in executions exhibiting causal cycles. In section

3.6, we prove that visibility cycles are a contradiction in our model and, as such, causal cycles are

forbidden when all reads are release-reads.

3.4.4 Volatile Mode

Volatile mode is a further extension of the visibility order in release-acquire mode. We update vo

by extending ra to vvo. Here volint creates edges from any access to a volatile read that is later

in program order, po;[V & R], and from an volatile write to any program order later opaque

memory access, [V & W];po.

54



let vol = V

let volint = po;[vol & R] | [vol & W];po

let push = spush | volint

let vvo = ra | pushto;push | push

let vo = vvo+ | po-loc

�ese new edges preserve program order for any access before or a�er the volatile access when

combined with the visibility de�nition of release-acquire. We also extend spush with volint

edges so that we can leverage the same visibility relationships induced by push orders for volatile

accesses.

A simpler approach would be to translate the total trace ordering into visbility edges. �at is,

we could replace the de�nition of vol above with the following:

let vol = ra | spush | volint | to & (V * V)

�is approach more directly encodes the cross thread ordering guarantee of sequential con-

sistency, but, unfortunately, this is too strong.

Consider a modi�ed version of the classic IRIW litmus test in Figure 3.12a. �e question is,

can both d and f read from the initial write to x and y? As outlined in the JAM documentation

the acquire reads in this example are allowed to see the writes in di�erent orders, so both can

read from the initial writes for x and y. However, if volatile mode accesses are totally ordered as

in the proposed de�nition, then we have either a vo
−−−→ b or b vo

−−−→ a. In Figure 3.12a we have the

�rst case. �en we have a vo
−−−→ d+ because a vol

−−−−→ b rf
−−−→ c ra

−−−→ d. �en by cowr, we have that

a co
−−−→ init, which is a contradiction. In the other case, b vo

−−−→ a, we have a contradiction when

f reads from the initial write to y.

Instead, we extend our notion of push orders and de�ne push to include both spush and

volint edges. �is has the same e�ect as push ordering accesses related by volint. As we will

demonstrate later, using a matching litmus tests, this guarantees the correct behavior for the

release-acquire variant of IRIW because it enforces no direct oridering between the two writes.

Importantly, it also gives the correct behavior when the reads are volatile, which should

be SC semantics. Consider Figure 3.12b which has one of the two possible orderings given by
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rfa: WV(y, 1) e: RRA(y, 1)

f: RRA(x, 0)

porapo ra

init: W(y,0)

vol

co0co rf
b: WV(x, 1) c: RRA(x, 1)

d: RRA(y, 0)

(a) IRIW Release-Acquire

rf

rf
a: WV(y, 1) e: RV(y, 1)

f: RV(x, 0)
vo

init: W(x,0)
co0co

popovolint volint

b: WV(x, 1) c: RV(x, 1)

d: RV(y, 0)

(b) IRIW Volatile

Figure 3.12: IRIW Variants

pushto;push when the reads are volatile. �is correctly establishes c vo
−−−→ f creating a contra-

diction for the opposite thread’s �nal read. As before the other direction of the total order forbids

the other read.

3.4.5 Atomic Read-Writes

�e behavior of atomic read-writes is the only part of the JAM that is not modeled by extending

vo. Recall Figure 3.4 from Section 3.3. We must take care to ensure that we do not allow concur-

rent read-writes in the presence of a non-total coherence order. To achieve this we update the

coherence order co with two additional rules:

let corwexcl = wwco((rf;[RW])ˆ-1;co')

let corwtotal = wwco(((RW * W) | (W * RW)) & to)

let rec co = ... | crwexcl | corwtotal

�e �rst, corwexcl ensures exclusivity in the relationship between the read-write and its

paired write. Note that, for clarity, we separate out corwexcl even though it recursively refers

to co in its de�nition. As illustrated in Figure 3.13, if there is a write co-a�er the one paired with

the read-write, a co
−−−→ b then it is co-a�er the read-write, c co

−−−→ b.
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rf
co

co

b: W(x,2)

a: W(x,1)   

c: RW(x,1,2)

Figure 3.13: Read-write Exclusivity

Recalling the example of Figure 3.4, this exclusiv-

ity is not enough to prevent concurrent read-read-

write pairs to the same location. Since exclusivity

uses the ordering of other writes with the paired

write we could consider a total ordering just for

paired writes.

let pairedw = domain(rf;[RW])

let corwtotal = wwco((pairedw * pairedw) & to)

�is su�ces to forbid concurrent read-write chains to the same location. In Figure 3.4, by

corwtotal we have a co
−−−→ c or c co

−−−→ a. �en, in the �rst case, we have b co
−−−→ c by corwexcl.

�e other side is similar. However, this approach inadvertently orders writes that could be con-

current under a partial coherence order. Instead, as in the �rst de�nition, we choose a total

ordering with the read-write itself.

Now any chain of read-writes will be exclusive without unnecesesarily ordering regular writes.

We will show that in Figure 3.4 either, b co
−−−→ c or d co

−−−→ a. By corwtotal we have d co
−−−→ a or

a co
−−−→ d. In the �rst case we are done. In the second case, we consult corwtotal again and we

have b co
−−−→ c or c co

−−−→ b. In the �rst case we are done. In the second case, by assumption we

have a co
−−−→ d and c co

−−−→ b. �en we can apply corwexcl to both to derive c co
−−−→ d and d co

−−−→ c,

which is cycle and a contradiction. Importantly this reasoning can be applied repeatedly to any

chain of read writes to achieve exclusivity.

We note here, that JAM makes no intra-thread ordering guarantees for atomic read-writes

even though they exist on some architectures like x86 [69]. We discuss this in more detail in

Appendix D.

3.4.6 Summary

Our axiomatic model of the JAM is complete, covering all four modes, atomic read-writes, and

all �ve fence types in less than 40 lines of de�nitions. Moreover each component is implemented
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as a modest extension to just two relations which makes it readable. Now we must demonstrate

that the model is consistent with expectations about the behavior of the JAM as outlined in the

documentation. We discuss the results of our comparison with ARMv8, RC11 and x86 in the next

section.

3.5 Validation

In this section we validate our formalization of the JAM by comparing litmus test outcomes for

the JAM with the outcomes for ARMv8 [74], RC11 [47] and the model for x86 included with Herd.

We use these comparisons to show that there are no unexpected di�erences in behavior between

each pair of models. For example, we expect the JAM to permit more behaviors than ARMv8 with

the exception of litmus tests like load-bu�ering (Fig. 3.2c) because the behavior is forbidden by

the JAM’s de�nition of causal cycles. Additionally, we use the test results to establish an empirical

relationship between the JAM and the other the memory models in the diagram of Figure 3.1.

We run the tests using the Herd tool [5]. Herd exhaustively enumerates all possible execu-

tions of a litmus test and checks if each execution is allowed by the model being tested. We can

then compare the three possible results for each model to see how o�en executions are allowed:

Always, Sometimes, and Never. In terms of the behavior being tested Always and Sometimes

mean that the behavior is allowed, while Never means that it is not allowed. Weaker memory

models should allow more behaviors and see more Always and Sometimes results, while stronger

memory models should allow fewer behaviors and see more Never results.

Our test suite is built with litmus tests taken from existing research for the three models we

compare against. Importantly we did not modify any of these tests. However, Herd uses di�erent

built-in relations to refer to the access types of each model. For example, Herd provides the L

built-in to refer to release-writes in ARMv8 litmus tests and the REL built-in to refer to release-

writes in C11 litmus tests. �us, for each comparison we include a mapping between the access

types of the other model and the access modes of the JAM.

For each comparison we de�ne the mapping between the built-in relations of the two models,

we detail our expectations for the results, and then discuss the results of the comparison. As we
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[74]

name ARMv8 JAM

WRC+addrs Never Never

LB+data+data-wsi Never Never

W+RR Never Never

totalco Never Never

PPOCA Sometimes Sometimes

IRIW Sometimes Sometimes

IRIW+addrs Never Sometimes

IRIW+poaas+LL Never Sometimes

IRIW+poaps+LL Never Sometimes

MP+dmb.sy+addr-ws-rf-addr Never Sometimes

WW+RR+WW+RR+wsilp+poaa+wsilp+poaa Never Sometimes

LB Sometimes Never

Figure 3.14: ARMv8 Litmus Test Comparison

will see our model behaves as expected in all cases.

3.5.1 Comparison with ARMv8

Herd provides several built-in relations for the ARMv8 litmus tests: M for normally memory oper-

ations, L for release writes, A for acquire reads, and DMB.SY for full fences. �ere are no SC/Volatile

accesses.

let opq = M

let rel = L

let acq = A

let spush = po;[DMB.SY];po

Figure 3.15: ARMv8 Mapping

Mapping. We map every memory access to opaque

mode with opq = M. �is is conservative with respect to

our expectation that the JAM permits more behaviors than

ARMv8. If we were to map some accesses to plain mode

they would be allowed to exhibit causal cycles. �us, map-

ping all memory accesses to opaque mode means the JAM model will permit fewer behaviors.

We map release-writes to release-acquire mode writes, rel = L and acquire-reads to release-
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acquire mode reads, acq = A. Note, that M includes L and A so release writes and acquire reads will

also be treated as opaque mode accesses. Finally we treat all accesses with a full fence between

them in program order having a speci�ed push order.

Expectations. As stated, we expect the JAM to be weaker than ARMv8 since the JAM is a

language memory model which is subject to aggressive compiler optimizations. �at is, we expect

that any time ARMv8 exhibits a behavior the JAM should too and there should be instances where

the JAM exhibits behaviors that ARMv8 doesn’t. �e lone exception is cases where the broad

de�nition of causal cycles adopted by the JAM will rules out behavior like the load-bu�ering

example of Figure 3.2c.

Results. Aside from totalco and LB, all the tests come from the supplementary material

accompanying the ARMv8 model of [74] which we use for comparison. Figure 3.14 shows the

results of our comparison and they agree with our expectations: the JAM is at least as weak as

ARMv8 except in the case of load-bu�ering (LB).

Many of the results owe to the fact that the JAM is not multi-copy atomic. �at is, unlike

ARMv8, di�erent threads can see writes to di�erent locations in di�erent orders. So, IRIW+* and

WRC+* are allowed for the JAM but not for ARMv8. �e WW+RR+WW+RR+wsilp+poaa+wsilp+poaa

litmus test is a variant of IRIW where all writes are release writes and all reads are aquire reads.

�e writes in this test use a weaker form of synchronization than the example in Figure 3.12a

in Section 3.4.4 where the behavior is allowed by the JAM. As a result this behavior is allowed

by the JAM. Finally, the LB test is identical to the example in Figure 3.2c from Section 3.3. �is

execution is allowed by the ARMv8 model but it is a cycle in (po | rf) & opq which is explicitly

disallowed by the JAM.

JAM Relationship. Taken together this means that the JAM, with its acyclic causality re-

quirement, is incomparable to ARMv8 in terms of allowed behaviors and executions. �is appears

as the lack of a relationship between the two models in the diagram of Figure 3.1. However, re-

moving the acyclic causality requirement results in the JAM-, which admits strictly more execu-

tions than ARMv8. �is is represented in Figure 3.1 as the transitive relationship from the JAM-

to ARMv8 through C11 and ARMv7. �e relationship between ARMv7 and ARMv8 is based on
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the work of [74]. �e relationship between C11 and ARMv7 is based on the conventional wisdom

we derive from the construction of C11 compilers. We will establish the relationship between the

JAM- and C11 next.

3.5.2 Comparison with RC11

C11’s atomic memory accesses can be annotated with memory orders. Herd provides the fol-

lowing built-in relations for the memory orders and accesses in the C11 litmus tests: M for plain

memory access, RLX for relaxed memory order accesses, REL for release memory order accesses,

ACQ for acquire memory order accesses, REL ACQ for release-acquire memory order read-write

accesses, SC for sequentially consistent memory order accesses, F & REL for release fences, F &

AQR for acquire fences, F & SC for sequentially consistent (full) fences, and F \ SC for all other

fences.

let opq = RLX | ACQ | REL | ACQ_REL | SC

let rel = REL | ACQ_REL | SC

let acq = ACQ | ACQ_REL | SC

let vol = SC

let svo = po;[F & REL];po;[W] | [R];po;[F & ACQ];po

let spush = po;[F & SC];po

Mapping. Our mapping for the relations provided by Herd for C11 follows the informal

relationship outlined in the documentation for the JAM [52]. All plain accesses in C11 are treated

as plain accesses in our mapping to the JAM. We map relaxed memory order accesses or stronger

to opaque mode, opq = RLX | ... , release memory order accesses or stronger to release mode,

rel = REL | ... , acquire memory order accesses or stronger to acquire mode, acq = ACQ |

... . sequentially consistent memory order accesses to volatile mode, vol = SC. We also map

release fences before writes, po;[F & REL];po;[W], and acquire fences a�er reads, [R];po;[F &

ACQ];po, to speci�ed visibility orders, svo. Finally, we map sequentially consistent fences, po;[F

& SC];po, to push orders between program order earlier and program order later accesses.

Expectations. �e access modes of the JAM are inspired by the memory orders of C11 so
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this comparison is of particular importance. We expect the JAM to match C11 except in cases

where release-sequences, consume-reads, or causal cycles are involved.

Results. In Figure 3.16 we have the results of the comparison with the RC11 model of [47].

We include the tests from research by [88], [85], [47]. In the case of [88] and [85] we used the tests

directly. In the case of [47] we translated the tests from the paper to Herd litmus tests ourselves.

�e results largely agree with our expectations. �e exceptions are places where the RC11 model

breaks with the C11 speci�cation. We will discuss each in turn.

�e cyc na test is the same as the load-bu�ering example from Section 3.3 but all the accesses

are plain. �e JAM allows this cycle in plain mode po | rf because its acyclicity requirement

only applies to opaque mode or stronger accesses. �e RC11 model breaks with C11 by including

an acyclicity requirement for po | rf for all memory accesses.

�e lb test is the same as cyc na except that all of the accesses are relaxed memory order.

In the mapping to the JAM this translates into opaque mode accesses which are not allowed to

exhibit a cycle in po | rf. �us both models forbid the load-bu�ering behavior in this case.

�e mp relacq rs test leverages the release sequences of C11. Since the JAM does not

include release sequences it does not forbid the behavior of this test.

Our test runs for fig6 and fig6 translated timed out at 5 minutes. �e behavior mod-

eled by these tests highlights a quirk in C11’s rules for SC accesses. Together they demonstrate

that strengthening the memory order of a particular relaxed store in fig6 to an SC store in

fig6 translated creates new behaviors. �at is, the tests demonstrate that the memory or-

ders of C11 are not monotonic. RC11 includes a �x proposed by [85] which forbids this behavior.

In Section 3.6 we prove that the JAM’s access modes are indeed monotonic in our model which

means that stronger access modes exhibit fewer behaviors, thus the behavior in these tests is

forbidden.

In the case of IRIW-acq-sc, Z6.U, and IRIW-sc-rlx-acq our model forbids the behavior in

keeping with the C11 speci�cation. We will consider each case and discuss why RC11 does not

forbid each behavior.

�e IRIW-acq-sc test appears in in Figure 3.17a. �e reason this is forbidden in our model
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[85]

name RC11 JAM

a1 Sometimes Sometimes

a1 reorder Sometimes Sometimes

a3 Sometimes Sometimes

a3 reorder Sometimes Sometimes

a3v2 Sometimes Sometimes

a4 Never Never

a4 reorder Sometimes Sometimes

arfna Never Never

arfna transformed Never Never

b Never Never

b reorder Sometimes Sometimes

c Never Never

c p Never Never

c p reorder Never Never

c pq Never Never

c pq reorder Never Never

c q Never Never

c q reorder Never Never

c reorder Never Never

cyc Never Never

cyc na Never Sometimes

fig1 Always Always

fig6 Never timed out

fig6 translated Never timed out

lb Never Never

linearisation Never Never

linearisation2 Never Never

roachmotel Never Never

roachmotel2 Never Never

rseq weak Sometimes Sometimes

rseq weak2 Always Always

seq Never Never

seq2 Never Never

strengthen Never Never

strengthen2 Never Never

New C11 Tests

name RC11 JAM

IRIW-sc-rlx-acq Sometimes Never

[88]

name RC11 JAM

cppmem iriw relacq Sometimes Sometimes

cppmem sc atomics Never Never

iriw sc Never Never

mp fences Never Never

mp relacq Never Never

mp relacq rs Never Sometimes

mp relaxed Sometimes Sometimes

mp sc Never Never

[47]

name RC11 JAM

2+2W Never Never

IRIW-acq-sc Sometimes Never

RWC+syncs Never Never

W+RWC Never Never

Z6.U Sometimes Never

Herd X86 Tests

name x86 JAM

4.SB Sometimes Sometimes

6.SB Sometimes timed out

6.SB+prefetch Sometimes timed out

CoRWR Never Never

iriw-internal Sometimes Sometimes

iriw Never Sometimes

podrw000 Sometimes Sometimes

podrw001 Sometimes Sometimes

SB Sometimes Sometimes

SB+mfences Never Never

SB+rfi-pos Sometimes Sometimes

SB+SC Sometimes Sometimes

X000 Sometimes Sometimes

X001 Sometimes Sometimes

X002 Sometimes Sometimes

X003 Sometimes Sometimes

X004 Sometimes Sometimes

X005 Sometimes Sometimes

X006 Sometimes Sometimes

x86-2+2W Never Sometimes

Figure 3.16: RC11 & x86 Litmus Test Comparison
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rf

rf
a: WV(y, 1) e: RRA(y, 1)

f: RV(x, 0)R
vo

init: W(x,0)
co0co

popovolint volint

b: WV(x, 1) c: RRA(x, 1)

d: RV(y, 0)R

(a) IRIW RA and Volatile Reads

rf

rf
a: WV(y, 1) g: RRA(y, 2)

h: RRA(x, 0)
vo

init: W(y,0)

popovolint volint

b: WO(y, 2) d: WO(x, 2)

popo ra

co0co

c: WV(x, 1) e: RRA(x, 2)

f: RRA(y, 0)

(b) IRIW Extra Writes

rf rf

e: WV(y, 3)

f: RV(x, 0)

init: W(y,0)

povolint

b: WRA(y, 1)

po

co0co

po volint

vo

rf

volint

a: WV(x, 1)A c: RWV(y,1,2)

d: RO(y, 3) 

(c) Z6.U a vo
−−−→ f

rf rf

e: WV(y, 3)

f: RV(x, 0)

volint

b: WRA(y, 1)

po
co

co

po volint

vo

po volint

a: WV(x, 1)A c: RWV(y,1,2)

d: RO(y, 3) 

(d) Z6.U e vo
−−−→ b

Figure 3.17: Z6.U & IRIW RA with Volatile Reads Litmus Tests
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is that all accesses before a SC/Volatile read are ordered by volint. �en, because there are two

such orders in the reading threads there is either a visibility order, c vo
−−−→ f or d vo

−−−→ e. �us, one

of the two reads must see the non-initialization write using the same reasoning from Section 3.4.4

for Figure 3.12b. �is e�ectively emulates the “leading” fence compilation scheme described in

[47], where a full fence is placed before the SC/Volatile accesses. �e authors (personal commu-

nication) point out that this scheme should forbid this behavior. By contrast RC11 relaxes the C11

model to accommodate a leading or trailing fence compilation scheme. In this case, if the trailing

fence scheme is used there’s no ordering provided to any of the SC accesses and the execution is

allowed.

Two possible executions for Z6.U test appears in Figures 3.17c and 3.17d. �ey represent each

case of the visibility orders induced by a volint
−−−−−−→ b and e volint

−−−−−−→ f. In 3.17c we have a vo
−−−→ f,

which means that f must have seen a and could not read from the initialization by cowr. In 3.17d

we have e vo
−−−→ b. We also have b rf

−−−→ c. �en together we have e vo
−−−→ b rf

−−−→ c. �en because

c and e are both writes to y we have e co
−−−→ c by coww. Separately, since c volint

−−−−−−→ d we have

c vo
−−−→ d. �en since e rf

−−−→ d we have c co
−−−→ e by cowr. �us we have a cycle in co and the

execution if forbidden.

�is e�ectively emulates the “trailing” fence compilation scheme described by [47], where a

full fence is placed a�er SC/Volatile accesses. �ey point out that this scheme should forbid this

behavior. Again, RC11 relaxes C11 to model both schemes and under a leading fence compilation

scheme the behavior this allowed.

Finally, in Figure 3.17b we have our own variant of IRIW called IRIW-sc-rlx-acq based on

the WW+RR+... test in the ARMv8 suite. In this case, if the compiler is inserting trailing fences

a�er a and c, then either a vo
−−−→ d or b vo

−−−→ c. Taking the �rst case we can can construct b vo+
−−−−→ f

from a vo
−−−→ d rf

−−−→ a ra
−−−→ f and a cycle in co by cowr. �e second case is similar but with the

read of x in the 4th thread.

Again, the RC11 model does not forbid this execution. In our discussion with the authors, they

suggested two possible interpretations for this behavior. �e �rst is a leading fence compilation

scheme which we have discussed above. �e second is a merge of each pair of writes into a single
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write. In the second case we suggest that the Java compiler should not merge opaque mode (or

stronger) accesses.

In summary, our model correctly forbids the behavior in each of these cases. �e reason is

that volatile reads would be preceded by a full fence and volatile writes would be followed by a

full fence in the presence of mixed mode programs with SC accesses. Importantly, the tension

between optimal compilation and a simple model exists here as it does with C11.

JAMRelationship. Where the diagram of Figure 3.1 is concerned every litmus test, suggests

that the JAM is weaker than RC11. Further, since the C11 speci�cation does not rule out causal

cycles if we remove the acyclic causality requirement the JAM it is strictly weaker than the C11

speci�cation. �us JAM- appears below C11 in the diagram.

3.5.3 Comparison with x86

Herd provides the following built in relations for x86 litmus tests: M for memory accesses, SFENCE

for fences for intra-thread ordering of writes with other accesses, LFENCE for ordering intra-

thread ordering of reads with other accesses, and MFENCE as a full fence with cross thread ordering

guarantees.

let opq = M

let svo = [W];po;[SFENCE];po | [R];po;[LFENCE];po

let spush = po;[MFENCE];po

Mapping. We map from all regular memory accesses to opaque mode opq = M in keeping

with the opaque mode mapping from our comparison with ARMv8. We map SFENCE to speci�ed

visibility orders from writes to other memory accesses across the fence, [W];po;[SFENCE];po.

We map LFENCE to speci�ed visibility orders from reads to other memory accesses across the

fence, [R];po;[LFENCE];po. Finally we map MFENCE as a speci�ed push orders between any

access before the fence to any access a�er the fence, po;[MFENCE];po.

Expectations. We expect the JAM to be weaker than x86 in all cases. �e only weak behavior

that x86 exhibits is reordering writes with reads (store-bu�ering) which the JAM also allows in
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opaque mode.

Results. Figure 3.16 shows the results of our comparison with the x86 model included with

Herd. �e litmus tests are also included with Herd for the model. �e two tests which timed out,

6.SB+prefetch and 6.SB, are store bu�ering variants. Given that the JAM can reorder writes

with reads the behavior of these tests is allowed. Otherwise the tests con�rm our expectations.

JAM Relationship. Each of the test outcomes demonstrates that there are strictly more

executions allowed by the JAM and therefore JAM-. In particular, causal cycles are impossible on

x86 because reads cannot be reordered with writes.

3.6 Metatheory

Here, we develop a metatheory for our model of the JAM. First, we detail the semantics and then

sketch the proofs for the theorems listed in Section 3.2. We show that each mode, from Volatile

to Opaque, admits strictly more executions, otherwise referred to as monotonicity. We also show

that properly synchronized programs, i.e. race-free programs as de�ned by [13], will only exhibit

sequentially consistent behaviors as required by Java’s data-race-free (DRF) guarantee. Finally,

we show that acquire mode for all reads obviates the inclusion of the JAM’s acyclic causality

requirement.

�ese theorems further validate the de�nitions of our model, give more evidence that the

model is complete with respect to the documentation, and clearly demonstrate that the semantics

is suitable for formal reasoning. �e semantics, lemmas and theorems have been mechanized

in Coq. �e source is available for inspection in the supplementary material and it includes

instructions on where to �nd everything included below.

3.6.1 Semantics

�e axioms of our model apply to memory event graphs, each of which represents one possible

execution of a program. �us far we have relied on Herd to generate executions for a program and

then apply the axioms of our model to rule on whether an execution is allowed. Our formalization
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in Coq replaces the Herd machinery with the history fragment of the semantics of [19] to model

the set of possible executions.

�e syntax of our formalization appears in Figure 4.1. We use n, l, i, and p to range over natural

numbers, memory locations, unique memory access identi�ers, and unique thread identi�ers. We

use m to represent one of the four access modes, P for plain, O for opaque, RA for release acquire

and V for volatile. Note that RA writes are release writes and RA reads are acquire reads. Memory

accesses, a, can take the form of reads, [l]m, and writes, [l]m := n with their accompanying modes

as well as read-writes, RW(l, n).

Memory events, h record the program’s interactions with memory. Notably, we assume that

the program and history can record speci�ed visibility and speci�ed push orders, vo(i, i) and

push(i, i) before the execution of the related identi�ers. For example, the program may use the

labeling and ordering mechanism of Crary and Sulivan [19]. We discuss the other events in detail

below.

We use d to range over program generated events which are translated by the memory seman-

tics into memory events and we use P to abstract over an expression language that can produce

such events. We use H to represent a list of memory events, where H(h) means that h ∈ H.

Finally we use i R
−−→H i to represent memory model relations for H.

Program and history states transition together via the step relation de�ned in �gure 3.19. In

Section 4 we will de�ne an expression semantics for programs, P, that generates program events,

for now we leave it abstract. Here we focus on the history transition semantics, which certi�es

program events d@p of the form i = a@p, i@p, or i to n@p and turns them into memory events.

�e program event i = a@p represents the “initialization” of a memory access a using the

unique identi�er i in thread p. �e history semantics appends init(i, p) and is(i, a) to H to record

the initialization and the form of the memory access identi�ed by i. �e only certi�cation required

of an initialization is that the memory access identi�ed by i is not already initialized. Importantly,

we assume that the program initializes memory accesses in program order, so the subsequence

of inititalization events records program order in H.

i@p represents the execution of a write in thread p which is recorded in history with exec(i).
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Nat n := 0 | 1 | . . .

Locations l := . . .

Modes m := P | O | RA | V

Access Ids i := ...

Thread Ids p := ...

Accesses a := [l]m | [l]m := n | RW(l, n)

Mem. Events h := init(i, p) | is(i, a) | exec(i)

| rf(i, i) | vo(i, i) | push(i, i)

Prog. Events d := i = a | i | i to n

Program P := . . .

History H := ε | H, h

Figure 3.18: Syntax

P
d@p
−−−→ P′ H

d@p
−−−→ H′

step
(P,H) → (P′,H′)

¬H(init(i, ))
init

H
i=a@p
−−−−−→ H, init(i, p), is(i, a)

wf(H, exec(i), p) acyclic( co
−−−→H,exec(i))

write
H

i@p
−−−→ H, exec(i)

wf(H, rf(iw, i), p, n)

acyclic( co
−−−→H,rf(iw,i))

acyclic( po | rf
−−−−−→H,rf(iw,i))

read
H

i to n@p
−−−−−−→ H, rf(iw, i)

reads(H, i, l) , ∃m,H(is(i, [l]m)) ∨ ∃ n,H(is(i,RW(l, n)))

writes(H, i, l, n) , ∃m,H(is(i, [l]m := n)) ∨ H(is(i,RW(l, n)))

executed(H, i) , H(exec(i)) ∨ ∃ iw,H(rf(iw, i))

executable(H, i) , ¬ executed(H, i) ∧ ∀i′, i′ into
−−−−→H i ==⇒ executed(H, i′)

wf(H, exec(i), p) ,


H(init(i, p))

H(is(i, [l]m := ))

executable(H, i)

wf(H, rf(iw, i), p, n) ,



H(init(i, p))

reads(H, i, l)

writes(H, iw, l, n)

executed(H, iw)

executable(H, i)

Figure 3.19: Semantics
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Writes must be certi�ed by the acyclicity requirement for co and a basic well-formedness con-

dition wf(H, exec(i), p). �e well-formedness requires that i be initialized H(init(i, p)), that the

memory access associated with i be a write, H(is(i, [l]m := n)), and that the write be executable

executable(H, i).

�e executable(H, i) constraint requires that i has not already executed and that the sequence

of execution, to, respects any intra-thread ordering, into, as in the description of Section 3.4.2.

�e program is otherwise free to execute memory accesses out-of-order. �is is in keeping with

our restriction on trace order as detailed in Section 3.4.2

i to n@p represents the execution of a read i, reading the value n in thread p which is recorded

in history with rf(iw, i). Reads must be certi�ed by the same acyclicity requirement for co and

the additional requirement on po | rf. �e well-formedness condition for reads requires that i

be initialized, that it be a read or a read-write, reads(H, i, l), and that it be executable. It further

requires that the paired write iw is executed, executed(H, iw), and that iw writes the value n to the

same location l, writes(H, i, l, n).

In what follows, the restriction on the trace order, to, and the acyclicity requirements form the

interface with the relations of our axiomatic model. Otherwise, the well-formedness conditions

from the history rules are uni�ed as an assumption in our theorems called trace coherence.

3.6.2 �eorems

To begin, we demonstrate the monotonicity of our access mode de�nitions. We de�ne the re�ex-

ive ordering of the access modes as P v O v RA v V and extend it to accesses [l]m 1 v [l]m 2,

[l]m 1 := n1 v [l]m 2 := n2, RW(l, n1) v RW(l, n2) whenever m1 v m2. As a technical ma�er we

treat read-writes as always having the same order. We extend the order to histories by matching

identi�ers and ordering the accesses.

H1 v H2 , ∀ i a1 a2,H1(is(i, a1)) ∧ H2(is(i, a2)) =⇒ a1 v a2

When the po, rf, and to relations of two histories H1 and H2 have the following relationships:
po
−−−→H2⊆

po
−−−→H1 , to

−−→H2⊆
to
−−→H1 ,

rf
−−→H2⊆

rf
−−→H1 , then we say they match.
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�eorem 2 (Monotonicity). For two histories H1 and H2, suppose that both match, both are trace

coherent, and H2 v H1. Further suppose that acyclic(
co
−−−→H1) and that there are no speci�ed visibility

orders or push orders in H2, then acyclic( co
−−−→H2)

We make two notes. First the absence of speci�ed orders in H2 is a technical convenience

since speci�ed order edges are not related to the strength of the access modes for reads and

writes. Second, we focus on the acyclic coherence requirement because the match assumption

means that it would be trivial to satisfy the acyclic causality requirement for H2 supposing it is

true of H1 because po and rf have fewer edges in H2.

Proof Sketch. We assume i co
−−−→H2 i for some i and show that this must mean i co

−−−→H1 i which

is a contradiction. �is is straight forward by induction on i co
−−−→H2 i, noting that each case of

visibility in H2 will exist in H1 because of stronger access modes in H1. �

For the last two theorems will �rst establish that the main component of visibility in our

model, vvo, is irre�exive.

Lemma 1 (Irre�exive Visibility). If H is trace coherent then, for all i, ¬ i vvo+
−−−−−→H i.

Proof Sketch. �is follows from two facts. First, vvo derives from orderings that are always ei-

ther program ordered from intra-thread synchronization (svo, spush, ra, volint) or trace ordered

(pushto, rf). Second, both relations are total and to is consistent with the po edges for intra-thread

visibility by the executable well-formedness condition. �

Next we show that if a program is properly synchronized then it will only exhibit sequen-

tially consistent behavior. We require the following standard de�nitions including the traditional

notion of sequential consistency [78]:

i1
fr
−−−→H i2 , ∃ i3, i3

rf
−−−→H i1 ∧ i3

co
−−−→H i2

i1
com
−−−−→H i2 , i1

co
−−−→H i2 ∨ i1

rf
−−−→H i2 ∨ i1

fr
−−−→H i2

i1
sc
−−−→H i2 , i1

po
−−−→H i2 ∨ i1

com
−−−−→H i2

71



We also require a de�nition of proper synchronization in keeping with our focus on visibility.

i1
sync
−−−−→H i2 , ∃i3, i1

vvo+
−−−−−→H i3

po∗
−−−−→H i2 ∧ ∀i4, i3

po∗
−−−−→H i4 =⇒ i3

vvo
−−−−→H i4

�e idea is that any con�icting access is visibility ordered by some mechanism, be it a speci�ed

order (fence) or a strong mode for i3. �en, following the de�nition of “type 2” data-races from

[13], we say that H is race-free when, for all con�icting accesses i1 and i2, we have i1
sync
−−−−→H i2

or i2
sync
−−−−→H i1.

�eorem 3 (DRF-SC). If H is trace coherent, race free and, acyclic( co
−−−→H), then acyclic( sc

−−−→H).

Proof Sketch. We assume i sc+
−−−−→H i for some i and show a contradiction. By Lemma 1 it is enough

to demonstrate a cycle in vvo+.

We can show that for any i1 and i2, if we have i1
com
−−−−→H i2 then we have i1

sync
−−−−→H i2. Note

that any accesses related by com are con�icting. �en we have either i1
sync
−−−−→H i2 or i2

sync
−−−−→H i1.

In each case for com we can show that i2
sync
−−−−→H i1 creates a cycle in the coherence order so it

must be i1
sync
−−−−→H i2.

�en, since po is irre�exive, we have that any sequence i sc+
−−−−→H i must include at least one

com edge. �en since com edges are also sync edges, when we have i1
sc+
−−−−→H i2 we also have

i1
po | com+
−−−−−−−−→H i2 and therefore i1

po | sync+
−−−−−−−−→H i2.

But then we can rearrange a cycle in i po | sync+
−−−−−−−−→H i to be i sync+

−−−−−−→H i by appending a leading

po edge to the end. Observe that for any sequence i1
sync+
−−−−−−→H i2 we have i1

vvo+
−−−−−→H i2, so we

have i vvo+
−−−−−→H i as required. �

Finally, we show that if all reads are acquire-reads then the JAM’s acyclic causality require-

ment is unnecessary. �is theorem demonstrates the soundness of proposed compiler implemen-

tations for satisfying the acyclic causality requirement of the JAM [68].

�eorem 4 (Causal Acquire-Reads). If H is trace coherent and all reads in H are acquire-reads,

then acyclic( po | rf
−−−−−−→H).

Proof Sketch. We assume i po | rf+
−−−−−−−→H i for some i and show a contradiction. By Lemma 1, it is

enough to demonstrate a cycle in vvo+.
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First, note that any sequence i1
rf
−−−→H i2

po
−−−→H i3 implies i1

vvo+
−−−−−→H i3 because rf implies

vvo and because, by assumption, the read i2 is an acquire read and i3 is program order later, so

i2
vvo
−−−−→H i3.

Let rfpoq
−−−−−→H be a reads-from edge followed by an optional program order edge. Note that,

by induction and the fact that rf and rfpo imply vvo we can show that i1
rfpoq
−−−−−→H i2 implies

i1
vvo+
−−−−−→H i2

�en, since po is irre�exive, we have that any sequence i po | rf+
−−−−−−−→H i must include at least

one rf edge. �us we can rearrange to get i′ rfpoq+
−−−−−−−→H i′ and we have i′ vvo+

−−−−−→H i′ by the above,

as required. �

3.7 Unobservable Total Coherence Order

Here we will demonstrate that the e�ects of a total coherence order are unobservable in our

model. �is is a surprising result since a total coherence order is intuitively associated with

maintaining per-location state and we would expect concurrent writes to have a material impact

on the behavior of programs.

To start, recall that a feature of a memory model as exhibited by an example program is

de�ned in binary terms. �e feature is present when any executions are allowed and the feature

is absent when no executions are allowed. �en we say that a feature is observable when we can

construct any example program such that the feature’s presence in the model changes whether

any executions are allowed. So, to observe a total coherence order, we must construct a program

that changes whether executions are allowed based on the presence of the total order. We will

show that this is impossible under our model.

First, note that in our model there is no way to allow previously forbidden executions when

adding coherence order edges. �is means we can’t observe the feature by going from some

executions with a total order to no executions without a total order. �us, any program that

allows us to observe the total coherence order must forbid all executions in the presence of a

total order. We will show that such a program will also forbid all executions when the total order
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is removed.

�eorem 5. It is impossible to construct an example program for the JAM, such that, for any two

writes, if they are totally ordered there are no valid executions, and if they are not totally ordered

there is at least one valid execution.

Proof. From a total order we have that all candidate executions can be divided between the two

directions. For some writes to the same location a and b we have:

a co
−−−→ b ∨ (3.1)

b co
−−−→ a (3.2)

We begin by eliminating all executions for the �rst direction, (1). �is means we must con-

struct a cycle in co, such that, for all executions including (1) we have :

a co
−−−→ b (1)

b co
−−−→ · · ·

co
−−−→ a (3.3)

With this cycle, executions including (1) are forbidden by the acyclicity requirement for co.

Observe that (3) must be present in all executions of the program. If it is not then we can divide

the executions that do not have (3) between executions with (1) and executions with (2). For

the executions without (3) and with (1) the execution is allowed and we have failed to forbid all

executions. Now we must eliminate all executions for (2) with another cycle:

b co
−−−→ a (2)

a co
−−−→ · · ·

co
−−−→ b (3.4)

Moreover (4) must persist for all executions for the same reason that (3) persisted. �en it

must be that, for all executions we have:

b co
−−−→ · · ·

co
−−−→ a (3)

a co
−−−→ · · ·

co
−−−→ b (4)

74



�en, even if we remove the total order, (1) and (2), from the model, all executions of the

program will still have a forbidden cycle by (3) and (4) and we can not demonstrate a single

execution that is allowed. �

Critically, this line of reasoning depends on the fact that we have a single acyclicity require-

ment in which co participates and both (3) and (4) form a cycle that violates that requirement.

If that were not the case then (3) and (4) would not necessarily create a cycle or forbid any exe-

cutions. As a result this reasoning does not apply to the ARMv8 and RC11 models as they have

multiple acyclicity requirements involving the coherence order. In Appendix E we have included

a litmus test for ARMv8 that shows it is possible to construct a program for that model that

behaves di�erently with and without the total order.

Demonstrating that a total coherence order is not observable in our model means that the

JAM may adopt a total coherence order without a�ecting the outcomes of the model. �is would

allow it to emulate other mainstream memory models in this respect and recover the intuitive

notion of per-location state.

3.8 Summary

Having constructed and validated a suitable model from which to perform reasoning with spec-

i�ed orders we can now prove the correctness of concurrent algorithms with the understanding

that our proofs will be sound for any stronger memory model.
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CHAPTER 4

Proving Correctness with Speci�ed Orders

Here we will present a logic for proving algorithm correctness in the context of Java’s opaque

mode (herea�er “the JOM”) without the guarantee of acyclic causality. As we have seen in Sec-

tion 3.4, opaque mode is the weakest of the JAM’s access modes intended for lock-free algorithms.

Beyond acyclic causality, the JOM provides only the most basic guarantees in the form of coher-

ence. Since we are explicitly discarding the guarantee of acyclic causality and relying entirely on

coherence any theorems about programs we prove will apply to the same programs running on

stronger models.

However, more executions should intuitively mean a more di�cult task in reasoning. �is is

where speci�ed orders shine. Because speci�ed orders recover fragments of sequential consis-

tency, we can reason as though the memory model is sequential consistency and then recover

the necessary guarantees from SC for the JOM using speci�ed orders.

Additionally, reasoning for the JOM must proceed without any global notion of state since it

does not support a total order on non-atomic writes. To accomplish this we use only expression

values and the relations of the memory model. In this “stateless” approach, a proof shows that

certain pairings of reads and writes are impossible. �e proof proceeds by supposing that a pairing

is possible and then deriving a contradiction by building a cycle in the coherence order which is

forbidden by the semantics of the JOM. We call this process write elimination.

For more general and complex proofs, such as our proof of correctness for a two thread ring-

bu�er, we must structure many such write elimination steps. Our logic accomplishes this through

induction over the partial coherence order.

In Section 4.1 we will build on the history semantics of Section 3.6 with a semantics for ex-

pressions to generate the program events which are certi�ed by the axioms of our memory model.
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In Section 4.2 we will detail a logic that li�s relational reasoning from the execution graphs to

programs and enables equational reasoning for expression values. In Section 4.3 we will prove

correctness for Dekker’s mutual exclusion algorithm as an introduction to the logic and core the

concept of write elimination using speci�ed orders. In Section 4.4 we will prove correctness for

a two-thread Ringbu�er algorithm and demonstrate how induction over the partial coherence

order of the JAM- structures complex proofs.

4.1 Operational Expression Semantics

We model the expressions of the JOM using an imperative operational semantics, where the

program generates program events representing the execution of memory accesses and those

events are validated by the axioms of the memory model before being recorded in history as

memory events.

We use a core language, detailed in Figure 4.1. Figure 4.2 focuses on the most relevant portion

of the semantics. �e full expression semantics is available in Appendix F. As in Section 3.4, the

top level state step coordinates steps of the program with steps in a sequence of events, a history,

which represents memory (rule: step).

�e expression semantics for operators, conditionals, and repeat loops is standard. We focus

here on the rules that most directly a�ect the memory model. �ere are three memory access

expressions: reads [s], writes [s] := s, and read-writes RW(s, s). Note that we omit the access

mode annotation under that assumption that all reads and writes are opaque mode. With that, a

memory access goes through three phases: variable substitution, initialization, and execution.

Execution may proceed out of order (rule: let-right) but initialization proceeds in program

order by requiring that all memory accesses in the �rst of the two sequenced expressions is ini-

tialized, e1 init, and that accesses cannot be initialized before all variable arguments are substi-

tuted, x < FV(d)). �e initialization phase reduces any access to a unique identi�er and records

the form of the access in an event i = a (rule: access-init). �e uniqueness of the identi�er which

replaces the access is guaranteed by the history semantics.
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Nat n := 0 | 1 | . . .

Value v := n

Labels l := ...

Label List L := ε | l, L

Simple s := v | x

Accesses a := [l] | [l] := n | RW(l, n)

Exp e := s | s + s | s mod n | s == s

| let x := e in e | repeat e end

| if s then e else e | s = n in e | l:e

Prog. Events d := i = a | i | i to n

Thread Ids p := ...

Program P := ε | P; p : fork e

Figure 4.1: Imperative Syntax

P
d@p
−−−→ P′ H

d@p
−−−→ H′

step
(P,H) → (P′,H′)

e2
d
−→ e′2 e1 init x < FV(d)

let-right
let x := e1 in e2

d
−→ let x := e1 in e′2

access-init
a

i=a
−−→ i

exec-read
i

i to n
−−−→ n

exec-write
i

i
−→ 0

spec
[s/x]e

∅
−→ s = n in [n/x]e

e
d
−→ e′

spec-under
s = n in e

d
−→ s = n in e′

spec-rm
n = n in e

∅
−→ e

Figure 4.2: Semantics
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expression history

let v := [l] in [l] := v H
ir=[l]
−−−−−→ let v := ir in [l] := v H, init(ir, [l])

ir to 1
−−−−→ let v := 1 in [l] := v H, init(ir, [l]), rf(i0, ir)
�
−→ [l] := 1 H, init(ir, [l]), rf(i0, ir)

iw=([l] := 1)
−−−−−−−−−−→ iw H, init(ir, [l]), rf(i0, ir), init(iw, [l] := 1)

iw
−→ 0 H, init(ir, [l]), rf(i0, ir), init(iw, [l] := 1), exec(iw)

(a) Initialization

. . .

ir=[l]
−−−−−→ let v := ir in [l] := v H, init(ir, [l])

�
−→ let v := ir in v = 1 in [l] := 1 H, init(ir, [l])

iw=[l] := 1
−−−−−−−−−→ let v := ir in v = 1 in iw H, init(ir, [l]), init(iw, [l] := 1)

. . .

(b) Speculation

Figure 4.3: Example Execution
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Memory accesses are executed, possibly out of program order, by choosing an arbitrary nat-

ural number value (rules: exec-read or exec-write). �e program event, d, generated by memory

access execution is passed down to the history semantics to ensure that the access associated

with the identi�er can actually produce the chosen value and event. Note that memory locations

are addressed directly by natural numbers and we do not consider allocation.

Finally, the expression semantics incorporates a �exible form of speculation. Speculation

works by guessing values for free variables in expressions and adding a constraint that requires

the substitution of that variable to con�rm the guessed value (rules: spec and spec-rm). Since

execution can proceed under the constraint (rule: spec-under) the semantics is able to emulate

weak behavior introduced by architecture and compiler optimizations without rede�ning control

structure semantics. For example, most modern processors speculatively execute conditionals and

later revert the subsequent execution if the wrong branch was chosen.

Figure 4.3a shows an example execution for two sequenced accesses to the same location.

First, the read of the concrete location l is initialized to ir (note that we omit is(i, a) events for

simplicity). �en the read executes and reads from some write i0 producing the value 1. Once the

variable v is substituted into the write it can also initialize and execute.

Alternately, a�er the �rst step but before the read executes, the semantics could speculate on

the value of v, as in Figure 4.3b. �is allows the write to initialize, and possibly even execute,

under the assumption that the read can later satisfy the constraint on the value of v. However

the read cannot be paired with the write in this example as it would violate the corw coherence

rule of the JOM.

4.2 Logic

Our logic abstracts over the executions of the JOM in two ways. For expressions, assertions take

the form of innequalities over the �nal value of expressions. Deduction relies on the transitive

properties of inequality of natural number values and the equalities inherent in basic control

structures. For example, a let expression will eventually reduce to the same value as its second

child expression. For memory accesses, assertions take the form of the relations of the memory
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model and deduction proceeds along the lines of previous reasoning about example programs.

In the case of expressions this abstraction represents a signi�cant reduction in proof e�ort.

�e expression semantics of our model tracks program order, executes memory accesses out-

of-order, and emulates compiler optimizations with speculation, all while maintaining a loose

coupling to the history semantics via memory access identi�ers. As a consequence, reasoning

about expressions directly with the semantics would be tedious, requiring an accounting of the

many possible outcomes of the step relation for each expression. Moreover, associating memory

access expressions to their identi�ers and behaviors in the memory model would be di�cult.

Here, we detail the assertion language and the semantics of assertions in our logic. In Sections

4.3 and 4.4 we will state and prove theorems using our assertions and the rules of our logic.

4.2.1 Assertions and Deductive Rules

Our assertion language, depicted in Figure 4.4a, is comprised of a standard �rst order fragment

with quanti�cation for labels and natural numbers, ∀V, A, and three core program assertions:

expression locations, e @ L, expression relations, V
.
◦ V , and memory relations L R

−−→ L. We will

consider each in turn and give their logical semantics in the next section.

To reason about a program we need a way to identify speci�c expressions within the program.

Further we want to refer to all “instances” of a particular expression, such as library procedures,

so that we can reason about all occurrences of the expression. To that end the logic assumes a

labeling discipline where all expressions are located with unique label sequences, L. Consider

the example program in Figure 4.4d. �ere, we can locate the read of y with [y] @ l1. �en, if we

wish to prove properties about the read that are general with respect to some larger program in

which it appears we can quanitfy over the label sequence that locates the parent let expression.

For example, where the parent let expression is located at L we might have ∀L, [y] @ L, l1 ⇒ P,

where P is some assertion in our assertion language.

Once we have located an expression within a program, we reason about its behavior through

the values it produces when it has fully executed. In particular, we can use the same label sequence

from the initial state of the program to track the expression’s execution until it results in a natural
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Expressions e := . . .

Naturals n := . . .

Labels l := . . .

Executions E := E ; (P,H) | (P,H)

Label Seq. L := L; l | l

Val. Variables V := L | n

Operators ◦ := = | <

Relations R := co | coi | vo | po |

push | rf | vvo

Assertions A := false | A =⇒ A | ∀V, A |

e @ L | V
.
◦ V | L R

−−→ L

Assumptions Γ := Γ; A | A

(a) Language

E � e @ L ⇔ match(E, L, e)

E � L .
= n⇔ E = E′; E′′ ∧ E′′ � n @ L

E � n
.
◦ n⇔ n ◦ n

E � L
.
◦ n⇔ ∃n′, L .

= n′ ∧ n ◦ n′

E � L1
.
◦ L2 ⇔ ∃n1, E � L1

.
◦ n1 ∧

∃n2, E � L2
.
◦ n2 ∧

n1 ◦ n2

E � L1
R
−−→ L2 ⇔ ∃i1, accessid(E, L1, i1) ∧

∃i2, accessid(E, L2, i2) ∧

i1
R
−−→E i2

E � A1 ⇒ A2 ⇔ if E � A1 then E � A2

E � ∀V, A⇔ ∀V ′, E � [V ′/V]A

(b) Semantics

Γ � A ⇔ ∀E, (∀A′ ∈ Γ, E � A′) ⇒ E � A

(c) Models with Assumptions

let x := (l1:[y]) in (l2:x)

(d) Example Program

Figure 4.4: Logical Assertion Language and Semantics

number. In the example program of Figure 4.4d, we can initially locate the local variable x using

the label sequence L, l2. Now, assume that the read returns the value 1. �en we know that x will

be replaced with the value 1 by substitution in a later state of the program and we can locate 1

with the same label sequence. We record this fact as the expression equality L, l2
.
= 1.

Most o�en we will use the natural equalities inherent between parent and child expressions

in our deductions. For example, any let expression will eventually reduce to the �nal value of

its second expression. So, from the example program where the parent let expression is located

at L, we know that L .
= L, l2. �is appears as the rule let-right in Figure 4.5. �en, if we have the

equality, L, l2
.
= 1 we know that L .

= L, l2
.
= 1 and by transitivity of .

= (which is a theorem) we
82



(if s then l1:e1 else l2:e2)@ L
if-alt

(L, lcnd
.
= 1 ∧ L .

= L, l1) ∨

(L, lcnd
.
= 0 ∧ L .

= L, l2)

(let x := l1:e1 in l2:e2)@ L
let-right

L .
= L, l2

let x := l1:e1 in l2:e2 @ L
let-le�

∃n, L, l1
.
= n

x @ L, l2, L′ x ∈ FV(e2)

let x := l1:e1 in l2:e2 @ L
let-bind

L, l2, L′ .= L, l1

(a) Expression Rules

[s] @ Lr Lr
.
= n Lr, lloc

.
= l

reads-rf
∃Lw, Lw

rf
−−−→ Lr

L1
push
−−−−→ L2 L3

push
−−−−→ L4

vo-pushes
L1

vo
−−−→ L4 ∨ L3

vo
−−−→ L2

[s] := s @ L1

L1
vo
−−−→ Lr L2

rf
−−−→ Lr L1 , L2

cowr
L1

co
−−−→ L2

L1
co
−−−→ L2 L2

co
−−−→ L1

co-cycl
false

(b) Memory Rules

Figure 4.5: Example Rules

L1
co
−−−→ L2 L1

coi
−−−−→ L2 ⇒ P L1 L2

∀L3, L1
co
−−−→ L3 ⇒ P L1 L3 ⇒ L3

coi
−−−−→ L2 ⇒ P L1 L2

co-ind
P L1 L2

Figure 4.6: Coherence Order Induction
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know that L .
= 1.

�e memory relations of the semantics are li�ed from the identi�ers of the history seman-

tics to expressions via label sequences that point to memory accesses. �e goal is frequently to

establish the relationship between a read and a write expression which enables reasoning about

the values of read expressions. For the example program, if we know that the read of y at L, l1 is

paired with some write located at Lw, i.e. Lw
rf
−−−→ L, l1, then we can deduce that Lw

.
= L, l1.

We can also perform reasoning on the relations themselves using the axioms of the memory

model. Recall the cowr rule of the semantics in Section 3.4. In Figure 4.5 we have li�ed the

identi�ers of cowr to labels matching the appropriate expressions. We use these rules to establish

cycles in the coherence order, and thereby prove a contradiction, for read-write pairings that we

wish to eliminate. By eliminating writes from which reads can draw their values, we constrain

the values that the read expressions can return and thereby constrain the values that the read

expression can be equal to at the expression level. We call this process write elimination and we

will discuss it in more detail in Section 4.3.

During the process of write elimination we will nearly always leverage speci�ed orders in

some form or another. For example the rule vo-pushes in Figure 4.5 encodes the disjunction in

visibility between the heads and tails of two visibility orders as detailed in Section 3.4.2.

Finally, in Figure 4.6, the rule co-ind encodes structural induction with predicates in our asser-

tion language over writes at the label sequences L1 and L2. Note that co the relation is transitive.

So, to perform induction, we introduce the coi relation to signify that there are no intervening

writes (i.e. coi+ = co). �is rule allows proofs to incorporate existing invariant based reasoning

about single memory locations in spite of the partial ordering of writes in the JOM.

4.2.2 Semantics

�e semantics of our assertion language, E � A, is de�ned inductively, see Figure 4.4b, where an

execution, E , is a �nite sequence of program history pairs related by the semantics of the top level

transition relation, (P,H) →∗ (P′,H′). �ematch function recursively locates expressions within

the initial program, P, of an execution, E , using the label sequence L (See Appendix H for the
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de�nition) . We use this to follow the evolution of the expression, located at L, across an execution

to a value with E � L ◦ n. With that we can reason about binary relations over labels and natural

numbers, E � L ◦ n and E � L1 ◦ L2. In our proofs of Dekker and RingBu�er we use = and <. �e

memory relations, L1
R
−−→ L2, are also de�ned in terms of matching expressions. Recall that each

memory operation is assigned an identi�er i and the relations are de�ned over these identi�ers.

�e actionid predicate ensures that the labeled expressions reach the correct identi�er and that

they reach the correct value (See Appendix H for the de�nition). Other standard connectives

are de�ned in terms of ⇒, false, and ∀V, A. Finally, we li� our assertions from executions to

collections of assertions as in Figure 4.4c.

�e careful reader will have noticed that the equational rule for if-alt has a single matching

hypothesis of the form e @ L. Further, the semantics of e @ L only match in the original pro-

gram. In practice all of the expression level rules require an additional assumption of equality,

i.e. ∃n, L .
= n that records the execution of the expression. Since that assumption is identical

for every rule we have simply added it to the matching requirement and retained the simpler

assertion semantics here for clarity.

4.2.3 Soundness

Where Γ ` A is de�ned by the rules of our logic, we can now state our soundness theorem.

�eorem 6 (Soundness). if Γ ` A then Γ � A

�e proof proceeds by induction on Γ ` A. �us, we establish Γ � A from the semantic

de�nitions of the assumptions in each rule of the logic.

A full listing of the rules of our logic appears in Appendix G. Proof sketches for the soundness

of a few expression and memory ordering rules are included in in Appendix I. Formal proofs of

the expression and memory rules appear in the supplementary material.

4.3 Proof by Write Elimination: Dekker

Recall that the JOM only guarantees a per-location partial order on writes. Inuitively, a total order

on writes gurantees that each location has a single possible state at any point in time. By contrast
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acq0() = 
  let _ = lwy:[y] := 1 in
  let valx = lrx:[x] in
  if valx then
    0
  else
    /* crit. section */
    1

acq1() = 
  let _ = lwx:[x] := 0 in
  let valy = lry:[y] in
  if valy then
    0
  else
    /* crit. section */
    1

init: [x] := 0
[y] := 0

flags

x y

pushpush

Figure 4.7: Dekker’s Mutex

a partial order means there can be many possible states at a given point in time. In the absence

of a tradition notion of state, our logic facilitates reasoning about the JOM through a process of

write elimination. Write elimination removes unwanted writes that a read can be paired with in
rf
−−−→ . By eliminating such writes we can prove important properties of the value returned by

the read without a notion of state.

Our approach to write elimination is based on proof by contradiction. Proofs in this style have

three main ingredients: assumptions, derived relations, and derived contradictions. We begin

the process of eliminating a write by collecting some basic assumptions including the rf
−−−→

relationship we wish to eliminate. We then add derived relationships implied by the memory

model and the assumptions. With these relationships we show a contradiction in the form of a

cycle in the coherence order.

4.3.1 Dekker

As an example of write elimination we consider Dekker’s mutual exclusion algorithm in Figure

4.7. �e procedures of the algorithm, executing concurrently, work by communicating their intent

to enter the critical section through the �ags x and y. We wish to show that it is impossible for

both procedures to enter the critical section, see �eorem 7.

To begin, we assume the �rst thread’s read, [x], reads from the initialization and thereby
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contradiction derived relationshipsassumptions

[x] := 0
[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

rf

co0

[x] := 0
[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

rf

co0

sc

co
[x] := 0
[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

rf

co0

sc

Figure 4.8: First Write Elimination, Dekker, SC

enters the critical section. We wish to eliminate the case where the second thread’s read, [y],

also reads from the initialization. �at is, we want to eliminate the case where both thread’s

reads see the value 0 for x and y and thereby eliminate the possibility that both threads enter the

critical section. If we can show that [y] has “seen” the write, [y] := 1 in acq0 then it could not

have read from the initialization because read should always be connected with the latest write

it is aware of.

We will �rst focus on write elimination by examining the proof under sequential consistency

and then carry that intuition forward to work with the proof under the JOM.

4.3.2 Write Elimination with Sequential Consistency and the JOM

Recall that sequential consistency provides many relationships between memory accesses. Stan-

dard proofs of Dekker (or Dekker like mutex algorithms [35]) rely on small subset of these re-

lationships. In particular these proofs use the execution order inferred from the program order

between the read and write of each thread and the total order between [x] in acq0 and [x] :=

1 in acq1.

With this small set of relationships in hand we can complete the proof with two write elim-

inations. We will focus on the �rst to detail the three step approach to write elimination as set

out in Figure 4.8. Note that in this context our reasoning takes place with the memory model re-

lations as in Section 3 but the nodes in our graphs are now the memory access expressions. �is

is in keeping with the abstraction level of our logic where we reason about program expressions.

First, as stated, we assume that [x] reads from the initialization. We also assume that ini-

tialization always happens before any other memory access to the same location. �ese are the
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[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

[x] := 0
[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

rf

rfco0co0

[x] := 0
[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

rf

co0

[x] := 0
[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

rf

[x] := 0
[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

rf

co0

[x] := 0
[y] := 0

acq0:
  [y] := 1
  [x]

acq1:
  [x] := 1
  [y]

rfco0

rf

rfco0co0

rf

Figure 4.9: All Write Eliminations, Dekker, SC and RMC

edges in Figure 4.8, labeled assumptions.

Second, from sequential consistency, we have a total order across threads between [x] in

acq0 and [x] := 1 in acq1. One side of the disjunction is shown as the sc edge in Figure 4.8.

�is step is labeled very generally as derived relations.

Finally, we construct a contradiction in the form of a cycle in coherence. Recall that in SC, a

read should be paired with the latest write it knows about . �us, if [x] := 1 executes before

[x] then [x] is aware of [x] := 1. �en since the read of x is paired with the initial write it

must be the latest of the two writes. We record this as the second contradictory coherence order

edge. �is step is labeled with contradiction. �is contradictory cycle eliminates the initialization

write from being paired with [x] which contradicts this side of the total order between [x] and

[x] := 1.

�e same process applies to the second side of the total order derived from sequential consis-

tency between [x] in acq0 and [x] := 1 in acq1 as in diagram 3 of Figure 4.9. We assume that

[y] reads from the initialization. From the right side of the total order we have that [x] happens

before [x] := 1. From program order we have that [y] := 1 executes before [x] and [x] :=

1 executes before [y]. �en by transitivity we know that [y] must have seen [y] := 1 and we

get the contradictory cycle as illustrated. As a result we know that [y] could not have read from

the initialization.
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�us, from these two eliminations we know that for both sides of the total order provided by

SC one of the reads of x or y can’t read from the initialization, as required. Further, since the only

other write is the �ag write in the opposite thread, one of the reads must see the value 1. �en, for

example in the case of the �rst write elimination, we have that [y] read the value 1 and we can

conclude that the if statement must follow the then branch. As a result, the procedure would

evaluate to 0 and avoid the critical section. �us, combining the relations provided by sequential

consistency allows us to eliminate the unwanted write from the initialization and demonstrate

mutual exclusion.

�e JOM is far weaker than sequential consistency and it does not provide a way to derive the

relationships we needed in the previous proof. For the purposes of Dekker, the only thing that

the JOM retains is the axiom that a read should be paired with the latest write it knows about

(cowr).

�us, to perform the two write eliminations we must recover the relationships derived from

SC in the write elimination in diagram’s 2 and 3 of Figure 4.9. In practice, we do this by specifying

a push order between the read and write in both acq0 and acq1.

�is manifests in the algorithm as the orders of Figure 4.7. which appear as the assumptions

of diagram 4 of Figure 4.9. Recall that a pair of push orders like this provides a cross thread

guarantee that either the head of the �rst push order happens before the tail of the second push

order or vice versa (see vo-pushes in Figue 4.5). �e result is the derived inter-thread orders in

Figure 4.9, diagrams 5 and 6.

We can now consider both cases of the disjunction implied by the push orders. In each case we

will derive the same contradiction from the proof under sequential consistency. We assume the

[x] read from the initialization and the additional push orders. From the push orders we derive

that [x] := 1 happens before [x]. �en [x] must have seen [x] := 1 and, as with sequential

consistency, it must be before the initialization which is a contradiction, see diagram 5 in Figure

4.9. Similarly if [y] := 1 is visible to [y] then [y] must have seen [y] := 1. Assuming that it

read from the initialization, we derive a cycle and a contradiction, see diagram 6 in Figure 4.9.
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1 .
= acq0 by assumption and symmetry
.
= acq0, l1 by let-right, let y := 1 in l1 : . . . @ acq0

.
= acq0, l1, l2 by let-right, let valx := lrx:[x] in l2 : . . . @ acq0, l1 (4.1)

1 .
= acq0, l1, l2 by (1)
.
= acq0, l1, l2, l3 by the right side of the le� disjunct of if-alt
.
= 0 contradiction (4.2)

0 .
= acq0, l1, l2, lcnd by the le� side of the right disjunct of if-alt
.
= acq0, l1, lrx by let-bind, let valx := lrx:[x] in l2 : . . . @ acq0, l1 (4.3)

Figure 4.10: Equational Reasoning

4.3.3 Expression Equalities

With the basic outline of the proof in place we state our correctness speci�cation for mutual ex-

clusion using expression equalities. Intuitively, since the value of the expression signals whether

the method entered the critical section, we can show that if one enters the critical section the

other should not.

�eorem 7 (Mutual Exclusion). If acq0 .
= 1 then acq1

.
= 0.

We begin our proof sketch by recalling that, in Section 4.3, we assumed the read [x] in acq0

read from the initialization. Here we will derive that fact from the assumption acq0
.
= 1.

Lemma 2 (Entered, Not Flagged). If acq0 .
= 1 then acq0, lrx

.
= 0.

�e derivation of Lemma 2 appears in Figure 4.10. Note, that some of the labels do not ap-

pear in Figure 4.7. In particular we have been referencing the memory accesses informally with

sequences like acq0,lrx, but in the derivation we use the more precise acq0, l1, lrx. Referenced

rules appear in Figure 4.5 in Section 4.2.

In Figure 4.10 equation (4.1), the two let binding expressions and the assumed equality (acq0 .
=

1) mean that the if expression must evaluate to 1. �en by if-alt, it is either the case that the

then branch is equal to 1 and the condition expression (valx) is equal to 1 or the else branch is
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equal to 1 and the condition is equal to 0. �e then branch results in a contradiction (4.2), so we

have that valx .
= 0. �en it must be that the bound expression lrx is also equal to 0 by let-bind,

in (4.3) as required. With this equality we can show that the read of x in acq0 read from the

initialization by using the value and write elimination to rule out the write [x] := 1 in acq1.

With the read [x] connected to the initialization, we can use use the match [y] @ acq1,lry

and the memory model level reasoning from Section 4.3 to derive the corresponding lemma for

acq1.

Lemma 3 (Flagged, Failed to Enter). If acq1,lry .
= 1 then acq1

.
= 0.

Using similar reasoning to (4.3) we can show that the if condition must be 1 and that the if

must be 0. By similar reasoning to (4.1) and (4.2) we can show that acq1 .
= 0, as required.

4.3.4 Reads to Memory

We will now formalize the reasoning of Section 4.3.2 and connect it to the expression level deriva-

tions of Section 4.3.3.

If we know that a read, [x] @ L results in some value (Lr
.
= n) and read from a particular

location (Lr, lloc
.
= l), we also know that it read from some write (∃Lw, Lw

rf
−−−→ Lr ). �e write is

unknown but we consult a disjunction over a �nite set of writes which could have satis�ed the

read for the location equal to L, lloc. In the case of Dekker, we have two locations, x and y.

[x] := s @ Lw ⇒ Lw = init ∨ Lw = acq1,lwx (4.4)

[y] := s @ Lw ⇒ Lw = init ∨ Lw = acq0,lwy (4.5)

For our Dekker example, the writes in equations (4.4) and (4.5) are �xed because we are con-

sidering the whole program, so they do not require quanti�cation over the label sequences to

locate the writes. More o�en we will quantify over label sequences in the write-set de�nition

(e.g. RingBu�er in Section 4.4).

We then perform write elimination by cases as illustrated previously to show that only the

desired writes will satisfy the read. Once we have information about which writes are possible

we can match the write value with the read value and continue our reasoning.
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For each write we wish to eliminate, we use speci�ed orders (vo-pushes) and axioms of the

memory model (co-read) to prove a contradiction (co-cycle). �e rule vo-pushes gives us a dis-

junction over visibility of the heads and tails of any two push orders. Recall that in Dekker we

have push orders from the write to the read in each thread.

�e rule co-read draws on the intuition we described earlier: Of all the writes that a read (Lr )

is aware of (L1
vo
−−−→ Lr ), the write that it reads from (L2

rf
−−−→ Lr ) should happen last (L1

co
−−−→ L2).

�e rule co-cycl says that a write can’t be coherence before itself. �is is the contradiction

we use to eliminate a write.

Recall diagrams 5 and 6 from Figure 4.9. Our goal is to show that a read of the initialization

by, [y] in acq1 results in a contradiction. �us it could not have read 0. We will focus on the

elimination in diagram 6.

Lemma 4 (Flag Read). if init rf
−−−→ acq0,lrx then acq0,lwx rf

−−−→ acq1,lry

By matching we have [y] @ acq1,lry and by let-le� we have that ∃n, acq1,lry .
= n. �en

by reads-rf and the write set, we have a disjunction of two writes. We wish to eliminate the

initialization. �us we assume init rf
−−−→ acq1,lry and derive a contradiction.

�e assumptions we require from Figure 4.9 correspond with the equations in Figure 4.11a.

With them we can derive a cycle using the steps detailed in Figure 4.11b.

Note that the two sides of the disjunction in (4.10) are diagrams 5 and 6 in Figure 4.9 and

the derivation is for the right side which corresponds with diagram 6. �us, having considered

both sides of the push disjunction we concluded that acq1,lry must have read from acq0,lwy

by eliminating the initialization, as required.

4.3.5 �eorem 7

We can now complete the proof of �eorem 7. Assume acq0
.
= 1, then by Lemma 2 and the fact

that only initialization writes the value 0 to x, we have that init rf
−−−→ acq0,lry. �en, by Lemma

4 we have that acq1,lrx must have read from acq0,lwy. Since the value of wri�en by acq0,lwy

is 1, acq1,lrx must evaluate to 1, that is acq1,lrx .
= 1. Finally, since we have acq1,lrx .

= 1, we
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init rf
−−−→ acq1,lry (4.6)

init co
−−−→ acq1,lwy (4.7)

acq0,lwy push
−−−−→ acq0,lrx (4.8)

acq1,lwx push
−−−−→ acq1,lry (4.9)

(a) Assumptions

acq1,lwx vo
−−−→ acq0,lrx ∨ acq0,lwy vo

−−−→ acq1,lry by vo-pushes, (4.8), and (4.9) (4.10)

acq0,lwy vo
−−−→ acq1,lry by the right side of (4.10) (4.11)

acq0,lwy co
−−−→ init by co-read, (4.6), and (4.11) (4.12)

false by co-cycle, (4.7), and (4.12)

(b) Proof by Contradiction

Figure 4.11: Write Elimination Proof

employ Lemma 3 to show acq1
.
= 0. �us, we have proven mutual exclusion for Dekker without

using state. Our mechanized proof of Dekker is 260 lines in Coq without whitespace.

4.4 Induction on the Coherence Order: RingBu�er

In our logic, induction over the coherence order allows proofs to incorporate existing invariant

based reasoning about single memory locations using the partial ordering of writes in the JOM.

It also allows proofs to build on a structure for the surrounding program without explicitly de�n-

ing it. When used in conjunction with quanti�cation over label sequences, our logic can prove

important properties of library algorithms like RingBu�er.

4.4.1 RingBu�er Algorithm and Speci�cation

Our implementation, detailed in Figure 4.12, is a simpli�ed form of the two-thread ring bu�er

that appears in the Linux kernel documentation [38]. It closely follows that of [82], though we
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do not consider allocation and we use monotonic read and write indices 1. It implements a queue

using a �xed number of memory locations, which means that when the bu�er is full tryProd

will fail and when it is empty tryCons will fail.

We treat wi, ri, b, and N as �xed constants representing the write index o�set (0), read index

o�set (1), bu�er o�set (2), and bu�er size respectively. We also include the succeed and fail

result constants for clarity.

Each procedure returns a value when the corresponding expression evaluates to a natural

number. When the tryProd procedure successfully enqueues an element x in q it evaluates to

succeed, otherwise it evaluates to fail. When the tryCons procedure successfully dequeues

from q, it evaluates to the dequeued value, otherwise it evaluates to fail.

�e writer index is managed by tryProd write [wic] := w’ (green code/cell). It represents

the tail of the queue. �e reader index is managed by the tryCons write [ric] := r + 1 (red

code/cell). It represents the head of the queue. Both the reader and writer indices are allowed to

increase inde�nitely. When the bu�er (blue cells) is empty the head and tail are equal (modulo N).

When the bu�er is full the writer index is one fewer than the reader index (both modulo N). �e

bu�er index is the position at which a tryProd or tryCons enqueues or respectively dequeues

an x. �e bu�er index is always calculated modulo the length of the bu�er (N).

�e correctness of the RingBu�er algorithm hinges on how the state of the writer index and

reader index evolve over time. Speci�cally, we must show how the state of each evolves individ-

ually and then we must use that information to show how they evolve together.

As examples, the individual indices must progress by one index at a time. Otherwise, a

tryCons invocation may skip an element in the queue or a tryProd invocation may leave an

element that has already been dequeued for a tryCons to dequeue again. Together, the indices

must stay within the bounds of the bu�er size with respect to one another or the algorithm will

exhibit similar problems.

We de�ne the three theorems in our speci�cation for RingBu�er. In our theorems we use

1�is is worthy of special note since the logic of [82] employs ghost state with over�owing indices which is a
non-trivial addition to the logic.
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tryCons(q) = 
  let wic = q + wi in
  let ric = q + ri in
  let w = [wic] in
  let r = [ric] in
  let limited = w mod N == r mod N in
  if limited then
    fail
  else
    let index = q + b + (r mod N) in
    let x = [index] in
    let _ = [ric] := r + 1 in 
    x

tryProd(q, x) = 
  let wic = q + wi in
  let ric = q + ri in
  let w = [wic] in
  let r = [ric] in
  let w' = w + 1 in
  let limited = w' mod N == r mod N in
  if limited then
    fail
  else
    let index = q + b + (w mod N) in
    let _ = [index] := x in
    let _ = [wic] := w' in
    succeed

init: [q + b + 0] := 0[q + wi] := 0
[q + ri] := 0

[q + b + (N-1)] := 0

⠇

q+wi q+ri q+b+0 q+b+1

…

q+b+(N-1)

buffer, size Nindices

n1w r n2 nN

svo

svo

svo

svo

svo

svo

Figure 4.12: RingBu�er

the following conventions. We use LtryProd and LtryCons to represent arbitrary label sequences

locating instances of their respective procedures. We use ri∗, wi∗, and buff∗ to represent label

sequences locating the read index, write index, and bu�er location accesses within the proce-

dures where ∗ ∈ {rd, wr} for reads and writes. Finally we use L1, seq to represent sequence

concatenation.

Lemma 5 (Paired). If we have LtryCons
.
, fail and LtryProd

.
= succeed then

LtryProd, buffwr
rf
−−−→ LtryCons, buffrd i� LtryProd, wird

.
= LtryCons, rird

Informally, if a tryCons expression and tryProd expression both succeed, then the tryCons

reads from the write to the bu�er in the tryProd if and only if the reader and writer indices (resp.)

used to calculate the bu�er index are the same.

Lemma 5 is a natural correctness criteria for an unbounded linear queue. It guarantees that

the nth dequeue is paired with the nth enqueue, where nth is de�ned here by the monotonic reader

and writer indices. As evidence, it’s possible to use Lemma 5 to prove the key theorems for the

concurrent queue of Herlihy and Wing [36] (see Appendix J).

�eorems 8 and 9 focus on the bounded nature of the queue. Intuitively, each dequeue

(tryCons) should be paired with a newly enqueued value (tryProd) and not an old one, prevent-
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ing stale values, and a dequeue (tryCons) musth have executed when more than one enqueue

(tryProd) is a�empted at a particular position in the bu�er, preventing overwrites.

�eorem 8 (Produce). If we have LtryCons1 , LtryCons2, LtryCons1
.
, fail, LtryCons2

.
,

fail, LtryProd1, buffwr
rf
−−−→ LtryCons1, buffrd and LtryProd2, buffwr

rf
−−−→ LtryCons2, buffrd then

LtryProd1 , LtryProd2

Informally, If two distinct tryCons invocations succeed, then their corresponding tryProd

invocations are distinct. �at is, no two tryCons invocations can read from the same tryProd

and thus no tryCons can read a stale value.

�eorem 9 (Consume). If we have LtryProd1 , LtryProd2, LtryProd1
.
= succeed, LtryProd2

.
=

succeed and LtryProd1, buffwr, lloc
.
= LtryProd2, buffwr, lloc then there exists a LtryCons such that,

if LtryCons
.
, fail then LtryProd1, buffwr

rf
−−−→ LtryCons, buffrd

Informally, If two distinct tryProd invocations succeed and write to the same place in the

bu�er, then there must be a tryCons invocation that reads from the write of the �rst tryProd

invocation. �at is, values in the bu�er can’t be overwri�en without having been read. Note that

we must assume the successful execution of the tryCons (LtryCons1
.
, fail) in our conclusion.

�is is a weakness of our abstraction over the expression semantics in dealing with the situation

where the tryCons has not fully evaluated but the increment of the reader index inside the proce-

dure executed. In the language of Herlihy and Wing, the tryCons is concurrent with the second

tryProd but the update to the index has taken place allowing the second tryProd to proceed and

reuse the bu�er index.

Our mechanized the proofs of these theorems is approximately 3000 lines in Coq without

whitespace. Notably, there is a large amount of duplicate proof code shared between tryCons

and tryProd invariants. Here, we give a proof sketch that focuses on how our logic supports

complex algorithms using induction on the partial coherence order. We will work through a

series of lemmas building up to the proof of �eorems 8 and 9. We �rst give a simple example to

show how the coherence order supports proofs of invariants and then examine a more complex

example where it forms a sca�olding for write elimination.
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4.4.2 Individual Invariants

In the process of proving �eorems 8 and 9 we will need to prove a series of lemmas. We begin

with two invariants, one for the reader index and one for the writer index.

Lemma 6 (Monotonic Writer). If we have writes(L, q + wi, n1), LtryProd, wiwr, lval
.
= n2 and

L co
−−−→ LtryProd, wiwr then n1 < n2

Informally, if one write to the writer index is earlier than another then the �rst write’s value

is smaller than that of the second write. Here, writes(L, l, n) is used to encapsulate the equality

of the location of the write expression, the equality of the value of the write expression, and the

execution of the write expression itself. We use an abstract L because the �rst write may be the

initialization for the writer index location, q + wi. �e lemma for the reader index is similar.

�e proofs for these lemmas proceed by induction on the coherence order of the writes to their

respective indices. We will focus on tryProd and Lemma 6. �e proof for tryCons is similar.

We will rely on the fact that every tryProd write to the writer index is an increment of the coi

previous write. Intuitively, each successful addition to the bu�er should increment the previous

(by coi) writer index by 1.

We can perform induction on L co
−−−→ LtryProd, wiwr (�rst assumption of the rule co-ind in

Figure 4.6). Where q + wi is the write index memory location, we wish to show:

P L LtryProd, wiwr , writes(L, q + wi, n1) ⇒ LtryProd, wiwr, lval
.
= n2 ⇒ n1 < n2

By co-ind, in the base case, we must show that L coi
−−−−→ LtryProd, wiwr (second assumption of

co-ind). By the assumed lemma above we know the read in LtryProd will be the value wri�en by

L. �us the tryProd will add one to the read value for its write, which is greater than the value

wri�en by L.

In the inductive case, we have some L′tryProd and we have that L co
−−−→ LtryProd, wiwr implies

that the value wri�en by L′tryProd, wiwr is greater than the value wri�en by L (third assumption of

co-ind). As before, each tryProd reads from the the coi previous tryProd write and increments

it. �us the write in LtryProd is greater.
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rf

rf

tryCons:

  [wic]

  [ric]

  [index]

  [ric] := r + 1

tryProd:

[wic]

[ric]

[index] := x

[wic] := w’

tryProd:

[wic]

[ric]

[index] := x

[wic] := w’

rf

(a) Same tryCons

rf

rf
svo

svo

rf 

tryCons:

  [wic]

  [ric]

  [index]

  [ric] := r + 1

tryCons:

  [wic]

  [ric]

  [index]

  [ric] := r + 1

tryProd:

[wic]

[ric]

[index] := x

[wic] := w’

tryProd:

[wic]

[ric]

[index] := x

[wic] := w’

co

(b) Backward read

rf

rf

svo

svo

rf 

tryCons:

  [wic]

  [ric]

[index]

[ric] := r + 1

tryCons:

  [wic]

  [ric]

  [index]

  [ric] := r + 1

tryProd:

[wic]

[ric]

[index] := x

[wic] := w’

tryProd:

[wic]

[ric]

[index] := x

[wic] := w’

co

(c) Read from future write

Figure 4.13: Two-thread Invariant Cycles

4.4.3 Collective Invariants

Next we will establish bounds on each index relative to its counterpart in the opposite proce-

dure. �e writer index must not “wrap around” and pass the reader index otherwise previously

enqueued items will be lost. Similarly the reader index must not pass the writer index otherwise

already dequeued items will be dequeued again.

We write these bounds as invariants, here for tryProd in Lemmas 7. Notably, these are the

same core invariants proved for RingBu�er by Turon et al in [82].

Lemma 7 (Writer Invariant). If we have LtryProd
.
= success, LtryProd, wiwr, lval

.
= w and

LtryProd, rird
.
= r then w < r + N

Informally, if a tryProd succeeds and writes to the writer index, then the value was smaller

than the reader index it saw plus the size of the bu�er, N . �e lemma for the reader invariant is

similar but shows that r ≤ w.

We will again focus on tryProd and Lemma 7. �e proof for tryCons is similar. We will show

w < r + N . �e proof proceeds by induction on init co
−−−→ LtryProd, wiwr.

In the base case, we know that init coi
−−−−→ LtryProd, wiwr and we know that the tryProd at

LtryProd will read from the initialization so the invariant will be satis�ed no ma�er which write

the value for r came from.

In the inductive case, we know that the writer index value the tryProd reads has the desired

property by coi. We also know that it must have come from the most recent previous tryProd
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and is consequently one fewer than w. �at is, we can show w − 1 < r′ + N , where r′ represents

the reader index value seen by the previous tryProd. From this we derive, w ≤ r′ + N . �en

since we wish to show w < r + N , it’s enough to show that the reader index value of the later

tryProd must be larger than the value seen by the coi previous tryProd. �at is, we will show

r′ < r . With the sca�olding from induction in place we can perform write elimination using the

ordered tryProds.

If both tryProd invocations read from the same write, see Figure 4.13a, then r′ = r , and we

consider cases for, w ≤ r +N , with r substituted for r′. If w < r +N , then we are done. Otherwise

w = r + N and w mod N = (r + N) mod N which means the bu�er is full and we can show that

the second tryProd would have taken the �rst branch of the if and could not have wri�en to

the writer index, a contradiction.

�at leaves distinct writes. We consider cases of the total coherence ordering of the two

tryCons writes to the reader index that were read by the tryProds. If the write of r′ is coherence

order earlier than the write of r we apply reader index monotonicity to show r′ < r and we are

done. If the second tryProd invocation read from an earlier tryCons, depicted in Figure 4.13b as

a red dashed rf edge, it would imply that r < r′. We will show a contradiction.

Recall the visibility orders of the algorithm de�nition in Figure 4.12. Also recall that the two

tryProds are related by a read of the writer index. Intuitively, we use the visibility orders to

ensure that the second tryProd is aware of the second tryCons through the �rst tryProd’s read.

As a result the �rst tryProd cannot ignore the second tryCons in favor of a coherence order

earlier write. Said another way, the second tryProd would have to read back into the past to see

a state where r′ is less than r . �is results in the cyclic coherence order edges between the two

writes to the reader index as shown in Figure 4.13b and in turn, a contradiction. �us we have

shown that r′ < r .

4.4.4 Lemma 5 and�eorems 8 and 9

Now we can complete the proof of Lemma 5 by unifying the invariants for tryProd and tryCons,

We will show that when a tryCons invocation reads the bu�er at a particular index wri�en by a
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companion tryProd invocation, the reader and writer indices used to calculate the index are the

same. �is proof brings together the invariants of Lemmas 7 and its tryCons counterpart.

By the semantics of reads, if a write and read of a bu�er memory location are associated

then the calculated index used to determine the memory location in the associated tryProd and

tryCons invocations must be the same. Let the reader index value used in the tryCons calculation

be r and the writer index value used in the tryProd calculation be w. If the reader and writer

indices are not the same, then by the calculations on lines 10 of tryCons and 11 of tryProd we

know that, r = w + x × N , for some integer x , 0.

We consider the cases for x, �rst x < 0. �en r = w + x × N implies r ≤ w − N . We know

that if the tryProd containing the write to the bu�er executed completely then w and its own r′

are related according to Lemma 7 with w < r′+ N . �en we have w − N < r′, and by assumption

we have r ≤ w − N , which gives us r ≤ w − N < r′ and r < r′.

Figure 4.13c illustrates the contradiction in these two reads. By reader index monotonicity

and because r < r′, wherever the tryProd got its reader index r′ is coherence order a�er the

tryCons that computed its index location using r . �is is the co edge pointed downward. But,

we can establish, through the read of the bu�er and the visibility orders, that the coherence order

later write happened-before the coherence order earlier write and thereby derive a contradiction.

Intuitively, we ensure the visibility of the “future” write through the speci�ed visibility orders.

�at is, through the visibility orders, the read learns about a write that has yet to take place.

�e case for x > 0 is similar but uses the tryCons invariant to prove that the tryCons must

have seen a writer index coherence order a�er another tryProd write to the same bu�er index.

In turn, this implies that it would have ignored the new state of that index to read into the past.

With Lemma 5 in hand we can prove the two main theorems. �eorem 8 follows from the fact

that the two executed tryCons procedures must have read di�erent reader index values. �en by

Lemma 5 their paired tryProds must also write distinct writer indices and thus be in coherence

order. �eorem 9 follows from two facts. First, the two tryProds must have used writer indices

that are equal modulo N . Second, the later tryProd must have seen a reader index that was

greater than its writer index less the bu�er length, w − N < r . Since r is larger than w − N there
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must be some tryCons for any r ≤ w − N and by Lemma 5 it must have read from the earlier

tryProd’s index write.

4.5 Summary

Here, we have presented a sound, stateless logic for reasoning about the correctness of lock free

concurrent algorithms executing on the JOM. As examples, we proved the correctness of Dekker

and RingBu�er. �e result is that these algorithms, when paired with their a�endant speci�ed

orders and given to our compiler can produce fast, correct code for many memory models.
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CHAPTER 5

Related Work

For a long time, researchers have known that correctness can depend critically on the execution

order of two instructions. Fences are a crude way of ensuring that two instructions execute in

order. Kuperstein, Vechev, and Yahav [44] used a notion of speci�ed orders as the output of a

synthesis algorithm. Like us, they see these orders as part of a correct program, but inferred

from a correctness property, rather than speci�ed. �e idea of speci�ed orders appeared for

�rst time in publications in 2014–2015, namely in the 2014 PhD dissertation of [54], and in the

POPL 2015 paper by [19]. Crary and Sullivan’s POPL 2015 paper introduced the RMC memory

model together with a semantic foundation that includes speci�ed orders. More recently a “Placed

Before” intra-thread ordering relation was proposed for the C++ concurrency standard [59]. It

captures the key idea of the visibility ordering (specifying ordering dependencies explicitly) but

with a focus on ruling out thin-air reads.

Beyond the concept of speci�ed orders we will consider work related to this thesis in three

categories: fence insertion, memory models and semantics, and veri�cation for weak memory

models.

5.1 Fence Insertion

Many authors have presented approaches to insert fences that enforce sequential consistency,

including Lee et al. [53], Fang et al. [29], and Alglave et al. [4]. An alternative to programmer

speci�cation of orders is inference of orders. �e idea of inference is somewhat di�erent from

type inference, which can be understood as articulating program invariants. In the case of order

inference, the challenge is to articulate assumptions needed to prove a correctness property.
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Kuperstein, Vechev, and Yahav [44], presented promising work on inference; they infer spec-

i�ed orders from a program, a correctness property, and a memory model. �eir approach �rst

runs a whole-program state-space exploration algorithm that produces a logical formula, then

solves the formula to get a set of speci�ed orders, and �nally uses those orders to insert fences.

�eir approach to enforce an order (i1, i2) is to insert a fence right a�er i1 or right before i2. �e

whole-program nature of their approach means that while the inserted fences are sound in the

given context, they may be unsound in a di�erent context. Still, their approach can give worth-

while feedback to an algorithm designer who tries to specify a set of orders that are su�cient

to prove correctness. We note that our choice of correctness property (opacity) of transactional

transactional memory algorithms is currently beyond the capabilities of the Kuperstein-Vechev-

Yahav approach. What is needed here is a more powerful language for specifying correctness

properties along with a suitable generalization of the approach. �is can be an exciting direction

for future work.

Kuperstein et al. [45], Meshman et al. [63], and Dan et al. [21] have presented approaches to

a related inference problem, allowing degrees of in�nite-state programs, but seemingly without

speci�ed orders as an intermediate step towards fences. �eir approaches can likely be recast

as inference of speci�ed orders. Again, a direction for future work is to make their speci�cation

languages more powerful to enable speci�cation of correctness of TM algorithms.

Liu et al. [57] presented an execution-based approach to inference, in which they run the

program on a memory model and then use the traces to infer fences. �is technique can likely

be recast to infer speci�ed orders instead.

Speci�ed orders are restrictions on the possible executions of a program. In this way they

are similar to previous work on using annotations to restrict scheduling for correctness [20] and

for testing [40]. Our work di�ers in its focus on the restriction of the possible executions due to

instruction reordering (or the appearance thereof) as opposed to the restriction of the possible

executions due to thread scheduling.
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5.2 Memory Models

�e original Java Memory Model [60] included an early a�empt to model standard compiler op-

timizations while ruling out thin-air reads. �e speci�cation in that work was part prose and

part formal de�nitions and the “causality” mechanisms at the heart of the model made the de�-

nitions complex. Taken together these issues made the model unsuitable for the tasks which one

normally formalizes a programming language, namely accurate discourse, metatheory, and algo-

rithm veri�cation. Later work by [77] manually examined a large suite of litmus tests to show

that the model disallowed some standard compiler optimizations. Eventually the model was fully

formalized in Coq by [39] and [7], but, to the best of our knowledge, there is no way to easily

test the behavior of example programs. By contrast we have constructed a readable and testable

model for Java’s new access modes.

�e C11 memory model, which served as the inspiration for Java’a access modes, has seen

extensive study. It was originally formalized by [8] with later revisions to include read-modify-

writes and fences [76]. �e work of [85], from which we draw the largest set of our C11 litmus

tests, studied the soundness of common compiler optimizations under the model of C11 by [65].

Our monotonicity theorem is modeled a�er the same theorem from [85]. Most recently, the

axiomatic model of [47] incorporated the proposed �xes of [85] and addressed the unsound com-

pilation strategies which we discussed in Section 3.5. Also, further progress has been made on

new models for C11 that more successfully support standard compiler optimizations without the

problem of thin-air reads [43, 71]. However, like the original Java memory model, these mod-

els rely on complex formal constructs (promises and event structures respectively). Again, our

semantics remains relatively simple thanks to the JAM’s broad de�nition of causal cycles.

As outlined previously there are several important di�erences between C11 and Java. First, the

partial coherence order required careful consideration. �e consequences of this design choice

manifests most clearly where atomic read-writes are concerened. Second, the lack of legacy fea-

tures, like C11’s release sequences, and the simple mechanism that forbids causal cycles allowed

us to build a simple model. In turn, the simplicity of the model makes it more readable than

existing C11 models and it allowed us to argue forcefully that the model should adopt a total
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coherence order.

�ese di�erences appear most clearly in our litmus test comparison with RC11 model of [47].

Of particular note are the mp relacq rs and lb tests. In the �rst case the JAM is weaker than

C11 because it does not support release sequences, in the second case it is stronger because the

C11 speci�cation gives no concrete de�nition for how to rule out thin-air reads. Notably, the RC11

herd model also forbids causal cycles in po | rf so the load bu�ering behavior is forbidden. �is

method of preventing thin-air reads in RC11 is included to enable their proofs of soundness for

compilation to POWER and not as a representation of the C11 speci�cation.

Programs that mix SC/volatile access modes are the primary focus of [47]. In particular the

leading and trailing fence insertion approach to compilation was shown to be unsound for Power

under models prior to RC11. We compared our model with RC11 in Section 3.5. Our semantics

correctly forbids the behavior described in IRIW-sc-rlx-acq, IRIW-aqc-sc and Z6.U in keeping

with the JAM documentation.

Hardware memory models have also seen extensive study. x86 was studied by [69] and [5].

We use the model included with Herd in our litmus test comparisons and we saw that x86 was

stronger than the JAM, as expected. ARM processors have traditionally had a much weaker

memory model when compared with x86. Recently the model for ARMv8 [74] expanded the

guarantees made by the architecture to include multi-copy-atomicity. We saw the e�ects of this

in the behavior of the IRIW-* and WRC-* litmus tests from our comparison betwen the JAM and

ARMv8. As expected the JAM is weaker than ARMv8 in every case except where cycles in po |

rf are concerened.

Our mechanized semantics is based on the history fragment of the Relaxed Memory Calculus

of [19]. We use their concept of speci�ed push orders and we draw inspiration for our de�nitions

from their notion of visibility. Also, the proof of our theorems bene�ted greatly from the library

of lemmas included with the RMC mechanization. However, their purpose was to model a weaker

version of C11 in the interest of generality while, our goal is to model the JAM. Importantly, we

do not employ the execution orders of RMC, our coherence de�nition is far more compact and

we have added the corr rule to follow a more standard notion of coherence.
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5.3 Veri�cation

In the presence of a very weak-memory model like the JAM-, a key problem for logics that reason

with state is ensuring a consistent ordering of writes in memory, across threads. �e best work

on capturing write orderings using state is the work of Turon et al. [82]. �ey combine separation

logic, ghost variables and protocols in a powerful logic for verifying algorithms running on the

release/acquire fragment of C11. GPS has been used to verify many algorithms including the

RingBu�er that we have presented and the linux RCU algorithm [81]. Our speci�cation for Ring

Bu�er is stronger, in that Lemma 5 can be used to show that reordering within the bu�er is

impossible. On the other hand, GPS leverages ghost state to do the proof with integer values that

wrap (over�ow) which our logic cannot do. We also do not handle allocation.

�e protocols of GPS, which are, in the words of authors, the lifeblood of prior concurrency

logics require a total order on writes to the same location in their proofs of soundness. Moreover,

even assuming a total order on writes, the protocols of GPS cannot be used to prove correctness

of some algorithms. As an example consider Peterson’s lock.

vo
rf

co

vo

pete0:
  [y] := 1
  [vic] := 0
  [x]
  [vic]

pete1:
  [x] := 1
  [vic] := 1
  [y]
  [vic]

[x] := 0
[y] := 0
[vic] := 0

Figure 5.1: Peterson Victim

In Peteron’s lock, when a thread examines the state of

the victim �eld, the information it learns is not enough to

tell whether the other thread’s ordering for the two writes

to the victim �eld is the same. �is is important because

the ordering of the victim writes determines which thread

will enter the critical section when they compete. For ex-

ample, if the �rst thread sees the second thread’s victim

write a�er its own it must have some way to know that the other thread sees the same ordering

of writes. Otherwise, the the second thread could see the reverse ordering, read the �rst threads

victim value, and also enter the critical section.

�e protocols of GPS are based on partial orders but the victim state can’t be encoded as a

partial order since it could progress from 0 to 1 or vice versa as both orderings of the writes are

possible in an execution.

By contrast, in Figure 5.1 we have a JOM execution with two competing lock procedures of
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Peterson. �e fact that pete0 reads from the victim write of pete1 and knows about its own

victim write (gray dashed edges) means that the two are coherence-ordered in memory by co-

read (black edge). If pete1 were to mirror pete0 and read from [vic] := 0 it would result in the

an opposing coherence order between the two writes, which would be a cycle and a contradiction.

�e work on GPS is one part of a large body of impressive work on concurrent separation

logics for weak memory that includes it’s forebearers [86], [84], and [83]. �ese logics are based

on the foundational work of [37] (TTPP), [70] (interference), [42] (rely/guarantee) and [67] (CSL).

More recently [80] have constructed a logic for the promising semantics of [43] which features

a version of the C11 semantics with fully relaxed memory accesses and without thin-air reads.

�ough, in that work, they do not prove correctness of any algorithms. Also of note is the recent

work on the Fenced Separation Logic of [28] which is an extension of RSL. �e soundness of

FSL requires a restriction of the C11 memory model which prevents read-write reorderings by a

compiler which is one possibly way to satisfy acyclic(po | rf).

�e work of Alglave and Cousot [2] aims to enable proofs for many memory models. In their

proof method they specify a set of “bad reads” that will cause the algorithm to fail and prove

correctness under the absence of those reads. �en a target memory model must rule out those

reads. In the presence of a very weak memory model that set of bad reads must be small or empty,

placing the burden on the algorithm to forbid such reads by using fences or other synchroniza-

tion methods. �e result would be either, a performance penalty when executing the algorithm

on strong memory models that already forbid those reads or the work of extra proofs and imple-

mentations for those stronger memory models. By contrast, our goal is to construct proofs for the

JOM. However, it is worth noting that the addition of speci�ed orders means that our compiler

can take our speci�ed orders and provide fast, correct executable code for any stronger target

memory model.

Outside the context of weak memory, researchers leveraged the early work of [67] to great

e�ect. �e works of [31] and [33] supported dynamically allocated and re-entrant locks respec-

tively. Message passing has been considered in [87] and [10]. Fork and join support appeared

in [27]. Finally, in [56] they construct a logic to prove liveness properties for concurrent objects
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building on their work in [55].

�in-air reads invalidate basic thread-local state based reasoning as noted in [86]. �e seman-

tics of the JOM does not permit thin-air reads by requiring that all executions satisfy acyclic(po | rf),

but our approach to reasoning does not rely on that guarantee and our logic is sound in the pres-

ence of thin-air reads.

Instead, write elimination starts from an over-approximation of possible writes to a memory

location. In our proofs we make no a�empt to rule out writes based on data or control dependen-

cies and so we would include the, intuitively impossible, writes that appear in the classic thin-air

read examples, e.g. Figure 3.2a.

To address such cycles we would require speci�ed visibility orders (vo) to augment the happens-

before relationship to rule out such writes by deriving cycles in the coherence order. As a result,

we may need extraneous visibility orders to rules out writes that, in practice, can never satisfy

a read. �us, our reasoning principles remain sound but in some cases performance may su�er

when the orders are compiled to synchronization.

�e e�ect of the extra visibility orders would certainly be obviated by the Java compiler’s

own implementation of acyclic(po | rf), but the speci�c approach would a�ect the semantics. In

recent work Ou et al. [68] showed that a compiler targeted at annotated accesses, like the JOM’s

VarHandle API, can eliminate thin-air reads with a worst case overhead of 6.3% for many data

structures by forbidding read-write reordering. Adopting this approach would mean extending

the de�nition of vo in our semantics to include all read-write pairs in program order.

Importantly, the ability to reason in the presence of thin-air reads di�erentiates our logic from

recent work by Raad et al. which is also focused on concurrent libraries for weak memory models

[75]. On the other hand, their framework is more general with respect to the memory model

as they can simply specify it as another library. Further, their framework can handle libraries

without obvious linearization points which we do not address.
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CHAPTER 6

Conclusion

We have demonstrated that the correctness of lock-free concurrent algorithms can be proved

once for implementations that can be compiled to run correctly and e�ciently on all mainstream

memory models. We have accomplished this by constructing a fence insertion algorithm and

compiler, the �rst memory model for Java’s Access Modes, and a mechanized logic.

In future work we hope to have our memory model adopted as part of the Java language

speci�cation. We also hope to pursue the veri�cation of the algorithms in Java’s concurrent

utility library. Finally, we see speci�ed orders as an answer to the issues around mixed mode

access semantics in Java’s Access Modes and we are interested in studying their characteristics

as synchronization primitives.
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[77] Jaroslav Ševčı́k and David Aspinall. On validity of program transformations in the Java
memory model. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming: 22nd Eu-
ropean Conference Paphos, Cyprus, July 7-11, 2008 Proceedings, pages 27–51. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[78] Dennis Shasha and Marc Snir. E�cient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, April 1988.

[79] Nir Shavit and Dan Touitou. So�ware transactional memory. In Proceedings of the Four-
teenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’95, pages
204–213, New York, NY, USA, 1995. ACM.

[80] Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Vafeiadis. A
separation logic for a promising semantics. In Amal Ahmed, editor, Programming Languages
and Systems, pages 357–384, Cham, 2018. Springer International Publishing.

[81] Joseph Tassaro�i, Derek Dreyer, and Viktor Vafeiadis. Verifying read-copy-update in a logic
for weak memory. In PLDI, 2015.

115

http://llvm.org/docs/LangRef.html
http://www.sagemath.org/


[82] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. Gps: Navigating weak memory with
ghosts, protocols, and separation. In Proceedings of OOPSLA’14, Object-Oriented Program-
ming Systems, Languages and Applications, 2014.

[83] Viktor Vafeiadis. Modular �ne-grained concurrency veri�cation. Technical Report UCAM-
CL-TR-726, University of Cambridge, Computer Laboratory, July 2008.

[84] Viktor Vafeiadis. Concurrent separation logic and operational semantics. Electron. Notes
�eor. Comput. Sci., 276:335–351, September 2011.

[85] Viktor Vafeiadis, �ibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco
Zappa Nardelli. Common compiler optimisations are invalid in the c11 memory model
and what we can do about it. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, pages 209–220, New York,
NY, USA, 2015. ACM.

[86] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: A program logic for
c11 concurrency. In Proceedings of OOPSLA’13, Object-Oriented Programming Systems, Lan-
guages and Applications, 2013.

[87] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving copyless message passing. In
Proceedings of the 7th Asian Symposium on Programming Languages and Systems, APLAS ’09,
pages 194–209, Berlin, Heidelberg, 2009. Springer-Verlag.

[88] John Wickerson and Mark Ba�y. Taming the complexities of the c11 and opencl memory
models. arXiv preprint arXiv:1503.07073, 2015.

116



APPENDIX A

Classic Concurrent Algorithms and Speci�ed Orders

In this appendix we include the source code for each of the “classic” algorithms that was used in

our fence insertion experiments. Each implementation comes from the Musketeer benchmarks

and is reproduced here line-for-line. �is is intended to serve as a reference for the line numbers

detailed in the fence placement results tables in the main paper.

A.1 Dekker’s Mutex

In Figure A.1 we have the two procedures used to simulate process interaction in the Musketeer

Dekker implementation. Note that flag1, flag2 and turn are shared. Recall that the orders we

have de�ned are store-load orders between lines 2 and 3, 7 and 3 in bothe procedures. Note that

the orders along back edges from the stores to flag1 and flag2 at the end of the while loops are

required for the same reason as the order between the �rst stores to flag1 and flag2 and the

loads just below them.

A.2 Parker Mutex

In Figure A.2 we have the procedure which contains the bug in the Parker implementation in the

JVM. Note that counter is shared. Recall that the order we have de�ned is a store-any order

between lines 3 and 5.
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1 void* thr1(void * arg) {

2 flag1 = 1;

3 while (flag2 >= 1) {

4 if (turn != 0) {

5 flag1 = 0;

6 while (turn != 0) {};

7 flag1 = 1;

8 }

9 }

10 // begin: critical section

11 //x = 0;

12 //assert(x<=0);

13 // end: critical section

14 turn = 1;

15 flag1 = 0;

16 }

1 void thr2(arg){

2 flag2 = 1;

3 while(flag1 >= 1) {

4 if(turn != 1) {

5 flag2 = 0;

6 while(turn != 1){}

7 flag2 = 1;

8 }

9 }

10 // begin: critical section

11 //x = 1;

12 //assert(x>=1);

13 // end: critical section

14 turn = 1;

15 flag2 = 0;

16 }

ODekker = { W(flag1)
push
−−−−→ R(flag2), W(flag2) push

−−−−→ R(flag1) }

Figure A.1: Dekker’s Mutex
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1 void park() {

2 if (_counter > 0) {

3 _counter = 0;

4 // mfence needed here

5 return;

6 }

7 if (mutex_trylock(&__unbuffered_mutex) != 0) return;

8 if (_counter > 0) { // no wait needed

9 _counter = 0;

10 mutex_unlock(__unbuffered_mutex);

11 return;

12 }

13 __unbuffered_did_park=1;

14 cond_wait(__unbuffered_cond, __unbuffered_mutex);

15 _counter = 0;

16 mutex_unlock(__unbuffered_mutex);

17 }

OParker = { W(counter)
push
−−−−→ ∗}

Figure A.2: Parker
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1 void* thr1(void * arg) {

2 flag1 = 1;

3 turn = 1;

4 while (flag2==1 && turn==1);

5 // begin: critical section

6 // end: critical section

7 flag1 = 0;

8 }

1 void* thr2(void * arg) {

2 flag2 = 1;

3 turn = 0;

4 while (flag1==1 && turn==0);

5 // begin: critical section

6 // end: critical section

7 flag2 = 0;

8 }

OPeterson = { W(flag1)
push
−−−−→ R(flag2), W(flag2) push

−−−−→ R(flag1) }

Figure A.3: Peterson’s Mutex

A.3 Peterson’s Mutex

In Figure A.3 we have the two procedures used to simulate process interaction in the Musketeer

Peterson implementation. Note that flag1, flag2 and turn are shared. Recall that the orders we

have de�ned are both store-load orders between lines 5 and 7 and also between lines 14 and 16.

A.4 Lamport’s Mutex

Here we detail two example executions for Lamport’s mutual exclusion algorithm. �ey illustrate

the need for at least two orders in the implementation included in Musketeer’s “classic” bench-

marks. �e relevant source code appears in Figure A.4. Note that x and y are shared. �e �rst

order is between the stores to x on line 4 and the loads of y on line 5. �e second order is between

the stores to y on line 10 and the loads of x on line 11.

For the example executions in Figures A.5 and A.6 we use R(y) : 0 to denote a 0 valued result

loaded from the address represented by y, W(y, 1) to denote a store of the value 1 to the same

address, and enter to denote the point at which a process enters the critical section. On the right

margin we note where the loads correspond with if statements.

To see that the �rst order is necessary consider the execution in Figure A.5, where only the
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1 void thr1() {

2 L0:

3 b1 = 1;

4 x = 1;

5 if (y != 0) {

6 b1 = 0;

7 goto L0;

8 }

9

10 y = 1;

11 if (x != 1) {

12 b1 = 0;

13

14 if (y != 1) {

15 goto L0;

16 }

17 }

18 // begin

19 // end

20 y = 0;

21 b1 = 0;

22 }

1 void thr2() {

2 L1:

3 b2 = 1;

4 x = 2;

5 if (y != 0) {

6 b2 = 0;

7 goto L1;

8 }

9

10 y = 2;

11 if (x != 2) {

12 b2 = 0;

13

14 if (y != 2) {

15 goto L1;

16 }

17 }

18 // begin

19 // end

20 y = 0;

21 b2 = 0;

22 }

OLamport = { W(x)
push
−−−−→ R(y), W(y) push

−−−−→ R(x) }

Figure A.4: Lamport’s Mutex
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thr1 thr2 :

R(y, 0) if : y , 0

R(y, 0) if : y , 0

W(x, 1)

W(y, 1)

R(x, 1) if : x , 1

enter

W(x, 2)

W(y, 2)

R(x, 2) if : x , 2

enter

Figure A.5: Lamport’s Mutex, Bad Execution 1

stores to x move past the guards that check if y is equal to 0.

Separately, if the stores to y are allowed to pass the if statements that check that value of x,

the execution in Figure A.6 is possible.
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thr1 thr2 :

W(x, 1)

R(y, 0) if : y , 0

R(x, 1) if : x , 1

W(x, 2)

R(y, 0) if : y , 0

W(y, 2)

R(x, 2) if : x , 2

enter

W(y, 1)

enter

Figure A.6: Lamport’s Mutex, Bad Execution 2
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APPENDIX B

Fence Insertion Algorithm Correctness Proof

�e li� function. We �rst de�ne the helper function li� that later will enable us to state some

properties succinctly. Let G = (V, E, `) and let K ⊆ E , and suppose we have i1, i2 such that

p ∈ paths( Refine(G,K), i1, i2). We de�ne li�(p) to be the corresponding path in G, that is, the

path that for each pair of edges ( j1, v j1, j2), (v j1, j2, j2) in p instead has the edge ( j1, j2) ∈ K . Notice

that li�(p) ∈ paths(G, i1, i2).

We prove the correctness of Insert in �ve steps. First we present four lemmas and then the

main result (�eorem 1). Each of the four lemmas states a key property of the Refine function.

Before each lemma we will give an informal explanation that uses the following terminology. For

a call Refine(G, A,O), we will refer to G as the original graph and we will refer to Refine(G, A,O)

as the re�ned graph. Now let us move on to the four lemmas.

Intuitively, Lemma 8 says that reasoning about a path in the original graph carries over to the

corresponding path in the re�ned graph.

Lemma8. SupposeG = (V, E, `) andK ⊆ E and (i1, i2) ∈ (V×V) and p ∈ paths( Refine(G,K), i1, i2).

If li�(p), A ` i1 → i2, then p, A ` i1 → i2.

Proof. We proceed by induction on the derivation of

li�(p), A ` i1 → i2.

We have two cases based on the last rule used in the derivation.

If the last rule used is the instantiation rule, then we have that i1 can reach i2 in li�(p), and

we have (L 7→ R) ∈ A, and (L 7→ R) B (`(i1), `(i2)). From p ∈ paths( Refine(G,K), i1, i2), we have

that i1 can reach i2 in p, so we can use the instantiation rule to derive p, A ` i1 → i2.
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If the last rule is the transitivity rule, then we can �nd j such that we can derive li�(p), A `

i1 → j and li�(p), A ` j → i2. From the induction hypothesis, we have p, A ` i1 → j and

p, A ` j → i2. Now we use the transivity rule to derive p, A ` i1 → i2. �

Intuitively, Lemma 9 says that reasoning about the original graph carries over to the re�ned

graph.

Lemma 9. Suppose G = (V, E, `) and K ⊆ E . If G, A |= O, then Refine(G,K), A |= O.

Proof. Suppose (i1, i2) ∈ O, and let

p ∈ paths( Refine(G,K), i1, i2).

We have li�(p) ∈ paths(G, i1, i2), so from G, A |= O, we have li�(p), A ` i1 → i2, so from Lemma 8,

we have p, A ` i1 → i2. �

Intuitively, Lemma 10 says that certain paths in the re�ned graph must contain a fence.

Lemma 10. ∀(i1, i2) ∈ O :

∀p ∈ paths( Refine(G, Cut(G,O)), i1, i2) : ∃ j ∈ W Cut(G,O) : j is on p.

Proof. Let K = Cut(G,O) and suppose also that p ∈ paths( Refine(G,K), i1, i2). Notice li�(p) ∈

paths(G, i1, i2). From the displayed Formula (2.2), we have paths((V, E \K, `), i1, i2) = ∅, so li�(p)

contains at least one edge that is also an element of K . Let ( j1, j2) be such an edge. �e call

Refine(G, Cut(G,O)) returns a graph that, among other things, adds a node v j1, j2 and replaces

( j1, j2) with two edges. Notice that the node v j1, j2 is on p. Additionally, from the de�nition of WK

we have v j1, j2 ∈ WK . So, we can choose j = v j1, j2 . �

Intuitively, Lemma 11 says that, with an appropriate assumption about the fence fany, the

re�ned graph contains su�cient fences to enforce O.

Lemma 11. If {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A, then Refine(G, Cut(G,O)), A |= O.

Proof. Suppose (i1, i2) ∈ O and let furthermore p ∈ paths( Refine(G, Cut(G,O)), i1, i2). From

Lemma 10, we have that we can �nd j ∈ W Cut(G,O) such that j is on p. In particular, i1 can reach j
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in p, and j can reach i2 in p, and `( j) = fany. From `( j) = fany we have (∗ 7→ fany)B (`(i1), `( j))

and (fany 7→ ∗) B (`( j), `(i2)). From {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A, we have that we can use the

instantiation rule to get p, A ` i1 → j and p, A ` j → i2. Now we use transitivity to conclude

p, A ` i1 → i2. �

Now we are ready to prove the main result. Like Lemma 11, also �eorem 1 says that with

an appropriate assumption about the fence fany, the re�ned graph contains su�cient fences to

enforce O. �e di�erence is that Lemma 11 is only about Cut and Refine, while �eorem 1 is

about the entire de�nition of Insert, which also uses Elim.

�eorem 1. If {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A, then Insert(G, A,O), A |= O.

Proof. Suppose {(∗ 7→ fany), (fany 7→ ∗)} ⊆ A and let G = (V, E, `). From the displayed

Formula (2.1), we have G, A |= Elim(G, A,O), and from the displayed Formula (2.2), we have

Cut(G,O \ Elim(G, A,O)) ⊆ E . When we apply Lemma 9 to those two properties, we get

Insert(G, A,O), A |= Elim(G, A,O). (B.1)

From Lemma 11, we have:

Insert(G, A,O), A |= O \ Elim(G, A,O). (B.2)

From the displayed Property (2.1), we have Elim(G, A,O) ⊆ O, so:

Elim(G, A,O) ∪ (O \ Elim(G, A,O)) = O. (B.3)

From the displayed Formulas (B.1)–(B.3), we can conclude that Insert(G, A,O), A |= O. �
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APPENDIX C

Full Herd Model for the JAM

let opq = O | RA | V

let rel = W & RA

let acq = R & RA

let vol = V

(* release acquire ordering *)

let ra = po;[rel] | [acq];po

(* intra-thread volatile ordering *)

let volint = po;[vol & R] | [vol & W];po

(* intra-thread ordering contraints *)

let into = svo | spush | ra | volint

(* define trace order, ensure it respects rf and intra-thread specified orders *)

(* Note that ((W * FW) & loc & ˜id) = cofw *)

with to from linearisations(M\IW, ((W * FW) & loc & ˜id) | rf | into)

(* cross thread push ordering extended with volatile memory accesses *)

let push = spush | volint

let pushto = to+ & (domain(push) * domain(push))

(* extend ra visibility *)

let vvo = rf | svo | ra | push | pushto;push
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let vo = vvo+ | po-loc

include "filters.cat"

let WWco(rel) = WW(rel) & loc & ˜id

let cofw = WWco((W * FW))

(* coherence rules *)

let coinit = loc & IW*(W\IW)

let coww = WWco(vo)

let cowr = WWco(vo;invrf)

let corw = WWco(vo;po)

let corr = WWco(rf;po;invrf)

(* general definition from RC11, works for atomic rws and split instruction rws *)

let rmw-jom = [RMW] | rmw

(* read-write rules *)

let cormwtotal = WWco(((range(rmw-jom) * _ ) | (_ * range(rmw-jom))) & to)

let cormwexcl = WWco((rf;rmw-jom)ˆ-1;co-jom)

let rec co-jom = coww | cowr | corw | corr

| cofw | coinit | cormwtotal

| WWco((rf;rmw-jom)ˆ-1;co-jom)

acyclic (po | rf) & opq

acyclic co-jom
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APPENDIX D

Speci�ed Orders in the JAM: A Mapping for ARMv8 and x86

Read-writes

Speci�ed orders can be compiled to existing synchronization using a fairly direct mapping. Here

we give an example mapping for ARMv8. We also discuss how speci�ed visibility orders can be

elided when the target platform for compilation already enforces them.

[W]; svo; [M] [W]; po; [DMB ST]; po; [M]

[R]; svo; [M] [R]; po; [DMB LD]; po; [M]

[M1]; push; [M2] [M1]; po; [DSB]; po; [M2]

�e value of these orders can be seen in the case of atomic read-writes on x86. �e JAM

makes no intra-thread ordering guarantees for atomic read-writes even though they exist on

some architectures like x86 [69]. �is might result in unnecessary synchronization to achieve a

desired outcome that requires such intra-thread ordering. However, using speci�ed orders means

that a compiler can make intelligent decisions based on the target platform. For example if we

have a speci�ed visibility order between a read-write and a later read target architecture is x86,

the compiler can recognize that the head of the order is a compare and exchange instruction and

omit any extra synchronization:

[RW]; svo; [R] [RW]; po; [R]
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APPENDIX E

Observable Total Coherence for ARMv8

Here we demonstrate that it is possible to construct a program that is only forbidden due to the

total coherence order of the ARMv8 memory model from [74]. We start by noticing that Herd

model for ARMv8 has two acyclicity requirements that involve co:

(* Internal visibility requirement *)

acyclic po-loc | ca | rf as internal

(* External visibility requirement *)

irreflexive ob as external

In the �rst requirement ca = fr | co. In the second ob = obs | ... where obs = ... |

coe and coe is coherence restricted to inter-thread relationships. Critically, as illustrated in the

proof for our model, they do not together work to form cycles. So we can use one with each side

of the total order to demonstrate its observability in the model.

We have constructed the following program (included in the supplementary material) which

will exhibit a cycle in the �rst requirement for one side of the total order and a di�erent, incom-

patible cycle, for the second requirement:

Arch64 totalco

{

0:X1=x; 0:X3=y;

1:X1=x; 1:X3=y;

2:X1=x; 2:X3=y;
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}

P0 | P1 | P2;

LDR X2,[X1] | LDAR X5, [X3]| LDAR X5,[X1];

MOV X0,#1 | MOV X2,#2 | MOV X0, #1;

STR X0,[X1] | STR X2,[X1] | STR X0, [X3];

exists (0:X2=2 /\ 1:X5=1 /\ 2:X5=1)

We show this by running the program with Herd and allowing executions that violate these

two requirements (we mark them with “�ag” in the Herd parlance). �e result in Figure E.1

is exactly two �agged executions. Each �gure corresponds to one direction of the total ordering

between b and d. We will inspect both to demonstrate that they are only forbidden as consequence

of the total order, and thus if the total order was taken away they would both be allowed.

In Figure E.1a note the following. All of the cycles for any kind of edge involve a po−loc
−−−−−−−→ b

which is not in ob. �is means we can avoid a cycle in ob. Recall that if there were a cycle in ob

then when we use ob for the other side of the total coherence order it would be a cycle regardless

of the total coherence order. Also, note that if we take away b co
−−−→ d (blue) it will also remove

e fr
−−−→ d. �us, if we take away b co

−−−→ d by removing the total coherence order of the model,

there is no cycle le� in the graph and the execution would be allowed.

In Figure E.1b note the following. All of the cycles for any kind of edge involve c bob
−−−−→ d

which is not in po-loc | ca | rf. �is means we can’t establish a cycle in po-loc | ca | rf.

�us, if we take away d co
−−−→ b by removing the total coherence order of the model, there is no

cycle in ob le� in the graph and the execution would be allowed.
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(a) po-loc | ca | rf Cycle (b) ob Cycle

Figure E.1: Two Flagged Executions
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APPENDIX F

Full Expression Semantics

�e following constitutes the full expression semantics of our model of the JOM.

F.1 Expression Rules

k = n + m
add

n+m
∅
−→ k

k = n mod m
mod

n mod m
∅
−→ k

n = m
eq

n==m
∅
−→ 1

n , m
neq

n==m
∅
−→ 0

e1
d
−→ e′1

let-le�
let x := e1 in e2

d
−→ let x := e′1 in e2

e2
d
−→ e′2 e1 init x < FV(d)

let-right
let x := e1 in e2

d
−→ let x := e1 in e′2

let-subst
let x := n in e2

∅
−→ [n/x]e2

repeat
repeat e end

∅
−→

let x := e in if x then x else repeat e end

n , 0
if-right

if n then e1 else e2
∅
−→ e1

if-le�
if 0 then e1 else e2

∅
−→ e2

label-rm
l:n ∅
−→ n

e
d
−→ e′

label-under
l:e d ′
−→ l:e′

spec
[s/x]e

∅
−→ s = n in [n/x]e

e
d
−→ e′

spec-under
s = n in e

d
−→ s = n in e′

spec-rm
n = n in e

∅
−→ e

action-init
a

ε :i=a
−−−−→ i

exec-read
i

i to n
−−−→ n

exec-write
i

i
−→ 0
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F.2 State and�read Rules

P
d@p
−−−→ P′ H

d@p
−−−→ H′

step
(P,H) → (P′,H′)

e
d
−→ e′

P-step
P; p : fork e

d@p
−−−→ P; p : fork e′

P
d@p1
−−−−→ P′

P-�nd
P; p2 : fork e

d@p1
−−−−→ P; p2 : fork e

F.3 Init Rules

�e intialization rules and the use of init in let-right rule forces initialization occur in program

order.

init-nat
n init

e1 init e2 init
init-let

let x := e1 in e2 init
init-id

i init

e init
init-spec

s = n in e init

e init
init-spec

s = n in e init

e init
init-label

l : e init
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APPENDIX G

Full Logic

�e following consitutes all the deduction rules in our logic.

G.1 Core

Γ ` a1 ∨ a2

Γ ` a1 =⇒ a3

Γ ` a2 =⇒ a3
disj-elim

Γ ` a3

Γ ` a1
disj-lintro

Γ ` a1 ∨ a2

Γ ` a2
disj-rintro

Γ ` a1 ∨ a2

Γ ` a1 ∨ a2

Γ ` ¬a1
disj-syl

Γ ` a2

Γ ` false
exfalso

Γ ` a

(Γ; a1 ` a2)
impl-intro

Γ ` a1 =⇒ a2

Γ ` a1 =⇒ a2

Γ ` a1
mp

Γ ` a2

Γ ` a2

Γ ` a1
conj-intro

Γ ` a1 ∧ a2

Γ ` a1 ∧ a2
conj-lelim

(Γ ` a1)

Γ ` a1 ∧ a2
conj-relim

Γ ` a2
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G.2 Inequality

Γ ` V1
.
= V2

geq-sym
Γ ` V2

.
= V1

Γ ` V1
.
= V2

Γ ` V2
.
= V3

geq-trans
Γ ` V1

.
= V3

Γ ` L .
= n1

Γ ` L .
= n2

n1 , n2
nope

Γ ` false

glt-irr
Γ ` ¬V

.
< V

Γ ` V1
.
< V3

Γ ` V3
.
< V2

glt-trans
Γ ` V1

.
< V2

Γ ` V1
.
< V2

glt-asym
Γ ` ¬V2

.
< V1
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G.3 Expressions

Γ ` n @ L
const

Γ ` L .
= n

Γ ` s1 + s2 @ L

Γ ` (L; lopl)
.
= n1

Γ ` (L; lopr)
.
= n2

add
Γ ` L .

= (n1[+]n2)

Γ ` s1 == s2 @ L

Γ ` (L; lopl)
.
= n1

Γ ` (L; lopr)
.
= n2

Γ ` n1 = n2
eq

Γ ` L .
= 1

Γ ` s1 mod s2 @ L

Γ ` (L; lopl)
.
= n1

Γ ` (L; lopr)
.
= n2

mod
Γ ` L .

= (n1 [mod] n2)

Γ ` (if x then l1 : e1 else l2 : e2 @ L
if

Γ ` ((¬(L; lcnd)
.
= 0) ∧ (L; l1)

.
= L) ∨

(L; lcnd)
.
= 0 ∧ (L; l2)

.
= L

Γ ` let x := l1 : e1 in l2 : e2 @ L

Γ ` x @ (L; l2; ; L′)

x ∈ FV(e2)
let-bind

Γ ` (L; l2; ; L′) .= (L; l1)

Γ ` let x := l1 : e1 in l2 : e2 @ L
let-le�

Γ ` ∃n, (L; l1)
.
= n

Γ ` let x := l1 : e1 in l2 : e2 @ L
let-right

Γ ` (L; l2)
.
= L

Γ ` repeat e end @ L
repeat-match

Γ ` ∃l, e @ (L; l)

Γ ` repeat e end @ L
repeat-break

Γ ` ∃l, L .
= (L; l) ∧ (¬(L; l) .= 0)

Γ ` (∃n, L .
= n)

geq-match
Γ ` ∃e, e @ L

Γ ` [s1] @L

Γ ` (L; lloc)
.
= l

Γ ` L .
= n

reads
Γ ` reads(L, l, n)

Γ ` [s1] := s2 @ L

Γ ` (L; lloc)
.
= l

Γ ` (L; lval)
.
= n

writes
Γ ` writes(L, l, n)
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G.4 Memory

Γ ` let x := l1 : e1 in l2 : e2 @ L
po

Γ ` (L; l1)
po
−−−→ (L; l2)

Γ ` L1
po
−−−→ L2

po-sub
Γ ` (L1; ; L3)

po
−−−→ (L2; ; L4)

Γ ` L1
rf
−−−→ L2

vo-rf
Γ ` L1

vo
−−−→ L2

Γ ` L1
vo
−−−→ L3

Γ ` L3
vo
−−−→ L2

vo-trans
Γ ` L1

vo
−−−→ L2

Γ ` L1
po
−−−→ L2

vo-po
Γ ` L1

vo
−−−→ L2

Γ ` L1
vo
−−−→ L2

vo-vo
Γ ` L1

vo
−−−→ L2

Γ ` L1
push
−−−−→ L2

Γ ` L3
push
−−−−→ L4

vo-pushes
Γ ` L1

vo
−−−→ L4 ∨ L3

vo
−−−→ L2

Γ ` L1
vo
−−−→ L2

Γ ` writes(L1, l, n1)

Γ ` reads(Lr, l, n2)

Γ ` writes(L2, l, n3)
co-ww

Γ ` L1
co
−−−→ L2

Γ ` L1
vo
−−−→ Lr

Γ ` Lr
po
−−−→ L2

Γ ` L1 , L2

Γ ` writes(L1, l, n1)

Γ ` reads(Lr, l, n2)
co-wr

Γ ` L1
co
−−−→ L2

Γ ` L1
vo
−−−→ Lr

Γ ` Lr
po
−−−→ L2

Γ ` writes(L1, l, n1)

Γ ` writes(L2, l, n2)
co-rw

Γ ` L1
co
−−−→ L2

Γ ` L1
rf
−−−→ Lr1

Γ ` L2
rf
−−−→ Lr2

Γ ` Lr1
po
−−−→ Lr2

Γ ` L1 , L2

Γ ` writes(L1, l, n1)

Γ ` writes(L2, l, n2)
co-rr

Γ ` L1
co
−−−→ L2

Γ ` reads(Lr, l, n)
reads-rf

Γ ` ∃Lw, Lw
rf
−−−→ Lr

Γ ` Lw
rf
−−−→ Lr

rf
Γ ` ∃ l n,writes(Lw, l, n) ∧ reads(Lr, l, n)

Γ ` L1
co
−−−→ L2

Γ ` L2
co
−−−→ L1

co-cycl
Γ ` false

Γ ` L1
coi
−−−−→ L2

coi
Γ ` ¬(L1

co
−−−→ L3 ∧ L3

co
−−−→ L2)

Γ ` L1
coi
−−−−→ L2

coi-co
Γ ` L1

co
−−−→ L2
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Γ ` L1
co
−−−→ L2

Γ ` (L1
coi
−−−−→ L2) =⇒ P L1 L2

(∀L3, Γ ` L1
co
−−−→ L3 =⇒ P L1 L3 =⇒ L3

coi
−−−−→ L2 =⇒ PL1L2)

co-ind
Γ ` P L1 L2

Γ ` L1
co
−−−→ L2

co-writes
Γ ` ∃l n1 n2, writes(L1, l, n1) ∧ writes(L2, l, n2)

Γ ` reads(L, l1, n1)

Γ ` reads(L, l2, n2)
reads-match-loc

Γ ` l1 = l2

Γ ` reads(L, l1, n1)

Γ ` reads(L, l2, n2)
reads-match-val

Γ ` n1 = n2

Γ ` writes(L, l1, n1)

Γ ` writes(L, l2, n2)
writes-match-loc

Γ ` l1 = l2

Γ ` writes(L, l1, n1)

Γ ` writes(L, l2, n2)
writes-match-val

Γ ` n1 = n2
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APPENDIX H

�e match Function and actionid Predicate

Note, for the full match function consult the exmatch de�nition in the Semantics.v Coq source

�le in the supplementary material. Here we have elided the parts of the de�nition that traverses

the head of the executions and threads.
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match(e, L, e′) ,



e = e′ if L = �

match(s1, L′, e′) if e = s1 + s2 ∧ L = llopl ; L′

match(s1, L′, e′) if e = s1 mod s2 ∧ L = llopl ; L′

match(s1, L′, e′) if e = s1 == s2 ∧ L = llopl ; L′

match(s2, L′, e′) if e = s1 + s2 ∧ L = llopr ; L′

match(s2, L′, e′) if e = s1 mod s2 ∧ L = llopr ; L′

match(s2, L′, e′) if e = s1 == s2 ∧ L = llopr ; L′

match(s, L′, e′) if e = [s] ∧ L = llloc; L′

match(s1, L′, e′) if e = [s1] := s2 ∧ L = llloc; L′

match(s2, L′, e′) if e = [s1] := s2 ∧ L = llval ; L′

match(e′′, L′, e′) if e = l:e′′ ∧ L = l; L′

match(e′′, L, e′) if e = repeat e′′ end

match(s, L′, e′) if e = if s then e1 else e2 ∧ L = llcnd ; L′

match(e1, L, e′) if e = if s then e1 else e2 ∧ ¬match(e2, L, e′)

match(e2, L, e′) if e = if s then e1 else e2

match(e1, L, e′) if e = let x := e1 in e2 ∧ ¬match(e2, L, e′)

match(e2, L, e′) if e = let x := e1 in e2

false o/w

As discussed in Section 4.2, the actionid predicate uses match to track the evolution of a

memory access through an execution from expression to identi�er to value.
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actionid(E, L, i) ,

∃ e n E′ E′′,

E = E1; ; E2; ; E3

e ∈ {[s], [s1] := s2}

match(E, L, e)

match(E2, L, i)

match(E3, L, n)
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APPENDIX I

Soundness Examples

We will focus here on proof sketches for the soundness of a few key rules we have featured

previously. We refer the interested reader to the supplementary material for more extensive,

formal proofs.

reads-rf By assumption we have that a read, Lr evaluated completely. We must show that it

is connected to a write that can be located in the program with some Lw. We know that if a read

evaluated to a value then it must have some identi�er ir and by hist-read in Figure 3.19 it will

have added rf(iw, ir) to the history. �us by the assumptions of hist-read, there was some write

identi�ed by iw that executed fully. By the assumption of our labeling discipline we have that it

must have been located in the program at the point of it executed with some Lw. All that remains

is to construct Lw
rf
−−−→ Lr using the write and read labels with the derived information about

their executions for the actionid predicate.

co-ind By assumption L1
co
−−−→ L2. By the de�nition of R

−−→ we have that there exists some

i1 and i2 for L1 and L2 such that i1
co
−−−→E i2. We know that co

−−−→E is well founded since it is

acyclic (see Figure 3.19 hist-write and hist-read) and E is �nite. �e proof proceeds by induction

on i1
co
−−−→E i2 to show P′ i1 i2 , P L1 L2. Note that, since neither i1 nor i2 can be free in P by

the syntax of our assertions we can simply use P L1 L2.

In the base case show, i1
coi
−−−−→E i2 ⇒ P L1 L2. By assumption, L1

coi
−−−−→ L2 ⇒ P L1 L2,

so it’s enough to show that i1
coi
−−−−→E i2 ⇒ L1

coi
−−−−→ L2, which follows from the de�nition of

R
−−→ and the assumptions from the de�nition of L1

co
−−−→ L2. In the inductive case we have as an

assumption P′ i1 i3 for i1 and some i3. According to the the syntax of our assertions we have

immediately that P L1 L2.

if-alt By assumption we have L .
= n for some n and if . . . @ L. �en, by the de�nition of E
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we have some, possibly empty, sequence of steps, (P1,H1) → (P2,H2) from the head of E where

if . . . @ L to the state where n @ L. We proceed by induction on execution steps to show that,

if there is a match if . . . @ L in the �rst state (holding the subexpressions to be arbitrary) and

a match n @ L in the end state, then there exist some pair of states where the disjunction in the

conclusion of if-alt holds.

In the base case E is only the initial state. �en both if . . . @ L and n @ L would be true in

the same state implying that if . . . = n, a contradiction.

In the inductive case, we have (P1,H1) → (P3,H3) →
∗ (P2,H2). We know that if . . . @ L in

P1 then it must be that there is some e @ L in P3. Since the equality of expressions is decideable

we consider the cases. If if . . . = e then the inductive hypothesis applies. Otherwise it must be

that there was a substitution or the if expression, took a step. Again, we consider the cases. In the

case of the substitution we can apply the inductive hypothesis since we held the sub-expressions

to be arbitrary in our goal. Otherwise, the if took a step. �en we have the two states, (P1,H1)

and (P3,H3), where either, the condition was 1 in P1 and the then branch will be the resulting

expression at label L in P3, or, similarly, the condition was 0 and the else branch will be the

resulting expression at label L, as required.
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APPENDIX J

Herlihy/Wing�eue Correctness

�e concurrent queue speci�cation of Herlihy and Wing [36] tracks closely with the ordering

based approach of memory reasoning in our logic. Here we give short proof sketches for how

Lemma 5 can be used to prove the key theorems of their speci�cation.

�eorem 6 Since the Enq x “precedes” the Enq y (here vo
−−−→) we can show that the index for

the �rst is smaller than the index for the second by Lemma 6. By Lemma 5 the index of Deq x

must be smaller than the index Deq y therefore we can show that Deq x must also have happened

before Deq y using tryCons invariant.

�eorem7�is is similar to �eorem 9 in that we must show that there is a dequeue (tryCons)

which executed with the same index as the earlier dequeue. �e proof here is easier. �e proof

of our �eorem 9 must establish that there exists a dequeue action which increments the reader

index, allowing the write of writer index modulo N in the second dequeue to reference the same

bu�er location. Instead, we are given the second dequeue, so we only need to “work backward”

using the tryCons invariant to show that there must exist an earlier dequeue with the same index

as the earlier enqueue and use Lemma 5 to show that it must have read from the earlier enqueue.

�eorem 8 Follows directly from the rf
−−−→ established during an enqueue for a given bu�er

location and the de�nition of vo
−−−→.
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